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I. INTRODUCTION 

The definition of "grammar form" introduced 
i n  [CG] makes it possible to state and prove re- 
sults about various types of grammars in a uni- 
form way. Among questions naturally formaliz- 
able in this framework are many about the com- 
plexity or efficiency of grammars of different 
kinds. For example, one might wish to know by 
how much it is possible to improve the efficiency 
of right-linear form for expressing regular sets, 
by using another type of grammar [MF]. Gram- 
mar forms provide a reasonable way of consider- 
ing the totality of other forms we mightuse, and 
so answering the question with both upper and 
lower bound results. 

The general question considered in this pa- 
per is the following: which grammar forms are 
more efficient than other grammar forms for the 
expression of classes of languages, and how 
much gain in efficiency is possible? Our results 
deal solely with context-free grammars, and use 
both derivation complexity and size of grammars 
as complexity measures. Our most interesting 
results are a general form-preserving speed-up 
theorem for derivation complexity, and a pair of 
results giving upper and lower bounds on the 
amount of size improvement possible over right- 
linear form, using forms whose expressive pow- 
er is exactly the regular sets. Results related to 
the latter pair are given for classes of languages 
other than the regular sets; many open questions 
remain. 

The basic grammar form model is given by: 

Definition I. I: A (context-free) grammar form 
is a 6-tuple F = (V, ~,~r, J, ~, (y), where 

(i) V is an infinite set of abstract symbols, 
(ii) ~ is an infinite subset of V such that V-Z 

is infinite, and 
(iii) Gv= (~r, ~/, ~, (~) is a context-free grammar 

with J ~ Z and (~r-~) c (V-3q). 
An interpretation of a grammar form F = (V,~ 
J,~,G) is a 5-tuple I =(u,vt,3~,,pI,S,), where 

(i) ~/ is a substitution on,r* such that u(a) is 
a finite subset of ~*, U(~) is a finite sub- 
set of V-T for each ~ in%'-~and ~I(~)NU(~) 
=~ for each ~ and ~, ~#~, in~/-~, 

(ii) Pl is a subset of ~/(~) = ~n'U 8~), where 

~(~ ~): {u-v]u in u(a),v in u(8)), 
([ii) SI i s  in ~I(~), and 
(iv) T I (V~) is the set of all symbols in Z(V) 

which occur in P~ (together with S~). 

We use the notation ~(F) for the set of all 
grammars which arise from interpretations of 
form F, ~for the language generated by gram- 
mar G, and ~(F) for [L|(~GE~(F))[L(G)=L]]. 

Right-linear form is the grammar form < V, 
Z, {~,a], [a], [0~aG,(y-*a],cr>. Left-linear form 
is the grammar form < V, ~, [~, a], [a], [~-.~a, 
G-*a],G>. Standard linear form is the grammar 
form<V,T, [(y,a], [a], [G-*aGa, G-~a],(~>. Chore- 
sky form is the grammar form < V, T, [G, a~'~[-a'~, 
[&-" G~, G-'a), G >. 

II. DERIVATION COMPLEXITY 

We first ask whether some grammar .forms 
provide interpretations with smaller derivation 
complexity (as studied by Gladkii [GI] and Book 
[B]) than other grammar forms, for the expres- 
sion of particular context-free languages. Theo- 
rem Z. Z below answers this question in the nega- 
tive; all context-free forms are seen to be equal- 
ly efficient for the expression of all possible con- 
text-free languages, if the sole-measure of ef- 
ficiency is taken to be the lengths of derivations. 

Definition Z. I: If O is a context-free grammar, 
~r. is a function defined for words in L(O), giving 
~'[{e fewest steps in any derivation of the word in 
G. ~0!~ = rain ~(x). (c denotes the empty 

x£ L(G),x# ¢ 
word. ) A form F is minimal if for. each language 
L in ~(F) and each natural number n, there is a 
grammar G in ~(F) with L(G) = L and ~s(x) =< 

m a x [ ~ ,  f o r  a l l  x i n  L .  

T h u s ,  f o r  a m i n i m a i  f o r m  F , e v e r y  l a n g u a g e  
in  ~ ( F )  m a y  b e  d e r i v e d  i n  f o r m  F i n  a l i n e a r  n u m -  
b e r  of  s t e p s ,  w i t h  c o n s t a n t  of  l i n e a r i t g  a s  s m a l l  
a s  desired. Justification for the term "minimal" 
comes from the fact that for any G in ~(F), there 
is an n such that any non-e word x in L(G) has 

~r(x) ~_ m a x ( ~ a f , ,  J - ~ ) .  

The main result of this section is: 

Theorem Z. 2: Every form is minimal. 

Proof: The most interesting forms for classical 
language theory are forms F with ~(F) = the reg- 
ular sets, ~(F)=the context-free languages and 
~(F) =the linear languages; each of these cases 
requires an individual proof. For arbitrary 
forms, with arbitrary language classes, we first 
show that transformation to a "sequential normal 
form" does not affect the minimality property. 
Then we induct on the sequential structure of the 
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f o r m  ( t h e  b a s i s  b e i n g  s i m p l y  t h e  i n t e r e s t i n g  c a s e s  
p r o v e d  s e p a r a t e l y  1. We o u t l i n e  t h e  m a i n  i d e a s  b 
b e l o w ;  t h e  c o m p l e t e  p r o o f  a p p e a r s  i n  [ G L 1 ] .  

