
Time Bounds for Real-Time Process Control
in the Presence of Timing Uncertainty*

(SHORT VERSION)

Hagit Attiya and Nancy A. Lynch
Laboratory for Computer Science

MIT
Cambridge, MA 02139

Abstract
A timing-based variant of the mutuai exclusion prob-
lem is considered. In this variant, only an upper-
bound, m, on the time it takes to release the resource
is known, and no explicit signal is sent when the re-
source is released; furthermore, the only mechanism
to measure real time is an inaccurate clock, whose tick
intervals take time between two constants, c1 5 cz .
When control is centralized it is proved that

n cz ([(m + I) /c lJ + 1) + 1
is an exact bound on the worst case response time for
any such algorithm, where n is the number of con-
tenders for the resource and 1 is an upper bound on
process step time. On the other hand, when control
is distributed among processes connected via commu-
nication lines with an upper bound, d , for message
delivery time, it is proved that

n [C Z ([(m + I) /c lJ + 1) + d + cz + 211
is an upper bound. A new technique involving shifting
and shrinking executions is combined with a careful
analysis of the best allocation policy to prove a cor-
responding lower bound of

n * cz (m/c1) + (n - 1)d.

These combinatorial results shed some light on mod-
eling and verification issues related to real-time s y s
tems.

1 Introduction
An important area of computer applications is real-
time process control, in which a computer system in-
teracts with a real-world system in order to guaran-
tee certain desirable real-world behavior. In most in-
teresting cases, the real-world requirements involve

'This work was supported by ONR contract N0014-85-K-
0168, by NSF contract CCR-8611442, and by DARPA contract
N00014-83-K-0125.

timing properties, and so the behavior of the com-
puter system is required to satisfy certain timing con-
straints. In order to be able to guarantee timing con-
straints, the computer system must satisfy some as-
sumptions about time - for example, its various com-
ponents should operate at known speeds.

It is clear that good theoretical work in the area of
real-time systems is necessary. In the past few years,
several researchers have proposed new frameworks for
specifying requirements of such systems, describing
implementations, and proving that the implementa-
tions satisfy the requirements. These frameworks
are based on, among others, finite state machines
([D85]), weakest precondition methods ([H81]), first-
order logic ([JM86, JM87)), temporal logic ([BH81]),
Petri nets ([CR83, LS87, S77]), and process *algebra
([HGR87, KSRGA88, ZLGSS]). Work is still needed
in evaluating and comparing the various models for
their usefulness in reasoning about important prob-
lems in this area and perhaps in developing new mod-
els if these prove to be inadequate.

Work is also needed in developing the complex-
ity theory of such systems; very little work has so
far been done in this area. An example of the kind
of work needed is provided by the theory of asyn-
chronous concurrent systems. That theory contains
many combinatorial results that show what can and
cannot be accomplished by asynchronous systems; for
tasks that can be accomplished, other combinatorial
results determine the inherent costs. In addition to
their individual importance, these results also pro-
vide a testbed for evaluating modeling decisions and
a stimulus for the development of algorithm verifi-
cation techniques. Similar results should be possible
for real-time systems. Some examples of complexity
results that have already been obtained for real-time
systems are the many results on clock synchroniza-
tion, including [DHS86, HMM85, L78, LL84, WL88]
(see [SWL88] for a survey).

In this paper, we embark on a study of com-

268
CH2803-5/89/0000/0268r$01.00 8 1989 IEEE

plexity results for real-time systems. We begin this
study by considering timing-based variations of cer-
tain problems that have previously been studied in
asynchronous concurrent systems. In particular, in
this paper, we study a variant of the mutual exclu-
sion problem. This problem is one of the fundamen-
tal problems in distributed computing; it serves as an
abstraction of a large class of hazard avoidance prob-
lems. We note that this particular problem appears
in the real-time computing literature (cf. [JM87]) as
the "nuclear reactor problem". There, operators push
different buttons to request the motion of different
control rods in the same nuclear reactor. It is un-
desirable to have more than one control rod moving
at the same time, presumably since in that case the
nuclear reaction might be slowed down too much.

More specifically, we consider a system consisting
of some number, n, of identical moving parts (e.g.,
control rods), no two of which are supposed to move
at the same time. An operator associated with each
moving part can request permission for the associ-
ated part to move by pushing a button that sends a
REQUEST signal to the computer system. The sys-
tem responds with GRANT signals; each GRANT
signal gives permission to the designated moving part
to move, but such motion is expected to be finished
no more than a fixed time, m, later. The system
is only supposed to issue a GRANT signal when it
knows that it is safe to move the corresponding mov-
ing part, i.e., at least real time m has elapsed since the
last GRANT signal. We assume, for simplicity, 'that a
REQUEST signal is only issued by a particular oper-
ator if any preceding REQUEST by that operator has
already been satisfied (by a corresponding GRANT
signal). Our goal is to minimize the worst-case time
between a REQUEST signal and the corresponding
G R A N T signal, i.e., the worst-case response time.

The computer system might consist of a single pro-
cess running on a dedicated processor or might be
a distributed system running on separate processors
communicating over a message system. Solving the
problem efficiently requires the computer system to
make accurate estimates of the elapsed time since the
last GRANT signal; the difficulty, however, is that
the computer system only has inaccurate information
about time, as given by inaccurate clock components
within the system and by estimates of the time re-
quired for certain events. Specifically, the only infor-
mation about time that the computer system has is
the following:

1. the knowledge that a moving part will stop mov-
ing within time m after a GRANT signal,

2. the knowledge that the time between successive

ticks of any clock is always in the interval [cl, cz],
for known constants c1 and c2, where 0 < c1 5
c2 I

the knowledge that the time between successive
steps of any process within the computer system
is always in the interval [O , l l , for a known con-
stant 1 , O < I, and

(if the system is distributed) the knowledge that
the time to deliver the oldest message in each
channel is no greater than a known constant
d,O < d.

In the cases we have in mind, we suppose that 1 <<
c1 < c2 << d << m, but we state explicitly any
assumptions that we require about relative sizes of
the various constants.

One way in which our problem differs from the
mutual exclusion problem usually studied in asyn-
chronous systems is that we do not assume that an ex-
plicit signal is conveyed to the computer system when
a moving part stops moving; the only information the
system has about the completion of the critical activ-
ity is based on its estimates of the elapsed time. It
is fairly typical for real-time systems to use time esti-
mates in order to make deductions about real-world
behavior. The results of this paper indicate some of
the costs that result fiom using such estimates.

We obtain the following results. First, we consider
a centralized computer system, consisting of just a
single process with a local clock. For that case, we
show that

is an exad bound on the worst-case response time
for the timing-baed mutual exclusion problem. The
upper bound result arises from a careful analysis of
a simple FIFO queue algorithm, while the matching
lower bound result arises fiom explicitly constructing
and "retiming" executions to obtain a contradiction.

We then consider the distributed case, which is sub-
stantially more complicated. For that case, we obtain
very close (but not exact) bounds: an upper bound
of

and a lower bound of

n c2(m/cl) + (n - l)d .
Assuming that the parameters have the relative sizes
described earlier, e.g., that d is much larger than I,
c1 and c2, the gap between these two bounds is just
slightly more than a single message delay time. The

269

upper bound arises from a simple token-passing al-
gorithm, while the lower bound proof employs a new
technique of shifting some of the events happening at
a process while carefully retiming other events.

The model that we use for proving our results is
the 1/0 automaton model [LT87], which has been ex-
tended recently to include timing [MMT88]. As noted
earlier, many people are working on the development
of other models and frameworks for reasoning about
real-time systems. The most popular way of evaluat-
ing such frameworks involves their application to the
specification and verification of substantial examples
of practical utility. This paper, however, suggests a
complementary approach. Since a framework for real-
time processing should allow proof of combinatorial
upper and lower bound and impossibility results, in
addition to allowing specification and verification of
systems, careful proofs of combinatorial results such
as those in this paper should teach us a good deal
about the appropriateness of a model for real-time
processing.

The rest of this paper is organized as follows. Sec-
tion 2 presents the timed 1/0 automaton model. Sec-
tion 3 contains the general statement of the problem
to be solved. Section 4 contains our results for the
centralized case, Section 5 contains our results for
the distributed case, and Section 6 contains some dis-
cussion and open problems. Many of the proofs are
omitted in this version and can be found in the full
version ([ALSS]).

