3
GIT-1CS-79/03
ON DESCRIBING THE BEHAVIOR AND
IMPLEMENTATION OF DISTRIBUTED SYSTEMS

1
Nancy A. LyncH
2
MicHAEL J. FISCHER

ReviseD ED1tTion MarcH 1980

lGeorgia Institute of Technology
Atlanta, Georgia 30332/USA

2University of Washington
Seattle, Washington 98195/USA

3
’This research was supported in part by the National Science Foundation
under grants MCS77-02474, MCS77-15628, MCS78-01689 and U.S. Army
Research Office Contract Number DAAG29-79-C-0155.

ON DESCRIBING THE BEHAVIOR AND
IMPLEMENTATION OF DISTRIBUTED SYSTEMS¥

Nancy A. Lynchl
Michael J. Fischer?

Technical Report No. 79-06-01

Revised Edition March‘1980

Georgia Institute of Technologyl

Atlanta, Georgia 30332/USA
(404-894-2590)

University of Washington2
Seattle, Washington 98195/USA
(206~543-9349)

This research was supported in part by the National Science Foundation
under grants MCS77-02474, MCS77-15628 > MCS78-01689 and by U.S. Army
Research Office Contract Number DAAG29-~79-C-0155.

ON DESCRIBING THE BEHAVIOR AND IMPLEMENTATION OF DISTRIBUTED SYSTEMS

Abstract:

A simple, basic and general model for describing both the (input-output)
behavior and the implementation of distributed systems is presented. An
important feature is the separation of the machinery used to describe the
implementation and the behavior. This feature mékes the model potentially
useful for design specification of systems and of subsystems. The model's

primitivity and generality make it a suitable basis for cost comparison of

distributed system implementations.

I. Introduction

A distributed computing system consists of a number of distinct and
logically separated communicating asynchronous sequential processes. In order
to understand such systems, one would like simple mathematical models which
exhibit the essential features of these systems while abstracting away irrele-
vant details. Such models would allow problems to be stated precisely and make
them amenable to mathematical analysis.

In this paper, we present a mathematical model of distributed systems and
a mathematical model of their input/output behavior. Both are set-theoretic
models built from standard mathematical constructs such as sets, sequences,
functions, and relations, rather than axiomatic models consisting of lists of
desired properties of systems.

In comstructing a model, choices must be made regarding which features of
actual systems to preserve and which to abstract away, and how these choices
are made depends on the intended applications of the model. Our interests are
in analyzing and comparing different implementations of desired system behavior,
using objective complexity measures.

The following five steps summarize a standard method of operation in
complexity theory as it is usually applied to sequential computation.

1. Choose a computing model.

Deterministic and nondeterministic Turing machines, Random-access machines,
straight-line programs, finite automata and pushdown automata are all popular.

2. Choose a problem.

Mathematical functions are typical examples. Another class of examples is
provided by data bases with various storage and retrieval properties.

3. Define what it means for an instance of the model to ''solve' the problem.

Conventions for input and output, as well as for treatment of nondeterminism,

3
are needed to determine whether a device computes a particular function or returns

correct answers to data base queries. This determination has nothing to do with the
internal structure of the device, but depends only on the input/output behavior.

4. Choose complexity measures.

The number of steps executed by a machine is usually taken to represent
the time complexity. Space complexity is usually measured by the amount of
work tape used, or by the largest number calculated during the computation.
Other measures of interest describe the structure of the device — its number

of states, program size, number of tapes, or alphabet size, for example.

5. Compare solutions and prove upper and lower bounds.

The measures are used to compare different solutions to the same problem.
Upper bounds are generally proved by exhibiting and measuring a particular
solution. Lower bounds are more difficult, since they involve a proof about
all possible solutions (within the chosen model).

In this paper, we follow the same sequence of steps 1.-5. for systems of
asynchronous parallel processes. The remaining sections are organized as
follows.

Section II deals with our choice of model. As we have stated, our model
is set-theoretic; itsistyle is automata-theoretic rather than (for example)
fixpoint style as [MM]. Its basic notions are "process" and "shared variable'.

No particular internal structure is assumed for the processes. Rather,
each process is simply an automaton with a possibly infinite number of internal
states and a set of possible transitions. We expect that often it will be useful
to impose additional structure in order to describe particular systems. However,
use of the more general model strengthens lower bound and other negative results.

Processes are permitted to exhibit infinitely-branching nondeterminism.

This is because we want to treat systems of processes uniformly with single

4
processes, using composition operations to construct larger systems from compon-
ent processes and systems, and describing the behavior of the larger system in
terms of the behavior of the components. Since a system of two deterministic
processes can exhibit infinite nondeterminism, we include this capability for
single processes as well. (Thus, this assumption is made not so much in order
to model systems realistically, but rather for economy and elegance of the model.)