A g r a m m a r  f o r m  F i s  v a c u o u s  i f  L ( G t )  = ¢ o r  
L(Gt) = [¢]. For nonvacuous forms, a "finite 
patch" may he made for short words: 

Lernma 2.3: Let F be a nonvacuous form and n a 
positive integer. Suppose there exists a positive 
integer k and a grammar G in ~(F) such that ~r.(x) 

~max[k, xJ-~-n } for allx in L(G). Then there ex- 

ists a grammar G' in 2~(F) such that L(G') = L(G) 
I I" 

and ~h'(x)-<max[q~,,l~} for allx in L(G'). 

Proof of Lemma Z. 3: We add to G productions 
that generate, in ~Qr steps, the finite number of 

• . X w o r d s  x i n  L (G)  f o r  w h i c h  x _ ~  < k. D 
n 

We n e x t  s h o w  t h a t  n % i n i m a l i t y  i s  n o t  a f f e c t e d  
b y  e i t h e r  a d d i n g  o r  r e m o v i n g  " r e d u n d a n t "  p r o -  
d u c t i o n s  f r o m  a g r a m m a r  f o r m :  

L e m m a  2 . 4 :  L e t  F b e  a n o n v a c u o u s  f o r m  a n d  

8===> w a d e r i v a t i o n ,  w i t h  8 a v a r i a b l e .  L e t  F '  r.g 

b e  t h e  g r a m m a r  f o r m  o b t a i n e d  b y  a d d i n g  to  F t h e  
p r o d u c t i o n  8-* w.  T h e n  F i s  m i n i m a l  i f  a n d  o n l y  
if F' i s  m i n i m a l .  

Proof of Lemma Z. 4: B F Lemma Z. 3 and Propo- 
sition 2. 1 of [CGJ, F minimal implies F' is min- 
imal. If F' is minimal, and we want a language 
to be expressed in ~(F) with constant of linearity 
n, we first express it in~(F') with constant of 
linearity kn, where k is the number of steps it 
takes to simulate 8-" w in F. A natural transla- 
tion then gives the needed grammar in ~(F). [3 

Lemmas Z. 3 and 2.4 are used repeatedly in 
proofs throughout this section. 

Lernma Z. 5: In each of the following cases, F is 
minimal: 
(a) ~5(F) is the family of all finite sets. 
(b) ~5(F) is the family of all regular sets. 
(c) ~(F) is the family of all linear languages. 
(d) ~(F) is the family of all context-free lan- 

guages. 

Proof of Lemma 2.5: (a) Since ~(F) is the fam- 
ily of all finite sets, there is a terminal word 
w # c with ff ~ w  Let F' be the form obtained 

from F by adding the production if-* w. By 
Lemma Z. 4, it Suffices to show F' is minimal. 
But a trivial grammar for any finite set demon- 
strates this fact. 

(b) Since ~(F) is the class of all regular sets, 
L(G~) is an infinite set. Then there exist xl, x~, 
xs, x~,x sin g* and 8 in~'-J such that Xs# e, xsx4# 
¢, G===~ xlSx~, 8===>xs~x4and 8 =e=~ x s. By Z. 4, 

G F ~F a F 

there is no loss of generality in assuming ~-" 
x1~xs, 8-*xs~x4 and 8-* Xs are in G~ (so that G~ is 
essentially like right-linear or left-linear form). 
Assume xs# e, by symrnetry. 

Let L be any regular set. Then L=L(G) for 
some right-linear grammar G, with start symbol 
S, having no productions of the type A-'B. If n is 
any positive integer, define a new grammar G', 
with start symbol S', having the productions 

a n d  

S I --~ S ,  

A - * w B  

A - * w  

i f  A ~ w B ,  
G 

i f  A ~ w .  
G 

(The symbol above the arrow indicates the num- 
ber of steps in the derivation.) G "solves" sev- 
eral productions of G in a single production, thus 
speeding up the generation of words. 

(c) S i m i l a r  to  (b) .  
(d) C a s e s  (b) a n d  (c)  p r e s e n t e d  l i t t l e  d i f f i c u l t y ,  

a s  w e  c a n  " s o l v e "  a s  m a n y  p r o d u c t i o n s  a s  w e  l i k e  
of a r i g h t - l i n e a r ,  l e f t - l i n e a r  o r  s t a n d a r d  l i n e a r  
g r a m m a r ,  to  o b t a i n  o t h e r  p r o d u c t i o n s  of  t h e  
s a m e  t y p e .  In  c a s e  (d) ,  we  c a n n o t  s i m p l y  f o l l o w  
t h e  s a m e  p r o c e d u r e ,  s i n c e  t h e  r e s u l t i n g  p r o d u c -  
t i o n s  w i l l  n o t  n e c e s s a r i l y  b e  of  t h e  r e q u i r e d  
f o r m .  I n s t e a d ,  w e  i n t r o d u c e  p r o d u c t i o n s  w h e r e  
p o s s i b l e  w h i c h  s i m u l a t e  w i t h i n  C h o m s k y  f o r m  t h e  
r e s u l t  of  c o m p o s i n g  s e q u e n c e s  of  p r o d u c t i o n s :  