2 Model and Definitions
2.1 1/0 Automata
An 1/0 automaton consists of the following compo-
nents: a set of actions, classified as output, input and
internal, a set of states, including a distinguished sub-
set called the start states, a set of (state, action, state)
triples called steps, and a partition of the locally con-
trolled (output and internal) actions into equivalence
classes. An action ir is said to be enabled in a state
s' provided that there is a step of the form (s', H , s).
An automaton is required to be input enabled, which
means that every input action must be enabled in ev-
ery state. The partition groups actions together that
are to be thought of as under the control of the same
underlying process.

Concurrent systems are modeled by compositions
of 1/0 automata, as defined in [LT87]. In order to
be composed, automata must be strongly compatible;
this means that no action can be an output of more
than one component, that internal actions of one com-
ponent are not shared by any other component, and

that no action is shared by infinitely many compo-
nents. The result of such a composition is another
1/0 automaton. The hiding operator can be applied
to reclassify output actions as internal actions.

We refer the reader to [LT87] for a complete pre-
sentation of the model and its properties.

2.2 Timed Automata
We augment the 1/0 automaton model as in
[MMT88] to allow discussion of timing properties.
Namely, a timed 1/0 automaton is an 1/0 automa-
ton with an additional component called a boundmap.
The boundmap associates a closed subinterval of
[O,CO] with each class in the automaton's partition;
to avoid certain boundary cases we assume that the
lower bound of each interval is not 00 and the up-
per bound is nonzero. This interval represents the
range of possible differences between successive times
at which the given class gets a chance to perform an
action. We sometimes use the notation bt(C) to de-
note the lower bound assigned by boundmap b to class
C, and b, (C) for the corresponding upper bound.

A timed sequence is a sequence of alternating states
and (action,time) pairs:

Define t o = 0. The times are required to be nonde-
creasing, i.e., for any i 2 1 for which ti is defined,
t i 2 ti-1, and if the sequence is infinite then the
times are also required to be unbounded. For any fi-
nite timed sequence a define t e n d ((Y) to be the time
of the last event in Q, if Q is nonempty, or 0, if a is
empty; for an infinite timed sequence a, t e n d (a) = CO.

A timed sequence is said to be a timed execution of
a timed automaton A with boundmap b provided that
when the time components are removed, the result-
ing sequence is an execution of the 1/0 automaton
underlying A, and it satisfies the following conditions
for each class C of the partition of A and every i:

1. Suppose b,(C) < CO. If some action in C is en-
abled in si and one of the following holds: either
i = 0 or no action in C is enabled in si-1 or iri is
in C, then there exists j > i with t j 5 t i + b,(C)
such that either ~j is in C or no action of C is
enabled in S j .

2. If some action in C is enabled in si and either
i = 0 or no action in C is enabled in S i - 1 or
iri is in C , then there does not exist j > i with
t i < t i + bt(C) and H , in C

The first condition says that, starting from when
an action in C occurs or first becomes enabled, within

210

time b,(C) either some action in C occurs or there
is a point at which no such action is enabled. The
second condition says that, again starting from when
an action in C occurs or first becomes enabled, no
action in C can occur before time bt(C) has elapsed.
The third condition merely requires that the steps
taken by the automaton are indeed legal.

Note that the definition of a timed execution in-
cludes a liveness condition (in 1.) in addition to safety
conditions (in both 1. and 2.). For finite timed se-
quences, it is sometimes interesting to consider only
the safety properties. Thus, we define a weaker no-
tion, as follows. A finite timed sequence is said to be
a timed semi-execution provided that when the time
components are removed, the resulting sequence is an
execution of the 1/0 automaton underlying A , and it
satisfies the following conditions, for every class C
and i .

1. Suppose b,(C) < CO. If some action in C is en-
abled in s i and one of the following holds: either
i = 0 or no action in C is enabled in si-1 or q
is in C, then either tend(&) 5 t i + b , (C) or there
exists j > i with t j 5 t i + b,(C) such that either
~j is in C or no action of C is enabled in s j .

2. Condition 2. above.

Intuitively, timed semi-executions represent se-
quences in which the safety conditions described by
the boundmap are not violated. The following lem-
mas say that such a sequence can be extended to a
timed execution in which the liveness conditions de-
scribed by the boundmap are also satisfied.

Lemma 2.1 If a is a timed semi-execution of a
timed automaton A and no locally controlled action
of A is enabled in the final state of a, then a is a
timed execution of A .

Lemma 2.2 Let CY;.}^^ be a sequence of timed
semi-executions of a timed automaton A such that

1. for any i 2 1, ai is a prefix of ai+l, and

2. liq-a tend(ai) = W.

Then there exists an infinite timed execution a of A
such that for any i 2 1, ai is a prefix of a.

Lemma 2.3 Let A be a timed automaton having
finitely many classes in its partition, and let a be a
timed semi-execution of A. Then there is a timed ex-
ecution CY‘ of A that extends C Y , such that only events
from classes with finite upper bound occur in CY’ ajler
a.

For any timed execution or semi-execution CY we de-
fine sched(a) to be the sequence of (action,time) pairs
occurring in a, i.e., a with the states removed. We
say that a sequence of (action,time) pairs is a timed
schedule of A if it is sched(a), where a is a timed ex-
ecution of A. We also define beh(a) to be the subse-
quence of sched(a) consisting of external (input and
output) actions and associated times, and say that a
sequence of (actioqtime) pairs is a timed behavior of
A if it is beh(a) , where a is a timed execution of A .

Definitions for composing timed automata to yield
another timed automaton, analogous to those for 1/0
automata, are developed in [MMT88]. We model
real-time systems as compositions of timed automata.
(Real-time systems were also modeled in this way in
[L881.>

2.3 Adding Time Information to the
States

We would like to use standard proof techniques such
as invariant assertions to reason about timed au-
tomata. In order to do this, we find it convenient
to define an ordinary 1/0 automaton t i m e (A) corre-
sponding to a given timed automaton A . This new
automaton has the timing restrictions of A built into
its state, in the form of predictions about when the
next event in each class will occur. Thus, given any
timed 1/0 automaton A having boundmap b, the or-
dinary 1/0 automaton t i m e (A) is defined as follows.

The automaton t i m e (A) has actions of the form
(r , t) , where r is an action of A and t is a nonnega-
tive real number. Each of its states consists of a state
of A , augmented with a time called C t i m e and, for
each class C of the partition, two times, F t i m e (C)
and L t i m e (C) . Ct ime (the “current time”) repre-
sents the time of the last preceding event, initially 0.
The F t i m e (C) and L t i m e (C) components represent,
respectively, the first and last times at which an ac-
tion in class C is scheduled to be performed (assuming
some action in C stays enabled). (We use record nG
tation to denote the various components of the state
of t i m e (A) ; for instance, s.Astate denotes the state
of A included in state s of t i m e (A) .) blore precisely,
each initial state of t i m e (A) consists of an initial state
s of A , plus Ct ime = 0, plus values of F t i m e (C) and
L t i m e (C) with the following properties. If there is
an action in C enabled in s, then F t i m e (C) = bt(C)
and L t i m e (C) = b,(C). Otherwise, F t i m e (C) = 0
and L t i m e (C) = CO.

If (~ , t) is an action of t i m e (A) , then (S I , (* , t) , s) is
a step of t i m e (A) exactly if the following conditions
hold.

1. (s’ .Astate , T, s . d s t a t e) is a step of A .

27 I

1

2. s’.Ctime 5 t = s.Ctime.

3. If x is a locally controlled action of A in class C ,
then

(a) s’.Ftime(C) 5 t 5 s’.Ltime(C),
(b) if some action in C is enabled in s.Astute,

then s.Ftime(C) = t + ~ L (C) and
s.Ltime(C) = t + b,(C), and

(c) if no action in C is enabled in s.Astute, then
s.Ftime(C) = 0 and s.Ltime(C) = CO.

4. For all classes D such that x is not in class D,

(a) t 5 s’.ltime(D),
(b) if some action in D is enabled in s.Astute

and some action in D is enabled in s‘.Astate
then, s.Ftime(D) = s’.Ftime(D) and
s . l t ime(D) = s’.ltime(D).

