
SETS THAT DON'T HELP*

Nancy Lynch
Tufts University, Medford, Mass.

Albert Meyer and Michael Fischer
M. I. T., Cambridge, Mass.

Abstract

This paper contains several results yielding
pairs of problems which don't help each other's
solution, and therefore which may be said to be
complex for "different reasons." Statements are
formalized and results proved within Blum com-
plexity theory, generalized to relative algorithms.
The approach is fairly intuitive; all details
appear in [I] and r2].

I. Introduction

There are many known interesting problems for
which any computed solution must use very large
amounts of time on infinitely many instances of
the problem. Several decision procedures for lo-
gical theories [3]r4] fall into this category, as
well as certain natural problems involving regular
expressions rb]r6]. However, the method of proof
of difficulty for all of these problems is essen-
tially the same: all are shown to be sufficiently
expressive to encode the computations of a dia-
gonalizing Turing machin% on some infinite set of
instances of the problem. It is therefore
possible that these problems might be difficult
"for the same reason." At any rate, we cannot yet
prove that having a table of answers for one of
these problems does not reduce the solution of any
other of these problems to triviality.

As another example, all of the NP-eom~lete
problems of Cook rT] and Karp [8], if they are diffi-
cult, must be difficult for the "ssme reason." This is
because the time required to compute the solution
to any one of these problems can he lowered to a
polynomial bound if we have a precomputed table of
the answers to any other of the problems.

It would be most desirable to have natural
problems which are provably difficult for

*Work reported herein was supported in part by
Project Mac, an M.I.T. research program spon-
sored by the Advanced Research Projects Agency,
Department of Defense, under Office of Naval
Research Contract Number N00014-70-A-0362-0001.
Reproduction in whole or in part is permitted for
any purpose of the United States Government.

"different reasons." We begin by proving the
existence of some pair of recursively solvable
problems (not necessarily interesting ones) with
this property. This is then strengthened in two
ways to enable us to fix one of the problems,
presumably as a natural one.

We follow a machine-independent approach
similar to that of B]um r9], although the results
may also be stated and proved in terms of Turing
machine time or space.

II. Notation

We use rlO] for the notation of recursive
function theory. In addition:

"a.e." ("almost everywhere") will mean "for
all but a finite number of arguments." Similarly,
"i.o." ("infinitely often") will mean "for
infinitely many arguments".

The composition "~ o t," where t is a function
of one variable and g is a function of two variables,
will indicate kxrg(x,t(x))].

"R " represents the set of total recursive
• n

functlons of n integer variables.

To discuss ways in which one problem lowers
the complexity of another, we require a formalism
for computation using a set for help. We use
"relative algorithms" [I0], which are partial
recursive functions of one set variable and one
integer variable. We assume aD effective enumera-

tion of relative algorithms, writing '~i ()'' for

the i th function in this enumeration. We write

'~i (X)'' for the partial X-recursive function com-

puted by ~i () using set X. We write ~i (¢) as

simply '~i"' and thus obtain an acceptable G~del

numbering for the partial recursive functions.
The standard model for a relative algorithm is
Davis' oracle Turing machine rlO].

We use the following to define a measure of
complexity of a relative algorithm:

13o

Definition: A relative complexity measure (~i ()}

is a sequence of relative algorithms satisfying:

(I) (Vi,X) domain ~.(X) = domain~i (X),

and (2) There exists ~(1) a relative algorithm,
such that-

Ii if ~ (X)(x) = y,
(Vi,x,y,X) ¢ (x) (<i,x,y>) = i

otherwise.

These two properties are similar to the axioms
of Blum for the complexity of partial recursive
functions [9], and are used in the study of relative
complexity in [i] and [2]. The most natural exam-
ples of relative complexity measures are the time
and space measures on oracle Turing machines. We
show in [I] and [2] that these simple axioms are
sufficiently powerful to imply an invarlance
theorem, stating that any pair of relative com-
plexity measures is related by a fixed recursive
function. This allows us to prove results about
any convenient measure, and then conclude related
results for other measures. The three theorems in
this paper may be proved in this way, with the
Turing machine space measure a very convenient
one, or directly from the axioms.

We write ~'(~)l as simply "~i", and obtain a

complexity measure on the set of partial recursive
functions, in the sense of Blumo We call all of
the functions ~. "running times,"

l

Assume A is a set, f e Ri, and b is a total

function of one variable. Then:

"Comp(A)f- K b i.o." means:

(Zi)[(~i(A) = f) and (~i (A) ~ b i.o.)].