Since ~(F) is the family of all context-free 
languages, there exist xl, xe, xs, x4, Xs, x s in • *, 

x 6 #  e, 8 in  ~ f - J w i t h  ~ = ~  x l S x  ~, $==~=:~xs~x~$xs, 
G F - F  

a n d  8 ~ x 6 .  We a s s u m e  F c o n t a i n s  t h e s e  p r o -  

d u c t i o n s  e x p l i c i t l y ,  a s  b e f o r e .  
L e t  L b e  a n y  c o n t e x t - f r e e  l a n g u a g e ,  G a 

g r a m m a r  f o r  L i n  C h o m s k y  f o r m ,  w h e r e  S, t h e  
s t a r t  s y m b o l ,  n e v e r  o c c u r s  o n  t h e  r i g h t  of  a p r o -  
d u c t i o n ,  a n d  w h e r e  o n l y  S c a n  g e n e r a t e  e. L e t  n 
b e  a n y  p o s i t i v e  i n t e g e r .  We  d e f i n e  a g r a m m a r  
G ~ w i t h  s t a r t  s y m b o l  S ' ,  a n d  t h e  f o l l o w i n g  p r o -  
d u c t i o n s :  

a n d  

S I-* S, 

~llZn 
A-w, if A ~ w ,  

A-" BC, ifA-*BC is in G, 

~llZn 
A-'DE~ E -~ BH, D--v, H-,w, if A ~ vBw. 

G t will be the required grammar providing n as 
constant of linearity. O'speeds up G's deriva- 
tions in two ways. First, G' deposits short 
words in a single step. Second, if G causes a 
variable to generate a single variable with short 
words on both sides, G' does this in a fixed num- 
ber of steps. We give a brief argument to show 
that G'causes at least n terminal symbols to be 
deposited at each step, on the average: 

Let x be an arbitrary word in L. For each 
G'-derivation of x, there is associated a G'- 
derivation tree. We consider the tree with the 
fewest nodes, delete the root, all leaf nodes and 
all edges incident to these nodes. This gives us 
a binary tree T(x) describing a shortest Gt-deri- 
vation for x. By the definition of G'and the 
choice of T(x), this tree may be shown to have 
the following three properties: 

(I) No two consecutive internal nodes of 
TIx ) have both their node names new variables of 
G (i.e., variables not in G), 

(Z) Each internal node of T(x) with at least 
one son an internal node generates a subtree of 
T(x) whose terminal word is of length >=56n, and 

(3) Let n~ ..... n s be six consecutive internal 
nodes of T(x), and for each i, let m~ be the other 
son of hi_ I. if each m i is a leaf in T(x) and if 
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B i - * w  i in  T(x)  (B i t h e  n o d e  n a m e  of  m i ) ,  t h e n  
Iw~...w~l~- S6n. 

T h a t  i s ,  a n y  i n t e r n a l  n o d e  g e n e r a t e s  a l o n g  
w o r d  r e l a t i v e  to  n,  a n d  a n y  g r o u p  of  c o n s e c u t i v e  
i n t e r n a l  n o d e s  w i t h  o n e  s o n  a l e a f  g e n e r a t e s  a 
v a r i a b l e  a n d  a l o n g  w o r d  r e l a t i v e  to  n.  

A g r a p h - t h e o r e t i c  a r g u m e n t  now  s h o w s  t h a t  
t h e  t o t a l  n u m b e r  of  s y m b o l s  g e n e r a t e d  b y  T(x)  i s  
a t  l e a s t  n t i m e s  t h e  n u m b e r  of n o d e s  i n  T (x ) ,  

i. e. , that ~, (x) _~ x_[_~_, as needed. [3 
n 

We next move from forms for specific lan- 
guage classes to general grammar forms. We 
introduce a normal form: 

Lemma Z.6: For every form F, there exists a 
form F with ~(F') =~(F), F' completely reduced 
and sequential, and F hlinimal if F' is minimal. 
(A context-free grammar is sequential if the var- 
iables can be ordered S=A~ .... ,A r such that if 
A i-* uA~v is any production, then j >= i. A form F 
is sequential if G~ is sequential.) 

Proof of Lemma 2.6: If F is vacuous, the result 
is trivial. Otherwise, we may follow the trans- 
formation procedure in [CG], Section 3. We note 
that no step of that procedure changes a non- 
minimal form into a minimal one. The argument 
at each step is similar to that for Lemma 2.4. o 

Proof of Theorem 2.2, continued: Every vacu- 
ous form is minimal, so we restrict attention to 
nonvacuous forms. By Lemma 2.6, we may fur- 
ther restrict attention to completely reduced, 
sequential forms. The proof is by induction on 
the number k of variables in the grammar form 
F. 