(c) if some action in D is enabled in s.Astute
and no action in D is enabled in s‘.Astate
then s.Ftime(D) = t + bt(D) and
s . l t ime(D) = t + b,(D), and

(d) if no action in D is enabled in s.Astate, then
s.Ftime(D) = 0 and s.Ltime(D) = CO.

Note that property 4(a) ensures that an action does
not occur if any other class has an action that must be
scheduled first. The partition classes of time(A) are
derived one-for-one from the classes of A (although
we will not need them in this paper).

The finite executions of time(A), when the states
are projected onto their Astute components, are ex-
actly the same as the finite prefixes of the timed exe-
cutions of A. This implies that safety properties of a
timed automaton A can be proved by proving them
for t i m e (A) , e.g., using invariant assertions.

3 Problem Statement
For either the centralized or distributed case, we
assume that there are n modules called moving
parts, n modules called operators, plus some mod-
ules comprising the computer system. The actions
of the complete system, exclusive of any internal
actions of the computer system, are REQUEST(i) ,
G R A N T (i) and FINISH(i), for 0 5 i 5 n - 1. Each
operator(i) has input action G R A N T (i) and output
action REQUEST(i) . Each movingpart(i) has input
action G R A N T (i) and output action FINISH(i). The
computer system has input actions REQUEST(i) for
all i and output actions G R A N T (i) for all i. See
Figure 1.

computer
I)Fn//FCT/;l system

Figure 1: The system architecture.

Let movingpurt(i) be a particular timed automa-
ton with the given signature, having a state consisting
of one component, GRANTED, a Boolean variable,
initially false. The input action G R A N T sets the
variable GRANTED to be true; the output action
FINISH is enabled only when GRANTED = true,
and it sets GRANTED to be false. There is only one
class in the partition for movingpurt(i), a singleton
containing the one action FINISH(?’). The boundmap
associates the interval [O,m] with this class. As de-
scribed in the Introduction, the timed executions of
this timed automaton have the property that, within
time m after a GRANT(i) occurs, a F I N E H (i) must
also occur - that is, movingpart(i) “stops moving”.

Now consider operutor(i). It is described as an
automaton with the maximum amount of freedom
we want to allow to the operator. Let operutor(i)
be the timed automaton with the appropriate sig-
nature, having a state consisting of one compo-
nent, PUSHED, a Boolean variable, initially false.
The output action REQUEST is enabled only when
PUSHED = false, and it sets PUSHED to be true;
The input action GRANT sets the variable PUSHED
to be false. Again, there is only one (singleton) class
in the partition for operator(i). We do not want to
insist that the operator push the button within a par-
ticular amount of time after a GRANT. (It may never
do so, in fact.) Thus, we define the boundmap to as-
sign the interval (0, CO] to this one class.

The requirement for the computer system is that
when it is composed with the given operators and
moving parts, the resulting system has all its behav-
iors satisfying the following conditions:

1. Request well-fomedness: For any 0 5 i 5 ti - 1,
REQUEST(i) and GRANT(i) actions alternate,
starting with a REQUEST(i).

2. Moving p a r t well-fomedness: For any 0 5 i 5

212

Figure 2: The architecture of the centralized control
system.

n - 1, GRANT(i) and FINEH(i) actions alter-
nate, starting with GRANT(i) .

3. Mutual ezclusion: There are never two consec-
utive GRANT events without an intervening
FINISH event.

4. Eventual granting: Any R.EQUEST(i) event has

We measure the performance of the system by the
worst case response time, i.e., the longest time
between rtEQUEST(i) and the next subsequent
GRANT(i) in any timed behavior.

a following GRANT(i) event.

4 A Centralized System
We first consider the case of a “centralized” computer
system to solve this exclusion problem. In this case,
the architecture is is follows. There are two modules
(timed 1/0 automata), the manager and the clock.
The clock has only one action, the output T I C K ,
which is always enabled, and has no effect on the
clock’s state. The boundmap associates the inter-
val [q, c2] with the single class of the partition. This
means that successive TICK events will occur with
intervening times in the given interval.

The manager has input actions TICK and
REQUEST(?’) for all i, and output actions
GRANT(i) . It is an arbitrary automaton, subject
to the restriction that it has only a single class in
its partition. (This says that it is really a sequential
process - it cannot be running several processes in
parallel.) We associate the boundmap [O,I] with the
single class of locally controlled actions. This means
that successive locally-controlled steps of the man-
ager are done within the given intervals (if there are
any enabled).

The computer system is the composition of the
manager and the clock, (with the 1/0 automaton hid-
ing operator applied to hide the TICK actions). See
Figure 2.

Note that the timed automaton model forces us
to model the step time of the manager process ex-
plicitly. Other models (e.g., the one used for clock

273

synchronization in [LL84]) might avoid this level of
detail by hypothesizing that the manager’s steps are
triggered only by input events such as clock ticks or
requests. We regard such a model (informally) as a
limiting case of our model, as the upper bound on
ma+ager step time approaches zero.

4.1 Upper Bound
4.1.1 The Algorithm

The following simple algorithm for the manager pro-
cess solves the problem. The manager simply puts
requests on a FIFO queue. If there is a pending re-
quest, the manager issues a GRANT signal to the
node whose request is first on the queue, and sets
a timer to measure the time until the moving part
stops moving. When the timer goes off, the manager
repeats.

There is some subtlety in determining the mini-
mum number of clock ticks that guarantee that time
m has elapsed since the GRANT. At first glance,
one might be tempted to count [m/c lJ + 1 ticks, but
a careful examination shows that this might cause a
violation of the exclusion property, if a TICK hap-
pens immediately after the G R A N T , and the next
GRANT happens immediately after the last TICK.
Waiting for [m/c lJ + 2 suffices to overcome this dif-
ficulty, but the lower bound presented in Subsection
4.2 suggests that this might not be optimal. In order
to achieve the best possible timing performance, the
algorithm only grants immediately after a clock tick,
and the timer is set to l(m + I) / C I] + 1 clock ticks.

In addition to the REQUEST and TICK inputs
and GRANT outputs already specified, the manager
has an internal action ELSE. This action is enabled
exactly when no output action is enabled; this has the
effect of ensuring that locally controlled steps of the
manager occur at (approximately) regular intervals,
as determined by the manager’s boundmap.

The manager’s state is divided into components:

TICKED holding a boolean value, initially true;
QUEUE

TIMER

holding a queue of indices i E [O..n - 11,
initially empty;
holding an integer, initially 0;

The manager’s algorithm is as follows:
REQUEST(i) , 0 5 i 5 n - 1
Effect:

add i to QUEUE

TICK
Effect:

TIMER := TIMER -1

1

TICKED := true 1. I f FINISH(i) is enabled in s.Astate, then

(a) s.TIMER > 0 ,
(b) s .Ftime(TICK) + (s.TIMER - l)c l >

(c) FINISH($ is not enabled in s.Astate, for
s.Lt ime(FINISH(i)) , and

any j # i.
2. If s.TICKED then s.Ftime(TICK)

2 s.Ltime(LOCAL) + c1 - 1.

Thus, if a part is moving, the manager's TIMER
is positive. Moreover, the TIMER IS large enough so
that waiting that number of ticks would cause enough
time to elapse so that the part would be guaranteed to
have stopped moving. Property l(c) implies mutual
exclusion, while property 2 guarantees a lower bound
on the time till the next TICK, if no LOCAL step
has occurred since the previous TICK.

The proof of correctness is done in careful detail
and can be found in [AL89].

Proof: (of Theorem 4.1) Lemma 4.2 implies mutual
exclusion. Moving part well-formedness follows easily
from the same lemma and the definition of the mov-
ing part. Request well-formedness follows from the
definitions of the operators and the manager. The re-
maining condition, eventual granting, can be argued
from the queue-like behavior of the manager and the
fact that the clock keeps ticking. (This latter prop-
erty also follows from the formal proof of the upper
bound on response time in the following subsection.)
B

GRANT(i) , 0 5 i 5 n - 1
Precondition:

i is first on QUEUE
TIMER 5 0
TICKED = f r u e

remove i from front of QUEUE
TIMER := \(m + l) / q J + 1
TICKED := false

Effect:

ELSE
Precondition:

QUEUE is empty
or TIMER > 0 or TICKED = false

TICKED := false
Effect:

4.1.2 Correctness Proof

Let A be the composition of the four given kinds of
timed automata - operators, moving parts, manager
and clock. This subsection is devoted to proving the
following theorem.

