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A b s t r a c t  

C o m p a r i s o n  of  t h e  p o l y n o m i a l - t i m e - b o u n d e d  

r e d u c i b i l i t i e s  i n t r o d u c e d  by  Cook  [1] and  

t<a rp  [4] l e a d s  n a t u r a l l y  to t h e  d e f i n i t i o n  of 

s e v e r a l  i n t e r m e d i a t e  t r u t h - t a b l e  r e d u c i b i l i t i e s .  

We g ive  d e f i n i t i o n s  and c o m p a r i s o n s  f o r  t h e s e  

r e d u c i b i l i t i e s  ; we n o t e ,  in  p a r t i c u l a r ,  t h a t  

a l l  r e d u c i b i l i t i e s  of t h i s  t y p e  w h i c h  do n o t  

h a v e  o b v i o u s  i m p l i c a t i o n  r e l a t i o n s h i p s  a r e  

in  f a c t  d i s t i n c t  in  a s t r o n g  s e n s e .  P r o o f s  

a r e  b y  s i m u l t a n e o u s  d i a g o n a l i z a t i o n  and  

e n c o d i n g  c o n s t r u c t i o n s .  

W o r k  of M e y e r  and  S t o c k m e y e r  [7] and  

G i l l  [Z] t h e n  l e a d s  u.,~ to  d e f i n e  n o n d e t e r m i n i s t i c  

v e r s i o n s  of  a l l  of  o u r  r e d u c i b i l i t i e s .  A l t h o u g h  

m a n y  of t he  d e f i n i t i o n s  d e g e n e r a t e ,  c o m p a r i s o n  

of  t he  r e m a i n i n g  n o n d e t e r m i n i s t i c  r e d u c i b i l i t i e s  

a m o n g  t h e m s e l v e s  and  w i t h  t he  c o r r e s p o n d i n g  

d e t e r m i n i s t i c  r e d u c i b i l i t i e s  y i e l d s  s o m e  

i n t e r e s t i n g  r e l a t i o n s h i p s .  

I. I n t r o d u c t i o n  

C o m p u t a t i o n - r e s o u r c e - b o u n d e d  r e d u c i b i l -  

ities play a role in the theory of computational 

complexity which is analogous to, and perhaps 

as important as, the various kinds of effective 

reducibilities used in recursive function theory. 

Just as the effective reducibilities are used to 

classify problems according to their degrees 

of unsolvability, [9] space- and time- bou6ded 

reducibilities may be used to classify problems 

according to their complexity level. 

Tne most fruitful resource-bounded 

reducibilities thus far have been the polynomial- 

time-bounded reducibilities of Cook [I] and 

I<arp [4], corresponding respectively to 

Turing and many-one reducibilities in recursive 

function theory. Other resource-bounded 

reducibilities have been defined and used as well 

[3] [5] [6] [8]; they differ from Cook's or Karp's 

only in the bound on time or space allowed 

for the reduction, and thus they also correspond 

to Turing or many-one reducibility. 

We begin by comparing Cook's and Karp's 

reducibilities in Section II; as examination of o lr 

proof that they are distinct shows that a simple 
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kind of poynomial-bounded truth-table 

reducibility is actually involved. This leads 

us to study, in Section Ill, polynomial-time- 

bounded analogues of all the usual kinds of 

truth-table reducibilities. Thus, we &re study- 

irLg restrictions on the form of allowable 

reduction procedures, as well as on their 

complexity. Besides basic results about the 

individual reducibilities, the primary type 

of result we show is a strong form of distinct- 

ness among the various relations. 

Further impetus for studying polynomial- 

ti,~e truth-table reducibilities is the hope that 

exploiting the analogy between recursive 

function theory and the theory of polynomial- 

computable functions may help to sove 
9 

problems such as P = NP. Various results 

suggest a parallel between the class of recur- 

sire sets and P(the class of polynomial- 

computable sets), as well as between the class 

of recursively enumerable sets and NP (the 

clan s of nond eterministic polynomial- computable 

sets). For example, we note Cook's charac- 

terization of N1 ° [I] using existential quantific- 

ation. Although the usual argument for show- 

in,,~ "recursively enumerable ~=> recursive" 

does not seem to apply in showing P # NP, we 

hope that f u r t he r  study of the analogy may 

provide useful insight into the problem. 

This analogy also leads us to wonder 

whether our results could be strengthened 

to show that any of the defined reducibilities 

are distinct on NP. Similar resursive function 

theory results generally show distinctness on 

the class of recursively enumerable sets [9]. 

Of course, this strengthening would require a 

prior demonstration that P ~ NP. 

In Section IV, we study nondeterministic 

versions of polynomial truth-table reducibilities. 

This investigation is influenced by Gill's work 

using nondeterministic polynomial Turing 

reducibility [z], which gives important evidence 

for the uselessness of two common techniques 

(simulation and diagonalization) for the solution 

9 
of P -NP. The structure of the nondeterministic 

reducibilities turns out to be interesting in itself. 