If k= i, Lemma 5. 1 of [CG] shows that ~(F) 
is either the finite, regular, linear or context- 
free languages. By L e m m a  Z. 5, F is minimal. 

Assume the theorem is true for all com- 
pletely reduced, sequential grammar forms 
with at most k variables, and let F have k+l 
variables. The variables of F can be arranged 
into a sequence G = g0, ~i, • • •, °tk in sequential 
order, where @ is the start variable of F. By 
Lemma 2.5, we may assume ~(F) is not the 
family of all context-free languages, and that 
~(G F) is infinite. We may also assume: 

(i) Every variable of F generates a nonemp- 
ty terminal word, 

@ 
(Z) If G====>w10"we for any words wl, we, 

then there are terminal words x~, x eWith ~-" 
x~yx 2 in G F , 

(3) If C; ~ w~ (or ~ ~ ~w) for any word w, 
r- F 

then there is a terminal word x with ~-" xG (or 
(~-~ O'X) in G~. 

For each i ~ _ I, let F~ be the grammar form 
with start variable o~i which contains all produc- 
tions of F involving only variables generable from 
~i. (We will later apply the inductive hypothesis 
to these forms. ) 

Let L be in~(F), n any positive integer, and 
G any grammar in~(F) with L(G)=L. We modi- 
fy G to obtain a new grammar G' yielding the 
speedup of L by constant n. Let A be a variable 
of G in ~l(~i) for some i -> _ I. Let G~ be the gram- 
mar with start symbol A which contains exactly 
those productions of G which are interpretations 
of productions in F i. G~ @ ~(Fi), so by induction, 
there is a grammar G~ ~(Fi) with L(G~ ) = L(O~) 

I v l  
a n d  ~dA(x ) ~ max[op t .q ,  ~ ] f o r  a l l  x .  We  c a n  

a s s u m e  A is  t h e  s t a r t  s y m b o l  of  G~.  
L e t  s b e  t h e  n u m b e r  of  e l e m e n t s  in  ~l(c;), r 

t h e  m a x i m u m  n u m b e r  of  ( n o t  n e c e s s a r i l y  d i s -  
t i n c t )  v a r i a b l e s  o n  t h e  r i g h t  s i d e  of  a n y  p r o d u c -  
t i o n  of  F .  G '  w i l l  c o n t a i n  t h e  f o l l o w i n g  p r o d u c -  
t i o n s :  

A l l  p r o d u c t i o n s  of  G, 
A-'w, ifw is a terminal %tring, [w I - 

2(n+l)(r+2) and A ~w, 

A-" xlBxe, if A, ]5 E ~(s), A -~ (n+l) s w~Bwe 
@ 

for some words w~, we, if BI,...,Bq 
are the (not necessarily distinct) var- 
iables of G appearing in wxw e in ord- 
er f.~om left to right, if for each i, 
]B I ~ ul, u i a terminal word with 
lu~l- 2(n+l)(r+2), and ifx I and x e are 
the words obtained by replacing each 
Bi by u~ in w I and we, respectively, 

All productions of G~ for each AE U(~i), i>-- I. 
The three new types of productions in G' 

have the following purposes; the first type speeds 
up the derivation of short terminal words from 
variables. The second type speeds up derivations 
involving variables in ~((y) and short terminal 
words. The third type speeds up derivations of 
long words from variables not in ~/(~). 

By considering the possible forms a deriva- 
tion in G can take, we may verify that G' speeds 
up all parts of the derivation, and thus provides 
the needed linear speedup. [3 

We note that Book []5] proves a result of a 
speedup flavor similar to Theorem 2.2. His 
speedup, however, does not preserve form; in 
fact, context-free grammars are sped up by 
grammars which are not context-free. The idea 
of preservation of the form of a grammar is a 
new or*e. 

Theorem 2.2 has shown that all context-free 
forms are ~qually efficient, if only lengths of 
derivations are of interest. However, the cost 
of this equality is a possible exponential increase 
in the number of productions needed. This in- 
crease leads us to consider size of grammars as 
a second basis for comparison of forms. 

III. SIZE COMPLEXITY 

Our results about size of grarnrnars use the 
following four measures of size (measures are 
the same as used by Gruska [Gr]). 

Definition 3. I: If G is a context-free grammar, 
S(G) is the total number of (not necessarily dis- 
tinct) variable and terminal symbols on both 
sides of all productions of G. (Any occurrence 
of the symbol ¢ is not counted. ) V(G) is the total 
number of (not necessarily distinct) variable 
symbols on both sides of all productions in G. 
P(G) is the number of productions of G. N(G) is 
the number of distinct variables of G. 

We prove two results about forms for the 
regular sets. Specifically, we characterize the 
amount of improvement possible over right- 
linear (or left-linear) form. An easy proposi- 
tion, proved by a reversal construction which is 
fundamental to later proofs, is that right- and 
left-linear forms are of equal efficiency. 

Proposition 3.2: Assume G is any grammar in 
right-linear (left-linear) form. Then there ex- 
ists G' in left-linear (right-linear) form with 

155 



L(G') = L(G) a n d  

S ( G ' )  ~- S(G)  + P (G)  + l ,  
V ( G ' )  -<- V(G) + P ( G )  + l ,  
P I G ' )  <= P ( G )  + l ,  a n d  
N ( G ' )  - N(G) + 1. 

