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DERIVATION COMPLEXITYIN CONTEXT-FREEGRAMMARFORMS*

SEYMOUR GINSBURG AND NANCY LYNCH"

Abstract. Let F be an arbitrary context-free grammar form and (F) the family of grammars
defined by F. For each grammar G in d(F), the derivation complexity function 6, on the language of
G, is defined for each word x as the number of steps in a minimal G-derivation of x. It is shown that
derivations may always be speeded up by any constant factor n, in the sense that for each positive
integer n, an equivalent grammar G’ in (F) can be found so that ,(x)<-_lxl/n for all large words
x, Ix denoting the length of x.
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Introduction. In [2] the notion of a (context-free) grammar form was intro-
duced, to model the situation where all grammars structurally close to a master
grammar are being considered. The research on grammar forms to date [2], [3],
[5] has been concerned with grammatical, structural, and language-theoretic
problems. The present paper initiates the study of complexity-theoretic questions.
Specifically, the derivation complexity function G, defined to be the minimal
number of steps in a derivation of x, is examined with respect to all grammars
defined by a grammar form F. It is trivial that is at least linear and almost trivial
that is, in fact, linear. Our main result asserts that derivations may be speeded
up by any constant factor n, in the sense that for each positive integer n, an
equivalent grammar G’ defined by F can be found so that ,(x)<-_lxl/n for all
large words x, Ix denoting the length of x.

The basic question underlying this work is whether among the different
grammar forms yielding the same family of languages, there are some which are
more efficient than others. The results of this paper show that, if length of
derivation is the only criterion, there is no difference among grammar forms. As
will be seen, the cost of the speedup is a large increase in the size (e.g., number of
productions) of the grammars used. It remains to study the resulting trade-offs.

The notion of derivation complexity was originally defined by Gladkii [6] and
has been extensively studied by Book 1] for arbitrary phrase-structure grammars.
Some of the results in [ 1] have a speedup flavor similar to ours, but the grammars
in [1] accomplishing the speedup have structure very different from those of the
original grammars. By carrying out our constructions within the framework of
grammar forms, we preserve structure while speeding up derivations.

The paper is divided into three sections and an Appendix. Section 1 reviews
grammar form concepts, defines the derivation complexity function, and deter-
mines a lower bound for it. Section 2 is concerned with proving Proposition 2.4, a
special case of the main theorem. The main result itself, Theorem 3.2, is
established in 3. The proof involves first showing (Lemma 3.1) that the original
grammar form may be assumed to have certain additional properties. An induc-
tion argument on the number of variables in the grammar form is then presented,
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124 SEYMOUR GINSBURG AND NANCY LYNCH

with the case for one variable being exactly the situation handled in 2. The
Appendix is devoted to proving a technical combinatorial lemma, needed in 2 to
verify the main theorem for each grammar form defining the family of all
context-free languages.

1. Preliminaries. In this section we first review the principal ideas relating to
context-free grammar forms. Then we introduce the formalism for treating
derivation complexity in grammar forms.

DZFINIaION. A (context-free) grammar form is a 6-tuple F=
(V, , o//., oW, , r), where

(i) V is an infinite set of abstract symbols,
(ii) Z is an infinite subset of V such that V-Z is infinite, and
(iii) Gv= (o//., 50, , r), called the form grammar (of F) is a context-free

grammar with 0
_
Z and (F- 5e) V- Z).

The reader is referred to [2] for motivation and further details about
grammar forms.

.Throughout, V and are assumed to be fixed infinite sets satisfying condi-
tions (i) and (ii) above. All context-free grammar forms considered here are with
respect to this V and Z. Also, the adjective "context-free" is usually omitted from
the expression "context-free grammar form."

The purpose of a grammar form is to specify a family f grammars, each
"structurally close" to the form grammar. This is accomplished by the notion of:

DEFINITION. An interpretation of a grammar form F (V, 5;, F, if’, , tr) is a
5-tuple I (/z, VI, E, PI, S), where

1. /x is a substitution on * such that/x(a) is a finite subset of Z*,/x(c) is a
finite subset of V-Z for each sc in o//._ if,, and/x(sc) f)/x(r/) for each : and
sc r/, in

2. Pt is a subset of/z() t3 =i./x (Tr), where/z(a -/3) {u v/u in/z(a),
v in/z(fl)};

3. SI is in/z(tr); and
4. EI(VI) contains the set of all symbols in Z(V) which occur in PI (together

with SI).
G (Vz, , Pz, Sz) is called the grammar of I.

An interpretation is usually exhibited by indicating Sz, Pt, and (implicitly or
explicitly)/x. The sets V and Et are ordinarily not stated explicitly.

A grammar form determines a family of grammars and a family of languages
as follows:

DEFINITION. For each grammar form F, (F) {Gx/I an interpretation of F}
is called the family of grammars of F and (F)={L(Gt)IGI in (F)} the
grammatical family of F.

In this paper we are interested in studying derivation complexity in a
grammar form, i.e., the derivation complexity of the grammars in (F). To do this
we consider the following:

We assume the reader is familiar with the basic notions pertaining to context-free grammars.
Here o//. is the total alphabet, 6 is the terminal alphabet, is the set of productions, and tr is the start
variable.
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CONTEXT-FREE GRAMMAR FORMS 125

Notation. For every context-free grammar G (V1, El, P, S) let a be the
function on L(G) in which a(x) is the minimum number of steps among all
G-derivations of x,2 for each x in L (G).

Thus is the minimum derivation function, in the sense that a(x) is the
minimum number of steps necessary to derive x.

Notation. For every context-free grammar G let 4a=min{a(x)[x in
L(G), x e} if G is not vacuous,3 and b otherwise.

Thus b is the fewest number of steps needed to derive at least one non-e
word in L(G).