Finally, in Section V, we present open 

questions arising from this work. 

II Polynomial-time Turing and many-one 

R educibilitie s 

We define < p and <P (polynomial- 
-# ?n 

time Turing reducibility and polynomial-time 

many-one reducibility) to be the reducibilities 

used by Cook and Karp respectively. Specifically, 

we restrict the sets involved in our reducibilities 

to be reeursive sets of strings over the alphabet 

{0, i}. We write I xl for the length of string 

x. Then we write : . 

P 
A < 

T 

B iff there is an oracle Turing machine l~4 

and a polynomial p such that x ¢ A 

exactly if Iv[ accepts x with B as its 

oracle, within P(I xl ) steps. 

We write: 

A < P B  
~n 

iff there is a function f{ 0, I} ;'.~ ~{ 0,i }* 

computable in polynomial time such 

that x e A exactly if f(x)¢ B. 
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In all our notation for reducibilities, the subscript 

(T or m, for example) will indicate the form of 

the reduction procedure, while the superscript 

(P, for example) refers to the time bound. We 

note that our definitions are independent of stand- 

ard Turing machine conventions, a fact which is 

often convenient in our proofs; we can use 

simpler machine models in a diagonalization 

and more complex models in a simulation con- 

struction. 

We m a y  e a s i l y  o b t a i n  the  f o l l o w i n g  b a s i c  

f a c t s ,  s i m i l a r  to b a s i c  r e s u l t s  abou t  < and < 

in  [9]: -T m 

T h e o r e m  h ( a )  A <:PB,  B ¢ P ~ A c P .  

(b) A <PB = A < p B. 
Yn T 

(c)  < P  and < p 
~n 

a r e  r e f l e x i v e  and t r a n s i t i v e  

r e l a t i o n s .  

(d) A < P B ~ A < p B .  
Yn ~h 

(e)  A <PB ¢~ A <P B ~ A <PB ¢.2~ <PB 
-~ -T T 

(f) If A < P  B and f o r  e a c h  s t r i n g  x,  x s B  
-T 

i s  d e c i d a b l e  in t i m e  < t (] x I ), t h e n  f o r  s o m e  

p o l y n o m i a l  p, x ¢ A i s  d e c i d a b l e  in t i m e  

_< P (I xl ) + P(I xI ) max {t([ y[ ) I I Yl _< 

p(I x[) }. 

(g) If A < P B  and f o r  e a c h  s t r i n g  x,  x s B i s  
Frl 

d e c i d a b l e  n o n d e t e r m i n i s t i c a l l y  in t i m e  

< t (I x l  ) , t hen  f o r  s o m e  p o l y n o m i a l  p, x s A  

i s  d e c i d a b l e  n o n d e t e r m i n i s t i c a l l y  in  t i m e  < 

p ( I x l )  + max [t(lyl) I I y l < p ( I x l  )}. _< 

(n) A<PIs, B cNP=A cNi ~. 
m 

All  of  t h e s e  r e s u l t s  h a v e  e l e m e n t a r y  p r o o f s ,  

and m a n y  h a v e  b e e n  p r e v i o u s l y  n o t e d .  The  k e y  

i d e a  in (a), (f), (g) and (h) i s  d i r e c t  s i m u l a t i o n  

of  the  o r a c l e .  (g) and (h) a r e  no t  known  to ho ld  

f o r  < P  . ((h) fo r  < P  would  i m p l y  t h a t  N P  i s  

c l o s e d  u n d e r  c o m p l e m e n t .  ) Th i s  f a c t ,  t o g e t h e r  

w i t h  t he  f o l l o w i n g ,  p r o v i d e s  good r e a s o n  f o r  

P 
c o n s i d e r i n g  r e d u c i b i l i t i e s  o t h e r  t h a t  < : 

T 

P r o p o s i t i o n :  ( M e y e r )  L e t  A be  any  < - 
m 

complete set in NP. Then A and 7% are 

m-comparable iff NP is closed under 

complement. 

Degree-theoretic results about <P and < P 

are explored in [5]. We now wish to show that 

<P and < p are distinct; to do so we use the 
T ?n 

following notion of distinctness: 

Definition: Given any Z reducibilities, < and 
I- 

< , we say"< transcends < " if there exist 

recursive sets A and B such that A < B, 
i- 

B < A, A _~ B and B _~ A. (That is, A 
I- z z 

and B are 1-equivalent but Z-incomparable. ) 

Theorem Z: < transcends <P 
T m 

P r o o f :  I m m e d i a t e  f r o m  T h e o r e m  1 and the  

f o l l o w i n g  Lemma: 