P r o o f :  If  G i s  i n  r i g h t - l i n e a r  f o r m ,  w i t h  s t a r t  
s y m b o l  S, w e  o b t a i n  G ~, w i t h  S ~ (a  n e w  s y m b o l )  
a s  i t s  s t a r t  s y m b o l .  I f  a p r o d u c t i o n  of  t h e  t y p e  
A-" wB is in G, we put the corresponding pro- 
duction B-" Aw in G'. If a production A-" w is in 
G, we put S ~-'Aw into G ~. We also put into G ~ 
the production Sz-, ~. 

It should be clear that G t simulates the ac- 
tion of G "in reverse. " [] 

We now consider arbitrary forms for the 
regular sets, to determine if any are substan- 
tially more efficient than right- or left-linear 
form, for the representation of particular regu- 
lar sets. We begin by showing that every form 
for the regular sets has a polynomial that bounds 
its improvement over right- or left-linear form: 

Theorem 3.3: If F is an F form for the regular 
sets, there exist constants c and n with the fol- 
lowing property: for every O~ ~(F), there ex- 
ists O' in right-linear form with L(G') = L(G), 

S(O') "_- c[S(G)]", 
V(G') ~_ c[V(G)]", 
P(G ~) ~ c[P(G)]", a n d  
N(G') ~- c [N(G)]% 

P r o o f :  We  o u t l i n e  a p r o o f  w h i c h  g i v e s  t h e  t h e o -  
r e m  f o r  t h e  f i r s t  t h r e e  m e a s u r e s  o n l y .  ( B o u n d -  
i ng  N ( G ' )  a s  a b o v e  i s  m o r e  c o m p l i c a t e d .  ) T h e  
c o m p l e t e  v e r s i o n  of  t h i s  a n d  o t h e r  r e s u l t s  i n  
t h i s  s e c t i o n  w i l l  a p p e a r  i n  [ G L 2 ] .  

A s  f o r  T h e o r e m  2. Z, w e  p a s s  f i r s t  t o  a 
n o r m a l  f o r m :  

L e m m a  3 . 4 :  L e t  F b e  a n y  f o r m .  T h e r e  e x i s t  
a f o r m  F" a n d  c o n s t a n t s  c ,  n w i t h  t h e  f o l l o w i n g  
properties: 

(i) ~(F' ) = =5(F) 
(ii) F' is completely :reduced and sequential, 

and 
(ill) if G6 ~(F) then there exists G~£2~(F ~) 

with L(G')=L(G), S(G5<= c[S(G)] ~, 
v(G') ~_ c[V(O)]", 
P(G5 - c[P(G)]", 

and N(G5 ~- N(G). 

Proof of Lemrna 3.4: As in the proof of Lemma 
'2.6, we follow the constructions in Section 3 of 
[CG] .  T h i s  t i m e ,  w e  s h o w  t h a t  t h e  g r o w t h  i n  
size of interpretation grammars is appropriate- 
ly bounded a t  each step. 

N e x t ,  w e  m a k e  t h e  r i g h t - h a n d  s i d e s  of  p r o -  
d u c t i o n s  "binary:" 

Lemma 3.5: Let F be any form for the regular 
sets. There exist a forrn F ~ for the regular 
sets and constants c, n with the following prop- 
erties: 

(i) Every production of F ~is of one of the 
t y p e s  ~ - * ~ y ,  ~ - * w ~ ,  ~ - * ~ w  o r  ~ - * w ,  
w h e r e  ~, ~, y a r e  v a r i a b l e s  a n d  w i s  a 
t e r m i n a l  s t r i n g ,  

(i i)  F t i s  s e q u e n t i a l ,  r e d u c e d ,  a n d  e v e r y  v a r -  
i a b l e  g e n e r a t e s  a n o n e m p t y  t e r m i n a l  
string, and 

(iii) if O6~(F), there exists O~6~(F ~) with 
L(G ')=L(G) and S(G')~- c[S(G)] ", 

V(G') -<_ c[V(G)]", 

and P(O') ~- c[P(O)]". 
Proof of Lemma 3.5: Given F, we obtain F 'e 
from Lemma 3.4. We than transform F ~t so that 
productions are of the type required in (i) above. 
To do this, productions with long right-hand 
sides are simulated by a series of productions of 
the allowable types. Although this transforma- 
tion destroys the "completely reduced" property 
of F 't, it can be done in such a way as to pre- 
serve the properties required in (ii) (provided we 
are careful about choosing the proper end of a 
long right-hand side at which to begin our simu- 
lation. ) m 

Lemma 3.5 shows that it is sufficient to re- 
strict attention to normal forms, in showing that 
any form for the regular sets is simulable by 
right-linear (and therefore by left-linear) form 
with at most polynomial loss of efficiency. For 
any form of the type described in Lemma 3.5, 
each variable may embed itself on the right or 
the left, but not both. We next show how to 
transform such a form into one in which vari- 
ables may only embed themselves on the right. 
The technique is similar to the reversal tech- 
nique used to prove Proposition 3. I. We define 
a sequence iF=]of forms for the regular sets, of 
successively greater "sequential depth, " in 
which every variable embeds itself on the right 
only: 

Definition 3.6: For any n>= i, let F= denote the 
form whose variables are G=ot0 (th-@-start sym- 
bol), ~I, • • •, ~=-i, whose only terminal symbol 
is a, and whose productions are: 

~ l  -* ~Olk, i<=k, i<j 

Cq - '  c~a, i< j ,  a n d  
~i "~ a, f o r  all i .  