The restriction in our definition of b to non-e words is needed because of
the construction used in Lemma 2.1 to make finite patches on grammars.

From Lemma 2.1 of [2] we immediately get:
LEMMA 1.1. For each grammar form F and each grammar G in (F),

Using the above lemma we now obtain a lower bound for .
PROPOSITION 1..2. LetFbe a grammarform and G in f(F). Then there exists a

positive integer n so that (x) >= max {b, Ixl/n} for4 all x e in L(G).
Proof. Let n be the largest number of terminal symbols on the right side of

any production of G. Then for each x e in L(G), at least Ixl/n steps are needed
to derive x and

(x) -> b, by definition,

-> b, byLemma 1.1.

Hence the result.
Note that the right-hand expression in the conclusion of Proposition 1.2

decreases as n increases. The question arises whether the lower bound on the
right-hand side is attainable as n gets larger.

DEFINITION. A grammar form F is minimal if for each L in (F) and each
positive integer n, there exists a grammar G in (F) such that L(G)= L and
(x)-<max {bc, Ixl/n} for all x in L.

The purpose of the present paper is to prove that every grammar form is
minimal. In other words, for each grammar form F and each language L in ?(F) a
grammar G in (F) can be found which speeds up the derivation as much as
desired. Thus, if derivation complexity is the only criterion being considered,
there is no reason to select one grammar form instead of another.

2. Minimal forms for specific grammatical tamilies. In this section we show
that all grammar forms defining the finite languages, the regular sets, the linear
languages, and the context-free languages are minimal. Using this result we then
prove in the next section that all grammar forms are minimal.

To establish the result about all grammar forms for the above four grammati-
cal families we need two lemmas. The first states that if a grammar form F has an

2By a G-derivation of x, with n steps, is meant a derivation S w0 :ff w Wn X.
G G (3

A grammar G is said to be vacuous if L(G)= or L(G)= {e}. A grammar form F is said to be
vacuous if GF is vacuous.

4 For each word x, Ixl denotes its length.

D
ow

nl
oa

de
d 

04
/0

8/
14

 to
 1

28
.3

0.
51

.5
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



126 SEYMOUR GINSBURG AND NANCY LYNCH

interpretation I which derives all long words x in L(Gx) in at most [xl/n steps, then
F has another interpretation defining L(Gx) which derives all possible words x in
L(G) in at most Ixl/n steps. In other words, a "finite patch" may be made for
short words.

LEMMA 2.1. Let F be a nonvacuous form and n a positive integer. Suppose
there exists a positive integer k and a grammar G in c(F) such that (x)<-_
max {k, Ixl/n} for all x in L(G). Then there exists a grammar G’ in f(F) such that
L(G’) L(G) and O,(x) _-<max {b, [xl/n} for all x in L(G’).

Proof. The argument consists of adding to G productions that generate, in
46, steps, the finite number of words x in L(G) for which Ixl/n < k.

Since F (V, , , 6e, , tr) is not vacuous, there is a b,-step derivation

(1) o’=zo =:::" z4,o,=z
G G

of a non-e word z in L(GF). For each i, 1 _-<i _-< b, let

(2) fli-* wi

be the production used in zi-1 zi. Since z e, there exists some j such that zj
GF

contains a symbol of 6e, say wj wilaiwi2, where ai is in 5 and Wjl, wi2 are in //*.
Note that for every and every occurrence of a variable on the right side of the ith
production in (2), there is a unique integer such that fl w is the production
applied to that variable in the derivation (1).

Now let G=(VI, Z1, P1, S) and x be an arbitrary word in L(G), with

Ix [/n < k. For each i, 2 _<- -<_ b, let Ai,x be a new variable (in V-). LetA1,x S.
For each x, consider the set of new productions

(3) {A,x - Vi,xll <-- -< ch, ]} {Ai, - VjlxXl)j2x},

where each Vx, vial, Vi2x is obtained from the corresponding word w, wja, wi2 by
deleting all symbols in 6e and replacing each variable by the appropriate variable

A,x. Clearly the rules in (3) derive just the word x and no production A,x - V,x can
be applied to any variable Ai’,y unless i’ 1.

Let G’= (V2, 1, P2, S), where

V2 V1 -J {A,x Ix in L(G), Ix___l < k, 2 -< _<- b6,}.
n

Obviously G’ is in c(F), L(G’) L(G), and G’ has a bF-step derivation for all x in
L(G) L(G’). Thus G’ satisfies the conclusion of the lemma.

Remark. An alternative formulation of Lemma 2.1 is the following" Let Fbe
a nonvacuous form and n a positive integer. Suppose there exists a positive integer
r such that (x) _-< Ix I/n for all x in L(G) having Ix >- r. Then there exists a
grammar G’ in C(F) so that L(G’) L(G) and ,(x) -<max {b, Ixl/n} for all x
in L(G’).

COROLLARY 2.2. LetF (V, , , , , tr) and F’ V, , r,, ,, ,, tr) be
equivalent grammar ]:orms,5 with ’. IfF is minimal, then so is F’.

Grammar forms F and F’ are said to be equivalent if (F) (F’).
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CONTEXT=FREE GRAMMAR FORMS 127

The second lemma states that minimal grammar forms are not affected by
either adding or removing "redundant" productions.

