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Abstract 

This paper contains several results yielding 
pairs of problems which don't help each other's 
solution, and therefore which may be said to be 
complex for "different reasons." Statements are 
formalized and results proved within Blum com- 
plexity theory, generalized to relative algorithms. 
The approach is fairly intuitive; all details 
appear in [I] and r2]. 

I. Introduction 

There are many known interesting problems for 
which any computed solution must use very large 
amounts of time on infinitely many instances of 
the problem. Several decision procedures for lo- 
gical theories [3]r4] fall into this category, as 
well as certain natural problems involving regular 
expressions rb]r6]. However, the method of proof 
of difficulty for all of these problems is essen- 
tially the same: all are shown to be sufficiently 
expressive to encode the computations of a dia- 
gonalizing Turing machin% on some infinite set of 
instances of the problem. It is therefore 
possible that these problems might be difficult 
"for the same reason." At any rate, we cannot yet 
prove that having a table of answers for one of 
these problems does not reduce the solution of any 
other of these problems to triviality. 

As another example, all of the NP-eom~lete 
problems of Cook rT] and Karp [8], if they are diffi- 
cult, must be difficult for the "ssme reason." This is 
because the time required to compute the solution 
to any one of these problems can he lowered to a 
polynomial bound if we have a precomputed table of 
the answers to any other of the problems. 

It would be most desirable to have natural 
problems which are provably difficult for 
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"different reasons." We begin by proving the 
existence of some pair of recursively solvable 
problems (not necessarily interesting ones) with 
this property. This is then strengthened in two 
ways to enable us to fix one of the problems, 
presumably as a natural one. 

We follow a machine-independent approach 
similar to that of B]um r9], although the results 
may also be stated and proved in terms of Turing 
machine time or space. 

II. Notation 

We use rlO] for the notation of recursive 
function theory. In addition: 

"a.e." ("almost everywhere") will mean "for 
all but a finite number of arguments." Similarly, 
"i.o." ("infinitely often") will mean "for 
infinitely many arguments". 

The composition "~ o t," where t is a function 
of one variable and g is a function of two variables, 
will indicate kxrg(x,t(x))]. 

"R " represents the set of total recursive 
• n 

functlons of n integer variables. 

To discuss ways in which one problem lowers 
the complexity of another, we require a formalism 
for computation using a set for help. We use 
"relative algorithms" [I0], which are partial 
recursive functions of one set variable and one 
integer variable. We assume aD effective enumera- 

tion of relative algorithms, writing '~i ( )'' for 

the i th function in this enumeration. We write 

'~i (X)'' for the partial X-recursive function com- 

puted by ~i ( ) using set X. We write ~i (¢) as 

simply '~i"' and thus obtain an acceptable G~del 

numbering for the partial recursive functions. 
The standard model for a relative algorithm is 
Davis' oracle Turing machine rlO]. 

We use the following to define a measure of 
complexity of a relative algorithm: 
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Definition: A relative complexity measure (~i ( )} 

is a sequence of relative algorithms satisfying: 

(I) (Vi,X) domain ~.(X) = domain~i (X), 

and (2) There exists ~(1) a relative algorithm, 
such that- 

Ii if ~ (X)(x) = y, 
(Vi,x,y,X) ¢ (x) (<i,x,y>) = i 

otherwise. 

These two properties are similar to the axioms 
of Blum for the complexity of partial recursive 
functions [9], and are used in the study of relative 
complexity in [i] and [2]. The most natural exam- 
ples of relative complexity measures are the time 
and space measures on oracle Turing machines. We 
show in [I] and [2] that these simple axioms are 
sufficiently powerful to imply an invarlance 
theorem, stating that any pair of relative com- 
plexity measures is related by a fixed recursive 
function. This allows us to prove results about 
any convenient measure, and then conclude related 
results for other measures. The three theorems in 
this paper may be proved in this way, with the 
Turing machine space measure a very convenient 
one, or directly from the axioms. 

We write ~'(~)l as simply "~i", and obtain a 

complexity measure on the set of partial recursive 
functions, in the sense of Blumo We call all of 
the functions ~. "running times," 

l 

Assume A is a set, f e Ri, and b is a total 

function of one variable. Then: 

"Comp(A)f- K b i.o." means: 

(Zi)[(~i(A) = f) and (~i (A) ~ b i.o.)]. 