Lemma: There exists an infinite, coinfinite 

recursive set A such that A ~ A. 
m 

P r o o f  of t he  L e m m a :  The  s e t  A i s  c o n s t r u c t e d  

in stages numbered 0,1, Z .... At each stage, 

we attempt to diagonalize over a many-one 
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r e d u c t i o n  p r o c e d u r e .  T n u s ,  we  n e e d  an  e f f e c t i v e  

e n u m e r a t i o n  of  p o l y n o m i a l - t i m e - b o u n d e d  

r e d u c t i o n  p r o c e d u r e s ;  i t  i s  s u f f i c i e n t  to s e l e c t  

s o m e  r e c u r s i v e  f u n c t i o n  b w h i c h  i s  e v e n t a l l y  

greater than each polynomial (that is, b: 10, 1 }~"-¢N, 

and (Vp, a p o l y n o m i a l ) ( : ~ x ) ( V x  I [ x [ _ > ~ ) [ b ( x ) 2  

p([ xl  )] ) , a n d  u s e  i t  as  a b o u n d  on t he  n u m b e r  of 

s t e p s  in  t he  c o m p u t a t i o n  of  T u r i n g  m a c h i n e s  in  

s o m e  o r d i n a r y  G ' d d e l n u m b e r i n g  { M  i} • S i n c e  

we on ly  k n o w  t h a t  b(x)  i s  e v e n t u a l l y  g r e a t e r  

t h a n  p(Ixl  ) , we  r e t u r n  to c o n s i d e r  e a c h  m a c h i n e  

M i i n f i n i t e l y  o f t e n  L e t  ~l and  TrT_ ~ b e  t h e  

o r o j e c t i o n  f u n c t i o n s  fo r  s o m e  p a i r i n g  f u n c t i o n  

N × N - * N  ( e . g  , s e e [ 9 ] )  

S t age  ~ L e t  x b e  t he  f i r s t  s t r i n g  (in a n a t u r a l  

o r d e r i n g  of b i n a r y  s t r i n g s )  w h o s e  m e m b e r s h i p  

in A is  no t  ye t  d e t e r m i n e d .  L e t  i = v l (y ) .  

S ee  i f  M. on i n p u t  x c o n v e r g e s  w i t h i n  
1 

b(x) s t e p s ,  if  no t ,  d e f i n e  x c A  ¢*y i s  e v e n ,  

and go on  to s t a g e  y + 1. O t h e r w i s e ,  l e t  ¢ i ( x ) b e  

t h e  o u t p u t .  We w i s h  to f a l s i fy :  x t A  ¢~ ¢i(x)  ¢ A. 

If  ¢ i ( x ) ' s  m e m b e r s h i p  in A is  a l r e a d y  

d e t e r m i n e d ,  we  de f ine :  x s A  ~ ¢i(x)  c A .  

O t h e r w i s e ,  we  d e f i n e  x c A  and  ¢ i ( x )  ¢ A.  

Go on to s t a g e  y + 1. 

END OF C O N S T R U C T I O N  

A i s  c l e a r l y  r e c u r s i v e ,  and  t h e  r e a d e r  

n a y  v e r i f y  t h a t  f o r  p a i r i n g  f u n c t i o n s  c h o s e n  

as  in  [9] ,  fo r  e x a m p l e ,  A i s  i n f i n i t e  and  

e o n i n f i n i t e .  Now if  A <PA v i a  t he  p o l y -  
m 

n o m i a l  c o m p u t a b l e  f u n c t i o n  f, t h e n  { ~ i ) ( $ p  , 

a polynomial) ix ¢ A  ~¢i(x) s A ,  and  

M i (x) r u n s  in  _< P(I xl ) s t e p s  ] But  f o r  x 

s u f f i c i e n t l y  long ,  b(x)  > p (ix I ), and  f o r  s o m e  

y s u f f i c i e n t l y  l a r g e ,  ~ l (y  ) = i, c a u s i n g  t h e  

c o n d i t i o n  i x  eA ~ ¢ i (x )  e A ]  to be  f a l s i f i e d  a t  

stage y. 

The above proof is simple but is presented 

since many of the results to follow can be 

proved by essentially similar ideas. This 

Lemma shows that Theorem 1 (d) cannot be 

strengthened analogously to (e). 

As noted in Section I, it would be desirable 

to know on what complexity classes of sets the 

reducibilities can be shown to differ For 

example, can a set A as in the Lemma be 

constructed with A sNP? More tractably, 

can we show that P ~ NP would imply the 

existence of such a set A in NP? If we 

naively measure the complexity of the set A 

constructed in the Lemma, we note that it is 

roughly Z zlx] on argument x, since this much 

time is required to simulate and keep track 

of the results of enough stages in the construction 

to determine if x sA. However, the 

diagonalization construction is very "loose, " 

in that there are few constraints on our choice 

of x at each stage. Thus, by choosing the 

values of x to be sufficiently separated (a 

technique due to Machtey) it requires 

sufficiently less time to simulate the computation~ 

of preceding stages to bring the complexity down 

to Z Ixl. (Strings not used in thediagonalization 

can have their membership in A determined 

arbitrarily). So <P and <P can at least 
T m 

be shown to differ on the exponentially- 

computable sets. The same technique could also 

be applied to all transcendence results in 
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Sections III and IV, reducing the complexity of all 

relevant sets to Z Ixl . 