LEMMA 2.3. Let F be a nonvacuous grammarform and w a derivation,
GF

with a variable. LetF’ be the grammarform obtained by adding toFtheproduction
w. Then F is minimal if and only if F’ is minimal.
Proof. Suppose F is minimal. By Proposition 2.1 of [2], w(F’) (F). Hence

F’ is minimal by Corollary 2.2.
Now assume that F’ is minimal. Let L be in Lt’(F) (F’) and n be a positive

k
integer. Since /3 w, /3 w for6 some nonnegative integer k. Suppose

k ->_ 1. Then there exists G’ (V1, Za, P’, $) in 3(F’) such that L (G’) L and
,(x)<=max{ck,,Ixl/(kn)} for all x in L. Also, there exists a sequence

k
7ra," , 7rk Of productions in/7 which realize/3 w. Let G (Vz, Za, P, $) in
(F) be obtained from G’ as follows. Each production A y in G’ which comes
from the production/3 w in F’ is replaced by a sequence of k productions,

corresponding to 7ra, , rk, which realizes A y. As in the proof of Lemma
2.1, new intermediate variables are introduced in the sequence in such a way that

the new sequence can only derive A y. Let V2 be Va together with all the new
variables introduced. Clearly L(G)=L(G’). Since every production of G’
requires at most k productions of G to simulate it, (x) _-<max {k4, klxl/(kn)}
for all x in L. By Lemma 2.1, there exists G in (F) such that L(G)= L and
’/d (x)_--<max {b Ixl/n} for all x in L.

Suppose k =0. Then there exists G’=(V1, Ea, P’, S) in (F’) such that
L(G’) L and ,I,(x) _-< max {b,, [x l/n} for all x in L. Let G (Vz, El, P, S),
where

P=(P’-{A-B in P’[A and B in /z(fl)})t_J{A-ylA in /x(fl), y in
V*-/z(fl), there exist l_-> 1 and A1,’", A in /z(fl) such that
A -A 1, Ai - Ai+I, AI -- y, 1 _--< _--< 1, are in P’}.

Clearly G is in (F) and L(G) L. Since each derivation ;’ in G’ of a word x in L
has an obvious corresponding derivation ; in G of x, with at most the same
number of steps as in ;’, ,I(x) =< max {b ,,, [x [/n} for each x in L. By Lemma 2.1,
there exists in (F) such that L() L and d(x) -<max {bo, Ix[In} for all x
in L.

Thus, for any value of k, there exists G in (F) so that L(G)= L and
d(x) _-<max {b, Ix[/n} for all x in L. Hence F is minimal.
We are now ready for the main result of the section.
PROPOSITION 2.4. In each of the following cases, F (V, E, V, 6e, , tr) is

minimal:
(a) (F) is the family of all finite sets.
(b) (F) is the family of all regular sets.
(c) (F) is the family of all linear languages.
(d) (F) is the family of all context-free languages.

k6 By u :ff v is meant that there exist ul, , Uk- such that Uo u
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128 SEYMOUR GINSBURG AND NANCY LYNCH

Proof. (a) Since ’(F) is the family of all finite sets, by Theorem 2.1 of [2]
there is a word w in7 6e/ such that o- w. Let F’ be the grammar form obtained

fromFby adding the production cr - w. By Lemma 2.3 it suffices to show that F’ is
minimal.

Let L ={Xl,’", Xk} be any finite set and let n be an arbitrary positive
integer. If k=0 there is nothing to prove. Suppose k->l. Let G
({S} t_J El, El, P, S) be the grammar where Z1 is the set of all symbols appearing in
any of the xi, 1 <- <-_ k, and P {S- xill _-< -<_ k}. Obviously G is in (F’),
L(G) L, and (x) 1 _-<max {bF,, Ixl/n} for all x in L. Thus F’ is minimal.

(b) Since (F) is the class of all regular sets, L(GF) is an infinite set by
Theorem 2.1 of [2]. By [9], there exist xl, x, x3, x4, x5 in 6e* and fl in F-5 such

that x is in 6/, x3x4 is in 6e/, r ==:>, xxe, fl x3/3x4, and/3 xs. By
Lemma 2.3, there is no loss of generality in assuming that r - XlflXe, fl - x3flx4,
and fl -x are in . By symmetry, there is no loss in assuming x3 e.

Let L be any regular set. Then L L(G) for some right-linear grammar
G (V1, EI, P, S) in which A wB in P, A and B variables, implies w is in
Let n be an arbitrary positive integer. Let S’ be a new variable,8

P. {S’ - S} 1.3 {A wBIA, B in Wl --1, A
n+l

wB}

n+l

tA {n - win in V1-1, w in El*, A :::::ff w},

and G’= ({S’} IA V1, 1, e2, St). Clearly L(G’) L(G) L. Also G’ is in (F).
[For one can construct an interpretation (/x, G’) of F for which S’ S is in
tz(tr XlX2), A - wB is in/z(/3 - x3{x4) for every production A - wB, A and B
variables, in P2, and A w is in/z(/3 xs) for every production A w, w in El*, in
P2.] Consider any word x in L. Obviously there exists a derivation in G’ of x so
that except, perhaps, for the first and last productions, each production deposits at
least n + 1 terminals. Thus ,(x) _-< 2 + Ixl/(n / 1). For x sufficiently large,
2 / Ixl/(n / 1)< Ixl/n. Hence, o,(x)-< Ixl/n for all large x. By Lemma 2.1, F is
minimal.

(c) Since (F) is the family of all linear languages, by Theorem 2.4 of [2]
there exist xl, x2, x3, x4, x5 in * and/ in V-such that x3, x4, x5 are in 6e+ and

cr XlX2, x3x4, and/3 xs. By Lemma 2.3, we may assume that

O" --)’ XlX2, -’-> X3X4, and/3 x5 are in .
Now let L be any linear language. Then L L(G) for some linear grammar

G (V1, ,1, P, S) such that A uBv, A andB in V-, implies uv in. Let n be

7 For each set E of words, E U Ei.i--i
_-<k

By u v is meant that there exists a derivation of v from u in at most k (possibly 0) steps.
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CONTEXT-FREE GRAMMAR FORMS 129

an arbitrary positive integer. Let S’ be a new variable,

n+l

P2 {S’ S} t.J {A uBvIA, B in VI -E1, A ::::z:z), uBv}
G

n+l

t.J{A -> wlA in VI-I, w in E*, A:::::ff w},

and G’ ({S’} LJ V1, El, P2, S’). The remainder of the argument is as in part (b).
(d) As often happens in pr.oofs about grammar forms, the case where (F) is

the family of all context-free languages is proved very differently from the other
cases, although the statement of the result is similar. Here we cannot simply
compose productions as in (b) and (c), since the resulting productions would not
necessarily be in the required form. Instead, we introduce productions where
possible which simulate within the required form the result of composing sequ-
ences of productions. We then use a combinatorial lemma to show that the
simulating productions are sufficient for the task at hand.