We assume that each process takes a step from time to time, but we make
no assumptions on how long it waits between steps except that the time is
finite - the process does not wait forever. Thus, mechanisms that depend on
timing considerations for their correct operation are ruled out. Although we
realize clocks and time-outs are important mechanisms in real distributed systems,
many aspects of distributed computation can nevertheless be modelled without
reference to such concepts, and the resulting simplicity and tractability of
the model appears to compensate for the limitations imposed on it. We make
assumptions about time in Section VI for the purpose of eﬁaluating system
running time complexity, but these assumptions are never used for determining
system correctness. Eventually, of course, mechanisms that depend on time for
their correct operation should be studied via a suitable formal model.

The shared variable is our basic (and only) communication mechanism. Thus,
we do not assume any primitive synchronization mechanism such as is implicit in
Petri nets [P] or in the communicating sequential processes of Hoare [Ho] and
of Milne and Milner [MM]. Neither do we permit messages or queuing mechanisms as do
Feldman [F] and Atkinson and Hewitt [AH]. A1l of these mechanisms involve significant
implementation cost and we are interested in examining these costs. None of
these mechanisms seems to us to be "universal" in the sense that the most
efficient programs for arbitrary tasks would always be written using it. More-

over, the abstraction of automatic process synchronization serves to hide the

A,

5
asynchronism of the basic model. Since we wish to understand asynchronous
behavior, we prefer not to mask it at the primitive levels of our theory. The
shared variable seems to be universal, to reflect closely many aspects of
physical reality, and to be sufficiently basic to allow problems of communica-
tion and synchronization to be studied.

Because of the popularity of message-based distributed systems and a
possible immediate reaction that a "central" shared memory does not constitute
true distribution, some words about this choice are in order. At the most
primitive level, something must be shared between two processors for them to
be able to communicate at all. This is usually a wire in which, at the very
least, one process can inject a voltage which the other process can sense.

We can think of the wire as a binary shared variable whose value alternates
from time to time between 0 and 1. (We are not specifying the protocols to be
used by the sending and receiving processes which enable communication to take
place, since part of our interest is in modelling and studying such protocols.
All we have postulated so far is that the sending process can control the
value on the wire and the receiving process can sense it.) The setting and
sensing correspond to writing and reading the share variable, respectively.
Thus, shared variables are at the heart of every distributed system.

Because of our decision to leave time out of the model, it is clear that
the only way for the receiving process to be sure of seeing a value written by
the sending process is for the latter to leave the value there until it gets
some sort of acknowledgement from the receiver. Thus, we cannot model the
asynchronous serial communication that is commonly used to communicate between
terminals and computers, for the success of that method relies on sender and
receiver having nearly identical clocks.

We have argued so far that shared variables underlie any timing-independent

o

6

system, but that certain kinds of communication which depend on time cannot
be modelled. Does introducing timing-dependent communication primitives into
our otherwise timing-independent system add any new power? Let us consider
various possible message primitives. Perhaps the simplest is to assume each
process has a "mailbox" [VAX/VMS] or "message buffer" into which another process
can place a message. Now, what happens.when the sender wants to send a second
message before the receiver has seen the first? If the second message simply
overwrites the first, then the buffer behaves exXactly like a shared variable
whose values range over the set of possible messages. If the sender is forced
to wait, then there is an implicit built-in synchronization mechanism as in
[Ho,MM] which we have already rejected for our model. As a third possibility,
the message might go into a queue of waiting messages. If the queue is finite,
the same problem reappears when the queue gets full. An infinite queue, on
the other hand, seems very non-primitive and can be rejected for that reason
alone. In any case, if the needed storage is available, the infinite message
queue can be modelled in our system by a process with two shared variables:
an input buffer and an output buffer. The process repeatedly polls its two
buffers, moving incoming messages to its internal queue, and moving messages
from the queue to the output buffer whenever it becomes empty. Of course, the
sender must wait until the input buffer becomes empty before writing another
message, but it seems to be an essential property of any communication system
that there will be a maximum rate at which messages can be sent, and the sender
attempting to exceed that rate must necessarily wait if information is not to
be lost.

From the above discussion, we see that various message systems can be
modelled naturally using shared variables, provided the variables are not

restricted to binary values. Also, there are situations in which it is natural

7
for a variable to have more than one reader or writer. We incorporate such
generalized variables in our model. Finally, we generalize our model in one
more respect by permitting a variable to be read and updated in a single step.
We call such an operation test-and-set. This simplifies the model since both
reads and writes are special cases of test—and sets. Moreover, there are
situations in which the natural primitive operations are not read and write
but are other test-and-set operations such as Dijkstra's P and V [D]. They
all become just special cases of our general model.

One might object to the use of shared variables to model the long—-distance
communication needed in distributed systems: changes to a shared variable are
instantaneous, while long-distance communication has an inherent delay. However,
communication with delay can be modelled simply within our framework by a pair
of shared variables, joined by a "channel process" which copies values from one
to the other. The arbitrary process delay assumed in our model then appears
as aﬁ arbitrary communication delay.

In general, the environment of a process (or system of processes) can
change a variable at any time; thus, a process (or system) will not necessarily
see the same value in a variable that it most recently wrote there. We require
of the process (or system) that it be complete in that it exhibit at least one

possible response for every possible way the environment might behave.

Operations are given for combining processes and systems into larger
systems.