Theorem 4.1 Algorithm A is a correct centralized
resource allocation algorithm.

We prove correctness using automaton t ime(A) , as
defined above. In this case, the system state is' aug-
mented with the variable Ctime, plus the variables
Ftime and Ltime, for the following partition classes:

REQUEST(i) for each i , which contains the sin-
gle action REQUEST(i) ,

F INEH(i) for each i , which contains the single
action FINIsH(i) ,

T I C K , which contains the single action TICK,
and

LOCAL, the locally controlled actions, which
contains all the actions GRANT(i) , 0 5 i 5 n-1
and the ELSE action.

Initially, we have Ftime(REQUEST(i)) = 0,
Ltime(REQUEST(i)) = 00, Ft ime(FINSH(i)) =
0 and Ltime(FINISH(i)) = 00, Ftime(TICK) =
c l , Ltime(T1CK) = c2, Ft ime(L0CAL) = 0 and
Ltime(L0CAL) = 1.

The proof of mutual exclusion rests on the following
invariant for time(A).

Lemma 4.2 Let s be a reachable state of time(A).
Then the following all hold:

4.1.3 Response Time

Now we prove our upper bound on response time for
the given algorithm A.

Theorem 4.3 Assume that 1 < c1. The worst case
response time for algorithm A is at most

n [c2 (l(m + l) / C l J + 111 + 1.

The proof of this theorem requires several lemmas.

Lemma 4.4 In any reachable state there are at most
n entries in QUEUE.

Lemma 4.5 In any reachable state s, s.TIMER 5
l(m + l) /c iJ + 1.

Lemma 4.6 Let s be any state occum'ng in a timed
execution, in which s.TIMER 5 k, for k >_ 1. Then
(at least) one of the following two conditions holds.

1. s.TIMER 5 0 and s.TICKED = true, or

274

2. the time from the given occurrence of s until a
later TICK event resulting in TIMER _< 0 is
bounded above by c 2 . I C .

Proof: (of Theorem 4.3) When a request arrives, it
is a t worst in position n on the QUEUE, by Lemma
4.4. By Lemmas 4.5 and 4.6, either TIMER 5 0
and TICKED = true at the time when the request
arrives, or else within time c 2 (l (m + l) / c l J + 1) a
TICK event (call it 7r1) occurs which sets TIMER
to 0. In the former case, there must be a TICK event
occurring prior to the request that sets TIMER 5 0,
with no intervening local events; let x1 denote this
TICK event. In either case, within time 1 after ?TI
(but after the request) the first entry gets its re-
quest granted and gets removed from the QUEUE,
and TIMER is set to

L(m + /) / c l J + 1.

Since 1 < c1, within time c2 after ?TI, another
TICK event (PI occurs, this one decreasing TIMER

Immediately after (P I , either TIMER = 0, or [(m+
l) / c l J 2 1; in this latter case, by Lemma 4.6, within
at most time c2 (l(m + l) / c 1 J) after 9 1 , a TICK event
occurs that sets TIMER 5 0. Thus, in either case,
from event 7rl until another TICK event 7r2 that sets
TIMER 5 0, at most

to (Km + O / C l I) *

c2 (l(m + W c l J + 1)
time elapses. The next entry in the queue is en-
abled immediately after 7r2. In this manner, we can
construct a sequence of TICK events, x ~ , . . . , ? ~ , , ,
such that the time between ri and xj+1, for each
i , 1 i < n, is a t most

c2 (l(m + 9 / c i J + 1) ,
and for any 1 5 i 5 n, the i’th entry on the original
queue (if there is any) is enabled after rj. Hence,
within time

n k 2 (L(m + I)/ci J + 111 ,
the enabling condition is satisfied for the given re-
quest. Then within time at most 1 afterwards, the
request is granted. This completes the proof of the

Note that this proof requires the assumption that
1 < c l ; in case this assumption is not made, an anal-
ysis similar to the one in the proof above yields a
slightly higher upper bound of

upper bound on response time.

L(m + I) /c i J + 1) + 11

Also, note that the limit of the given upper bound,
as 1 approaches 0, is n . c2([m / c ~ J + 1). We think of
this as an upper bound for this algorithm when it is
run on an interrupt-driven model.

It follows from the lower bound in Section 4.2 that
algorithm A has optimal response time. This seems
to imply that the best policy is to issue a GRANT
right after a TICK. This is apparently because a time
estimate done immediately after a clock TICK is the
most accurate.

Although this proof is currently written in terms
of executions, it seems that the invariant assertion
techniques for time-augmented automata developed
above could be extended to handle response time
analysis; preliminary results in that direction appear
in [LA].

4.2 Lower Bound
Now we turn to proving lower bounds. We begin with
a fairly simple lower bound result that is quite close
to the upper bound proved in the preceding subsec-
tion, but does not match exactly. The gap between
this lower bound and the upper bound depends on
the manager’s step time and the roundoffs. Since we
consider these to be very small, for practical purposes
one might be satisfied with this simpIer lowerbound.
However, it is interesting theoretically to note that in
this case, we can obtain a tight bound by a.related
but somewhat more difficult argument.

Theorem 4.7 The worst case response time of any
centralized resoume allocation algorithm is at least

n * m(c2/c1) .

In order to see why this is so, define a timed execu-
tion or timed semi-execution to be slow if the times
between successive TICK events (and the time of the
first TICK event) are exactly c2. We have:

Lemma 4.8 Let a be a slow timed ezecution of a cor-
rect centralized resource allocation algorithm. Then
the time between any iwo consecutive GRANT events
in a is strictly greater than

m(c2lc1) .

Now we present the more delicate arguments
needed to prove a lower bound that matches the up-
per bound given in Section 4.1. Note that the only
differences between the lower bound to be proved and
the one already proved in Theorem 4.7 are the pres-
ence of the 1 terms describing bounds on the man-
ager’s step time and the careful treatment of roundoff.
Still, it is interesting that the bound can be improved
in these ways to match the upper bound exactly.

215

1

Theorem 4.9 Assume that 15 c1.l Then the worst
case response time of any centralized resource alloca-
t ion algorithm is at least

An 1/0 automaton is called active if in every state
there is a locally-controlled action enabled. (Recall,
for example, that the manager in the algorithm of
the preceding subsection was made active by the in-
clusion of the ELSE action.) Before proceeding with
the proof of the theorem, it is useful to prove the
following lemma, which claims that there is no loss
of generality in assuming that the manager is active.
As in the previous subsection, denote by LOCAL the
class of all the actions that are locally controlled by
the manager (including G R A N T (i) , for all i) .

Lemma 4.10 Suppose that A is a centralized re-
source allocation algorithm with response t ime < b,
for a real number b. Then there is another such algo-
rithm A', with response t ime 5 b, in which the man-
ager is active.

Now we return to the task of proving Theorem 4.9.
The proof will proceed by iterative construction of a
particular slow timed execution. A major step in the
construction is forcing a G R A N T event to happen
only in certain situations, as specified and proved in
the following technical lemma.

If i is an index with 0 5 i < n - 1, we say that i is
unfulfilled in a timed semi-execution or if the number
of REQUESTi events in a is strictly greater than the
number of GRANTi events in a. We say that a timed
execution or timed semi-execution a is heavily loaded
starting from t ime t if for all times t < t' < t e n d (a) ,
all indices are unfulfilled in the prefix of or consisting
of all the events occurring up to and including time
t'. We say that an action is an ELSE action if it
is a locally controlled action of the manager other
than a G R A N T ; ELSE events and steps are defined
similarily.