Since (F) is the family of all context-free languages, by Theorem 2.2 of [2]

there exist x 1, x2, x3, x4, x5 in 6e*, x6 in 9+, and/3 in -9o such that tr x lflX2,

fl _.. x3flx4flxs, and fl x6. By Lemma 2.3, we may assume that tr--> xlflx2,

fl -> XaflX4flxs, and fl -> x6 are in . Intuitively this means that it suffices to prove
the results for GF ({tr, a};, {a}, {or -> trtr, tr --> a}, tr).

Now let L be any context-free language. Then there exists a grammar
G (VI, El, P1, S) such that L L(G) and each production of P1 is of the type
A -> BC or A --> w, where A, B, C are variables, w is in El*, neither B nor C is S,
and A S if w e. (Thus S never appears on the right side of any production and
S is the only variable which derives e.) Intuitively, we shall construct a grammar
G’ as follows. We consider a derivation of a word w in G, represented by a
derivation tree. We put into G’ productions which simulate the effects of
G-productions used near the ends of branches. (See part 4 below.) Thus if the
derivation tree of w is very wide, then these productions yield the needed
speed-up. On the other hand, the derivation tree of w may be very narrow, with
very little internal branching. In this case, the new productions do not speed up the
derivation sufficiently. To obtain the speed-up here, we put into G’ productions
which "condense" long internal paths having little branching. (See part 6 below.)

Proceeding more formally, note that

1. if A w, where A is in VI-Z and w is in EI(VI-E1), then
G

s _-< 21w 2, and

2. if A w, where A is in V1-1 and w is in , then s -<_ 21w [- 1.

Let n be an arbitrary positive integer. Let G’ (V2, El, P2, S’), where S’ is a
new variable, V2 consists of the symbols of V1 together with all variables in P2, and
P2 is defined as follows"

3. S’- S is in P2.D
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130 SEYMOUR GINSBURG AND NANCY LYNCH

=<l12n

4. A - w is in Pz if A ===z) w, where A is in V1- ;1 and w. is in Z*.
5. A BC if A, B, C are in V1- Z1 and A BC is in Pa.
6. For each derivation 6" A :ff :ff vBw of at most 112n steps, with A, B

in V1-1 and v, w in El*, let D, En, and Hn be new variables. Let A DnEn,
E BHn, D v, and H w be in P2.

The indexing of the variables in part 6 is done, as in the proof of Lemma 2.1,
to keep the new variables distinct, so that each new production can be used only as
part of the simulation of the derivation of G for what it was intended.

From parts 2 and 4, we get

7. a - w is in P2 if a :==> w, with a in V El, w in Ex*, and Iw[ _-< 56n.

It is easily seen that G’ is in (F). Since P P2 and new productions (except
S’ - $) in P2 are only used to simulate productions in P1, it follows that L(G’)-
L(G) L. To complete the argument, it remains to show that G’ has sufficiently
short derivations of all words in L.

Let x be an arbitrary word in L. For each G’-derivation of x, there is
associated in the obvious way [4] a G’-derivation tree9 T(x). Let (x) be the tree
obtained from T(x) by deleting the root, all leaf nodes, and all edges incident to
these nodes. Note that 5?(x) is a binary tree.1 Consider the set of all such
derivation trees T(x) for x. Let To(X) be one such tree with the fewest number of
nodes, and let To(x) be a tree giving rise to To(x). Then To(x) has the following
three properties:

8. No two consecutivela internal nodes of o(X) have both their node names
in V2- VI.

9. Each internal node of To(x) with at least one daughter an internal node
generates a subtree of To(x) whose terminal word is of length _-> 56n.

10. Let nx, n6 be six consecutive internal nodes of 5P0(x) and for each i,
2-<_ i-<6, let m be the other daughter of n_a. Suppose that each m is a leaf in
To(x) and Bi wi in To(x), Bi the node name of mi. Then [w2" w61--> 56n.

For consider part 8. Let n and n2 be consecutive internal nodes of To(X). Let
A and B be the node names of n and n2 respectively. Suppose A is in Vz- V.
Then by part 6, there is a 6 such that A isE and B is Hn. By construction, B Hn
cannot be an internal node of To(x).

Consider part 9. Suppose it is false. Then there exist consecutive internal
nodes n and n2 of To(x) such that n (thus n2) generates a subtree of To(x) whose
terminal word w (w2) is of length smaller than 56n. Let A and B be the node
names of na and n2 respectively. By part 8, one of the variables, say A, is in V.,
ThenA :z w. By part 7 A w is in P2. Replacing the subtree in To(x) realizing

9 Trees are viewed with the root node at the top. A node leading downward to another node is
called an internal node. Otherwise, the node is called a leaf. If nodes n and n2 are jointed by an edge,
with n2 below na, then n2 is called a daughter of nl, and na the father of n2.

ao A tree is called binary if each internal node has exactly two daughters.
1 Nodes nl,’" ", nr are consecutive if each ni+ is a daughter of ni, i_->2.
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CONTEXT-FREE GRAMMAR FORMS 131

A wl by the subtree representing A - w gives rise to a G’-derivation tree

Tl(X), deriving x, with the property that Tl(X) has fewer nodes than To(x). (The
two daughter nodes of n in To(x) are no longer present.) This is a contradiction. A
similar contradiction arises if B is in V1. Hence part 9 holds.