Similarly, 

"Comp(A}f" " > b i.o." means. 

(Vi)[(~'(A)l = f) = (~i(A) > b i.o.)]. 

We use analogous definitions for "a.e," in place 
of "i.o." Also, we write "Comp f" instead of 

"Comp(@)f. '' And finally, if f is 0-I valued, so 

that f = C for some set B, then we write 

"Comp(A)B"Binstead of Comp(A)CB . 

III. Theorems about Sets that Don't Help 

Our first theorem produces two recursive 
sets that don't help each other's computation 
(i.e. which are complex for "different reasons.") 
It is a subrecursive analog to the Friedberg- 
Muchnik theorem of recursion theory [I0], which 
produces two sets not permlttin~ each other's 
computation. The function h in the statement of 
the theorem results from overhead involved in 
simulation, and should be thought of as small 
relative to t B and tc: 

Theorem i. There exists h e R 2 satisfying the 

following: 
For all sufficiently large running times t B and tc, 

there exist recursive sets B and C such that: 

Comp B ~ h o t B a.e., 

Comp C ~ h o t C a.e., 

Comp(C)B > t B a.e., 

and Comp(B)c > t C a.e. 

The basic proof method of abstract complexity 
theory is diagonalizatlon. Sacks, Speetor, etc. 
[i0][II] have developed extensive diagonalization 
machinery for theorems about degrees of unsolva- 
bility, much of which has not yet been used in 
complexity theory. This theorem and also Theorem 
3 have proofs which appear to require the use of 
priority constructions, as originated by Friedberg 
and Muchnik. 

We omit the proof of Theorem I in favor of 
an outline of the proof of Theorem 3. We note, 
however, that one method of proof for Theorem I is 
to simultaneously construct the two sets B and C 
using diagonalization and a finite-injury priority 
construction. An alternative proof follows from 
Trachtenbrot's construction [12] of a "nonautore- 
ducible set," reconstructed in [I] and [2], which 
also used a finite-injury priority argument. In 
either case, there is a small recursive bound on 
the number of injuries to any condition. 

We note that two corollaries follow from the 
proof of Theorem I: 

Corollary i.I: There exists h e R 2 satisfying the 

following: 
For any sufficiently large running time t, there 
exists an infinite collection of recursive sets 
(A i] such that: 

(Vi) Comp A i ~ h o t a.e., 

a nd 
(Vi,j) Comp(Ai)A. > t a.e. 

J 

Corollary 1.2: Assume [~i ( )~ represents Turing 

machine space measure. 
For all sufficiently large total tape-constructable 
functions t B and tc, there exist recursive sets B 

and C such that. 

Comp B ~ 2 tB a.e , 

Comp C ~ 2 tC a.e., 

Comp(C)B > t B a.e., 

and Comp(B)c > t B a.e. 

In Theorem I and its Corollaries, both sets 
are constructed by diagonalization. As a step 
toward making the result more applicable to natural 
problems, we would like to be able to fix one of 
the sets arbitrarily (i.e. as some natural set). 
Theorems 2 and 3 require a "compression" condition 
on the complexity of set A, but otherwise allow 
us to fix A arbitrarily. 

Theorem 2: There exists h e R 2 satisfying the 
following: 
For any recursive set A and any recursive function 
t with the property that Comp A > h o t i.o., there 
exist arbitrarily complex recursive sets B such 
that: 
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Comp'B)Af > t i.o. 

Thus, it is impossible to use set B to lower 
the complexity of A below the bound t. 

The proof, which we again omit, is based on 
an idea of Machtey [13], and is a diagonalization 
essentially similar to the initial segment con- 
structions in [I0]. There is no priority involved. 
Once again, we give the sharper bound for the 
Turing machine space measure: 

Corollary 2.1: Assume [~i ( )] represents Turing 

machine space measure. 
For any recursive set A and any recursive function 
t with the property that Comp A > t i.o., there 
exist arbitrarily complex recursive sets B such 
that: 

Comp(B)A > t i.o. 