Section III deals with our choice of problem. Several factors contribute
to making a satisfactory notion of "distributed problem" considerably more
complicated than the simple input-output function which is often identified

with the behavior of a sequential program.

ey

8

1. There is generally more than one site producing inputs and receiving

outputs.

2. Infinite, non-terminating computations are the rule rather than
the exception.

3. The relative orders of reading inputs and producing outputs is
significant as well as the actual values produced.

4. Variations in timing make distributed systems inherently non-
deterministic, so one must allow in general for several different
outputs to a given sequence of inputs, all of which must be considered

"correct".

Therefore, we take as our notion of "problem", an arbitrary set of finite and
infinite sequences of "variable actions", where a variable action is a triple
(u,x,v) consisting of a variable X, the value u read from the variable and the
value v written back into the variable.

Section IV deals with defining what it means for an instance of the model
to solve a problem. We define the behavior of a distributed system to be a
set of finite and infinite sequences of interleavings of possible variable
actions at certain external variables (which are assumed to be used for communi-—
cation with the outside world). Each sequence in the set describes a possible
sequence of variable actions by the system, assuming particular variable actions
by the environment.

We say that a particular system is a solution to a particular problem if
the system's behavior is any subset of the problem. (Trivial cases such as
the empty set are ruled out as system behaviors by our process and system
definitions.) The problem specification is the set of acceptable computations,
while the solution behavior is the set actually realized.

Our definition only requires the solution system to be correct; there is
no stipulation that the maximum permitted degree of nondeterminism actually
be exhibited. We regard the latter as a performance or complexity issue to be
dealt with separately. We remark that the distributed computing paradigm

leads one to a very different view of nondeterminism or concurrency than for

9
multiprocessing. In the latter case, the system implementer is presumed to
have control of the scheduler, so the greater the possible concurrency among
the processes he is trying to schedule, the greater his freedom to do so
efficiently. 1In a truly asynchronous environment, however, one has no direct
control over the scheduling, so it is natural to be concerned with the worst

case (which might actually occur) rather than the best case.

It is shown that operations for combining systems and operations for com-
bining problems are related naturally.

In Section V, we digress from our sequence of steps to present basic
characterization results for behaviors. Two theorems are given, as evidence
that our process and behavior definitions are neither too restrictive nor too
genefal. Theorem 5.1 says that any behavior exhibited by any system of
processes is also exhibited by a single process; thus our definitions are
sufficiently general. Theorem 5.2, on the other hand, says that any behavior
exhibited by a process is also exhibited by a system of two deterministic
processes; thus, if our definitions were to be restricted, we would be sacrificing
either necessary generality or uniformity.

In Section VI, we define several complexity measures appropriate for
distributed systems. It isnot obvious how best to define time measures for
asynchronous systems; we use an interesting time measure first described in
[PF]. Other important measures describe communication space (bandwidth),
local storage space and system structure.

Finally, in Section VII, we give an example of a prototypical distributed
problem (an arbiter) and several very different systems which solve it. The
solutions are compared using our cost criteria. Equivalent implicit and

explicit specifications are given for the arbiter problem.

10

We do not address in this paper an important aspect of problem specifica-
tion, namely, what is an appropriate formal language for describing the sets
of sequences that comprise a problem specification? The arbiter example is
described informally - in standard mathematical notation. We expect the work
on path expressions [CH], flow expressions [Sh], and other formal systems of
expressions might be applicable here.

This paper is part of a larger project on Theory of Asynchronous Parallel
Processes. Other papers completed include [BFJLP}, a study of communication
space complexity requirements for implementation of mutual exclusion,

[FLBB], a study of space complexity requirements for resource allocation,
allowing restricted types of process féilure, and [L], a study of a fast

resource~allocation algorithm for distributed systems.

it

i1

IT. A Model for Distributed Systems

Processes and Shared Variables

The primitive notions in our model are those of "process" and 'variable".
The interaction among system components occurs at the process-variable interface.
A variable x has an associated set (finite or infinite) of values,

values(x), which the variable can assume. A variable action for x is a triple

(u,x,v) with u, v e values(x): intuitively, it represents the action of chang-
ing the value of x from u (its old value) to v (its new value). u and v are

not required to be distinct. Act(x) is the set of all variable actions for x.

df

If X is a set of variables, we let values(X)(EfXU values(x) and act(X) =ng

eX

A process p has an associated set (finite or infinite) of states, states(p),

which it can assume. Start(p) is a nonempty set of starting states, and final(p)

act(x).

a set of final or halting states. We let nonfinal(p) = states(p) - final(p).