Consider part 10. Suppose it is false. Let Ai, 1 _-< -< 6, and Bj, 2 _-< ] -< 6, be the
node names of ni and mj, respectively. By part 8, either A1 or A2, say A2, and
either A5 or A6, say As, is in V1. [An analogous argument holds if any of the other
three possibilities occurs.] Since m3, n3 are daughters of n2; m4, n4 are daughters
of n3; and ms, n5 are daughters of n4, we have as productions in P2, A2- A3B3 or

A2- B3A3, A3 - A4B4 or A3 B4A4, and A4-AsB5 or A4- B5As. Suppose
Az- B3A3, A3 - A4B4, and A4-- BsA5 are the productions in P2 realizing the
above daughter relations. [An analogous argument holds if one of the other
combinations occur.] Thus

A2 B3A3 B3A4B4 B3BsAsB4 , W3wsAsw4

SinceA2andAsarein V1,A2 W3WsAswa.Byassumption, lw2.., w6[<56n.
Thus [w3w5w41 < 56n. By part 1, there exists a derivation
t’A2 --’’" W3wsAsw4, of at most l12n steps. Replacing in To the

subgraph realizing A2 B3A3, B3 w3, A3 ---) AaBa, B4 w4, A4 BsAs, B5- w5
by the graph realizing A2 DE, E -.A5H, D -. W3Ws, H - w4 gives rise to a
G’ derivation tree T(x) for x. Then l(x) has two nodes fewer than 5to(X). This
contradicts the minimality of To(x). Hence part 10 holds.

Using the above symbolism for trees, let r be a positive integer such that ’o(X)
has at least two internal nodes for each x in L, Ix >- r. Clearly r exists. By Lemma
2.1, it suffices to show that ,(x)<-Ixl/n for each word x in L, Ixl>-_r.

Let x be any word in L, with Ix _-> r. Consider the following result, whose
proof is in the Appendix.

LEMMA 2.5. Let Tbe a binary tree with at least two internal nodes and exactly
lea]’ nodes. Suppose there exists a positive integer k and a weight function to which
assigns a nonnegative integer to every leafnode in such a way that thefollowing two
properties hold"

(a) For each internal node no which has at least one daughter an internal node,
-’-m in Q(no) to(m) k, where Q(no) is the set o]’ all lea]’nodes in the subtree generated
by no.

(b) If n 1," n6 are six arbitrary consecutive internal nodes and m2, , m7
7

are leaf nodes such that each mi is a daughter of hi-l, then =2 to(m) >- k.
Then

kl

leaf

In Lemma 2.5, let k 56n, let T= o(X), and for each leaf node rn in 0(x) let
,o(m)- Iwl, where A is the node name of rn and A w is the production in P2
realizing the subtree in To(x) generated by m. By parts 9 and 10, (a) and (b) of
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132 SEYMOUR GINSBURG AND NANCY LYNCH

Lemma 2.5 are satisfied. (There is some redundancy in(b).) By the conclusion of
Lemma 2.5, Em aleaf (.O (m)=> (56n/28)l 2nl, where is the number of leaf nodes
in To(x). Now the number of steps in any derivation realizing To(x) is 1 (for S’ S)
plus the number of internal nodes of To(x) plus I. Since To(x) is a binary tree, it is
easily seen that is 1 plus the number of internal nodes. Hence the number of steps
in any derivation realizing To(x) is 21. But Ix m aleaf to(m). Therefore ,(x)=
21 <-Ixl/n, and the proof of Proposition 2.4 is complete.

3. Minimality of arbitrary grammar forms. In the previous section we
proved that all the grammar forms for some special types of grammatical families
were minimal. In the present section we establish the result for all grammar forms
for all grammatical families.

The argument for the main result is as follows. In 3 of [2] a procedure was
given for converting an arbitrary grammar form into an equivalent, completely
reduced, sequential one. This procedure is exploited here to show that the
transformation cannot convert a nonminimal grammar form into a minimal one. It
is then proved that the resulting grammar form is always minimal.

LEMMA 3.1. For every grammarform F there exists an equivalent, completely
reduced, 12 sequential grammar form 13 F’ such that F is minimal if F’ is.

Proof. If F is vacuous then L(GF) or L(GF) {e}. Thus (F) {} or
(F) {, {e }}. In the former case, let F’ be a form with no productions, and in
the latter let F’ be a grammar form with the single production tr - e. ClearlyF and
F’ are both minimal, and F’ satisfies the conclusion of the lemma.

Suppose that F is not vacuous. For the remainder of this proof, we assume the
reader is familiar with the contents of 3 of [2]. We follow the transformation
procedure given there, noting that each step of the procedure cannot change a
nonminimal grammar form into a minimal one. There are five parts to consider.

(a) By the proof of Lemma 3.1 of [2] a reduced, equivalent grammar form Fa
is obtained from F. Since Fa is constructed by deleting the useless productions of
F, i.e., those productions involved in no derivation of a terminal word, only useless
productions of each G in (F) are deleted. Thus F is minimal if Fa is.

(b) By Lemma 3.2 of [2], an equivalent, reduced, noncyclic grammar form Fb
is obtained from Fa. Assume Fb is minimal. Let F" be the grammar form obtained

by adding to Fb all productions fl - 3’,/3 and 3’ variables, for which/3 . 3". Then

(Fb) (Fa)= (F"). Since each production in Fb is in F", it follows from
Corollary 2.2 that F" is minimal. By repeated use of Lemma 2.3, F is minimal.