I l 

The technique used in the proof of the 

Lemma actually yields results more powerful 

than stated. First, the function b may be 

chosen as large as we like; for example, if we 

choose b so that b is eventually greater than 

each primitive recursive function of the length 

of its argument, then a set A is produced 

with A not many-one reducible to A in 

primitive recursive time. Second, we see that 

it is not only <P that transcends <P, but a 

very simple form of polynomial-bounded 

procedure, involving asking only a single oracle 

question. Since this is an obvious analogue to 

< (one-question truth-table reducibility), 
l-+tt 
we are led to define polynomial-bounded truth- 

table reducibilitie s: 

IIl Polynomial-time Truth-table Reducibilities 

We recall that A is tt - reducible 

(truth-table reducible) to B if, given any x, 

one can effectively compute both a finite set of 

arguments Xl, XZ,...,Xk, and a Boolean 

function c~ such that: 

xe A ~ c~ (CB(Xl), CB(X Z) ..... CB(Xk)) = I, 

where C B i s  the characteristic function of B. 

T h i s  d i f f e r s  f r o m  T u r i n g  r e d u c i b i l i t y  in  a l l o w i n g  

one ,  g i v e n  a n y  x,  to e f f e c t i v e l y  c o m p u t e  a h e a d  

of t i m e  t he  e n t i r e  s e t  of q u e s t i o n s  t h a t  m i g h t  

b e  a s k e d  d u r i n g  t he  c o m p u t a t i o n .  T h a t  i s ,  

t h e  c h o i c e  of  q u e s t i o n s  to  a s k  c a n n o t  d e p e n d  on  

t h e  o r a c l e  s e t  B. O u r  d e f i n i t i o n  of  p o l y n o m i a l -  

t i m e  t t -  r e d u c i b i l i t y  r e q u i r e s  t h a t  b o t h  t h e  

g e n e r a t i o n  of t h e  s e t  and  f u n c t i o n ,  and  t h e  

computation of ~, must be polynomial- 

time-bounded. If we were to restrict our 

attention to a specific representation of Boolean 

functions, say one using only the symbols 

/~ , V and "~ , then the polynomial bound 

on the generation of the set and function is a 

sufficient requirement for our defintion, as it 

implies a polynomial bound on the evaluation 

time. However, we wlsh to leave the represent- 

ation of the function arbitrary, so both 

restrictions are needed. It is unknown whether 

a less general reducibility would result by 

restriction to ~ , V and "I. 

We l e t  A b e  a f i xed  f i n i t e  a l p h a b e t ,  f o r  t he  

e n c o d i n g  of  B o o l e a n  f u n c t i o n s ,  and  l e t  

c~ ~u{0,1t. 

D e f i n i t i o n :  A t t - c o n d i t i o n  i s  a m e m b e r  of 

A;:" c(c{ 0, I}*)* A tt-condition generator is a 

recursive mapping from { 0, II* into 

* c(c { 0,1 } *)*. 

A tt-condition evaluator i s  a recursive mapping 

from A* C{0,1}* into {0, I}. 

Let e be a tt-condition evaluator. 

A it-condition ~cc XlCXzC'''cx k is e-satisfied 

b y  B._C { 0 , 1 } *  i f f  e(Otc CB(Xl)CB(X~'''CB(X~)=I. 

A < P B  i f f  t h e r e  e x i s t  a p o l y n o m i a l - t i m e  

computable g e n e r a t o r  g and  a p o l y n o m i a l - t i m e  

c o m p u t a b l e  e v a l u a t o r  e s u c h  t h a t  x c A  ~ g(x) 

i s  e - s a t i s f i e d  b y  B.  

P o l y n o m i a l  a n a l o g u e s  of v a r i o u s  s p e c i a l  

c a s e s  of  t t - r e d u c i b i l i t i e s  m a y  n o w  b e  d e f i n e d  

b y  p l a c i n g  r e s t r i c t i o n s  on  t h e  g e n e r a t o r ,  t h e  

evaluator, or both: 

Definition: A <PB (A is polynomial-tlme 
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b o u n d e d - t r u t h - t a b l e  r e d u c i b l e  to B) p r o v i d e d  

A <PB by  a g e n e r a t o r  g and an e v a l u a t o r  e, 

s u c h  t h a t  g p r o d u c e s  w o r d s  w i t h  a b o u n d e d  

n u m b e r  of  c ' s .  