The third theorem is similar to Theorem 2, 
but with a stronger type of lower bound on the 
complexity of A; 

Theorem 3: There exists h £ R 2 satisfying the 
following: 
For any recursive set A and any total running 
time t, if Comp A > h o t a.e., then there exist 
arbitrarily complex recursive sets B such that 

ComptB)A" " > t a.e. 

Proof: We present an intuitive outline. Complete 
details may be found in [I] and [2]. 

The method of proof is a finite-injury 
priority argument with no apparent recursive bound 
on the number of injuries for each condition. 
Briefly, the construction of B proceeds as follows: 

The set B must satisfy two conditions. We 

must have Comp(B)A > t a.e., and B must have a 
given minimal complexity. The second of these 
conditions is achieved by interweaving a Rabin 
diagonalization construction [9] with the main 
construction, and poses no particular problems. The 
first condition is much more difficult. 

We need to insure that, for any index i, 

~i (B) ~ t i.o. implies ~i (B) ~ C A . We thus have 

,in infinite sequence of conditions to satisfy, one 
for each i. To prevent conflict, we assign smaller 
indices higher priority than larger indices. 

B is constructed in an effective sequence of 
stages executed in numerical order, with member- 
ship of n in B determined at stage numbered n. 
Thus, B will be a reeursive set. 

Three major devices are used in the proof. 
At any time during the construction, we may have: 

(i) One tentative eo~mnitment for some index ~, to 
an extension of the part of B already defined, 

(2) Any number of tentatively cancelled indices i, 

and 

(3) Any number of permanently cancelled indices i. 

They indicate the following: 

If we have a tentative comnitment for i, it 
means we plan to extend the definition of B in 
such a way as to satisfy 

~i(B)(x) ~ t(x) 

for a certain argument x. If i is tentatively 
cancelled, it means that we have succeeded in 
defining B in this way (i.e. there has been no 
interference from indices of higher priority than 
i). If i is permanently cancelled, it means that 
it was already tentatively cancelled, and we have 

discovered that ~i(B)(x) # CA(X ) for the argument 

x used in i's tentative conmnitment. (If we instead 

discover that ~i(B~x) = CA(X), we will remove i's 

tentative cancellation and try again to find a 
new tentative commitment for i.) 

A conflict may arise if it becomes desirable 
to make tentative conmnitments for two different 
indices at the same time; they might require 
different definitions of B. To resolve such con- 
flicts, we always choose to satisfy the condition 
corresponding to the index of higher priority. 

We choose a monotone increasing total running 
time t B to be an a.e. lower bound on B's complexity. 

That is, interwoven into the following construction 
will be a Rabin diagonalization insuring that 
Comp B > t B a.e. We now describe the general 

stage of the construction. 

We assume without loss of generality that 
t > kxrx]. 

Stase n: (Define CB(n)) 

(a) Settin~ up tentative commitments 

See if there exists an index i, an argument x, 
and a finite extension E of the current definition 
of B such that: 

(al) i ~ n, i is not permanently cancelled or 
even tentatively cancelled, and i is of 
higher priority than any index for which 
there is a current tentative conmnitment, 

(a2) tB(n-I ) < t(x) ~ tB(n), and 

(a3) ~i(E)(x) ~ t(x). 

If so, consider the smallest such index i and, 
for i, the x with the smallest such t(x), and for 
i and x, the first such E in the lexicographlc 
ordering. Establish E as a new tentative com- 
mitmen~ for i, and remove any previous tentative 
commitment. 

In either case, define CB(n) according to 

whatever is now the current tentative commitment. 
If there is no current tentative conmnitment, let 

CB(n) = 0. 

Go on to substage (b). 
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(b) Converting tentative commitments to tentative 
cancellations 

See if n ~ the largest value in the current 
tentative commitment. If so, we have succeeded in 
defining B consistently with the current tentative 
commitment, so we change the tentative commitment 
for i to a tentative cancellation of i. 

If not, we make no change. In either case, we 
go on to substage (c). 

