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ON STRUCTURE PRESERVING REDUCTIONS*
NANCY LYNCHf aAND RICHARD J. LIPTON#

Abstract. The concept of reduction between problems is strengthened. Certain standard problems are
shown to be complete in the new and stronger sense. Applications to the number of solutions of particular
problems are presented.
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1. Introduction. One of the most striking features of a large number of the known
reductions of one problem to another [3] is that they often preserve a great deal more
than they have to. More precisely, suppose that A is many-to-one polynomial time
reducible to B where A and B are, as usual, subsets of £* for some finite alphabet 2.
Then all that is required in the usual definition is that

*) Vxel2* xeA ifandonlyif f(x)e B,

where f(x) is some polynomial time computable function. Essentially (*) states that x
has a solution exactly when f(x) has a solution. It appears, however, that quite often x
and f(x) are more closely related than this.

This imprecise intuitive feeling that reductions often preserve additional structure
is the subject of this paper. We introduce a new kind of reduction and prove that some
standard complete problems are also complete in our strong sense.

The notion that reduction preserves additional structure also appears in Simon [7].
His main result is that a number of problems are still equivalent when (*)is strengthened
to:

x has the same number of solutions as f(x).

He calls reducibilities preserving the number of solutions ‘‘parsimonious”. There is a
difficulty with these results, however; it is not clear what it means for x to have k
solutions when A is an arbitrary set. Clearly, either x is in A or it is not. Simon avoids
this difficulty by working only with well known and specific problems. In these cases it is
reasonable to assume that “x has k solutions” is a meaningful concept. We take an
alternative approach. The main virtue of this approach is that it allows us to work with
arbitrary problems, and thus we can prove the existence of complete sets.

2. New definition of reduction. The key idea of the new reduction is a focus on
relations rather than on sets. Roughly, suppose that

VxeX* xeAifandonlyif 3yR(x,y).

The intuitive concept that “‘x is an instance of A with k solutions’ can be more precisely
rendered by “there are k y’s such that R(x, y) is true.” There are, however, several
interesting difficulties in making this rough idea work correctly. In this direction the
next definition is the key.
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DEFINITION. A combination machine is a Turing machine with two read-only input
tapes with end-markers, the first 2-way and the second 1-way, a 2-way read-write
worktape and a 1-way write-only output tape. A combination machine is logspace
(polynomial time) if it always halts and runs within worktape space logarithmic (within
time polynomial) in the length of the first input.

As remarked in [5], a set A is in /&, the class of nondeterministic logspace sets
(M2, the class of nondeterministic polynomial time sets) if and only if there exist a
polynomial p and a relation R such that

xe Ae@y)llyl=p(xDAR(x, y)l,

and R is computable by a logspace (polynomial time) combination machine.
Now let R and S be arbitrary binary relations, and let r and s be polynomials. Then
we will define reducibility = 3(_5_ 97’) between (R, r) and (S, s) as follows:
(R, r)=%(=%) (S, s) provided there exists an f and g such that
1. f is a function computable by a deterministic logspace (polynomial time)
transducer 2-way on its input;
2. g is a function computable by a logspace (polynomial time) combination
machine;
3. Vx,yelZ¥,

[R(x, )Alyl=r(xD] implies [S(f(x), g(x, yDAIg(x, yI=s(fx)D];
4. gis 1-1 in the sense that Vx, y1, y,€ =%,

[R(x, yDAR(x, y2)Alyil = rxDAly2l = r(IxDAg(x, y1) = g(x, y2)]
implies y;=ya;
5. g is onto in the sense that Vx, z € ¥,
[S(f(x), 2)Nlz[=s( fx))]
implies  [3yly|=r(xDAR(x, yIAg(x, y)=z].

This definition, while at first appearing to be complex, is actually a natural
extension of the usual one. In order to see this, observe that the usual definition states
that A islogspace (polynomial time) reducible to B for A and B which are expressed by

A ={x|3yly|=r(xDAR(x, y)}
and

B ={x[3yly|=s(xDAS(x, y)}
provided
Bylyl=r(xDAR(x, y)]
S [Iyly|=s(FEDAS(f(x), y)I,

where f is some logspace (polynomial time) transduction. Our main idea is to strengthen
this condition by putting into 1-1 correspondence specific witnesses to the two
existential quantifiers. Note that according to our definitions, if (R, r)=% (=7) (S, s) via
f and g, then for any x,

Kyl lyl=r(xDAR(x, y)}
=yl ly|=s(fCDAS(f(x), y)H.