A <PB (A is polynomial-time k-question truth- 
k~tt 

table reducible to B) for any integer k , 

if A <P B v ia  g and e, and 
tY 

g: {0,1}, - ~-:, c (c {0,1},) k 

A < P  B (A is  p o l y n o m i a l - t i m e  p o s i t i v e  

r e d u c i b l e  to B) if  t he  e v a l u a t o r  e h a s  t he  

p r o p e r t y  t h a t  

[e(~c ~l~Z ... C;k) = IA(<~ i = I ~ T i -~ i) ] 

=[ e(c~c TIT z ...rk ) = I ]. 

A <PB (A is polynomial-time conjunctive 

reducible to B) if the evaluator e has the 

property that 

e(~c ~l~Z "..C;k) = I ¢~ cr I =~2 ..... Crk = i. 

<PB (A is polynomial-time disjuctJve 

reducible to B) if e(olc CrlCr z ...Ok) = 0 

¢~ <;i = ~Z = .... Ok = O. 

C o r r e s p o n d i n g  to T h e o r e m  1, we  obta in :  

T h e o r e m  3: (a) F o r  any  k_> 1, we  h a v e  

the implications: 

A <PB = A < PB= A < P B = A <PB = 
*~ k~t t  k%'l-tt b ~  

A <PB = A <PB. 
-T 

(b) A <PB 

< PB A <PB = 
F~ ~A<PB ~ 

A<PB. 

(c) Al l  a r e  t r a n s i t i v e .  

(d)A < PB ¢~,~ <PB ~A < PB ¢~A < 

(The  s a m e  is  t r u e  f o r  b t t  and 

(e) A <PB ¢~ ,~ <P B. 

E 

k-tt. ) 

(g) A < PB , B cNP = A cNP. 

For implications not given in Theorem 3, we 

obtain the following transcendence results: 

P P 
T h e o r e m  4: (a) < t r a n s c e n d s  < 

- Fn 
l-tt 

P P 
(b) F o r  any  k, < t r a n s c e n d s  < 

kT1 - c k--tt 

< P  t r a n s c e n d s  < P 
k~l - d k--t t 

(k+l-c and k+l-d refer to k+l-question 

conjuctive and disj~mctive reducibilities 

respectively, defined by the obvious restrictions 

on the generator and evaluator. ) 

(c) <P transcends <P; <P transcends <P. 
2--c d- ~ d  c 

(d) <P t r a n s c e n d s  b o t h  < P a n d  <P, (and bo th  
4-:p c 

m a y  be  done  w i t h  the  s a m e  p a i r  of s e t s ) .  

(e) <P t r a n s c e n d s  <P. 
l:it P 

(f) <P transcends <P 
tY 6h 

Notes on the proofs: (a) was proved for 

Theorem 2. (e) is proved similarly, by 

constructing an infinite, colnfinite set A with 

~P A. For the other cases, we need to 
P 
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c o n s t r u c t  a p a i r  of s e t s  A and  B,  p r e s e r v i n g  a 

Z - s i d e d  r e d u c i b i l i t y  of t he  f i r s t  t y p e ,  w h i l e  

c o n d u c t i n g  a Z - s i d e d  d i a g o n a l i z a t i o n  o v e r  

r e d u c i b i l i t i e s  of t he  s e c o n d  t y p e .  F o r  e x a m p l e ,  

in  c o n s t r u c t i n g  s e t s  A and  B fo r  (d), we  

p r e s e r v e  t h e  c o n d i t i o n s :  

zll¢ A ¢*(zll0 s B^z ii00¢ B)~(zlI000¢B ^ zll0000¢B) 

z01s B¢~ (z010¢A ^z0100cA)v(z01000¢ A^z010000¢ A) 

"% 
zll0k ¢ A 

¢~zll0ksB~ for 1 <k <4, 

z010k¢ A ¢~ z010ks BJ I 

for all strings z. All membership questions not 

specifically mentioned will be answered negatively. 

These conditions are strong enough to force 

A <PB and B <P A, and weak enough to allow 
4-~p 4--p 

us to diagonalize over all <Rand < P 

procedures. For ins'~tance, to show A~PB, we 
C 

define: 

Stage 4y: Let i = wl(y). Let x be the next 

string of the form z]l such that none of the 

questions zllcA, zll0k¢ B, zll0kcA, i <k <4 

have been answered. Consider M i on input 

x f o r  b(x) s t e p s ,  a s  b e f o r e .  If i t  h a l t s ,  we  

c o n s i d e r  t h e  s e t  Q of  q u e s t i o n s  i t  o u t p u t s .  

If  we a l r e a d y  h a v e ,  o r  i f  i t  i s  p o s s i b l e  to 

d e f i n e  q0 ~ B f o r  s o m e  q 0 ¢ Q ,  t h e n  we  d e f i n e  

q0 ~ B, x c A ,  q ¢ B f o r  a l l  u n d e t e r m i n e d  

q e Q ,  q ~ q 0 '  z l l 0 k s B  f o r  1 < k  < 4  and  

z l l 0 k  ~ q0 '  and  o t h e r  v a l u e s  as  r e q u i r e d  

to p r e s e r v e  t he  abow~ c o n d i t i o n s .  O t h e r w i s e ,  

we  d e f i n e  x ~ A,  q ~ B f o r  a l l  u n d e t e r m i n e d  

q e Q ,  z l l0  k ~ B fo r  [ < k  < 4 ,  and  o t h e r  v a l u e s  

as  r e q u i r e d . E N  D OF C O N S T R U C T I O N  

T h e  r e a d e r  m a y  c o m p l e t e  t h e  p r o o f  and 

ve  r i f i c a t i o n .  

