Comparison of Polynomial- Time Reducibilities
Richard Ladner
University of Washington
Seattle, Wash.

Nancy Lynch

University of Southern California

Los Angeles, Cal.

Alan Selman

Florida State University

Tallahassee, Fla.

Comparison of the polynomial-time-bounded
reducibilities introduced by Cook {1] and
Karp [4] leads naturally to the definition of
several intermediate
We give definitions and comparisons for these
reducibilities ; we note, in particular, that
all reducibilities of this type which do not
have obvious implication relationships are
in fact distinct in a strong sense. Proofs
are by simultaneous diagonalization and
encoding constructions.
Work of Meyer and Stockmeyer [7] and

Gill [2] then leads us to define nondeterministic
versions of all of our reducibilities. Although
many of the definitions degenerate, comparison
of the remaining nondeterministic reducibilities

among themselves and with the corresponding

deterministic reducibilities yields some

truth-table reducibilities.

110

interesting relationships.

I. Introduction

Computation-resource-bounded reducibil-
ities play a role in the theory of computational
complexity which is analogous to, and perhaps
as important as, the various kinds of effective
reducibilities used in recursive function theory.
Just as the effective reducibilities are used to
classify problems according to their degrees
of unsolvability, [9] space- and time- bounded
reducibilities may be used to classify problems
according to their complexity level.

The most fruitful resource-bounded
reducibilities thus far nave been the polynomial-
time-bounded reducibilities of Cook [1] and
Karp [4], corresponding respectively to
Turing and many-one reducibilities in recursive
function theory. Otner resource-bounded
reducibilities have been defined and used as well
[31[5][6]([8); tney differ from Cook's or Karp's
only in the bound on time or space allowed
for the reduction, and thus they also correspond
to Turing or many-one reducibility.

We begin by comparing Cook's and Karp's
reducibilities in Section II; as examination of oar

proof that they are distinct shows that a simple

kind of poynomial-bounded truth-table
reducibility is actually involved. This leads
us to study, in Section III, polynomial-time-
bounded analogues of all the usual kinds of
truth-table reducibilities. Thus, we are study-
ing restrictions on the form of allowable
reduction procedures, as well as on their
complexity. Besides basic results about the
individual reducibilities, the primary type

of result we show is a strong form of distinct-
ness among the various relations.

Further impetus for studying polynomial-
time truth-table reducibilities is the hope that
exploiting the analogy between recursive
function theory and the theory of polynomial-
computable functions may help to sove
problems such as P : NP. Various results
JSuggest a parallel between the class of recur-
sive sets and P(the class of polynomial-
computable sets), as well as between the class
of recursively enumerable sets and NP (the
class of nondeterministic polynomial-computable
sets), For example, we note Cook's charac-
tevization of NP [1] using existential quantific-
ation. Although the usual argument for show-
ing "'recursively enumerable 7> recursive'
does not seem to apply in showing P # NP, we
hope that further study of the analogy may
provide useful insight into the problem.

This analogy also leads us to wonder
whether our results could be strengthened
to show that any of the defined reducibilities
are distinct on NP. Similar resursive function
theory results generally show distinctness on

tne class of recursively enumerable sets [9].

Of course, this strengthening would require a
prior demonstration that P # NP.

In Section IV, we study nondeterministic
versions of polynomial truth-table reducibilities.
This investigation is influenced by Gill's work
using nondeterministic polynomial Turing
reducibility [2], which gives important evidence
for the uselessness of two common techniques
(simulation and diagonalization) for the solution
of P {NP. The structure of the nondeterministic
reducibilities turns out to be interesting in itself,

Finally, in Section V, we present open

questions arising from this work.

II Polynomial-time Turing and many-one

Reducibilities

We define < P and _<_P (polynomial-
T m

time Turing reducibility and polynomial-time
many-one reducibility) to be the reducibilities
used by Cook and Karp respectively. Specifically,
we restrict the sets involved in our reducibilities
to be recursive sets of strings over the alphabet
{0,1}. We write l x, for the length of string

x., Then we write : .