A process action for p is a triple (s,p,t) with s ¢ nonfinal(p), t ¢ states(p);

intuitively, it represents the action of p going from its old state s to its new
state t in a single step. (s and t are not required to be distinct). Act(p)
is the set of all process actions for p. If P is a set of processes, we let
states (P) df Uy, states(p) and act(P) df y act(p).

peP —_— peP

Every process action occurs in conjunction with a variable action; the pair

forms a complete execution step. If P is a set of processes and X a set of

af .
variables, we let steps(P,X) = act(P) x act(X) be the set of execution steps.
To specify which steps are permitted in a computation, a process has two other

components in its description. Variables(p) is a set of variables which the

. . . df
process p can access. If P is a set of processes, then variables(P) = DgP

variables(p). Oksteps(p) is a subset of steps(p, variables(p)) describing the

permissible steps of p. Oksteps(p) is subject to three restrictions:

12
(a) For any s ¢ nonfinal(p), there exist t, u, x, v with ((s,p,t), (u,x,v))
€ oksteps(p). Furthermore, if ((s,p,t),(u,x,v)) and ((s,p,t"),
(u',x",v")) ¢ oksteps(p), then x = x'.

(b) (Read Anything): If ((s,p,t),(u,x,v)) e oksteps(p) and u' ¢ values(x),

then there exist t',v' with ((s,p,t"),(u',x,v")) ¢ oksteps(p).

(c) (Countable Nondeterminism): Start(p) is countable, and also for any -

s € nonfinal(p), x ¢ variables(p) and u ¢ values(x), there are only
countably many pairs t, v with ((s,p,t),(u,x,v)) ¢ oksteps(p).

Some intuitive remarks are in order. Oksteps(p) represents the allowable
steps of p. A particular step ((8,p,t),(u,x,v)) ¢ oksteps(p) is applicable
in a given situation only if P is in state s and x has value u. (a) indicates
that some step is applicable from every nonfinal state, and that the next
variable accessed is determined by the state. 1In general, more than one step
might be applicable; hence, we are considering nondeterministic. processes.
However, restriction (c) limits the number of applicable steps to being count-
able, a technical resfriction we need later for some of our results. The effect
of taking the step is to put p into state t and to write v into x. A step is
considered to be an atomic, indivisible action. With respect to the yariable x, a
step involves a read followed by a write -- the read to verify that the transi-
tion is applicable and the write to update its value. We term such an action
a "test-and-set". This is a generalization of the familiar Boolean semaphores
Oor test-and-set instructions found on many computers.

Restriction (b) formalizes an important assumption that a process be able
to respond in some way to anything that might be given to it as input. In other
words, if it is possible for a process in state s to access variable X, then
there must be a transition from s accessing x for every u e values(x).

A process is not required to be finite-state, nor to have a finite number

of transitions from any state. Tn Section 5, we show that countable

LN

i,

13
nondeterminism arises from application of natural combination operations to
even deterministic processes. Since we wish to treat single processes and groups
of processes uniformly, we allow the greater generality from the beginning.

We would like next to describe the execution of a process, by describing
how the steps are to be combined. Intuitively, it is clear that successive
steps of a process should be consistent in their state components -— the new
state at any step should coincide with the old state at the next step. However,
the corresponding consistency condition for variables is more complicated and
involves interaction between several processes. Therefore, we defer discussion
of process execution until after we have described systems of processes.

Systems of Processes

The way in which processes communicate with other processes and with their
environment is by means of their variables. A value placed in a variable is
available to anybody who happens to read that variable until it is replaced by
a new value. Unlike message-based communication mechanisms, there is no guarantee
that anyone will ever read the value, nor is there any primitive mechanism to
inform the writer that the value has been read. (Thus, for meaningful communica-
tion to take place, both parties must adhere to previously-agreed—upon protocols,
though we place no restrictions on what kinds of protocols are allowed.)

We consider variables accessed by a process or system of processes to be
either internal or external. Internal variables are to be used only by the given
process or system; thus, consistency of the values of those variables must be
hypothesized, and an initial value must be provided. External variables will
not have consistency requirements. That is, a process or system of processes
is to be able to respond to values of these variables other than the ones it
most recently left there. Intuitively, the external variables may be accessible
to other processes (or other external agents) which could change the values

between steps of the given process or system.

N

14
More formally, if X is a set of variables (resp. processes), a partial
assignment for X is any partial function f: X = values(X) (resp. states(X))
with f(x) ¢ values (x) (resp. states(x)) whenever f(x) is defined. 1If f is

defined for all x ¢ X, it is called a total assignment for X. A system of

processes S has four components: proc(S) is a countable set of processes,

ext(S) is a set of external variables, int(S) is a set of internal variables,

and init(S) is a total assignment for int(S). § is subject to certain restric-
tions:

(a) Ext(S) n int(S) = @.

(b) For each p e proc(S), variables(p) < ext(S) u int(S).

If P is a set of processes and X a set of variables, we let S(P,X) df

{s: s is a system of processes with proc(S) < P and ext(S) u int(S) < X}.

Execution Sequences

The execution of a system of processes is described by a set of execution
sequences. Each sequence is a list of steps which the system could perform
when interleaved with appropriate actions by the external agent.

Let N denote the set of natural numbers, including zero.

If A is any set, A% (Aw) denotes the set of finite (infinite) sequences of

c * . e s
A-elements. ACOURt denotes A" y Aw, the set of finite or infinite sequences
count .
of elements of A. Length: A + N u {=} denotes the number of elements in

a given sequence.

Let P be a set of processes and X a set of variables. E(P,X)==f

count . . .
steps(P,X)) O is the domain of sequences used to describe executions of
processes and sets of processes over P and X.