A g a i n ,  j u d i c i o u s  c h o i c e  of  a r g u m e n t s  on 

w h i c h  to d i a g o n a l i z e  w i l l  b r i n g  t h e  c o m p l e x i t y  

o f A  and B d o w n t o  Z Ix[ . A l s o ,  a s b e f o r e ,  
A 

a l l  t h e  r e s u l t s  in  T h e o r e m  4 m a y  be  s t r e n g t h e n e d  

b y  m a k i n g  t h e  b o u n d  b a s  l a r g e  a s  d e s i r e d .  

T h e  s a m e  is  n o t  t r u e  f o r  t h e  f o l l o w i n g  r e s u l t :  

T h e o r e m  5: < P t r a n s c e n d s  <P .  
T 

P r o o f :  We m u s t  u s e  a s m a l l  f u n c t i o n  f o r  b 

b e c a u s e  of t h e  f o l l o w i n g :  

Note :  A <PB = A < E B  ( w h e r e  <E r e f e r s  to 
T tY 

e x p o n e n t i a l - t i m e  t t - r e d u c i b i l i t y ,  d e f i n e d  

a n a l o g o u s l y  to <P ,  bu t  w i t h  a t i m e  b o u n d  of 

t h e  f o r m  Z p(Ix[}  r a t h e r  t h a n  p ( I x l ) . )  

T h u s ,  we  l e t  b(x)  = Z Ix] - 1. We  w i l l  

o b t a i n  < P  by  p r e s e r v i n g  t h e  f o l l o w i n g  
T 

c o n d i t i o n s :  

I f  z ¢([0, I]0)*, then: 

ze A ¢~ 1 i s  o u t p u t t e d  b y  t h e  f o l l o w i n g  

p r o c e d u r e :  

F 

. y e s  

no A s \  yes 

no I 
I [output °1 

zaB ¢~1 i s  o u t p u t t e d  b y  t h e  s a m e  f l o w c h a r t ,  

s t a r t i n g  w i t h  y = z l l 0 ,  u s i n g  o r a c l e  A.  
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If w e  U 
l_< k_< I~I + l 

zl l  ~9,1} k, t hen  wsAc~we B. 

O t h e r w i s e ,  m e m b e r s h i p  questions w i l l  be  

a n s w e r e d  n e g a t i v e l y .  To o b t a i n  A ~ P B  : 
t t  

Stage Z v: Let i = Wl(Trl(Y)) ,j=wz(wl(y)) . Let x be 

the next string in ({0, i} 0)* such that none of the 

question xcA, w~ or B for we U 
0 _< k_<Ixl 

{O,l}k have been answered. 

xlll 

If M i on input x converges within b(x) 

steps, consider the it-condition ¢i(x). Note 

that at most b(x) = zIxI-i questions are 

represented in the truth table, so some 

w cxlll{0,1} Ixl is not in the truth table. We 

define membership in B of elements of 

(J xlll {0, I I k and of values in the truth 
0 _< k<Ixl 

table in some way that causes the above flowchar~ 

for z =x, to eventually a sk  whether w ~ B. 

Say ~(x) = c~CCXlCX 2c...cx n. Then if 

Mj on input c~c CB(Xl)CB(Xz)..-CB(Xn) 

converges within b(x) steps, we define: 

we Bc*xeA ¢~ ¢j(~CCB(Xl)CB(Xz)... CB(Xn) ) = 0, 

and other values as required to preserve the 

above conditions. 

END OF CONSTRUCTION 

As before, we leave the reader to 

complete the construction and verification. 

We complete our consideration of 

deterministic tt-reducibilities by noting the 

following two equivalent formulations of our 

definition of <P: 
i-t 

Definition: A <PB iff there exists a polynomial- 
tt 

time computable function f: { O, i ];'.-'-~*c(c {0, I ~',:)* 

such that if f(x) = c~CCXlC-'.cx k then c~ is a 

combinational circuit (having only A,V and "I 

gates) [I0] and x ¢ A ¢~c~(CB(Xl),...CB(Xk))=l. 

Definition: A <PB iff there is an oracle Turing 
tY 

machine M and a polynomial-time computable 

function f: {0, 1 ~:-'-~(c {0, 1 ~:-')* such that Iv[ reduces 

A to B within polynomial time, and for this 

computation, on mput x, M only asks questions 

that are on the list f(x). 

We note that this last definition describes 

a sort of weak truth-table reducibility. 