A <" B iff there is an oracle Turing machine M
T
and a polynomial p such that x ¢ A
exactly if M accepts x with B as its
oracle, within p(l xl) steps.
We write:

P
A < B iff there is a function £{0,1}%* »{0,1}*
m
computable in polynomial time such

that x ¢ A exactly if f(x) € B,

In all our notation for reducibilities, the subscript

(T or m, for example) will indicate the form of
the reduction procedure, while the superscript
(P, for example) refers to the time bound. We
note that our definitions are independent of stand-
ard Turing machine conventions, a fact which is
often convenient in our proofs; we can use
simpler machine models in a diagonalization

and more complex models in a simulation con-
struction.

We may easily obtain the following basic

facts, similar to basic results about

< and <
in [9]: T

m

Theoreml: (a)A<' B,BeP = A ¢P.

1
® a<FB = a<PB,
™ T
P P . s
(c) <" and < are reflexive and transitive
T m
relations.
@ a<FB « K <F5.
m ™
(&) A<FRe <P paa<FE «x<FB
T T T T

) ¥ A <TB
T

and for each string x, xeB

is decidable in time < t (’ x,), then for some
polynomial p, x ¢ A is decidable in time
< e Uxh)+ ol =) max fel y]) | [yl <

ol x]) }.

(g) If AfPB and for each string x, x e B is
m

decidable nondeterministically in time

<t (’ xl) , then for some polynomial p, x ¢ A

is decidable nondeterministically in time <

< el x])+ max feilyh| |yl <pilx])}.

112

A_<_PB, B e NP =2A ¢ NP,
m

(n)

All of these results have elementary proofs,
and many have been previously noted. The key
idea in (a), (f), (g) and (h) is direct simulation

of the oracle. (g) and (h) are not known to hold

for <F . (M) for <® would imply that NP is
T T

closed under complement.) This fact, together

with the following, provides good reason for
considering reducibilities other that <
Proposition: (Meyer) Let A beany < -
complete set in NP. Then A and A ar:;
m-comparable iff NP is closed under
complement.

P
Degree-theoretic results about fp and <
T m

are explored in[5]. We now wish to show that

_<_p and EP
m

are distinct; to do so we use the

following notion of distinctness:

Definition: Given any 2 reducibilities, 1<_ and

<, we say''< transcends _2<_" if there exist

recursive sets A and B such that AlfB,
(That is, A

B<A, AfFLB and B £A,
T 2 2

and B are l-equivalent but 2-incomparable.)

Theorem 2: < transcends _SP
T m

Proof: Immediate from Theorem 1 and the

following Lemma:

Lemma: There exists an -infinite, coinfinite

recursive set A such that A £ A.
m

Proof of the Lemma: The set A is constructed

in stages numbered 0,1,2,... At each stage,

we attempt to diagonalize over a many-one

reduction procedure. Tnhus, we need an effective
enumeration of polynomial-time-bounded
reduction procedures; it is sufficient to select
some recursive function b which is eventally
greater than each polynomial (that is, b {0,1 }*-uN,
and (¥p, a polynomial) (dx) (Vx| [] >4) [b(x) >
ol x!)]), and use it as a bound on the number of
steps in the computation of Turing machines in
some ordinary Gédel numbering | Mi} . Since

we only know that b(x) is eventually greater

than p(,x') , we return to consider each machine
My Let be the

infinitely often. G and w

2
nrojection functions for some pairing function
N xN=N (e.g, see [9]

Stage y: Let x be the first string (in a natural
ordering of binary strings) whose membership
in A is not yet determined. Leti = nl(y).
See if M; on input x converges within
If not, define x ¢ A «y is even,

b(x) steps.

and go on to stage y + 1. Otherwise, let ¢i(x) be
the output. We wish to falsify: xeA o ¢i(x) cA,

If ¢i(x)'s membership in A is already

determined, we define: xe¢ A & ¢i(x) cA,

Otherwise, we define x ¢ A and ¢i(x) e A.