To define the allowable execution sequences of a system, we first define

the execution sequences for processes and sets of processes.

15

Let p be a process. An execution sequence for P is a sequence

e ¢ (oksteps(p,variables(p)))Count_E E{p,variables(p)) for which four conditions
' length(e)

hold. =

o Let e ((Si,P,ti)s (ui ,Xi’vi)) i=1 .

(a) If length(e) = 0, then start(p) n final(p) # @.

(b) If length(e) # 0, then s, e start(p).

1
(¢) If e is finite, then tlength(e) e final(p).

(d) tj = sj+1 for 1 < j < length(e).

Let exec(p) denote the set of execution sequences for p. (Note, for example,
that this set is nonempty.) Thus, an execution sequence for a process exhibits
consistency for state changes, but not necessarily for variable value changes.

Next,we describe the execution of a set of processes. We wish the execution
to be fair in the sense that each process either reaches a final state or con-
tinues to execute infinitely often; it cannot be '"locked out"” forever by other
processes when it is able to execute. In other words, processes are completely
asynchronous and thus cannot influence each other's ability to execute a step.
Since no consistency of values of variables has yet been assumed, a simple
"shuffle" operation will suffice.

Let A be any set, K any countable set, and b = (bk)keK be an indexed set

count.
of elements of A

Shuffle(b) is the set of sequences obtained by taking
all of the sequences in b and "merging" them together in all possible ways to
form new sequences. Formally, if n ¢ N, then define [n] = {1,...,n}.
count . . , .

If n = =, then [n] = N. A sequence ¢ ¢ A is in shuffle(b) iff there is a
bijective partial map m: K x N - [length(e)] such that (a)-(c) hold.

(a) 7 is defined for (k,n) iff n € [length(bk)].

(b) 7 is monotone increasing in its second argument.

(¢) If w(k,i) = j, then Cj = the ith element in the sequence bk'

erase: steps(P,X)

The shuffle operator is easily extended to an indexed set of subsets of A®°Unt

b

viz. if B = (Bk)ksK, where B, < AUt then shuffle(8) ¥ u {shuffle(d) : b =
(bk)kEK and b k’ keK}.
If P is a countable set of processes, define exec(P) df shuffle((exec(p))ng).

We now extend our notions of execution sequences to systems of processes.
In doing so, we want to insist on consistency for internal variable values, but
not necessarily for external variable values.
. . count
If X is a set of variables, let B(X) (act (X)) . (B stands for

"behavior".) TLet b & B(X),

x € X, and f be a partial assignment for X. Latest(b,x,f) is the value left

in x after performing the actions in b, assuming x had initial value f(x). We
define "latest' recursively on the length of b. If length(b) = 0 then
latest(b,x,f) = {T(x) if £(x) is defined,
(undefined otherwise.
Now assume length(b) > 1, and b = b'(u,y,v) for some (u,y,v) € act(X).
Then latest (b,x,f) =

*V if x=vy,

1atest(b',x £) if x#y and latest(b', x,f) is defined,

e i o,

undefined otherwise.

rk

Let X, Y be sets of variables, b £ B(X), and f a total assignment for Y.
We say b is (¥,f)-consistent if for every prefix b'(u,y,v) of b with
y € Y, it is the case that u = latest(b',y,f). For B < B(X), define
consist (B) df {b e B : b is (Y,f)-consistent}.
Y E

Let P be a set of processes, X a set of variables. Then
* act(X) maps each pair (a,a') to its second component a'. Erase is.
extended to a homomorphism mapping E(P,X) to B(X). (Similar extensions of
notation are used later in the paper.) For E <cE(P,X), define
con51stY f‘)q=f {e e E : e is (Y,f)-consistent}. Now let S be a system of

df .

processes. Exec(S) = COHSIStint(S),init(S)(exec(proc(S)))<E E(proc(s),
ext(S) v int(S)). Thus, exec(S) consists of those execution sequences of
the system's processes in which the internal variables are consistent

throughout the sequence. Note that exec(S) # a.

17

Operations on Systems and on Sets of Sequences

One goal of our formalism is to permit complex systems to be understood
in terms of simpler ones. For this, we need operations for building
larger systems from smaller ones. Corresponding to these operations will be
operations on related sets of sequences. This approach is similar to that of
Milne and Milner [MM].

The first operation joins a countable collection of systems into a single
one. Let (Si)ieI be a countable indexed family of systems such that

(a) i#j implies proc(Sg n proc(Sj) = §.

(b) i#j implies int(Si) n (ext(Sj) u int(Sj)) = {.
Then {Ksi)ial is the system S such that

proc(S) =igI proc(Si),

ext(8) =;Yr ext(Si),
int(S) =121 1nt(Si),

init(S) =121

init(Si).

Let P be a set of processes, X a set of variables. Then & is defined on
countable indexed families of subsets of E(P,X) or B(X) to be simply the
shuffle operation.