(c) By Lemma 3.3 of [2] an equivalent reduced grammar form Fc containing
no production of the kind - r/, : and r/variables, is obtained from Fb. Suppose Fc
is minimal. Repeating the argument in (b) above, with Fc replaced by Fa andF by
Fb, it is easily seen that Fb is minimal.

12 A grammar form F (V, Y_,, OF, 5, , r) is said to be completely reduced if Ge is reduced, there

are no variables a and/3 in F-6such that a /3 is in , and for each variable a in OF- (5U {tr}) there
exist x and y in b*, xy # e, such that a xay is in .

13A context-free grammar (V1, E1, P, S) is sequential if the variables can be ordered S
A 1, , Ar such that if Ai - uAjv is any production in P, then ] -> i. A grammar form F is sequential if

G is sequential.

D
ow

nl
oa

de
d 

04
/0

8/
14

 to
 1

28
.3

0.
51

.5
9.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



CONTEXT-FREE GRAMMAR FORMS 133

(d) By Lemma 3.4 of [2], an equivalent, completely reduced grammar form
Fa is obtained from Ft. Assume.Fa is minimal. If every variable of Fc is partially
self-embedding, then F is minimal by Lemma 2.3. Suppose that F has exactly
k > 0 variables which are not partially self-embedding. The procedure in (13) of
Lemma 3.4 of [2] shows how to obtain from F an equivalent, reduced grammar
form F’ having exactly k- 1 variables which are not partially self-embedding.
This procedure is iterated k times until Fa is obtained. To show that Fc is minimal,
it therefore suffices to prove that F is minimal provided that F’ is minimal.

Assume F’ is minimal. Let L be in (F)=(F’) and n be an arbitrary
positive integer. Let be 1 plus the maximum number of times any single variable
appears on the right of any single production of F. Then there exists a grammar
G’ in (F’) such that L(G’) L and ,(x) _-<max {bF, Ixl/(ln)} for all x in L. By
the method of construction of F’ from F, there exists a grammar G in q3(F) such
that L(G) L and the following holds: For every G’-derivation 8’ of a word x in
L(G’) there is a G-derivation 8 of x in which each step of 8’ is simulated by at most
steps of 8. Then (x)_-<max {1,, [x]/n} for all x in L. The minimality of F

follows from Lemma 2.1.
(e) By Theorem 3.1 of [2], an equivalent, completely reduced, sequential

grammar form F’ is obtained from Fa. Assume F’ is minimal. Let F’e be a grammar
form obtained by adding to Fa one production of the kind/ v3,w, v and w in 6*,
for all variables/3 and 3’, fl 3’, in Fd such that/3 @ v’Tw’ for some v’ and w’ in

6*. By Lemma 2.3, it suffices to show that F’c is minimal.
Let L be in (F’e) (Fd) (F’) and n be an arbitrary positive integer. Let

k be 2 plus the maximum number of variables on the right side of any production
in F’. Then there exists a grammar G’ in (F’) such that L(G) L and ,(x)’_-<
max {bo,, [x[/(kn)}. In an obvious way there exists a grammar G’e in q(F’e) such
that L(G’e)=L(G’) and for each G’-derivation 8’ of a word x in L there
corresponds a G’e-derivation ’e of X in which each step of 8’ is simulated by at most
k steps in 8’e. (Specifically, each production p, corresponding to a production in F’,
may be replaced by one production corresponding to a production in Fd, plus one
production corresponding to a production of the form fl - v’i,w for every variable
in p.) Thus L(G’e) L and (x) _-<max {k., [x[/n} for all x in L. This implies
the minimality of F’e.

Combining (a)-(e), we obtain our result.
TI-IEOREM 3.2. Every grammarform is minimal.
Proof. Clearly each vacuous grammar form is minimal. Consider nonvacuous

grammar forms. By Lemma 3.1, we may restrict our attention to completely
reduced, sequential grammar forms. The proof will be by induction on the number
k of variables in the grammar form.

Suppose F is a completely reduced, sequential grammar form with just one
variable. By Lemma 5.1 of [2], (F) is either the family of finite, regular, linear, or
context-free languages. By Proposition 2.4, F is minimal.

Now assume the theorem is true for all completely reduced, sequential
grammar forms with at most k variables. Let F (V, E, o//., 6, , r) be a com-
pletely reduced, sequential grammar form with k + 1 variables. Thus, the vari-
ables in F can be arranged into a sequence r a0,"’, a so that for each
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134 SEYMOUR GINSBURG AND NANCY LYNCH

production ai uajv in , <_-j. If (F) is the family of context-free languages,
then by Proposition 2.4 we are through. Thus assume (F) is not the family of all
context-free languages. We may assume similarly that F is nontrivia114 (since
otherwise F is either vacuous or generates the family of all finite sets.) By Lemma
2.3 we may assume the following:

1. For each i, 0 _-< _-< k, there exists vi in 5/ such that ai vi is in .,
2. If there exist Wl, w. in (7/’-{r})/ such that r WlO’W2, then there exist

Xl, x:z in * such that r XlO’X2 is in .
3. If there exist w in (7/’-{r})/ such that r wr (r rw) then there

GF
exists x in 6/ such that o- xr (r- rx) is in .

Intuitively, we proceed as follows. Consider the collection of "component"
grammar forms arising from F by treating each variable of F except o-, in turn, as
the start variable. Each such component form has at most k variables and thus, by
induction, is minimal. Given any interpretation grammar G of F, the speed-up is
accomplished by a grammar G’ constructed as follows: Consider the collection of
"components" of G, i.e., the parts of G which correspond to respective compo-
nent forms of F. By the minimality of the component forms, each component of G
may be sped up. The productions accomplishing this are then placed into G’. (See
part 6 below.) In addition, productions which speed up short derivations are also
placed into G’. (See part 4 below.) Similarly, productions which speed up the
portion of G not part of any component of G (i.e., the portion involving variables
corresponding to o-) are placed into G’. (See part 5 below.)