Go on to stage y + 1.

END OF CONSTRUCTION

A is clearly recursive, and the reader
nay verify that for pairing functions chosen
as in [9], for example, A is infinite and

coninfinite. Now if Kpr via the poly-
m

nomial computable function f, then (¥i){(¥p ,

a polynomial) [x ¢ & ep.(x) e A, and

M; (x) runs in < p(, x]) steps] But for x

sufficiently long, b(x) > p (lxl }, and for some

113

y sufficiently large, Tl'l(y) =1i, causing the
condition[x ¢ A & ¢i(x) e A] to be falsified at

stage vy. %

The above proof is simple but is presented
since many of the results to follow can be
proved by essentially similar ideas. This
Lemma shows that Theorem 1 (d) cannot be
strengthened analogously to (e).

As noted in Section I, it would be desirable
to know on what complexity classes of sets the
reducibilities can be shown to differ For
example, can a set A as in the Lemma be
constructed with A ¢ NP? More tractably,
can we show that P# NP would imply the
existence of such a set A in NP? If we

naively measure the complexity of the set A

constructed in the Lemma, we note that it is

Ix|
on argument x, since this much

roughly 22
time is required to simulate and keep track

of the results of enough stages in the construction
to determine if x ¢ A. However, the
diagonalization construction is very ''loose, !
in that there are few constraints on our choice
of x at each stage. Thus, by choosing the
values of x to be sufficiently separated (a
technique due to Machtey) it requires

sufficiently less time to sirmulate the computations
of preceding stages to bring the complexity down
to le,. (Strings not used in the diagonalization
can have their membership in A determined

P
and < can at least

m

arbitrarily). So <F
T

be shown to differ on the exponentially-
computable sets. The same technique could also

be applied to all transcendence results in

Sections III and IV, reducing the complexity of all

relevant sets to le' .

The technique used in the proof of the
Lemma actually yields results more powerful
than stated. First, the function b may be
chosen as large as we like; for example, if we
choose b so that b is eventually greater than
each primitive recursive function of the length
of its argument, then a set A is produced
with A not many-one reducible to A in
primitive recursive time. Second, we see that

s P
it is not only SP that transcends <, but a
m

very simple form of polynomial-bounded
procedure, involving asking only a single oracle
question. Since this is an obvious analogue to
I<?—tt (one-question truth-table reducibility),

we are led to define polynomial-bounded truth-

table reducibilities:

III Polynomial-time Truth-table Reducibilities

We recall that A is tt - reducible .
(truth-table reducible) to B if, given any x,
one can effectively compute both a finite set -.of
arguments s Koy oo s Xy, and a Boolean

function ¢ such that:

Xe A oo (CB(xl), Cplx3)eees CB(xk)) =1,

where Cyp is the characteristic function of B.
This differs from Turing reducibility in allowing
one, given any x, to effectively compute ahead

of time the entire set of questions that might

be asked during the computation. That is,

the choice of questions to ask cannot depend on
the oracle set B. Our definition of polynomial-
time tt- reducibility requires that both the

generation of the set and function, and the

computation of &, must be polynomial-
time-bounded. If we were to restrict our
attention to a specific representation of Boolean
functions, say one using only the symbols
A,V and ™, then the polynomial bound
on the generation of the set and function is a
sufficient requirement for our defintion, as it
implies a polynomial bound on the evaluation
time. However, we wish to leave the represent-
ation of the function arbitrary, so both
restrictions are needed. It is unknown whether
a less general reducibility would result by
restriction to A, v and "V,

We let A be a fixed finite alphabet, for the
encoding of Boolean functions, and let

c g aujo,l}.

Definition: A tt-condition is a member of

A* c(c{0,1}%)* A tt-condition generator is a
recursive mapping from {0,1}%* into
A% elef0, 1] %)%,

A tt-condition evaluator is a recursive mapping

from A% c{0,1}* into {0,1}.
Let e be a tt-condition evaluator.