The second operation on systems is the one of turning selected external

variables into internal ones. Let S be a system, Y a set of variables such

that Y n int(s) =@, and f a totalAassignment for Y. We define consistY f(S)
3

to be the system S' such that proc(S') = proc(S), ext(S') = ext(S) - Y, int(S') =
int(S) U Y, and init(S') = init(S) u f. ConsistY’f has already been defined
for subsets of E(P,X) and of B(X).

In Section IV, we will be interested in restricting attention to a subset

of a system's variables rather than all of its variables. Thus, if X and Y

are sets of variables, b ¢ B(X), ‘then restrY(b) (resp. elimY(b)) is the sub-

sequence of b consisting of the actions involving (resp. not involving)

o,

18

variables in Y. (ElimY(b) might be finite even if b is infinite.)

That these definitions interact properly is shown by the fellowing

theorem. (P denotes the power set operator.)

Theorem 2.1: Let P be a set of processes, X, Y and Z sets of variables with

YnZ=@, fatotal assignment for Y. Let S, E, B and B' denote S(P,X),

E(P,X), B(X) and B(Z) respectively. Then the following diagram commutes.

i t
Scount exec (P(E))count erase (P(B))count e11mZ (P(B,))coun
@ | % | | ® — l ®
3 S§ES, P(E) erase P(B) ellmZ P(B")
—)
consistY £ consistl lconsist l consist
> exec Y, f erase Y, f elimz v, f
ey ey
S P(B) P(B) — P(B")
O
Proof: Straightforward.
Modules
The two operations @ and consist.zf are sufficient to build any system

from one-process systems in a simple way.

Let S, S' be systems. S' is a module of S if proc(S") < proc(S),
ext(S') ¢ ext(S) u int(S), int(S') < int(S), and init(S') = init(S)|int(S")
(the restriction of the function init(S) to domain int(S")). Thus, a module
is a subsystem whose internal variables are private to it and whose external
variables form the interface between the module and both the remaining system

and the external world.

A system S is partitioned into modules (si)iel if Si is a module of S for

each iel, (proc(Si))ieI is a partition of proc(S), and for all i, j ¢ I, if

i#j, then int(Si) n (ext'(sj) U int(sj)) = {.

i,

19
A system S is atomic if it consists of a single process with no internal
variables, i.e. if]proc(S)] = 1 and int(S) = init(S) = §@.

The following is immediate from the definitions.

Theorem 2.2.
(a) Every system can be partitioned into a countable set of atomic
modules.
(b) Every system can be obtained from an arbitrary partition into
modules by one application of & followed by one application of

cons:LstY’f for appropriate Y,f.

Remarks on Indivisibility of Variable Access

Our process and execution sequence definitions assume possible indivisi-
bility of a fairly powerful form of variable access. In particular, processes
that can both read and change variables in one indivisible step (such as the
"test-and-set' processes of Cremers-Hibbard [CH] and Burns et al [BFJLP] are
included in the general definitions. Some readers may consider this general
access mechanism to be unreasonably powerful, arguing that a process model
based on indivisibility of "reads" and "writes' only is more realistic. Such
a process model can be defined by certain restrictions on our general model
(as we describe below). Thus, our development not only specializes to include
consideration of a read-write model, but also allows comparison of the power
of the read-write model with that of the more general access model. The
specialization can be carried out as follows.

A process p is called a read-write process provided for each s £ states(p),

the set A = oksteps(p) n {((s,p,t),(u,x,v)): t e states(p), u, v € values(x)}

has (at least) one of the following properties.

20
(a) (A describes a '"read operation'.)
For all ({s,p,t), (u,x,v)) in A, it is the case that u = v.
(b) (A describes a 'write operation’.)
¥ ((s,p.t), (u,x,v)) and ((s,p,t'),(u',x,v')) are two arbitrary
elements of A, then t =t' and v = v',
Two simple examples follow.
Example 2.1. Let states(p) = start(p) = {s}, final(p) = @, variables(p) = {x},
values(x) = {0,1}, and oksteps(p) = {((s,p,s),(0,x,1)), ((s,p,s),(1,x,0))}.
Process p simply examines x repeatedly, changing its value at each access. The
change is clearly an activity that involves both reading and writing, so that,
intuitively, p is not a read-write process. Formally, it is obvious that

neither (a) nor (b) holds.

Example 2.2. Let states(p) = start(p) {s}, final(p) = @, variables(p) =

{x}, values(x) = {0,1} and oksteps(p) = {((s,p,s),(0,x,1)), ((s,p,s),(1,x,1))}.
Process p simply examines x repeatedly, writing "1" every time. It is easy to

see that p is a read-write process.

Communication Delay

So far, our model describes asynchronous processés communicating by shared
variables, a situation which suggests that the processes are physically located
sufficiently near to each other to share memory without delay. We also wish
to model more general '"distributed" systems‘of asynchronous processes, in which
communication is done by means of a channel with significant transmission delay.
No new primitives are required in order to extend the present model to handle

"channel

such communication. A one-way channel is simply modelled by a special
process' p, as detailed below.
Let V be any set, states(p) = ({write} x V) u {read}, start(p) = {read},

final(p) = @, variables(p) = {x,y}, values(x) = values(y) = V, and oksteps(p) =

21

{((read,p, (write,v)),(v,x,v)) : u,v e V} u {(((write,u),p,read),(v,y,u)): u,ve V).
Process p is thought of as sharing a variable with each of two other processes.
It alternately reads from one of the variables and writes the value read in the
other variable. (p is obviously a read-write process.)