IV Nondeterministic Reducibilities 

A natural way to generalize the definitions 

in Sections Z and 3 is to allow nondeterminism 

in the reducibility procedures. The first place 

in which an interesting application of a 

nondeterministic reducibility appears is in 

G ll's paper [Z]. He shows, for <NP a 
T 

reasonable notion of nondeterministic Turing 

reducibility, that 

(i) there exist recursive sets B with 

A <PB ¢~ A <NP B, and 
~r T 

(Z) there exist recursive sets B with the 

above equivalence false. 

Since both diagonalization and simulation proofs 

generally extend from the non-oracle to the 

oracle case, these results seem to show that 

neither a diagonalization nor a simulation will 

probably be useful in deciding whether P=NP. 

We define nondeterministic reducibilities: 
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Definition: A <NP B (A is nondeterministic 

polynomial-time Turing reducible to B) iff 

there is a nondeterrninistic oracle Turing 

machine M and a polynomial p such that with 

oracle B, M runs in time bounded by p for 

all possible courses of computation, and 

x e A ~M with oracle B, input x has some 

accepting computation. 

rNP B A . iff there is a nondeterministic Turing 
m 

machine transducer Iv[ and a polynomial p 

such that M runs in time bounded by p for 

all possible courses of computation, and 

xeA ~ some course of M's computation on x 

yields as output a value y e B. 

A <NPB iff there is a nondeterministic Turing 

machine transducer [M, polynomial-bounded as 

above, and a polynonnial-time-computab]e 

evaluator e such that 

x cA ~ some possible computation of Iv[ on 

input x generates a tt-condition which is 

e-satlsfied by B. 

Note: This definiticn allows nondeterminism 

to be introduced into the generator but not 

into the evaluator. Allowing nondeterminisiaa 

in the evaluator as well adds no extra pairs 

to the reducibility. 

We make appropriate modifications in the 

last definition to obtain definitions for 

<NP, <31 ° ' <NP <_NPan d <NP 

bYt k - i t  ~ ' c d- 

We first note that a collapse occurs which 

is very different from the deterministic case. 

In part, the following theorem suggests that 

nondeterminism recovers the power of using 

disjunctions: 

T h e o r e m  6: A <NPB ~A <NP B 

T ff 

A <NPB~A <NPB 

A <NPB ~ A <NPB 

Proof: For the second equivalence, for example, 

assume A <NPB. Given x, nondetermJnistically 

generate all the appropriate positive tt-conditions. 

For each such condition, ~CCXlC...cx k, 

nondeterministically assign values v(x i) = 0 

or 1 to each x i, and simulate the evaluator 

e on input :yc v(x0)..-V(Xk). For each such 

assignment of values of v, output the appropriate 

f o r m  of: 

faA'~a ( fo r  s o m e  s t r i n g  a) if  

e (~ cv(x0). • • V(Xk)) = 0, 

A x. if e(otcv(x0)..-V(Xk)) = I. 
~i I v(xi) 4 

This procedure provides a nondeterministic 

generator witnessing A </qPB; we leave the 
c 

reader to supply the remaining details as well 

as the similar proofs for the other two 

equivalences. 

For transitivity, nondeterministic results 

again differ from deterministic results: 

Theorem 7: (a) <NP and <NP are transitive. 

(b) <NP, < NPan d <NP (for any k) fail to be 
b~t k ---t t 

transitive. 

Notes on the proof: (a) is by straightforward 

simulation. For (b), we prove the lemma: 

Lemma: There exist recursive sets A, B,C 
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N<__PB, B <NPc but A ~.T~,pc . with A 
1- ~ £ 1--tt tt 

J . .  

Proof  of Lemma:  We p r e s e r v e  the condi t ions  

x ¢A ~(Zy)[ IyI  = Ixl and ysB] 

x eB ¢~(~y)[ [y[ = Ixl and y s C  ]. 

Within this framework, we diagonalize as in 

previous proofs, over <NP-procedures. The 
tY 

bound b in this proof is chosen to be small 

(Z Ix [-i, for example), a necessity because of 

the following limiting result: 

A <NPB, B <NPc =A <NEc,  (where <NErefe r s  
I :tt l -- i t  ~ 

to n o n d e t e r m i n i s t i c  e x p o n e n t i a l - t i m e  

tt-reduciblity, defined analogously to <NP, 
tT 

but with a time bound of the form 2 P( ix l) 

rather than p( Ix [). 

Again, remaining details are left to the 

r e a d e r .  

Note: We may  also eas i ly  show A <NPB, 

B s N P  = A s N P .  

We conject , t re ,  but have not yet proved,  

that <NP is a m a x i m a l  t r a n s t i v e  subse t  

of <NP. 