( In  p a r t i c u l a r ,  F 1 i s  r i g h t - l i n e a r  f o r m .  ) 

L e m m a  3 . 7 :  A s s u m e  F i s  a f o r m  f o r  t h e  r e g u -  
l a r  sets, satisfying: 

(i) Every production of F is of one of the 
types ~-*~y, ~-~ w~, ~-~w or ~-* w, 
where ~, [B, y are variables and w is a 
terminal string, and 

(ii) F is sequential, reduced, and every var- 
iable generates a nonempty te rminal 
string. 

Then for some n, every G in ~(F) has a O t in 
2¢(1%) w i t h  L(G') : L(G), S(O' ) ~- 5is(G)] ~, 

V(G' ) _~ S[V(G)]~, 
P(G' ) ~- 4[P(G)] ~, 

a n d  N(G') -< 4 iN(G) ]  3. 

P r o o f  of  L e m m a  3 . 7 :  We a s s u m e  t h e  v a r i a b l e s  
of F a r e  ~ =  ~0 ( t he  s t a r t  v a r i a b l e ) ,  c~1, . . . .  c~n-1 
f o r  s o m e  n~_ 1. T h i s  n w i l l  b e  t h e  n o f  t h e  l e m m a .  
We c o n s i d e r  a n y  G 6 ~ ( F ) ,  a s s u m e d  w i t h o u t  l o s s  
of  g e n e r a l i t y  to  b e  r e d u c e d .  P r o d u c t i o n s  o f  G 
a r e  o f  t h e  f o l l o w i n g  t y p e s :  

(1) A -~ B C ,  w h e r e  A ,  B E  ~ ( ~ ) , C E  ~ ( ~ ) ,  i <  j ,  
(2) A-" BC, where AE~(cq),BE~(~),CE 

U(olk), i < j ,  i-~k, 
(3) A - * w B ,  w h e r e  A E  ~ I ( ~ ) , B E W ( ~ ) ,  i ~ _ j ,  
(4) A ~  Bw,  w h e r e  A ,  B £ ~l(cq), f o r  a n y  i ,  
(5) A-* Bw,  w h e r e  A 6 ~l(~l), B E ~1(~),  i <  j ,  

a n d  (6) A-* w,  w h e r e  A is  a n y  v a r i a b l e .  
G '  w i l l  c o n t a i n  a l l  p r o d u c t i o n s  of  G of  t y p e s  

(Z), (3), (5) and (6). We will simulate the ef- 
fects of groups of productions of types (i) and (4) 
in reverse (as for Proposition 3. i). To do this, 
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we put into G '  the fo l lowing  s e v e n  s e t s  of p r o -  
duc t ions .  (A s t r i n g  of t e r m i n a l s  and high v a r i -  
a b l e s  in the  s e q u e n t i a l  o r d e r  is  be ing  g e n e r a t e d ,  
wi th  the p r o d u c t i o n s  in (a)-(d) beg inn ing  the g e n -  
e r a t i o n  a t  the l e f t m o s t  end of the s t r i n g ,  the 
p r o d u c t i o n s  in (e) an-'6"d-(f) con t inu ing  the p r o c e s s  
f r o m  l e f t  to r igh t ,  and (g) conc lud ing  the g e n e r a -  
t ion.  ) 
(a) A-. w[BA] if A, B E ~I(~:) and B-" w is in G, 
(b) A~ C[BCA]x 

[BCA]I-" w[BA] if A, B E~/(c~), C E ~/(a~), i< j 
and B-" Cw is in G, 

(c) A" w[BfA]: 
[BCA]s C[BA], if A, B E ~l(~i), C E ~/(~), i< j, 

and B-~ wC is in G, 
(d) A-'C[BCA]I 

[BCA]:-~D[BA], if.A, B E ~(~), C E ~(~), D E 
U(~k), i <  j ,  i < k  and B-" CD is in G, 

(e) [CA] -" D[BA],  i f A ,  B, C E u ( a ~ ) , D E u ( a ~ ) , i < j  
and B-" CD is in G, 

[CA] -" w[BA], i f A ,  B, CE  ~1(~ l )  and B ~ C w  is  
in G, 

(f) 

and 
(g) [A_A] -. ¢, for all variables of A of G. 