Lemma 4.11 Let A be a centralized resource alloca-
tion algorithm with an active manager, and let a be
a slow timed semi-execution of A . Assume that there
are unfulfilled indices in a, and LOCAL and T I C K
events occur in a at time t e n d (f f) . Then there exists
a slow timed semi-execution p eztending a, such that
for some i , 0 5 i 5 n - 1,

sched(P) = sched(aa) (G R A N T (;) , t)
(REQUEST(;) , t) (FINISH(i), i),

'Notice that a non-strict inequality is used in this assump
tion, whereas a corresponding assumption for Theorem 4.3 uses
a strict inequality. This reflects the difference in the kinds of
reasoning needed for lower and upper bound results.

where t = tend(QQ), LOCAL and T I C K events oc-
cur in aa at t ime t , and there are no REQUEST or
G R A N T events in a .

Notice that if a is a heavily loaded starting from
time t then P is also heavily loaded starting from time
t .

Now we are ready to present the main proof.

Proof: (of Theorem 4.9) Assume that we have a
particular centralized resource allocation algorithm.
By Lemma 4.10, we may assume without loss of gen-
erality that the manager is active. We explicitly con-
struct a (slow) timed execution in which the response
time for a particular grant is at least

n ([(m + l) / c i J + 1) c2 + 1.

We first construct an initial section, PO. We begin
by allowing some LOCAL events to occur (at arbi-
trary allowable times), ending with both a LOCAL
event and a TICK event occurring at exactly time
c2, in that order. Notice that by the grant well-
formedness property these LOCAL events must be
ELSE events. We let

REQUEST(O), . . . , REQUEST(n - 1)

events happen immediately after these ELSE and
TICK events, also at time c2. Formally, let PO be
a timed semi-execution that extends another timed
semi-execution 5 containing only ELSE events, such
that

sched(P0) = sched(5) (x , c2) (T I C K , c2)
(REQUEST(O), ~ 2) . . .
(REQUEST(n - I), c2),

where ?r is an ELSE event. Note that 0 , . . . , n - 1 are
unfulfilled indices in PO, and that LOCAL and TICK
events occur in Po at time c2 = t e n d (P 0) ; furthermore,
note that PO is heavily loaded starting from time t o =

Starting from Po, we construct successive proper
extensions P I , . . . , P k , . . ., such that for each k 2 1,
P k is a slow timed semi-execution of the form P k - 1 7 k
that ends at time t k = tend@), that is heavily loaded
starting from time t o , and that has the following prop-
er ties:

t e n d (P 0) = c2-

p k ends with G R A N T (j k) , REQUEST(jk) and
F m B H (j k) events, occurring in that order at
time t k .

There are no other REQUEST or G R A N T
events in 7 s .

A LOCAL event (other than the G R A N T (j k))
and a TICK event occur in p k at time tk .

276

The construction is done inductively; the base case is
the construction of P I . Since PO has a LOCAL and a
T I C K event at time t e n d @) , and there are unfulfilled
indices in Po, we can apply Lemma 4.11 to get an
execution P i with the properties above.

For the inductive step, assume we have constructed
a slow timed semi-execution P k - 1 , for k > I, with
the above properties; we show how to construct P k .
Since P k - 1 is heavily loaded starting at time to , and
LOCAL and T I C K events occur in P k - 1 at time tk-1,
we can apply Lemma 4.11 to P k - 1 , and get a slow
timed semi-execution p k that extends P k - 1 such that

SChed(Pk) = SChed(Pk-lUk) (G R A N T (j k) , t k)
(REQUEST(jk) i t k) (FINEH(jk) i t k) i

where t k = t e n d (P k - 1 U k) , LOCAL and T I C K events
occur in p k - l a k at time t k , and there are no
REQUEST or G R A N T events in U k . Let 7 k be such
that

P k = P k - 1 7 k .
Clearly, p k has the required properties.

Claim 4.12 For any k > 1, there are at least

1(7. + /) / C l] + 1

ticks in segment 7 k of p k .

The claim implies that

tk+l - t k 2 c2(L(m + /) / c l] + 1) I

for any k 2 1, becuase P k + l is slow.
We continue the proof of Theorem 4.9. Since for

every k 2 1, p k is heavily loaded starting from time to
and the algorithm satisfies the eventual granting prop-
erty, there exists k’ such that for every i, 0 5 i < n - 1
at least one G R A N T (i) event appears in P k i at or
after time t l . By the same reasoning, there exists
k” > k‘ such that for every i, 0 5 i 5 n - 1 at least
one G R A N T (;) event appears in Pk” after time tk i . It
follows that there is some i, 0 5 i 5 n - 1 for which
there are two consecutive G R A N T (i) events in p k l i

having at least n - 1 intervening G R A N T (j) events
for j # i. Suppose that the first of these G R A N T (i)
events occurs at t h e t k l , and the second at time
i f , ; it must be that k2 - k1 >_ n . Note that the
REQUEST(i) event corresponding to the second of
these G R A N T (i) events occurs at time t k l . By the re-
mark after Claim 4.12 the total amount of time from
time t k l in p k , , when REQUEST(i) occurs, until the
corresponding G R A N T (i) occurs, at time t k , is at
least

n [c2 (L(m + I) / C l I + 111 .

211

We now construct from Pa, a timed semi-execution
6 in which the G w N T (j k ,) event occurs at time
tk, + I, retiming later events as necessary to maintain
monotonicity. The timed sequence 6 is a timed semi-
execution since 1 < c2, and since there is a LOCAL
event preceding GRANT(&) at time tk, in P k a . It
follows that the total amount of time from time tk, in
6, when REQUEST(i) occurs, until the correspond-
ing G R A N T (i) occurs at time tk, + I, is at least

Since 6 can be extended to a timed execution (By
Lemma 2.3) the Theorem follows.

We note that Theorem 4.7 seems quite yobust in
that it can be extended to any reasonable model, in-
cluding those in which the manager takes steps only in
response to inputs. However, the better lower bound
in Theorem 4.9 depends more heavily on the features
of the timed automaton model. Note that the limit-
ing case of the lower bound in Theorem 4.9 is

which is slightly better than the lower bound given
by Theorem 4.7.

5 A Distributed System
Now we consider the case where the computer sys-
tem is distributed. We assume that the events con-
cerning the different moving parts occur at separate
manager processes p i , 0 5 i 5 n - 1, which communi-
cate over unidirectional channels. More precisely, for
each ordered pair (i , j) , i # j , we assume that there
is a channel automaton channel(;, j) representing a
channel from pi to p j , having SEND events as inputs
and RECEIVE events as outputs. The channel oper-
ates as a FIFO queue; when the queue is nonempty,
the channel is always enabled to deliver the first item.
All RECEIVE actions are in the same partition class,
with associated bounds [O,dl; this means that the
channel will deliver the first item on the queue within
time d. Also, we assume that there is a separate clock,
clock(i), for each process p i . It is similar to the cen-
tralized clock described earlier, with output action
TICK(?’) that is an input to p i , and with associated
bounds [c l , cz] . See Figure 3 .

If the clocks are perfectly accurate, i.e., c1 = c2,
then since all processes start at the same time, there is
a very simple algorithm that assigns to each process a
periodic predetermined “time slice” and whose worst
case response time is n . m (plus some terms involving

Figure 3: The architecture of the distributed control system.

and c2 and l) . This is optimal.2 So, for our lower
bound we will assume that c1 < c2.

5.1 The Upper Bound
5.1.1 The Algorithm

The following algorithm implements a round-robin
granting policy: The processes issue grants when they
are in possession of a token that circulates on a ring.

Assume processes are numbered 0, . . . , n - 1 in
clockwise order, and interpret i+ 1 to be i + 1 mod n.
Each process pi has input actions REQUEST(?') ,
TICK(i) and RECEW,'CTOKEN(i), output actions
G R A N T (i) and SEND-TOKEN(i) , and internal ac-
tion ELSE(I). The state of process i is divided into
components:

REQUESTED holding a Boolean value,

TIMER
TICKED holding a Boolean value,

TOKEN holding a value in

initially false;
holding an integer, initially 0;

initially true;

{ n o t h e r e , available, used} ,
initially used for po,
nothere for the other processes.