A tt-condition <@cc X CX,Cn e cxy is e-satisfied

by Bc {0,l}* iff e(ac CB(xl)CB(xi'“CB(xk)Pl.

A 5PB iff there exist a polynomial-time
tt

computable generator g and a polynomial-time
computable evaluator e suchthat xe¢A o g(x)
is e-satisfied by B.

Polynomial analogues of various special
cases of tt-reducibilities may now be defined
by placing restrictions on the generator, the
evaluator, or both:

Definition: A <'B (A is polynomial-time

Lr
[

bounded-truth-table reducible to B) provided

P
A <" B by a generator g and an evaluator e,
tt

such that g produces words with a bounded

number of c's,

A <pB (A is polynomial-time k-question truth-

k-tt

table reducible to B) for any integer k ,

it a<Pp
tt

via g and e, and

g: fO,l}* = A% c (c {0,1} *)k.
a<FP

P
reducible to B) if the evaluator e has the

B (A is polynomial-time positive

property that

[elx e 010y +eray) = 1/\(cri =1= T 1)]

=] elac mTy creT) 1L

P
A <" B (A is polynomial-time conjunctive
c
reducible to B) if the evaluator e has the

property that

e(aco—lo-z-..O-k):]_@o'l:O-Z:.-.:o-k:]_.
P - . . P
A<"B (A is polynomial-time disjuctive
o
reducible to B) if e(yc 00, -ok) =0

u0'1:0-2=... :Gk:O'

Corresponding to Theorem 1, we obtain:

Theorem 3: (a) For any k >1, we have

the implications:

115

(c) All are transitive.

< PE «2 < PE.

(A <FB X <FBaac Py
tt tt tt tt

(The same is true for btt and k-tt.)

(e) AEPB) P_x_fp B.
P P

(f) A<PB «KX<TB,.
c d

(g8 A<TB, BeNP= A eNP.
P

For implications not given in Theorem 3, we

obtain the following transcendence results:

Theorem 4: (a) EP transcends <
L-tt m
P P
(b} For any k, < transcends <
k+l-c k-tt
<P transcends < P
k¥1-d k-tt

(k+l-c¢ and ktl-d refer to k+l-question
conjuctive and disjunctive reducibilities
respectively, defined by the obvious restrictions

on the generator and evaluator.)

EP transcends SP.

(c) 5p transcends < ;
2-c d 2-d c
(d) 5P transcends both Epand _<_P, (and both
4-p c d

may be done with the same pair of sets).

(e) Sp transcends SP .
1-tt P

(f) _SP transcends _<_P
tt btt

Notes on the proofs: (a) was proved for

Theorem 2. (e) is proved similarly, by
constructing an infinite, coinfinite set A with

A fp A. TFor the other cases, we need to
p

construct a pair of sets A and B, preserving a
2-sided reducibility of the first type, while
conducting a 2-sided diagonalization over
reducibilities of the second type. For example,
in constructing sets A and B for (d), we

preserve the conditions:
zlle A & (z110 ¢ Baz 1100¢ B)\z11000¢B A z110000¢B)
z0le B (z010¢ A az0100¢A) v (201000 AAz010000¢ A)

z110k cA azllOke B
for 1 <k <4,
k k
z0107¢ A 2010 ¢ B

for all strings z. All membership questions not
specifically mentioned will be answered negatively.
These conditions are strong enough to force

A _<_PB and B SP A, and weak enough to allow
4-p 4.-p

us to diagonalize over all _<_P and < P
c d
procedures. For instance, to show A ﬁPB, we
c

define:
Stage 4y: Leti= n].(y). Let x be the next

string of the form zll such that none of the
questions zlle A, zllOke B, z110ke A, 1<k<4
have been answered. Consider M; on input
x for b(x) steps, as before, If it halts, we
consider the set Q of questions it outputs.