Similarly,

"Comp(A}f" " > b i.o." means.

(Vi)[(~'(A)l = f) = (~i(A) > b i.o.)].

We use analogous definitions for "a.e," in place
of "i.o." Also, we write "Comp f" instead of

"Comp(@)f. '' And finally, if f is 0-I valued, so

that f = C for some set B, then we write

"Comp(A)B"Binstead of Comp(A)CB .

III. Theorems about Sets that Don't Help

Our first theorem produces two recursive
sets that don't help each other's computation
(i.e. which are complex for "different reasons.")
It is a subrecursive analog to the Friedberg-
Muchnik theorem of recursion theory [I0], which
produces two sets not permlttin~ each other's
computation. The function h in the statement of
the theorem results from overhead involved in
simulation, and should be thought of as small
relative to t B and tc:

Theorem i. There exists h e R 2 satisfying the

following:
For all sufficiently large running times t B and tc,

there exist recursive sets B and C such that:

Comp B ~ h o t B a.e.,

Comp C ~ h o t C a.e.,

Comp(C)B > t B a.e.,

and Comp(B)c > t C a.e.

The basic proof method of abstract complexity
theory is diagonalizatlon. Sacks, Speetor, etc.
[i0][II] have developed extensive diagonalization
machinery for theorems about degrees of unsolva-
bility, much of which has not yet been used in
complexity theory. This theorem and also Theorem
3 have proofs which appear to require the use of
priority constructions, as originated by Friedberg
and Muchnik.

We omit the proof of Theorem I in favor of
an outline of the proof of Theorem 3. We note,
however, that one method of proof for Theorem I is
to simultaneously construct the two sets B and C
using diagonalization and a finite-injury priority
construction. An alternative proof follows from
Trachtenbrot's construction [12] of a "nonautore-
ducible set," reconstructed in [I] and [2], which
also used a finite-injury priority argument. In
either case, there is a small recursive bound on
the number of injuries to any condition.

We note that two corollaries follow from the
proof of Theorem I:

Corollary i.I: There exists h e R 2 satisfying the

following:
For any sufficiently large running time t, there
exists an infinite collection of recursive sets
(A i] such that:

(Vi) Comp A i ~ h o t a.e.,

a nd
(Vi,j) Comp(Ai)A. > t a.e.

J

Corollary 1.2: Assume [~i ()~ represents Turing

machine space measure.
For all sufficiently large total tape-constructable
functions t B and tc, there exist recursive sets B

and C such that.

Comp B ~ 2 tB a.e ,

Comp C ~ 2 tC a.e.,

Comp(C)B > t B a.e.,

and Comp(B)c > t B a.e.

In Theorem I and its Corollaries, both sets
are constructed by diagonalization. As a step
toward making the result more applicable to natural
problems, we would like to be able to fix one of
the sets arbitrarily (i.e. as some natural set).
Theorems 2 and 3 require a "compression" condition
on the complexity of set A, but otherwise allow
us to fix A arbitrarily.

Theorem 2: There exists h e R 2 satisfying the
following:
For any recursive set A and any recursive function
t with the property that Comp A > h o t i.o., there
exist arbitrarily complex recursive sets B such
that:

131

Comp'B)Af > t i.o.

Thus, it is impossible to use set B to lower
the complexity of A below the bound t.

The proof, which we again omit, is based on
an idea of Machtey [13], and is a diagonalization
essentially similar to the initial segment con-
structions in [I0]. There is no priority involved.
Once again, we give the sharper bound for the
Turing machine space measure:

Corollary 2.1: Assume [~i ()] represents Turing

machine space measure.
For any recursive set A and any recursive function
t with the property that Comp A > t i.o., there
exist arbitrarily complex recursive sets B such
that:

Comp(B)A > t i.o.

The third theorem is similar to Theorem 2,
but with a stronger type of lower bound on the
complexity of A;

Theorem 3: There exists h £ R 2 satisfying the
following:
For any recursive set A and any total running
time t, if Comp A > h o t a.e., then there exist
arbitrarily complex recursive sets B such that

ComptB)A" " > t a.e.

Proof: We present an intuitive outline. Complete
details may be found in [I] and [2].

The method of proof is a finite-injury
priority argument with no apparent recursive bound
on the number of injuries for each condition.
Briefly, the construction of B proceeds as follows:

The set B must satisfy two conditions. We

must have Comp(B)A > t a.e., and B must have a
given minimal complexity. The second of these
conditions is achieved by interweaving a Rabin
diagonalization construction [9] with the main
construction, and poses no particular problems. The
first condition is much more difficult.