More formally, let F (V, Z, , fie, , a) be the grammar form in which

72i- 6U{cejlci woiw2 for some wa, w2 in *} and i be the set of all

productions in F involving only variables in . Then F/is nontrivial, completely
reduced, sequential, and has at most k variables. For each i, ba, 1 by assump-
tion 1 above.

Let L be in o(F) and n be an arbitrary positive integer. There exists an
interpretation (/z, G) of F such that L(G)= L. Let G- (Va, El, P, S). We shall
modify G to obtain a new grammar G’ obtaining the speedup of L by constant n.
Let A be an arbitrary variable in Vl- (-- [,_J J,(o’)). Then A is in/x(a) for some

->_ 1o Let Gk (v, 5;1, Pk, A), where P P f’l/z () and V is {A} U Z1
together with all the symbols appearing in productions of P. Obviously G. is in
qd(F). By induction, there exists a grammar GA=(VA, E1, PA, A ’) in
(F) such that L(GA) =L(G’A) and a,,(x)-<max{1, Ixl/(2(n +1))}=
max {b,, Ixl/(2(n + 1))} for all x in L(GA). There is no loss of generality in
assuming that A’ A, A does not occur on the right side of any production in PA,
and each symbol in VA- (El LI {A }) is a new symbol in V-Z.

Let s be the number of elements in/z(r) and r the maximum number of
variables (not necessarily distinct) on the right side of any production in . Let
G’ (V, E, P’, S), where V is Z1 U {S} together with all symbols in P’, and P’
consists of P and the following productions:

14 A grammar form F is said to be nontrivial if L(G.) is infinite.
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CONTEXT-FREE GRAMMAR FORMS 135

4. Foir every variable A in V1 1 and w in *, with Iwl--< 2(n + 1)(r + 2) and

A

__
w, let A - w be in P’.

[Part 4 speeds up the G-derivation of short terminal words from variables.]
-<(n+l)s

5. Suppose A, B are in/z(tr) and A .), WlBW:z for some Wl, we in VI. Let
G

B1," Bq be the variables (not necessarily distinct) of G appearing in WlW in

order from left to right, and for each suppose Bi G Ui, where u is in * and

lull _-<2(n + 1)(r + 2). Let ffl and fie be the words obtained by replacing each B by
ui in w and we respectively. Then A - llB:z is in P’.

[Part 5 speeds up G-derivations of the form A =::ff wBw2 ff,’Bff,’:2, A
G G

and B corresponding to tr, in which A :==ff wBw:z does not have too many steps

and each variable of ww has a G-derivation of a short terminal word.]
6. For each A in V- (El /.t (or)) let each production of PA be in P’.
[Part 6 speeds up G-derivations of long words from variables not corres-

ponding to tr.]
It is readily seen that G’ is in (F) and that L(G’)= L. To show that F is

minimal, by Lemma 2.1 it suffices to show that ,(x) <-Ixl/n for all words x in L
such that Ixl/(n + 1)+ 4 + 2r _-< Ixl/n. [For the number of words x in L such tha
Ixl/(n / 1)+4+2r >lxl/n is finite.] Thus consider any word x in L such that
Ixl/(n + 1)+4 + 2r_-< Ixl/n. There exists a minimal G-derivation of x so that
productions (possibly none) of the type A vBw, A, B in /z(tr) and v, w in
(V1 -/x (or))* are applied first; then exactly one production of the type A - v, A in
/z(tr) and v in (V1-/z(tr))*, and finally productions involving only variables in
V (E _J/./, (o-)). Three cases arise. 15

(a) There are (n + 1)s consecutive productions p,..., P(,+)s in 8 with a
variable in/z(r) on both sides such that for each variable A in V-/z(tr) gen-
erated by each of the p, the subword of x generated by A has length at most
2(n / 1)(r + 2). Then by part 5, there is a production r in G’ which simulates the
sequence p,.-., p(,,+) as well as the derivations into subwords of x by every
variable not in/z(tr) produced by each of the p. Since t is minimal, each time a
variable in/z (tr) is repeated, either a terminal symbol or a variable deriving (in 8) a
terminal symbol is produced. Since there are only s distinct variables in/z (tr) and
the production r simulates the effect of all the productions alluded to above, r
deposits at least n + 1 symbols.

(13) Fewer than (n + 1)s consecutive productions as in (ct) occur, followed by
a production p: A - vBw such that A, B are in/z (tr), v, w are in (V1 -/z (tr))*, and
lu[> 2(n + 1)(r + 2) for some subword u of x generated by some variable in vw. As
in (ct), there is a production r of G’ which simulates the sequence of productions
preceding p, plus the derivation of variables not in/z (tr) into subwords of x. Let

15 We implicitly use the fact that since (F) is not the family of all context-free languages, it,
follows from Theorem2.2 of [2] that there are no words u1, u2, u3 in V* such that tr ::=ff u ltru:o’u3.
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136 SEYMOUR GINSBURG AND NANCY LYNCH

B1., , Bq be the occurrences of the variables in vw, in order, and let Xl, , xq
be the corresponding subwords of x which the Bi generate. Note that q-< r. For
each such that Ixil-< 2(n + 1)(r + 2), there is a production B --> x in P’, by part 4.
For each such that [x[>2(n+l)(r+2), there is a sequence of at most
]x]/(2(n + 1)) productions in P’ which converts B into x by part 6. Thus, the
simulation of the sequence of productions, plus p, plus the derivation into
subwords of x of all generated variables not in/z(o-), requires at most 1 (for the
initial sequence of productions)+ 1 (for p)+ r (for expanding all B such that
Ix,[ <-2(n + 1)(r +2)) +YTlx, l/(2(n + )) (for such that Ix, > 2(n + 1)(r + 2)) pro-
ductions of G’, i.e., at most 2+r+Y7=[xl/(2(n+l)) productions. Since
E7=1 Ix, > 2(n + 1)(r + 2), the number of productions is at most E7_=1 [x,I/(n + ).
Since at least Y’-7= [x[ terminals are deposited by these productions, it follows that
at least n + 1 terminal symbols are deposited for each production of G’ used
(although each production may not itself deposit n + 1 terminals.)