If we already have, or if it is possible to
define qoé B for some qgeQ, then we define
qoé B, x ¢A, q ¢ B for all undetermined
qeQ, q# a5 2110%¢ B for1 <k <4 and
2110¥ # qys and other values as required

to preserve the above conditions. Otherwise,

we define x £ A, q ¢ B for all undetermined

qeQ, 210X £ B for 1 <k <4, and other values

as required.pyn Gr CONSTRUCTION

The reader may complete the proof and
verification.
Again, judicious choice of arguments on
which to diagonalize will bring the complexity
of A and B down to lel . Also, as before,
all the results in Theorem 4 may be strengthened
by making the bound b as large as desired.
The same is not true for the following result:

Sptrans cends fp.
T tt

Theorem 5:
Proof: We must use a small function for b
because of the following:

Note: A ipB = A iE B (where iE refers to
T tt tt

exponential-time tt-reducibility, defined

analogously to fp, but with a time bound of
tt

(=]

the form 2P rather than p(,xl).)

Thus, we let b(x) =2 - 1. We will
obtain 5P by preserving the following

conditions:
If ze({0,1}0)*, then:

z¢ A @ 1 is outputted by the following

procedure:

yes

Is yes

no
no J
|

zeB ®1 is outputted by the same flowchart,

starting with y=z110, using oracle A.

116

u z11 {0,1} k, then weA ewe B, Definition: A <PB iff there exists a polynomial-
1<k <fzf +1 - &

If we

. time computable function f: { 0,1 p=n*c(c fo, 1px)=
Otherwise, membership questions will be
P such that if f(x) = @ CCHyCe + ¢ CXy then ¢ is a

answered negatively. To obtain A £ B

tt . : : : s
combinational circuit (having only A,V and =

_S_tf:&z_yi Leti=“1("1(Y)),j=Tr2(Tr1(V)). Let x be

gates) [10] and x ¢ A =a(Cq(x)), - - - Cylx))=L

the next string in ({0,1}0)* suech th
gin ({0,1}0)% such that none of the Definition; A <'B iff there is an oracle Turing

question xe¢ A, weA or B for we U
0 <k<x|

x111

Kk
0,11" have been answered.

If M, oninput x converges within b(x)

steps, consider the tt-condition ¢i(x). Note
that at most h(x) = 2'x'—l questions are
represented in the truth table, so some

w exlll fO,l],xl is not in the truth table. We
define membership in B of elements of

U x111{0, 15 and of values in the truth
0 < k<[x|

table in some way that causes the above flowchart,

for z =x, to eventually ask whether w ¢ B,

Say le(x) S @cecxex) e .- cx . Then if

Mj on input gc CB(xl)CB(xZ)- .. CB(Xn)

converges within b(x) steps, we define:

we BoxcA e ¢j(acCB

(%)Cg(xp)- -« Cplx)) = 0,
and other values as required to preserve the
above conditions.

END OF CONSTRUCTION

As before, we leave the reader to

complete the construction and verification, %

We complete our consideration of
deterministic tt-reducibilities by noting the

following two equivalent formulations of our

definition of <p:

tt

117

tt

machine M and a polynomial-time computable

function f:{0,1p=(c{0,1})* such that M reduces

A to B within polynomial time, and for this
computation, on input x, M only asks questions
that are on the list f(x).

We note that this last definition describes

a sort of weak truth-table reducibility.

IV Nondeterministic Reducibilities

A natural way to generalize the definitions
in Sections 2 and 3 is to allow nondeterminism
in the reducibility procedures. The first place
in which an interesting application of a
nondeterministic reducibility appears is in

He shows, for f_NP a

T

G 1I's paper [2].

reasonable notion of nondeterministic Turing
reducibility, that

(1) there exist recursive sets B with
A<TBs AN
T T

(2) there exist recursive sets B with the

B, and

above equivalence false.
Since both diagonalization and simulation proofs
generally extend from the non-oracle to the
oracle case, these results seem to show that
neither a diagonalization nor a simulation will
probably be useful in deciding whether P=NP,

We define nondeterministic reducibilities:

A<'F g

T
polynomial-time Turing reducible to B) iff

Definition: (A is nondeterministic
there is a nondeterministic oracle Turing
machine Mand a polynomial p such that with
oracle B, M runs in time bounded by p for
all pogsible courses of computation, and

x ¢ A ®M with oracle B, input x has some
accepting computation.