We need to insure that, for any index i,

~i (B) ~ t i.o. implies ~i (B) ~ C A . We thus have

,in infinite sequence of conditions to satisfy, one
for each i. To prevent conflict, we assign smaller
indices higher priority than larger indices.

B is constructed in an effective sequence of
stages executed in numerical order, with member-
ship of n in B determined at stage numbered n.
Thus, B will be a reeursive set.

Three major devices are used in the proof.
At any time during the construction, we may have:

(i) One tentative eo~mnitment for some index ~, to
an extension of the part of B already defined,

(2) Any number of tentatively cancelled indices i,

and

(3) Any number of permanently cancelled indices i.

They indicate the following:

If we have a tentative comnitment for i, it
means we plan to extend the definition of B in
such a way as to satisfy

~i(B)(x) ~ t(x)

for a certain argument x. If i is tentatively
cancelled, it means that we have succeeded in
defining B in this way (i.e. there has been no
interference from indices of higher priority than
i). If i is permanently cancelled, it means that
it was already tentatively cancelled, and we have

discovered that ~i(B)(x) # CA(X) for the argument

x used in i's tentative conmnitment. (If we instead

discover that ~i(B~x) = CA(X), we will remove i's

tentative cancellation and try again to find a
new tentative commitment for i.)

A conflict may arise if it becomes desirable
to make tentative conmnitments for two different
indices at the same time; they might require
different definitions of B. To resolve such con-
flicts, we always choose to satisfy the condition
corresponding to the index of higher priority.

We choose a monotone increasing total running
time t B to be an a.e. lower bound on B's complexity.

That is, interwoven into the following construction
will be a Rabin diagonalization insuring that
Comp B > t B a.e. We now describe the general

stage of the construction.

We assume without loss of generality that
t > kxrx].

Stase n: (Define CB(n))

(a) Settin~ up tentative commitments

See if there exists an index i, an argument x,
and a finite extension E of the current definition
of B such that:

(al) i ~ n, i is not permanently cancelled or
even tentatively cancelled, and i is of
higher priority than any index for which
there is a current tentative conmnitment,

(a2) tB(n-I) < t(x) ~ tB(n), and

(a3) ~i(E)(x) ~ t(x).

If so, consider the smallest such index i and,
for i, the x with the smallest such t(x), and for
i and x, the first such E in the lexicographlc
ordering. Establish E as a new tentative com-
mitmen~ for i, and remove any previous tentative
commitment.

In either case, define CB(n) according to

whatever is now the current tentative commitment.
If there is no current tentative conmnitment, let

CB(n) = 0.

Go on to substage (b).

13 2

(b) Converting tentative commitments to tentative
cancellations

See if n ~ the largest value in the current
tentative commitment. If so, we have succeeded in
defining B consistently with the current tentative
commitment, so we change the tentative commitment
for i to a tentative cancellation of i.

If not, we make no change. In either case, we
go on to substage (c).

(c) Converting tentative cancellations to permanent
cancellations

For any current tentative cancellation of an
index i, established via an argument x and an ex-
tension E, see if CA(X) can be computed within

measure tB(n). If so, and if~i (E)(x) ~ CA(X), we

have succeeded in insuring that ~i (B) ~ CA, and so

we convert the tentative cancellation of i to a
permanent cancellation of i. On the other hand, if

@i(E)(x) = CA(x), we have failed, so we just remove

the tentative cancellation of i, leaving i open for
a n=w tentative commitment at a later stage.

END OF CONSTRUCTION

We note that stage n requires measure not
much greater than tB(n).

The key fact in the verification is that no
index i can become tentatively cancelled infinitely
many times. Assuming this fact for the moment, we

see that all the conditions

~.(B)l ~ t i.o. implies ~i (B) ~ C A

will eventually be satisfied. This is because
eventually all higher priority indices will be
unable to interfere with a tentative commitment for
i being made and converted to a tentative can-
cellation of i. Then, since

~.(B) ~ t i.o.,
i

such tentative cancellations will be made repeatedly,
each either becoming a permanent cancellation or
being removed in substage (e). Since i cannot
become tentatively cancelled i.o., it will eventu-
ally become permanently cancelled, satisfying the
condition.

It remains to see why no index may be tenta-
tively cancelled infinitely often. Assume the
contrary and let i be the smallest index that is
tentatively cancelled infinitely often. We will
use i to help construct a program for C A which uses

no oracle set and requires measure not much
greater than t i.o., in contradiction to the
hypothesized lower bound on the complexity of A.
Except for a finite patch for small arguments, the
new program acts as follows:

On argument x, it goes through successive
stages of the given construction of B through
stage n-l, where

tB(n - I) < t(x) ~ tB(n).