(/) Fewer than (n + 1)s consecutive productions as in (a) occur, followed by a
production p: A --> v, where A is in/z (o-) and v is in (V-/z (or))*. As in (13), one
production of G’ simulates the sequence of productions preceding p, plus the
derivation of the variables not in/z (o-) into subwords of x. Let B, , Bq be the
sequence of occurrences of variables, in order, and x,. , xq the corresponding
subwords of x. As in (B), the total number of productions needed to simulate the
initial productions, plus p, plus the derivation of all generated variables into
subwords of x, is at most 2+r+7=11x, I/(2(n+ 1)). If Y7= Ix, l>2(n + 1)(r+2),
then as in case (13), n + 1 terminals are deposited for every production of G’ used.

We now apply (a) and (13) to 8 in the obvious way until (/) arises. The number
of applications of productions in G’ is at most Y7= [xi l/(n + 1), where the x are the
subwords of x derived from the variables not in/z(o-). Suppose that Y’,=I Ix, >
2(n + 1)(r + 2) for the x, arising in (/). Then o,(x) <= Ixl/(n / 1) < [xl/n. Suppose
that qY= [xl-<_ 2(n + 1)(r + 2) for the xi arising in (/). Then

,(x)-< Ix---J--I (from (a)and (/3))
n+l

+ 2 + r - ET= Ixi (for the xi arising in (/))2(n + 1)

_<_ Ixi +2+r+2+r
n+l

_< Ix__JI, by hypothesis on x.
n

Hence the result.
The basic question we are interested in is whether some grammar forms are

"more efficient" than others, either for representing particular languages or for
their entire language families. By our main result, this question has a negative
answer if our measure of complexity is derivation length. (That is, each grammar
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CONTEXT-FREE GRAMMAR FORMS 137

form has the power of expressing each language in its grammatical family as
efficiently as liked.) Of course, derivation length is not the only criterion for
judging the efficiency of a grammar. Other possibilities are "size" measures
(e.g., total number of symbols needed to represent the grammar or number of
productions in the grammar), as studied, for example, in [7], [8]. The reader will
note that the cost of the speedup using our construction is a large increase in the
size of the grammar: if S(n) is the size of the grammar constructed to accomplish
speedup of a language by constant n, then S(n) can be roughly equal to S(1)kn,
where k is a constant depending on the form and language. It remains to study
comparative efficiency of forms with respect to size measures, and to examine
trade-offs between the two types of measures.

Appendix. We now establish Lemma 2.5. Suppose there are at least 1/7 leaf
nodes m with the property that

(A.1) for some leaf m’ m, m and m’ are daughters of the same father.
Then there are at least 1/14 pairs of distinct leaf nodes, the two nodes in each pair
having a common father. Thus there are at least l 14 such fathers, and since T has
at least two internal nodes, //’28 fathers of such fathers. Each such father of a
father is an internal node with at least one daughter an internal node. By (a) of the
hypothesis, the sum of the weights below each such father of a father is at least k.
Thus Em aleaf to(m) > k(U28).

Suppose there are e <//7 leaf nodes m satisfying (A. 1). Call an internal node
both of whose daughters are internal nodes a branch node. Let be the number of
internal nodes and b the number of branch nodes. Since T is a binary tree, it is
readily seen that + 1 and e/2 b + 1. Now remove all branch nodes and their
incident edges from the tree T, obtaining a graph with g connected components,
F1," , Fg. Clearly

g<=2b+ l =e-l<-.
7

Let n be the number of original internal nodes in all the g components. Then

e 13
n i-b l-->--l.

Also observe that each component is one of the following two types:
(A.2) For some r --> 1, the nodes are {hi, mill <=i -< r} U {re’r}, where for each i,

1 <- r, mi is a daughter of hi, and for each i, 1 <- <- r 1, ni+l is a daughter of n.
Also, mr’ is a daughter of n. In addition, n 1, n are internal nodes of Tbut not
branch nodes, and each mi, m’ is a leaf node of T.

(A.3) For some r>=l, the nodes are {ni, mil l <- <= r}, where for each i,
1 =<.i r, m is a daughter of n and for each i, 1 -<i -<r- 1, n+a is a daughter of hi.
In addition, n 1, ", n are internal nodes of T but not branch nodes, and each m
is a leaf node of T.

Define a 6-chain as a 6-tuple (n 1,""", n6) in which each n is an internal,
nonbranch node of T, and nj is a daughter of nj_ for all j-> 2. All 6 nodes of a
6-chain are in some common component since no n is a branch node. For each i,
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1 _-< _--< g, let ai be the number of original internal nodes in Fi. Then there is a set
of 16

>l ai-g[ai/6J=-i=1

1
=(n-5g)

>1/13

=t/28
pairwise disjoint 6-chains (i.e., 6-chains having no elements in common). Since
every internal node not a branch node has a daughter which is a leaf, it follows
from (b) of the hypothesis that the sum of the weights of the leaf nodes which are
daughters of nodes in a given 6-chain is at least k. Since there are at least//28
disjoint 6-chains, the sum of the weights of the leaf nodes in T is at least kl/28,
completing the proof of Lemma 2.5.
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16 For each number t, It] is the largest integer less than or equal to t.
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