Process pi executes the following algorithm:

REQ UEST(i)

2kr. fact, even if we deviate from the model by allowing
accurate clocks with non-synchronized starts, there is an al-
gorithm which selects synchronization points so that its worst
case response time is at most n . (m + (d / 2)) (plus some terms
involving and Q and I). A corresponding lower bound can
also be proved. A formal treatment of these results requires
several changes to our model, and we prefer not to present it
hue. The clock synchronization algorithm of [LL84] yields syn-
chronizationpoints that can be used by a distributed allocation
algorithm whose response time is at most n.m+(n-1)d. Since
the lower bound of [LL&I] implies that this clock synchroniza-
tion algorithm is optimal, it does not appear that a naive use
of clock synchronization produces optimal resource allocation
algorithms.

Effect:
REQUESTED := true

TICK(i)
Effect:

TIMER := TIMER -1
TICKED : = true

GRANT(i)
Precondition:

REQUESTED = true
TOKEN = available
TICKED = true

REQUESTED :=fa lse
TOKEN := used
TIMER := [(m + l) / c l J + 1
TICKED :=fa lse

Effect:

SEND-TOKEN(i) /* to process pi+l */
Precondition:

TOKEN = used
TIMER 5 0

TOKEN := nothere
TICKED :=fa lse

Effect:

ELSE(i)
Precondition:

neither GRANT(i)
nor SEND-TOI(EN(i) is enabled

TICKED :=fa lse
Effect:

R.ECEIVGTOKEN(i)
Effect:

if REQUESTED then TOKEN :=
else TOKEN := used

U ilabl

218

5.1.2 Correctness Proof

Now let B be the composition of all the given timed
automata: operators, moving parts, processeS, chan-
nels and clocks. This subsection is devoted to proving
the following theorem.

Theorem 5.1 Algorithm B is a correct distributed
resource allocation algorithm.

As in the proof of the centralized algorithm, we
construct the I/O automaton t ime(B) . This time,
the new state components are Ctime, plus, for each i,
Ftime and Ltime for the following partition classes:

1. REQUEST(i) , which contains the single action
REQUEST(i) ,

FINISH (i) ,

TICK(i) , and

4. LOCAL(i), the class of locally controlled ac-
tions of process i, which contains all the actions
GRANT(i) , SEND-TOKEN(i) and ELSE(i).

2. F INEH(i) , which contains the single action

3. T ICK(i) , which contains the single action

Initially, we have Ftime(REQUEST(i)) = 0,
Ltime(REQUEST(1')) = 00, Ftime(FINISH(i)) = 0
and Ltime(FDVISH(i)) = 00, Ftime(TICK(i)) = C I ,

L t ime(TICK(i)) = c2, Ftime(LOCAL(i)) = 0 and
Ltime(LOCAL(i)) = 1.

Let #tokens(i) be the length of the queue in
channel(i, i + 1). We first prove a lemma giving an
invariant for t i m e (B) ; this invariant happens not to
involve any of the state components that encode time
information. The proof can be found in [AL89].

Lemma 5.2 Let s be a reachable state of t ime(B) .
Then the total number of processes at which TOKEN
nothere plus the sum of #tokens(i), over 0 5 i <
n, is exactly 1.

We now prove another invariant, this one involv-
ing the timing information. The result is similar to
Lemma 4.2. The proof can be found in [AL89].

Lemma 5.3 Let s be a reachable sfate o f f i m e (B) ,
and let 0 5 i 5 n - 1. Then the following all hold:

1. I f FINISH(i) is enabled in s.Astate, then

(a) s.TIMER(i) > 0 ,
(b) s.Ftime(TICK(i))+(s.TIMER(i)- l) c ~ >

(c) s.TOKEN(i) = used.
s .Lt ime (FINISH(i)) , and

279

2. I f
s.TICKED(i) = true then s.Ftime(TICIC(i)) 2
s.Ltime(LOCAL(i)) + c1 - I .

The following corollary implies that mutual exclu-
sion is maintained by the algorithm.

Corollary 5.4 In any reachable state s of B , if
FINISH(i) is enabled, for some i , then FINISH(j)
is not enabled for all j # i.

Proof: (of Theorem 5.1) Corollary 5.4 implies mu-
tual exclusion. Moving part well-formedness follows
from the same corollary and the definition of the mov-
ing part. Request well-formedness follows from the
definitions of the operators and the processes. Even-
tual granting can be argued from the round-robin be-
havior of the processes; it also follows from the upper
bound on response time proved formally in the fol-
lowing subsection.

5.2 Response Time
Now we prove the upper bound on response time for
the given distributed algorithm B.

Theorem 5.5 The worst case response time for al-
gorithm B is at most

.[~2(L(m+l)/clJ +1)+d+c2+21].

We use the following lemmas.

Lemma 5.6 In any reachable state s, and for any i ,

s.TIMER(i) 5 L(m + l) / c l J + 1.

Lemma.5.7 Let s be any state occurring in a timed
execution; in which s.TIMER(i) 5 k , for k 2 1.
Then (at least) one of the following two conditions
holds.

1. s.TIMER(i) 5 0 and s.TICKED(i) = true, or

2. the time from the given occurrence of s until a
later T ICK(i) event resulting in TIMER(i) 5 0
is bounded above by c2 k.

Say that process pi is operative in state s if
s.TOKEN(i) = used. By Lemma 5.2 at any time
there is a t most one operative process.

Lemma 5.8 If process pi is operative, then the time
until process p i t 1 becomes operative is at most

~2 (l(m + l) /c lJ + 1) + d + ~2 + 21 .

Define the distance from process pi to process pj to
be the distance between them along the ring (in the
clockwise direction); if i = j we define the distance
to be n. least

Theorem 5.9 Assume that c1 < c2 and that (n- 1).
d 5 m . (cZ/c1). Then the worst case response time
of any distributed resource allocation algorithm is at

Proof: (of Theorem 5.5) Consider the point in the
timed execution at which a request arrives, say at
process p j . We consider cases (one of which must
hold, by Lemma 5.2).

1. There is some operative process, p i , when the
request arrives (where it is possible that i = j).
Then the distance from pi to p j is at most n. Ap-
plying Lemma 5.8 repeatedly (at most n times)
yields the claimed bound.

2. The value of TOKEN(i) = available for some i .
If i = j , then the request will be granted within
time c2 + 1 . If i # j , then within time c2 + 1 ,
process pi becomes operative. Applying Lemma
5.8 repeatedly (at most n - 1 times) yields the
claimed bound.

3. There is a message in one of the channels, say
channef(i - 1, i) . I f i = j , then the request will
be granted within time d + c2 + 1. If i # j ,
then within time d + c2 + 1 , process pi becomes
operative. Applying Lemma 5.8 repeatedly (at
most n - 1 times) yields the claimed bound.

H

Again, we note that the limiting case of the upper
bound as 1 approaches 0, is

5.3 Lower Bound
Now we prove our lower bound on worst case response
time for arbitrary distributed resource allocation al-
gorithms. This proof is similar to that of the simple
lower bound for centralized algorithms (Theorem 4.7)
rather than the more complicated tight bound (The-
orem 4.9) in that we do not concern ourselves with
process step time or with roundoffs. As a result, this
proof seems sufficiently robust to extend to other rea-
sonable models for timing-based computation.

Note that the gap between our upper and lower
bounds for the distributed case does not only involve
process step times and roundoffs, but also involves
additive terms of d and of n . c2.

In order to prove this lower bound we must make
the assumption that the moving time is much larger
than the message delivery time, more precisely, that
(n - 1) d 5 m(c2/c1) .

280

n c2(m/c1) + (n - 1) . d

The lower bound is proved under the assumption
that every message is delivered within time d. This
is a stronger assumption than the one used for the
upper bound; there, we only insist that this upper
bound hold for the first message on any link. Since
the present assumption is stronger, it only serves to
strengthen the lower bound.

In the proof we first show that the round-robin
granting policy used by the algorithm of Section 5.1
is optimal in the following sense: for any “efficient”
algorithm, in any execution in which requests arrive
continuously, the order in which requests are first
granted must be repeated in a round-robin fashion.

Once such an order has been established, we ex-
tend the execution while fixing a particular pattern
of message delays. After doing this for a sufficiently
long time, we retime parts of the execution by care-
fulIy “shifting” certain events, while appropriately re-
timing other events, to get the desired time bound.

Recall the definition of a heavily loaded timed exe-
cution or timed semi-execution from Section 4.2. In
a manner similar to the centralized case, we define a
timed execution or timed semi-execution to be slow.
if, for each i , the times between successive TICK(i)
events (and the time of the first TICK(i) event) are
exactly c2. The following lemma is the distributed
version of Lemma 4.8.