When p is combiﬁed with two processes in the manner already described in
this section, the consistent execution sequences exactly describe the effeat of
an arbitrary-delay one-way channel used for communication between the two original

processes. Different types of communication channels similarly can be modelled,

using corresponding types of channel processes.

22

ITI. Distributed Problems

In the introduction, we listed four factors making a satisfactory notion
of "distributed problem" more complicated than just a function. We now give a
definition that accommodates those factors.

Let X be a set of variables. A distributed problem over X is any subset

B of RBR(X).

The explicit mention of different variables models the multiplicity of
input/output sites. The inclusion of finite and infinite sequences in B(X)
models terminating and nonterminating computations. The use of totally ordered
sequences of actions preserves the relative ordering of remote events. And
finally, the use of subsets (rather than single sequences) recognizes the
inherent nondeterminism of distributed systems.

Typical distributed problems consist of sequences restricted by conditions

of exclusion, synchronization and fairness.

23

IV. Solutions to Distributed Problems

System Behavior

Exec(S) gives complete information on how a system S of processes might
execute in any given environment. Often, however, one is not interested in
how the processes execute but only in their effect on the environment, that
is, the way they change the variables. We obtain this information from the
execution sequences by extracting the variable actions.

If S is a system of processes, we define the behavior of S, beh(S) Lf
erase(exec(S)) < B(ext(S) u int(S)).

Similarly, we define the behavior for a process p and a countable set of
processes P:

Beh(E)QE erase(exec(p)) c B(variables(p)),

Beh(P) df

erase(exec®)) c B(variables(P)).
Often one is interested only in those actions involving the external

variables. We define the extermal behavior of S, extbeh(S) if elimint(S

The following two results relates extbeh to & and consistY £
b

Theorem 4.1: Let P be a set of processes, X a set of variables. Let § and B

denote S(P,X) and B(X) respectively. The the following diagram commutes.

Scount extbeh Bcount
—_—
& ¢
extbeh
S i

Proof:

Let (S8.). e S

i‘iel count’ Then ethEh($(Si)i€I) -

elimint(@(si)iel)(bEh(Q(Si)iEI)) = G)(elimint(Q(Si)igij(beh(si)))igI by Theorem 2.1,

= {B(ellmint(si)(beh(si)))iEI by domain considerations, = @(extbeh(si))iEI.

0

24
Theorem 4.2: Let S be a system of processes, Y a set of variables for which
Y nint(S) = @, £ a total assignment for Y. Then extbeh(consistY £ (s)) =
b

elimY (consistY,f (extbeh(S))).

P f: i = '
00 Extbeh(conslstY’f (8)) Ellmint(SbY

= elimY_(elimint(S) (beh(consistY’f s)))), = elﬁnY(elimint(S) (consistY,ébeh(S))))

(beh(consistY £ (S))) by definition,

v, £ (elimg . sy

Theorem 2.1, = elimy (consisty £ (extbeh(S)))). {]
b

by Theorem 2.1, = elimY,(consist (beh(S)))) by

Realization and Solution

Let S be a system of processes, B < B(ext(S)). Then S realizes B provided
extbeh(S) = B. This definition might at first appear to capture the conditions
under which system S solves the distributed problem B. However, we think that
a weaker definition is more appropriate; we say S solves B provided extbeh(S) c B.

Thus, S is not required to exhibit the same degree of nondeterminism as B.
Intuitively, B is the set of acceptable input/output sequences; S's input/output
sequences must be included among those in B, but they need not encompass all
of B. Trivial cases such as extbeh(S) = @ are ruled out by the definitions
for systems and their executions; for instance, recall that exec(S8) cannot be empty.

Equivalence and Substitution

Let S be systems of processes. Then S1 = 82 (Sl is equivalent to Sz)

1’82
provided extbeh(Sl) = extbeh(Sz). This definition might at first appear ‘to

capture the conditions under which S, might be allowed to replace S, as a

1 2
module in a larger system. Indeed, this style of definition is used for such

a purpose in [MM]. However, we think, as before, that a weaker definition

is appropriate: we say SlES2 (S1 is substitutable for Sz) provided

extbeh(Sl)_g extbeh(Sz).
Thus, Sl is not required to exhibit the same degree of nondeterminism as

SZ' In contrast with the usual assumptions about nondeterminism, in the case

e,

25

of asynchronous systems all possible nondeterministic choices should be correct.

Thus, a system S, exhibiting any subset of the execution sequences of S2 should

1

be acceptable.
Appropriate interactions between our operations and relations are shown

in the following theorem.

Theorem 4.3: Let P be a set of processes, X and Y sets of variables, f a
total assignment for Y, and let S and B denote S§(P,X) and B(X) respectively.

Then the following hold.

(a) @&, consistY’f and restrY and elimY as operations on P(B) preserve c.