G' E ~ (F~). 
Intuitively, if a variable [BA] is generated 

in the course of a G ° der[yation, then a string x 
of symbols such that B =~ x has already been 
deposited to the left of [I~A]; this string x con- 
sists entirely of terminal symbols and of vari- 
able symbols of G which correspond to (sequen- 
tially) higher variables of F than does A. We 
are simulating a part of a derivation in G pro- 
ceeding from variable A, so we are waiting to 
discover that A generates B (along with some 
other symbols, perhaps) in G. In particular, 
when a variable [AN] is generated, we have al- 
ready deposited a string x derivable from A in G; 
since we are simulating part of a derivation in O 
proceeding from variable A, we may simply 
erase the variable [AA]. Thus, the paired var- 
iables serve to simulate from left to right the 
derivation of a string derived in G from right 
to left. 

The new t r i p l e  v a r i a b l e s  a r e  s i m p l y  a u x i l -  
i a r y  v a r i a b l e s  to i n s u r e  tha t  no m o r e  than two 
s y m b o l s  a p p e a r  on the r igh t .  

F o r m a l  v e r i f i c a t i o n  of the e q u a l i t y  of L(G G) 
and L(G) is d e f e r r e d  to [GL2]. 

It r e m a i n s  to show: 

Lemma 3.8: For any n, there exists a constant 
c with the following property: for every G E 
~(Fn), there exists G ° E 2¢(FI) with L(G °) = L(G), 

S(G') -<- c[S(O)] ~ , 
V(G') -~ c[V(G)] ~, 
P(G G) = c[P(G)] m, 

and N(G G) <= c[N(G)] ~. 

Proof of Lemma 3.8: Given G E ~(l~n), we define 
G a 6 ~(Fl) which simulates leftmost derivations of 
G, and whose variables are bounded strings of 
variables of G. Techniques are similar to those 
used by Chomsky [C]. [3 

By combining Lemma 3.4, 3.5, 3.7, and 
3.8, we obtain Theorem 3.3 for the measures 
S(G), V(G), and P(G). If we wish to include the 
measure N(O) as well, we will bypass Lemma 
3.5, proceeding immediately to much more com- 
plicated versions of Lemmas 3.7 and 3.8. [] 

We note that, because of Lemma 3.8, the 
exponent n in Theorem 3.3 is closely related to 

the "depth of nesting" of the sequential structure 
of the form. 

Next, we show that any polynomial improve- 
ment may actually be achieved by some form for 
the regular sets, at least on an infinite set of 
languages. 

Theorem 3.9: For any positive integer n, there 
exists a form F for the regular sets and a con- 
stant c with the following property: 
For any k ~ _ i, there is a grammar GE ~(F) such 
that: 

(1) S(O) -~ ck, 
and (2) each G'in right-linear form with L(G')= 

L(G) has N(G')~k n. 
(Since S is the largest and N the smallest of the 
four measures, Theorem 3.9 applies to all four 
measures. ) 

Proof: We define the relevant languages Ln, k = 
O* (i  0.)  k~. [] 
Lernma 3. I0: For any n, there is a constant c 
with the following property: for any k, there is 
a grammar G E ~(Fn) with L(G) = Ln, k and S(G) <-- 
ck. 

Proof of Lemma 3. i0: Straightf0rward using the 
nesting capabilities of form F n. [] 

Lemma 3. Ii: if G is a grammar in right-linear 
form, and L(G)=0* (i0,) k for some positive in- 
teger k, then N(G)>= k+l. 

Proof of Lemma 3. II: Straightforward. o 
But then Lernrnas 3. I0 and 3. 11 combine to 

yield the theorem. [] 
Theorem 3.9 states that any polynomial im- 

provement over right-line ar form is attainable. 
As a corollary to Theorem 3.9 and 3.3, we see 
that an[ form for the regular sets may be simi- 
larly improved by any polynomial: 

Corollary 3. 12: For any form F'for the regular 
sets, and ~ny positive integer n, there exist a 
form F for the regular sets and a constant c with 
the following property: 
For any k_~ I, there is a grammar GEe(F) such 
that: 

(I) S(O) ~_ ck, 
and (2) each G'in 2¢(F') with L(G')=L(G) has 

N(G') ~_ k n. 
Thus, there is no "best" form for the regu- 

lar sets. 
We have thus far characterized the varia- 

tions in size complexity of forms expressing ex- 
actly the regular sets. If we allow ourselves to 
consider forms with greater expressive power, 
greater improvement is possible: 

Proposition 3. 13: For any recursive function f, 
and for arbitrarily large positive integers k, 
there is a grammar G in Chomsky normal form, 
with L(G) regular, 

(I)  S(G) _-< k, 
and (Z) e a c h  G' in right-linear form with L(G t) = 

L(G) has N(G') >= f(k). 

Proof: This is an easy consequence of Proposi- 
tion 7 of [MF], the bounded simulation of right- 
linear grammars by one-way finite automata, and 
the bounded simulation of any context-free gram- 
mar by one in Chomsky normal form. [] 

On the other hand, it should be noted that the 
improvement given by Theorem 3.9 and Propo- 
sition 3. 13 is on an infinite class of regular sets, 
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n o t  o n  a l l  r e g u l a r  s e t s .  T h i s  is  n e c e s s a r i l y  t h e  
c a s e ,  s i n c e  we  c a n  s h o w  t h a t  t h e r e  a r e  s o m e  r e g -  
u l a r  s e t s  f o r  w h i c h  r i g h t - l i n e a r  f o r m  i s  e s s e n -  
t i a l l y  o p t i m a l :  

Theorem 3. 14: For any positive integer k, there 
is a grammar G in right-linear form with: 

(i) V(G) ~ 7k, 
and (2) each context-free grammar Gtwith L(G t) 

= L(G) has N(G") >= k. 