ProposITION 1. =% (=%) is transitive.
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Proof. We consider =*. We need only show that if (R, r)=%(S, s) via f, g and
(S, s)=(T, t)viaf', g' then (R, r)=7 (T, t) via

f'=Ax[f(fx)] and g"=Ax,y[g'(f(x), g(x, y))].

First, f" is a logspace transduction; this follows by standard arguments [8]. We show
that g” is computable by a logspace combination machine as follows:

Simulate g'. The only difficulty is in obtaining the appropriate bits of the inputs to g’

as needed. The first input is easy: in order to compute the ith bit of f(x) we need

only simulate f(x) from the beginning until it outputs the ith bit. This works since x

is 2-way; a counter must be maintained for i. The second input is more difficult. In

order to compute the ith bit of g(x, y) we simply simulate g(x, y) until it outputs the
ith bit. The key is that g’ asks for these bits in the same order as produced in the

computation of g(x, y); thus, in the simulation of g(x, y) it suffices to have y on a

1-way tape. No counter need be maintained for i in this case.

Now verification of properties 3-5 is reasonably straightforward. Transitivity of =7 is
obvious.

DEFINITION. (S, 5) is £-complete (P-complete) if S is a relation computable by a
logspace (polynomial time) combination machine, s is a polynomial, and for all (R, r),
where R is computable by a logspace (polynomial time) combination machine and r is a
polynomial,

(R,N=*(=")(S,9).
It is not difficult to show that if (S, s) is #-complete (P-complete), then

{x13yly|=s(x])AS(x, y)} is complete in N/L (¥P) according to
the more usual definitions.

Let SAT(x, y) be “x is a conjunctive normal form Boolean formula and y is an
assignment of true or false to the variables of x making x true” [3]. SAT is clearly
computable by a polynomial time combination machine. Let s(n)=n.

ProOPOSITION 2. (SAT, 5) is P-complete.

Proof. Let R be a relation computable by a polynomial time combination machine
M and let r be a polynomial. We will construct a nondeterministic Turing machine M’
from M and r as follows:

M’ on input x simulates M on inputs of the form (x, y) by guessing bits of y

(including guessing when the end of y has been reached) when M needs them. M’

also keeps a counter and if M tries to read more than r(|x|) bits of y, then M’ will

reject the input x for this series of guesses. If M rejects (x, y), then M' will also
reject x on the corresponding computation path. If M accepts then M’ will
continue to guess bits of y, and it accepts when it guesses that the end has been
reached; again if it tries to exceed r(|x|) total bits of y then it rejects.
We also require that every guess made by M’ be actually “written down” when made (at
least temporarily) so that distinct values of y satisfying R (x, y) and |y| = r(|x|) will cause
M’ to follow distinct computation paths. Clearly there is a polynomial g such that M’ on
any input x and any computation path, halts in at most q(|x|) steps; by standard
techniques, we can actually assume that any computation of M’ that accepts x halts in
exactly q(|x|) steps.

Now M’ is coded into (SAT, s) as in Simon [7]. In order to show (R, r)= (SAT, s)
we obtain the required mappings as follows:

1. f(x)is the Boolean formula obtained by coding the computations of M’ on the

input x;
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2. g(x, y)isanything we like if |y| > r(Jx]); otherwise, let M’ operate on input x and
guess precisely the input y when simulating the machine M; then let g(x, y) be
the Boolean assignment to the variables of the formula f(x) which describes this
computation.

We may now assert that these functions have the required properties. Properties 1 and 2
of the definition of =7 are clear. For 3, we must show that

[R(x, y)Alyl=r(x])] implies [S(f(x), g(x, yDAlg(x, ) =s(f(x)DI.

But this should be clear from the construction of M, f(x) and g(x, y). To see 4, suppose
that R(x, y1), R(x, y2), [y1| = r(x|), |yl = r(x]), and g(x, y1) = g(x, y,) are all true. Since
M’ writes down all its guesses, it must be the case that y; = y,.

Finally we will show property 5. Suppose that S(f(x), z) and |z| = s(|f(x)]) are
true. Since z encodes the guesses of M', there must be an input y (since M" only guesses
the second input) such that R (x, y) with |y| = r(|x|) and by construction g(x, y) = z. Thus
g is onto, and hence (SAT, s) is P-complete. 0

We could, of course, extend Proposition 2 to a collection of other polynomial-
computable relations. Rather than pursuing such results, we turn our attention to
relations computable by logspace combination machines. Let GAP (x, y) be “x encodes
an acyclic directed graph (Savitch [6]) with the property that the total order of nodes
induced by the node numbering is a topological ordering of the partial ordering induced
by the edge directions, and y encodes a directed path from start to finish.”” Again let
s(n)=n. Clearly, GAP is computable by a logspace combination machine.