Then it checks to see if at stage n of the
construction of B, a tentative commitment would
be made for i, via argument x and some extension
E. If so, and if x is sufficiently large, we
know that this tentative commitment will eventually
be converted to a tentative cancellation of i, and
this tentative cancellation must eventually be

removed. Thus,

~i (E)(x) = CA(X), (E)(x) and
so the program simply computes ~i

outputs the answer. If such a tentative conmnitment
would not be made, the program will revert to an

alternative method of computing C A .

There will be infinitely many x for which an
appropriate tentative commitment is made. For
each of these x, the measure required to compute
CA(X) is approximately given by the measure needed

to simulate all stages up through stage n-I in the
construction of B (roughly tB(n - I)), to recognize

whether a tentative commitment would be made

(roughly t(x)), and to compute @i(E)(x) (roughly

t(x), since ~.(E)(x) ~ t(x)).
i

We can formally sum this up by saying that
Comp A ~ h o t i.o., contradicting the hypotheses

on A.
QED

As before, careful analysis of the proof will
yield a specific result for the Turing machine

space measure:

(
)l represents Turing Corollary 3.1: Assume [~i

machine space measure.
For any recursive set A and any sufficiently large
total tape-constructable function t, if

Comp A > 2 t a.e.,

then there exist arbitrarily complex recursive

sets B such that

Comp(B)A > t a.e.

IV. Additional Questions

There are two directions in which to proceed
from here. One, as we have already mentioned, is
to obtain similar results in which both sets A
and B are natural sets. The second is to
strengthen the abstract complexity-theoretic
result to refer to "helping" without any reference
to a fixed lower bound.

For this second direction, the problem of
defining "helping" for arbitrary recursive
functions arises. In [14], several possible
definitions are given, and all are shown to be
equivalent. Using one of these definitions, we
may formulate the following conjecture:

Conjecture: There exists h c R 2 with the following
property:

133

(VA, recursive)(ZB, arbitrarily complex and
recursive)

r (~i(B) (B) a.e.)]. (Vi) = CA) = (Comp A < h o ~i

This is a generalization of Theorems 2 and 3,
while Theorem 3 essentially gives the result for
functions with well-determined complexities.

References

rl] Lynch, N. Relativization of the Theory of Com-
putational Complexity. Project Mac Technical
Report 99, June, 1972. PhO Thesis, MIT mathe-
matics department, June, 1972.

r2] Lynch, N., Meyer, A., and Fischer, M. Relati-
vization of the Theory of Computational Com-
plexity. Submitted to Transactions of Amer.
Math. Soc., July, 1972.

[3] Meyer, A. Weak Monadic Second Order Theory of
Successor is not Elementary-Recursive. Prelimi-
nary Report, May, 1972.

r4] Meyer, A. Weak SIs Cannot Be Decided. Prelimi-
nary Report, Notices of the AMS Vol. 19, No. 5,
August, 1972, p. A-598

[5] Meyer, A. and Stockmeyer, L. The Equivalence
Problem for Regular Expressions with Squaring
Requires Exponential Space. 13th Annual Sym-
posium on Switching and Automata Theory. IEEE,
1972.

[6] Stockmeyer, L. and A.R. Meyer. Word Problems
Requiring Exponential Time: Preliminary Report,
appears in this volume.

[7] Cook, S. The Complexity of Theorem-Proving
Procedures. 3rd Annual ACM Symposium on
Theory of Computing. May, 1971.

[8] Karp, R. Reducibility Among Combinatorial
Problems. Complexity of Computer Computations.
Plenum Press, 1972.

[9] Blum, M. A Machine-Independent Theory of the
Complexity of Reeursive Functions. JACM, Vol.
14, No. 2, April, 1967.

[I0] Rogers, H. Theory of Recursive Functions and
Effective Computability. McGraw-Hill. 1967.

[ii] Sacks, G. Degrees of Unsolvability. Annals
of Mathematical Studies, No. 55, 1963, Princeton,
N. J.

[12] Trachtenbrot, B. On Autoreducibility. Dokl.
Akad. Nauk. SSSR. Vol. ii (1970), No. 3.

[13] Machtey, M. Private colmnunication.

[14] Lynch, N. "Helping": Several Formalizations.
Submitted to JSL, Feb., 1973.

13 4