Lemma 5.10 Let Q be a slow timed execution of
a correct distributed resource allocation algorithm.
Then the time between any two consecutive GRANT
events in CY is strictly greater than

The next lemma shows that if an execution is heav-
ily loaded, the best policy (for an “efficient” algo-
rithm) is to grant the resource in a round robin man-
ner, because changing the granting order will cause
the response time to exceed a bound higher than the
one we are attempting to prove as a lower bound.

Lemma 5.11 Let B be a distn’buted resoune alloca-
tion algorithm with response time at most (n + 1)
c 2 (m / c 1) . Let CY be a slow timed execution of B that
is heavily loaded stariing from time t . Then there ex-
ists some permutation, p, of (0,. . . , n - 1) such that
the subsequence of all GRANT events that occur in
CY after time t is of the form

Proof: (of Theorem 5.9) Assume by way of con-
tradiction that there is some algorithm that always
responds within time

n cz(m/c l) + (n - l) d ,

By assumption

(. - 1)d I m(c2/.1) 1

which implies that

n cz(m/c l) + (n - 1) 5 (n + 1). c2(m/c1) .

Thus, the response time for the algorithm is at most

(n + 1) c z (d c 1) -
We will construct a slow timed execution of the

algorithm that either exceeds the claimed bound on
response time or violates the mutual exclusion prop-
erty. We begin by considering a slow timed execution
a’ that is heavily loaded starting from some time t ,
and letting a be the shortest prefix of this timed exe-
cution that ends just after exactly n G R A N T events
have occurred after time t. Lemma 5.11 implies that
there is some permutation p , such that all G R A N T
events that appear in a’ after timet occur in the order
P O , . . . , pn-l,po,. . . In fact, Lemma 5.11 implies that
G R A N T events that occur after time t in any timed
semi-execution that extends a and is heavily loaded
starting from timet, appear in the order PO,. . . , Pn-1.

We sometimes abuse notation and write ppi < p p j
when i < j , that is pPi precedes p p j in the the order
established by p.

We now consider the “ring’) of processes formed by
the round-robin order defined above. We extend the
execution in such a way that messages are delivered
with maximum delay when sent from lower numbered
processes to higher numbered processes (in the order
established by p) , while messages going the other way
are delivered immediately. Intuitively, this enables us
to “postpone” notification of the granting as long as
possible.

More formally, we extend CY to get a slow timed
execution ap‘ which is heavily loaded starting from
time t and such that the message delivery times for
messages sent in p‘ are as follows:

If i < j , then a message from ppi to p p j takes

0 If i > j, then a message from ppi to p p j takes

exactly time d.

exactly time 0.

28 I

Let cup be a “sufficiently long” prefix of ap’, specifi-
cally, one for which

c1
c2 tend(aP) - tend(a) ’

tend(QP) - t e n d (a) - d - 5

This can be easily done since, by assumption, cl/c2 <
1. Let r1 = tend(&) and r2 = tend(ap).

Let 7 be such that aP7 = cup’. We know that 7
contains a subsequence of n + 1 consecutive GRANT
events, in order

GRANT(po) , G M N T (p i) , a . .

GRANT(pn- l) , GRANT(p0).

Now divide 7 into n + 2 segments, 7 0 , . . . ,7,,+1, where

1. 7 0 ends with the first of these GRANT(p0)
events,

2. for each i , 1 _< i 5 n - 1, 7; starts just after
GRANT(pi-1) and ends with GRANT(p;) ,

3. 7n starts just after GRANT@,-1) and ends with
the second GRANT(po), and

4. “fn+1 includes the rest of 7.

For each i, 0 5 i 5 n + 1, let ti = tend(aP70.. .7;).
For any 1 5 i 5 n, define the length of any segment
7;, to be t i = t; -?;-I . Intuitively, 1; is the amount
of time that passes during 7;.

We now prove a key lemma that provides a lower
bound for the length of each segment 71,. . . , 7nn-1.

Lemma 5.12 For any i, 1 5 i 5 n - 1,

4 > C Z (~ / C I) + d.

Proof: Assume by way of contradiction that

4 5 c2(m/c1) + d

for some particular i , 1 5 i 5 n - 1.
From aP7 we construct a new timed execution, ab,

in which the mutual exclusion property is violated.
We first construct an intermediate timed execution
a6’ in which we “shift” back in time the events oc-
curring a t processes p,,, . . . P ~ , , - ~ , in the following
way:

1.

2.

Each event occurring at any of the processes
p, , , . . . that occurs in P7 at time U, also
occurs in 6’ at time U.

Each event occurring at any of the processes
p p i , . . . ,P,,”-~ that occurs in P7 at time U, oc-
curs in 6‘ at time U’ where:

(a) If U > r2 then U' = U - d.

(b) If r1 5 U 5 7-2 then

r2 - r1 - d
r2 - r1

U' = r1+ (U - r1).

That is, the events occurring at processes 2 p p i at
times > r 2 are moved d earlier; notice that events
occurring in a (at times 5 r1) are not moved. All the
intermediate events are shifted back proportionally.

The resulting sequences of timed events must be
merged into a single sequence consistently with the
order of the times; events occurring at different prc-
cesses at the same time can be merged in arbitrary
order, except that a SEND event that corresponds to
a RECEIVE event in 437 must precede it in ah'.

Claim 5.13 ab' is a timed execution of the system.

Now we resume the proof of Lemma 5.12. Note the
following additional properties of a6':

0 Any clock tick interval at a process 5 ppi-l takes
time exactly c2.

Any clock tick interval at a process 2 ppi that
begins at a time 2 r2 - d takes time exactly c2.

0 Any clock tick interval at a process 2 p , that
begins a t a time 5 r2 - d and ends at a time U >
r2 takes time at least u-r2+(~2-(u-r2)) (~1/c2) .

The length of the new segment corresponding to
7i is at most c 2 (m / c l) .

Now to get a6 from ab', we "shrink" the portion
of a6' after time r2 by the ratio (c1/c2) and move
the FINISH(pi-1) event (of segment 7i) after the
GR.ANT(pi) event (at the end of segment 7i), thus
creating a violation of the mutual exclusion property.
More precisely, if an event happens at time U' in ab',
then the corresponding event happens at time U in
a6, where:

1. If U < r2, then U' = U.

2. If U 2 ~ 2 , then U' = r2 + (C I / C Z) (U - r2) .

Claim 5.14 a6 is a timed execution of the system.

To complete the proof of Lemma 5.12, we need only
observe that a6 is a timed execution of the system in
which the mutual exclusion property is violated, a
contradict ion.

TO complete the proof of Theorem 5.9, consider
the execution aP7 and consider the REQUEST(po)
that occurs just after the first of the designated
GRANT(p0) events in 7. From Lemma 5.10 it fol-
lows that

ell > c2(m/c1) .
Together with Lemma 5.12 this implies that the total
time from that REQUEST(p0) event until the corre-
sponding GRANT(p0) event is strictly greater than

(. - l) (c 2 (m / c 1) + d) + cz (74c1)
= n * c2(m/c1) + (n - 1)d ,

as claimed.

6 Discussion and Open Prob-
lems

In this paper, we have defined a timing-based vari-
ant of the mutual exclusion problem, and have con-
sidered both centralized and distributed solutions to
this problem. We have proved upper bounds for both
cases, based on simple algorithms; these bounds are
fairly complicated functions of clock time, manager or
process step time, moving time for the moving parts,
and (in the distributed case) message delivery time.

We also have proved corresponding lower bounds
for both cases. In the centralized case, the lower
bound exactly matches the upper bound, even when
the manager step time and the roundoffs axe consid-
ered. In the more complicated distributed setting,
the lower bound is very close to the upper bound,
but does not match it exactly.

The bounds are all proved using the timed automa-
ton model-for timing-based concurrent systems. It is
interesting to ask how dependent the res,ults are on
this choice of model. The timed automaton model
differs from some others in modeling process steps
explicitly (rather than assuming the algorithms are
interrupt-driven); thus, our results involving this pro-
cess step time would not be expected to e.xtend imme-
diately to such interrupt-driven models (except pos-
sibly in the limit, as this step time approaches zero).
However, some of our results - most notably, the lower
bound for the distributed case - do not involve pro-
cess step times and thus appear to be quite model-
independent. An alternative approach would be to
use a general model that describes interrupt-driven
computation, but we do not yet know (in general)
how to define such model.