A <NPp

m
machine transducer M and a polynomial p

iff there is a nondeterministic Turing

such that M runs in time bounded by p for

all possible courses of computation, and

x¢ A © some course of M's computation on x

yields as output a value ye B.

a <NFp
tt
machine transducer M, polynomial-bounded as

iff there is a nondeterministic Turing

above, and a polynomial-time-computable
evaluator e such that

x ¢ A ® some possible computation of M on
input x generates a tt-condition which is

e-satisfied by B.

Note: This definiticn allows nondeterminism
to be introduced into the generator but not
into the evaluator. Allowing nondeterminisim
in the evaluator as well adds no extra pairs
to the reducibility.
We make appropriate modifications in the
last definition to obtain definitions for
AP g P

T -

<NP’ .fNP <
’ ¢

k-tt p

btt
We first note that a collapse occurs which

is very different from the deterministic case.

In part, the following theorem suggests that

nondeterminism recovers the power of using

118

disjunctions:
Theorem. 6: A ENPB sA iNP B
T tt
A<NPpoa NPp
p c
A NPy oo A NPp
d m
Proof: For the second equivalence, for example,
assume A fNPB. Given x, nondeterministically
p

generate all the appropriate positive tt-conditions.

For each such condition, QY CCHCr v - CXy

nondeterministically assign values v(xi) =0
or 1 to each Xy and simulate the evaluator
e on input 4c v(xo)- . -v(xk). For each such

assignment of values of v, output the appropriate
form of:

aAa (for some string a) if

e (acv(xo)- cevix)) =0,

/\ sz, if e(a/cv(xo)- .

. -vi(x,)) = 1.
xilv(xi)d ' k

This procedure provides a nondeterministic

generator witnessing A 5NPB; we leave the
c

reader to supply the remaining details as well
as the similar proofs for the other two

equivalences. %
For transitivity, nondeterministic results

again differ from deterministic results:

Theorem 7: (a) ENP and SNP are transitive.
m c
b) NP, <NPana NP (for any k) fail to be
tt btt k-tt
transitive,

Notes on the proof: (a) is by straightforward

simulation, For (b), we prove the lemma:
Lemma: There exist recursive sets A, B,C

with A <'FB, BN pur 4 HPc

17t 17tt tt

Proof of LLemma: We preserve the conditions

xeA «(Eylyl = Ix| and ye B]

xeBe(@y)flyl= |x|and yeC].

Within this framework, we diagonalize as in

previous proofs, over <NP
tt

The

-procedures.

bound b in this proof is chosen to be small
(2 = l-l, for example), a necessity because of
the following limiting result:

N
< PB, BprC =sA ENEC, (where <NErefers
1-tt 1-tt tt €t
to nondeterministic exponential-time
tt-reduciblity, defined analogously to fNP,
tt

but with a time bound of the form Zp(I 1)
rather than p(|[x|).

Again, remaining details are left to the

reader, ®l

We may also easily show A ENP

C

Note: B:
B ¢ NP = A ¢ NP,

We conjectare, but have not yet proved,

N
that < P is a maximal transtive subset
c
of <NP.
T

For nondeterministic reducibilities whose
definitions do not collapse, transcendence
results become stronger than in the
deterministic case. Namely, we show that
deterministic reducibilities transcend the
appropriate nondeterministic reducibilities:
Compare with Theorem 4:

NP

Theorem 8: (a) _<_P transcends < .
1-tt m

119

NP
(b) For any k, ip transcends < .
kt+l-¢ k-tt

(The corresponding statement is false for

ip , by Theorem 6.)
k+1-d

(c) < transcends <NP.
Z-c d

{The correspanding statement is false

for ¢ and d interchanged.)