T 

For nondeterminlstic reducibilities whose 

definitions do not collapse, transcendence 

results become stronger than in the 

deterministic case .  Namely, we show that 

deterministic reducibilities transcend the 

appropriate nondeterministic reducibilities: 

Compare  with T h e o r e m  4: 

Theo rem 8: (a) <P t r a n s c e n d s  <NP 
1--tt r~ 

(b) F o r  any k, <P t r a n s c e n d s  <NP 
kTl-c k--tt 

(The c o r r e s p o n d i n g  s t a t emen t  is fa lse  for 

<P , by The o r e m 6.)  
k~i-d 

(c) <P t r a n s c e n d s  <IMP. 
Z-:c a- 

(The correspuading statement is false 

for c and d interchanged.) 

(d) <P t r a n s c e n d s  <NP 
1-tt  ~- 

(e) <P t r a n s c e n d s  <NP.  
~-'tt 

Notes on proofs: Basically, within the 

frameworks used to preserve the reducibilities 

in Theorem 4, we are actually able to 

diagonalize over more procedures, nondeter- 

ministic as well as deterministic. For example, 

for (a) we construct an infinite, coinfinite set 

A with A ~NPA. For (d), we construct 
m 

an infinite, coinfinite set A with A ~NP~- and 
P 

~NPA (The diagonalization must be done 
P 

in two directions). [] 

Finally, parallel to the existential quantifier 

characterization of NP given by Cook, we have 

the following equivalent formulation of the 

definition of <NP : 

Definition: A <NPB iff there is a polynomial 
m 

p and a polynomial-time cornputa~)le function f 

such that 

x¢ A ¢*(Zy)[ ly 15_P( Ix ]) and f(x, y) ¢ B] 

S i m i l a r  c h a r a c t e r i z a t i o n s  exist for the other  

nond e t e r m i n i s t i c  r e duc i b i l i t i e s .  

V Further Study 

We Mow that our deterministic redueibilities 
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d i f f e r  on  t he  e x p o n e n t i a l - c o m p u t  a b l e  s e t s .  We 

would  l i k e  to  s h o w  t h a t  t h e y  d i f f e r  on NP ( fo r  

e x a m p l e ,  t h a t  t h e r e  e x i s t  A,  B ¢ N P  w i t h  

A < P B  bu t  A ~ P B ) .  T h i s ,  of  c o u r s e ,  
T m 

wou ld  i m p l y  P ~ N P .  P e r h a p s  we c a n  

show: 

P ~ N P  = <P and <P d i f f e r  on  NP. 
-T ?a 

M o r e  s t r o n g l y ,  p e r h a p s  we c a n  show: 

P ~ N P  = T - c o m p l e t e n e s s  and  m - c o m p l e t e -  

n e s s  d i f f e r .  S a m e  q u e s t i o n s  f o r  t h e  o t h e r  

d e t e r m i n i s t i c  r e d u c i b i l i t i e s .  

We wou ld  l i k e  to  d e v e l o p  s t r o n g e r  n o t i o n s  

of  d i s t i n c t n e s s  b e t w e e n  r e d u c i b i l i t i e s ,  t h a n  

"transcendence.,, F o r  example, c a n  we s h o w  

that <P and <P differ in the following way: 
T m 

(VA ~ P)  (ZB)  [ A _ < P B  b u t  A ~ P B ]  ? 
T m 

In o u r  d e f i n i t i o n  of  <P, i f  we  r e s t r i c t  
R 

c o n s i d e r a t i o n  to t r u t h - t a b l e  c o n d i t i o n s  w i t h  a 

specific representation (such as using A , v, -~ 

only), do we obtain as less general reducibility? 

We m a y  define,, a n e w  r e d u c i b i l i t y ,  

a n a l o g o u s  to e n u m e r a t i o n  r e d u c i b i l i t y ,  a s  

follows: 

A <NPB iff (vX) [B <NPx = A <N~x ]. 
e T T 

It is easy to show that <NP c <NP~ <NP . 
c e 

Further, <NPis transitive and in fact is 
e 

maximal transitive in the following sense: 

<NPc R C <NP, R transitive = R = <NP. 
"~ -- T e 

We ask whether <NP <NP = ; we conjecture 
F F 

that ~he I are mqual, which would make <NP 

a m a x i m a l  t r a n s i t i v e  r e d u c i b i l i t y .  

D e g r e e - t h e o r e t i c  q u e s t i o n s  a b o u t  a l l  t h e  

reducibilities remain, as well as questions 

about complete sets at various complexity levels. 

These may someday prove relevant to a 

classification of natural problems by their 

complexity. 

A c k n o w l e d g m e n t s :  We  v~ u ld  l i k e  to t h a n k  

A l b e r t  M e y e r  and  M i c h a e l  M a c h t e y  f o r  s o m e  

very valuable suggestions on this work. 
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Addendum 

Contemporary with Gill [2], parallel 

results have been independently obtained 

by T. Baker (Computational Complexity and 

Nondeterminism in Flowchart Programs, Ph.D. 

thesis, Cornell University, 1973). 
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