ProPOSITION 3. (GAP, s) is £-complete.

Proof. Since this is almost identical to the proof of Proposition 2 we will only sketch
it. Let R be a relation computable by a logspace combination machine M, and let r be a
polynomial. Define M’ as follows:

M’ on input x simulates M on inputs of the form (x, y) by guessing bits of y when M

needs them. (Note since M is 1-way on this input M’ does not have to remember all

of y). M' then operates just as in Proposition 2.

Since guesses need only be written down temporarily, there is no difficulty with the
space bound. Clearly M’ will be a nondeterministic logspace Turing machine which we
can assume halts for any computation in exactly q(|x|) steps, for some polynomial g.

M’ is encoded into GAP as in [6]. Then f and g are obtained as follows:

1) f(x) is the graph obtained by encoding of M’ on x.

2) g(x, y) is anything we like if |y|>r(|x|). Otherwise, let M’ on input x with

guesses y yield the path g(x, y) through the graph f(x).
Then (R, r)=% (SAT, s) via this f and g. A key again is that the computation of M’
encodes the actual y it guesses so that g(x, y) will be 1-1. 0

We note that Proposition 3 is also extendible to a variety of other logspace-

computable relations.

3. Size of solution sets for relations. We consider #-complete (?-complete) (R, r).
We wish to give a complexity classification for

(R, r)i ={x|3 exactly k values of y, |y| = r(Ix)AR(x, y)}

for various values of k. We will first examine specific problems and then we will use the
results of §2 to obtain generalizations. In the following, we let =%, =% =% and =%
M

= 4 =

M g T
represent the reducibilities used by Karp [3], Jones and Laaser [2], Cook [1] and Ladner
and Lynch [4], respectively. For convenience, we let SAT1 (x, y) be “x is an arbitrary
form Boolean formula and y is an assignment of true or false to the variables of x
making x true.” Let s(n)=n as before. Then it is clear that (SAT1, s) is ?-complete.
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PROPOSITION 4. For any fixed k =1,
(a) (GAP, 5), =7 (GAP, s),,
M

and
(b) (SATI, s). =7 (SATTL, s),.
M

Proof. (a) We first show
(GAP, ). =* (GAP, s);.
M
Assume k =2. If x is not an acyclic directed graph satisfying the given consistency

condition, then let f(x)=x. Otherwise, let £: N*x{0, 1}*"! (where N is the set of
natural numbers) be a natural 1-1 (2k — 1)-tupling function with the property that

k k
[‘/_\1 (i =yi)a ,\_/1 (x: < Yi)]
implies  £(x1, "+, XK, a1, 5 Q1)< (Y1, ", Yo b1, 0 0, ber).

The start node of f(x) is
/‘ (ns"",ns»oy" "O),
N —— \___w_/

k k-1
where ng is the (number of the) start node of x. The goal node of f(x) is

ﬁ(nGa“.9nG919“‘,l)’
k k—1

where ng is the (number of the) goal node of x. The edges of graph f(x) will be defined
by tupling together edges of x as follows:

(A(x1, X, an, -, ak-1), £V, Vi b1, -+ *, bi-1))

will be an edge of f(x) exactly if:
1) (X1, , Xk, a1, , ax-1)# (MG, * ", A, 1, -+, 1), and
2) foralli,1sisk-1,
(a) either (x;, y;) is an edge of x, or x; = y; = ng, and
(b) one of (b1)-(b3) holds:
(bl) a; = 0 and Xi = Xi+1 # ng and b,‘ =( and Yi=Vi+1 # ng,
(b2) a;=0and x; =x;+1 #hg and b; =1 and y; < yi4q,
(b3) a;=1and b;=1.

The reader may verify that f(x) is an acyclic directed graph satisfying the given
consistency condition, and that f(x) is computable from x in logspace. Intuitively, a
single path through f(x) corresponds to parallel simulation of k distinct paths through x,
where a flag is changed from O to 1 to indicate that two ‘“adjacent” paths have just been
discovered to diverge with the path at the left preceding the path at the right
lexicographically. Padding is used for shorter paths in x. With this intuition, the reader
should be able to verify that x has exactly k solutions iff f(x) has exactly 1 solution.