There are several open questions directly related to
the work presented in this paper. First, there is a gap

282

remaining between the upper and lower bound results
for the distributed resource allocation problem. Even
neglecting process step time, there is a difference of an
additive terms of d, the upper bound on message de-
livery time, and n ’c2, then number of processes times
the upper bound on the clock tick time. Preliminary
results suggest that under certain assumptions about
the relative sizes of the parameters, the upper bound
can be reduced by approximately d. However, we do
not yet have a general result about this.

Our lower bound for the distributed resource allo-
cation problem assumes that (n - 1) . d 5 m + (cz/c~).
It would be interesting to see if this assumption can
be removed.

It would also be interesting to consider the same
problem in a model in which there are nontrivial lower
bounds on the time for message delivery (and perhaps
for process steps). While our upper bound proofs
still work in this situation, the same is not true for
our lower bound proofs. The strategy of shrinking
and shifting timed executions to produce other timed
executions becomes much more delicate when lower
bounds on these various kinds of events must also be
respected.

Our results imply that the ratio c2/c1 has a signif-
icant impact on the response time of the system. It
would also be interesting to consider the case where
a process has more than one clock, say an additional
clock with’bounds [cl,,d]. We would like to under-
stand how the results depend on the four parameters
c1, c2, c\ and ci.

Other related problems can also be studied using
the models and techniques of this paper. One could
define timing-based analogs of other problems be-
sides mutual exclusion that have been studied in the
asynchronous setting (for example, other exclusion
problems such as the dining philosophers problem,
distributed consensus problems, or synchronization
problems such as the session problem of [AFL81]);
it should be possible to obtain combinatorial results
about them in the style of the results of this paper.
In addition to defining variants of asynchronous prob-
lems, one can also extract prototypical problems from
practical real-time systems research and use them as
a basis for combinatorial work.

In another direction, the algorithm proofs pre-
sented here suggests general approaches to verifica-
tion of real-time systems. As mentioned in Section
4.1.3, we believe that there may be a unified method
for treating com:tness and performance analysis of
timing-based algorithms, and are currently exploring
this possibility in [LA].

Work of the sort presented here (and the extensions
proposed above) should provide an excellent basis for

evaluating the timed automaton model as a general
model for reasoning about timing-based systems (and
comparing it with alternative models for timing-based
computation).

Acknowledgements

We would like to thank Nancy Leveson for provid-
ing us with background information on real-time sys-
tems, and for suggestions and encouragement in the
early stages of this work. Thanks are also due to
Jennifer Welch for discussions about clock synchrG
nization and for reading the paper and providing us
with very valuable comments. We would also like to
thank Michael Merritt and Mark Tuttle for discus-
sions about modeling time and John Keen and Steve
Ponzio for comments on earlier versions of this pa,
per.

References

[AL89]

[AFL81]

[BH81]

~ 3 3 1

~ 8 5 1

283

H. Attiya and N. A. Lynch, “Time
bounds for real-time processcontrol in
the presence of timing uncertainty,”
Technical Report MIT/LCS/TR-40SJ
Laboratory for Computer Science, MIT,
July 1989.

E. Arjomandi, M. J. Fischer and N.
Lynch, “Efficiency of synchronous ver-
sus asynchronous distributed systems,”
Journal of the ACM, Vol. 30, No. 3 (July
1983), pp. 449456.

A. Bernstein and P. Harter, Jr. “Proving
real-time properties of programs with
temporal logic,” Proc. 8th Symp. on
Operating System Principles, Operating
Systems Review, Vol. 15, No. 5 (Decem-
ber 1981), pp. 1-11.

J. E. Coolahan and N. Roussopoulus,
“Timing requirements for time-driven
systems using augmented Petri nets,”
IEEE Transactions on Software Engi-
neering, Vol. SE-9, No. 5 (September
1983), pp. 603-616.

B. Dasarathy, “Timing constraints of
real-time systems: Constructs for ex-
pressing them, methods for validating
them,” IEEE llansactions on Software
Engineering, Vol. SE-11, No. 1 (January
1985), pp. 80-86.

1

[DHS86] D. Dolev, J. Halpern and H. R. Strong,
“On the possibility and impossibility of
achieving clock synchronization.” Jour-
nal of Computer and Systems Sciences,
Vol. 32, NO. 2 (1986) pp. 230-250.

[HMMS5] J. Halpern, N. Megiddo and A. A. Mun-
shi, “Optimal precision in the presence
of uncertainty.” Journal of Complexity,
Vol. 1 (1985), pp. 170-196.

V. H. Hasse, “Real-time behavior of pro-
grams,” IEEE Transactions on Software
Engineering, Vol. SE-7, No. 5 (Septem-
ber 198l), pp. 494-501.

EH811

[HGR87] C. Huizing, R. Gerth, and W. P.
deRoever, ‘‘Full abstraction of a real-
time denotational semantics for an
OCCAM-like language,” in Proc. 14th
ACM Symp. on Principles of Program-
ming Lanpages, 1987, pp. 223-237.

F. Jahanian and A. Mok, “Safety analy-
sis of timing properties in real-time sys-
tems,” IEEE Transactions on Software
Engineering, Vol. SE-12, No. 9 (Septem-
ber 1986), pp. 890-904.

[JM86]

[JMS7] F. Jahanian and A. Mok, “A graph-
theoretic approach for timing analysis
and its implementation,” IEEE Trans-
actions on Computers, Vol. (2-36, No. 8
(August 1987), pp. 961-975.

[KSRGA88] R. Koymans, R. K. Shyamasundar, W.
P. deRoever, R. Gerth, and S. Arun-
Kumar, “Compositional semantics for
real-time distributed computing,” Infor-
mation and Computation, Vol. 79, No.
3 (December 1988), pp. 210-256.

L. Lamport, “Time, clocks and the or-
dering of events in distributed systems.”
Communications of the ACM, Vol. 21,
No. 7 (July 1978), pp. 558-565.

N. Leveson and J. Stolzy, “Safety anal-
ysis using Petri Nets,” IEEE Transac-
tions on Software Engineering, Vol. SE-
13, No. 3 (March 1987), pp. 386-397.

J. Lundelius and N. Lynch, “An upper
and lower bound for clock synchroniza-
tion,” Information and Control, Vol. 62,
Nos. 2/3 (August/September 1984), pp.
190-204.

~ 7 8 1

[LS87]

[LL84]

[LA1

[LTS7]

[ZLGS9]

N. Lynch, “Modelling real-time sys-
tems,” in Foundations of Real-Time
Computing Research Initiative, ONR
Kickoff Workshop, November 1988, pp.
1-16.

N. Lynch and H. Attiya, UAsser-
tional Proofs for Timing Properties,” in
progress.

N. Lynch and M. Tuttle, “Hierarchi-
cal Correctness Proofs for Distributed
Algorithms,” in Proc. 7th ACM symp.
on Principles of Distributed Computing,

Expanded version available as Technical
Report MIT/LCS/TR-387, Laboratory
for Computer Science, MIT, April 1987.

M. Merritt, F. Modugno and M.
Tuttle, “Time constrained automata,’’
manuscript, November 1988.

J. Sifakis, “Petri nets for performance
evaluation, in Measuring, Modeling
and Evaluating Computer Systems,” in
Proc. 3rd Symp. IFIP Working Group
7.3, H. Beilner and E. Gelenbe (eds.),
Amsterdam, The Netherlands, North-
Holland, 1977, pp. 75-93.

B. Simons, J. L. Welch and N. Lynch,
“An overview of clock synchronization,”
IBM Technical Report FU 6505, October
1988.

J . L. Welch and N. Lynch, “A new
fault-tolerant algorithm for clock syn-
chronization ,” Information and Comp u-
tation, Vol. 77, No. 1 (April 1988), pp.

A. Zwarico, I. Lee and R. Gerber,
“A complete axiomatization of real-time
processes,” Submitted for publication.

August 1987, pp. 137-151.

1-36.