(c) Converting tentative cancellations to permanent 
cancellations 

For any current tentative cancellation of an 
index i, established via an argument x and an ex- 
tension E, see if CA(X) can be computed within 

measure tB(n ). If so, and if~i (E)(x) ~ CA(X), we 

have succeeded in insuring that ~i (B) ~ CA, and so 

we convert the tentative cancellation of i to a 
permanent cancellation of i. On the other hand, if 

@i(E)(x) = CA(x), we have failed, so we just remove 

the tentative cancellation of i, leaving i open for 
a n=w tentative commitment at a later stage. 

END OF CONSTRUCTION 

We note that stage n requires measure not 
much greater than tB(n). 

The key fact in the verification is that no 
index i can become tentatively cancelled infinitely 
many times. Assuming this fact for the moment, we 

see that all the conditions 

~.(B)l ~ t i.o. implies ~i (B) ~ C A 

will eventually be satisfied. This is because 
eventually all higher priority indices will be 
unable to interfere with a tentative commitment for 
i being made and converted to a tentative can- 
cellation of i. Then, since 

~.(B) ~ t i.o., 
i 

such tentative cancellations will be made repeatedly, 
each either becoming a permanent cancellation or 
being removed in substage (e). Since i cannot 
become tentatively cancelled i.o., it will eventu- 
ally become permanently cancelled, satisfying the 
condition. 

It remains to see why no index may be tenta- 
tively cancelled infinitely often. Assume the 
contrary and let i be the smallest index that is 
tentatively cancelled infinitely often. We will 
use i to help construct a program for C A which uses 

no oracle set and requires measure not much 
greater than t i.o., in contradiction to the 
hypothesized lower bound on the complexity of A. 
Except for a finite patch for small arguments, the 
new program acts as follows: 

On argument x, it goes through successive 
stages of the given construction of B through 
stage n-l, where 

tB(n - I) < t(x) ~ tB(n). 

Then it checks to see if at stage n of the 
construction of B, a tentative commitment would 
be made for i, via argument x and some extension 
E. If so, and if x is sufficiently large, we 
know that this tentative commitment will eventually 
be converted to a tentative cancellation of i, and 
this tentative cancellation must eventually be 

removed. Thus, 

~i (E)(x) = CA(X), (E)(x) and 
so the program simply computes ~i 

outputs the answer. If such a tentative conmnitment 
would not be made, the program will revert to an 

alternative method of computing C A . 

There will be infinitely many x for which an 
appropriate tentative commitment is made. For 
each of these x, the measure required to compute 
CA(X ) is approximately given by the measure needed 

to simulate all stages up through stage n-I in the 
construction of B (roughly tB(n - I)), to recognize 

whether a tentative commitment would be made 

(roughly t(x)), and to compute @i(E)(x) (roughly 

t(x), since ~.(E)(x) ~ t(x)). 
i 

We can formally sum this up by saying that 
Comp A ~ h o t i.o., contradicting the hypotheses 

on A. 
QED 

As before, careful analysis of the proof will 
yield a specific result for the Turing machine 

space measure: 

( 
)l represents Turing Corollary 3.1: Assume [~i 

machine space measure. 
For any recursive set A and any sufficiently large 
total tape-constructable function t, if 

Comp A > 2 t a.e., 

then there exist arbitrarily complex recursive 

sets B such that 

Comp(B)A > t a.e. 

IV. Additional Questions 

There are two directions in which to proceed 
from here. One, as we have already mentioned, is 
to obtain similar results in which both sets A 
and B are natural sets. The second is to 
strengthen the abstract complexity-theoretic 
result to refer to "helping" without any reference 
to a fixed lower bound. 

For this second direction, the problem of 
defining "helping" for arbitrary recursive 
functions arises. In [14], several possible 
definitions are given, and all are shown to be 
equivalent. Using one of these definitions, we 
may formulate the following conjecture: 

Conjecture: There exists h c R 2 with the following 
property: 
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(VA, recursive)(ZB, arbitrarily complex and 
recursive) 

r (~i(B) (B) a.e.) ]. (Vi) = CA) = (Comp A < h o ~i 

This is a generalization of Theorems 2 and 3, 
while Theorem 3 essentially gives the result for 
functions with well-determined complexities. 
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