We now must show (GAP, s); =7 (GAP, s).. But this is straightforward by a

M

construction which adds k£ —1 disjoint “dummy paths” to a graph of the appropriate
type. O
(b) We first show

(SAT1, s) =7 (SAT1, s);.
M
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If x is not a Boolean formula, define f(x)=x. Otherwise, assume x is of the form

a(xy, -, x,). Let f(x) be the formula obtained by selecting new disjoint sets of
variables {xi1, - - - , Xm}+=1 and expanding into the appropriate form the expression:
[a(xir, x1)A@ (21, + X2\ - Na(Xr, -+, Xun)
AEiix s X1, <x21¥22°+* X20 <+ <XpaXez ' Xin)].

The last line of inequalities is intended to indicate lexicographic ordering of the given
strings. f is computable in polynomial time, and x has exactly k solutions iff f(x) has
exactly 1 solution.

Next we show

(SAT1, s); =7 (SAT1, s ).
M

If k =1 there is nothing to prove, so assume k = 2. If x is not a Boolean formula, define

f(x)=x. Otherwise, assume x is of the form a(xy, - - -, x,,). Let f(x) be the formula
k—1 k—1 n+i n+k—1
[a(x1,~~-,x,,)/\ /\x,,+1]v vV [(/\ x,~>/\( A Y,)]
i=1 i=1 ji=1 j=n+i+1

f essentially adds £ — 1 dummy solutions to x, and so x has exactly 1 solution iff f(x) has
exactly k solutions. [

We now note that a result similar to Proposition 4 must hold for all complete (R, r).
That is, addition of dummy solutions and collapsing of several solutions to one are
constructions which work for all complete problems. In fact, all such problems must be
equivalent to each other:

PROPOSITION 5. For any fixed k =1,

@) if (R, r)is £-complete, then

(R, ) =* (GAP, s)1,
M

and
(b) if (R, r)is P-complete, then
(Ra r)k =7 (SATl, s)l-
M

Proof. By Proposition 4 and the fact that our reducibilities =% and =7 preserve
cardinality of solution sets (as noted immediately prior to Proposition 1). 0

Now that we know that all size problems lie in a common complexity class, we
would like to be able to say more about the location of this class. The only such
information we have so far arises as a result of the following proposition. Here, let G(S)
be N¥-complete (VP -complete) in the usual sense.

ProprosITION 6. (a) If

G=*A=7G,

21
S A

then A e NL iff N& is closed under complement, and A € £ iff £ = NE, and
(b) If

§=A=%s,
M s

then A e NP iff NP is closed under complement, and A € P iff P = NP.
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Proof. The arguments are all standard Turing machine constructions, of the type
found in [2] or [4], for example. 0

Finally, we can conclude:

PrOPOSITION 7. For any fixed k =1,

@) if (R, r)isF-complete, then (R, r)i e NLIff N &L is closed under complement, and
R, rweLiff £=NZ, and

(b) if (R, r)is P-complete, then (R, r) € NP Iff NP is closed under complement, and
R, ePiff P=NP.

Proof. (a) It suffices to show
G =7 (GAP, s)1 =G,
M

where G ={x|3y|y|=s(x|) and GAP (x, y)}.
The first reduction follows by adding a single ‘““dummy path” to a graph.
To see the second reduction, note that (GAP, s), = A N B, where

A ={x|3 at least k values of y, |y| = s(x])AGAP (x, y)},
B ={x|3 atleast k + 1 values of y, |y| =s(x)AGAP (x, y)}.

Clearly A, B are both in /%, so that
A=YG and B=*G.
M M

Then a Turing machine with a G-oracle may easily be constructed to decide member-
ship in (GAP, s);.
(b) It suffices to show

g (SATL, 5),=

To see the first reduction, we use a special case of construction for Proposition 4(b): if x
is not a Boolean formula, define f(x) = x. Otherwise, if x is the form a(xi, - - -, x,,) let
f(x) be the formula [a(x1, -+, X,)AXnr1] V[X1A* * * A Xp A Xu21]. X has no solutions iff
f(x) has exactly one solution.

The second reduction follows from the same argument as in (a). 0

Of course, the given complexity classification is still very incomplete; further work
remains to be done. For example, is (SAT, s); in /P?

We would expect that there are other interesting properties of solution sets which
are preserved by strong reducibilities such as ours. Finding the appropriate strength
reducibilities needed to preserve constructions such as those used for approximation, or
for finding a particular solution when existence is known, seems to be an interesting area
for further study.
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