(4) fp transcends <NP .
1Tt B

(e) fp transcends _SNP .
tt btt

Notes on proofs: Basically, within the

frameworks used to preserve the reducibilities
in Theorem 4, we are actually able to
diagonalize over more procedures, nondeter-
ministic as well as deterministic. For example,

for (a) we construct an infinite, coinfinite set

A with A zNPA. For (d), we construct
m

an infinite, coinfinite set A with Ai\IPK and
P

A _7_(NPA (The diagonalization must be done
p
in two directions).
Finally, parallel to the existential quantifier

characterization of NP given by Cook, we have

the following equivalent formulation of the

definition of <NP:
m
R NP, . . .
Definition; A < "B iff there is a polynomial
m

p and a polynomial-time computable function f
such that

xe A e(F) ly |<p(Ix 1) and f(x, y) ¢ B]

Similar characterizations exist for the other

nondeterministic reducibilities.

V_Further Study

We know that our deterministic reducibilities

differ on the exponential-comput able sets. We
would like to show that they differ on NP (for
example, that there exist A,B ¢ NP with

pB but Aj_ipB). This, of course,

A <
T m
would imply P £ NP. Perhaps we can

show:

P #NP = <P and <F differ on NP.
T m

More strongly, perhaps we can show:

P#ZNP = T-completeness and m-complete-
ness differ., Same questions for the other
deterministic reducibilities.

We would like to develop stronger notions
of distinctness between reducibilities, than
"transcendence. "

For example, can we show

that <F and 5p differ in the following way:
m

(WA £P) (aB)[A<TB but AgFB]?
T m
In our definition of fp, if we restrict
tt
consideration to truth-table conditions with a

specific representation (such as using A, v, ™

only), do we obtain as less general reducibility?

We may define a new reducibility,
analogous to enumeration reducibility, as

follows:
NP

A< B iff
e

W[<= A SO
T T

P NP
It is easy to show that ﬁNP_C_ _<_N ¢ ".[<' .
C €

_fNPis transitive and in fact is

e
maximal transitive in the following sense:

fNPSRS
e

Further,

fNP, R transitive = R = 5NP,
T e

we conjecture

- NP
that they are equal, which would make <
c

We ask whether pr = fNP H
e c

120

a maximal transitive reducibility.

Degree -theoretic questions about all the
reducibilities remain, as well as questions
about complete sets at various complexity levels.
These may someday prove relevant to a
classification of natural problems by their
complexity.

Acknowledgments: We wo uld like to thank

Albert Meyer and Michael Machtey for some

very valuable suggestions on this work,

References:

1. Cook, S.A, The complexity of theorem-
proving procedures. Third annual ACM
Symposium on Theory of Computing (1971).

2. Gill, J.T. Axiomatic Independence of the
question NP=P? Department of Electrical
Engineering, Standford University, (1972).

3. Jones, N.D, Reducibility among
combinatorial problems in log n space,
Proceedings of Seventh Annual Princeton
Conference on Information Sciences and
Systems (1973)

4. Karp, R.M. Reducibility among
combinatorial problems. Complexity of
Computer Computations. Miller and
Thatcher (eds.) Plenum Press(1973).

5. Ladner, R, E. Polynomial time reducibility,
Fifth Annual ACM Symposium on Theory
of Computing (1973).

6. Lynch, N, A. Relativi zation of the Theory
of cdomputational complexity, Ph.D thesis
MIT (1972).

7. Meyer, A.R, and Stockmeyer, L.J. The
equivalence problem for regular expressions
with squaring requires exponential space,
13th Annual IEEE Symposium of Switching
and Automata Theory (1972).

8. Meyer, A.R, and Stockmeyer, L.J. Word
problems requiring exponential time.
Fifth Annual Symposium on Theory of
Computing (1973).

9. Rogers, H. Theory of recursive functions
and effective computability. McGraw-HillQ%7).

10. Savage, J.E. Computational Work and Time

on Finite Machines. JACM, Vol.19, No.41972).

Addendum

Contemporary with Gill [2], parallel
results have been independently obtained
by T. Baker (Computational Complexity and
Nondeterminism in Flowchart Programs, Ph.D.

thesis, Cornell University, 1973).

121