Proof: Given k, consider the language 

(0 I)*(0 0 i)*... (0 m-x i)*(0 a~ i)*. 
G will be the grammar with start symbol 
S and productions 
S -* AxA a. . . Ak, 
A t -" 0at-XlAt, i- i ~ k ,  
Ai-* AI 0 at i, 1 ~ - i-k, 

and At-. ¢ l___i~_k. 
Now consider any G'with L(G') = L(G). We 

claim that for any i, l-<-i i~_ 2k, there is a varia- 
ble A t in grammar G ~ such that 

~:-" ;It 0 t A t  C-T-~wtAtwal  0t l w  s o r  At  ~,=V~wx 1 1 w a A t  ws,  

w h e r e  wx, wa, w s a r e  t e r m i n a l  w o r d s .  T h i s  i s  
n e c e s s a r y  to  g e n e r a t e  a n  t h e  w o r d s  i n  t h e  l a n -  
g u a g e  ( i n  p a r t i c u l a r ,  t h o s e  w i t h  m a n y  o c c u r r e n -  
c e s  of  1 0  t 1). 

B u t  t h e n  i t  i s  n o t  d i f f i c u l t  to  s h o w  t h a t  f o r  n o  
t h r e e  d i s t i n c t  [x, ia, i s c a n  we h a v e  At  x=At = A t a .  
F o r  i f  t h i s  s i t u a t i o n  w e r e  to  o c c u r ,  a " w r o n g  
w o r d "  w o u l d  b e  g e n e r a t e d  b y  t h e  g r a m m a r .  T h u s ,  
there are at least k distinct variables in G'. t3 

We next turn to the size complexity situation 
for forms whose expressive power is exactly the 
linear languages, or exactly the context-free 
languages. For the linear languages, results 
parallel those for the regular sets: 

Theorem 3. 15: If F is any form for the linear 
languages, there exist constants c and n with 
the following property: 
For every G in ~(F), there exists G' in stan- 
dard linear form with L(G' ) = L(G), 

S(G') _~ c[S(G)]L 
V(G') -~ c[V(G)]', 
P(G') ~- tiP(G)] =, 

and N ( G ' )  ~ c[N(G)]". 

Proof: Similar to Theorem 3.3, but with many 
more complications in detail. The full con- 
struction for the first three measures appears 
in [GL2]. For the measure N(G) ,  similar r e -  
m a r k s  to  t h o s e  i n  t h e  p r o o f  of T h e o r e m  3 . 3  
apply. D 

Theorem 3. 16: For any positive integer n, there 
exists a form F for the linear languages and a 
c o n s t a n t  c w i t h  t h e  following p r o p e r t y :  
F o r  a n y k  ~_ 1, t h e r e  i s  a g r a m m a r  G q & ( F )  s u c h  
t h a t :  

(1) S(G) -~ ck ,  
a n d  (2) e a c h  G r i n  s t a n d a r d  l i n e a r  f o r m  w i t h  

L(G t)=L(G) has N(G s)>_-k n. 

Proof: The languages used are the same as in 
T~ern 3.9 and t h e  proof is very similar. O 

Corollary 3. IZ also has an obvious analog 
for the linear languages. 

For the case of forms expressing all con- 
text-free languages, our results collapse: 

Proposition 3.17: If F is any form for the con- 
text-free languages, there exists a constant c 

w i t h  t h e  following p r o p e r t y :  
F o r  e v e r y  G i n  2¢(F) t h e r e  e x i s t s  G ' i n  C h o m s k y  
f o r  w i t h  L ( G ' ) =  L ( G ) ,  S ( G ' )  <- c[S(G)~,  

• VIG') ~ clv(G) J, 
and P(G') c[P(G)]. 

Proof: By straightforward simulation. 

IV. FURTHER STUDY 

We noted at the end of Section II the apparent 
existence of a tradeoff between derivation com- 
plexity and size complexity. Such a tradeoff re- 
mains to be quantified and studied. Perhaps a 
combination of both measures is a reasonable 
criterion for judging efficiency of forms. 

We would like to know whether results simi- 
lar to those in Section III hold for other sub- 
context-free language classes besides the regu- 
lar and linear languages. One possible difficulty 
is that we have as yet no "canonical forms" an- 
alogous to right-linear or standard linear form, 
for other language classes. However, perhaps 
it may be shown that any two forms with the 
same expressive power can simulate each other 
with at most polynomial loss of efficiency. 

Even for regular sets, we do not know if 
there exist two forms, each expressing exactly 
the regular sets, and each of which is more ef- 
ficient than the other (in size complexity) for 
some languages. 

Grammars Which are not context-free re- 
main to be examined. 
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