©

(b) @ and consist as operations on § preserve w .

Y,

(c) ® and consist, as operations on § preserve =

Y, £
Proof: (a) is obvious. For (b), the case of & follows from Theorem 4.1,

while the case of consist £ follows from Theorem 4.2. (c¢) is immediate from
>

(b). O

Theorem 4.3 implies the following. Assume Sl is substitutable for 82’ and

S2 is a module of system T. Let Tl be the system obtained by replacing

S2 by S1 in TZ' Then T1 is substitutable for TZ' Similarly, if S1 is

equivalent to S then T. is equivalent to TZ' Thus, our external behavior

2’ 1

definitions provide a way of describing the behavior of a system in terms of

the behavior of its components.

N

26

V. Countable Nondeterminism

The results of this section justify the "countably nondeterministic"
generality of our process definition. Theorem 5.1 says that the countable
nondeterminism of a system (caused by arbitrary interleaving of process steps
as well as the nondeterminism of the individual processes) can be simulated by
the countable nondeterminism of a single process. More precisely, any external
behavior realized by a system is also realized by an atomic system. Thus, our
definition is general enough to permit uniform treatment of single processes
and groups of processes. On the other hand, Theorem 5.2 says that the count-
able nondeterminism of a process can be simulated by the countable nondeter-
minism of the interleaving of steps in a system of two deterministic processes.
More specifically, any external behavior realized by an atomic system is also
realized by a system of two deterministic processes; thus, our definition could
not reasonably be made more restrictive. These results are closely related to
some of those of Chandra [Ch]. (However, our sequences have considerably more
structure than his, so that we do not obtain the type of explicit characteriza-
tion of the class of process behaviors that he does.)

We first show how to reduce the number of processes to one.

Lemma 5.1: For any system S, there is a system S' with the same external and

internal variables such that |proc(S')] = 1 and beh(S') = beh(S).

Proof: We describe a process p which simulates the fair execution of all of

the processes in proc(S). The most obvious idea is to allow p repeatedly to
use countable nondeterminism to select which process g € proc(S) to simulate
next, and at the same time use its countable nondeterminism to select among

the countably many possible alternatives of q. The only problem is that nothing
insures that p will actually simulate infinitely many steps of each g; p might

always choose to simulate one particular process, thereby violating the fairmess

P

PN

27
of the shuffle operation. However, the countable nondeterminism of p can also
be used to enforce fairness, as follows. Let w: N - {0} =+ proc(S) be a fixed
total function such that each q € proc(S) appears infinitely many times in the
range of m. Process p keeps a partial function schedule: N - {0} - proc(S)
in its state, representing the process which has been or is to be simulated at
each step of p- At any moment during p's computation, schedule is a finite
function. Also, p keeps config, a partial assignment to proc(S), representing
the current states of each process which has had a step simulated by p.

Config is also finite at any particular moment. The other principal data in

p's state is currentstate, the current state of the next process to be simulated.

Fach start state of p contains an initialization of schedule as {(1,9)}, for

some q eproc(S), an initialization of currentstate as s, for some s e start(q),

and an initialization of config as @. At each step n of p, p does the follow-

ing: (Let q denote the value of schedule(n) and s the value of currentstate

at the beginning of step n of p. Let x denote the unique variable to be

accessed from state s, u the value of variable x at the beginning of step n.

The CHOOSE command represents a use of p's countable nondeterminism; the

remaining syntax should be self-explanatory.)

CHOOSE (t,v) such that ((s,q,t), (u,x,v)) £ oksteps(q);

X 1= v,

config(q) := t;

IF schedule(n+1) is undefined THEN [CHOOSE q' € proc(S); schedule(a+l) := q']

IF config(schedule(n+l)) is defined THEN currentstate := config(schedule(n+l))
ELSE [CHOOSE s' ¢ start(schedule(n+l)); currentstate := s'];

CHOOSE k such that schedule(k) is undefined;
schedule(k) := m(n)

o,

28

That is, p uses its countable nondeterminism to select from among the
moves of the simulated processes, to select the next process to simulate (if
necessary), to select start states for the simulated processes, and to select
specific steps (of p) when each process in proc(S) will be guaranteed of
being simulated.

We leave to the reader the task of translating the code into a process
in our formal model. (All of the countably nondeterministic choices must be
done at once in the translated version. If schedule (n+l) is undefined then
g' is chosen, and if config(q') is then undefined, the code contains a second
choice for a start state of q'. It might appear at first that these two
choices must be done sequentially; however, it is easy to make a single choice
of (q',8'), where 8' ¢ start(q').)

Let S' be the system with proc(S') = {p}, ext(S") = ext(S), int(S') = int(S)
and init(S') = init(8). That beh(S') = beh(S) follows from the fact that p
simulates exactly all of the fair interleavings of steps of the processes in
proc(S).

Next, we prove a technical lemma producing a standard form for processes.

A process p is called treelike provided (a) and (b) hold.

Il
Tt
——t

I A
fd

(a) For all ty € states(p), |{((s,p,t),(u,x,v)) € oksteps(p); t

(b) For all t0 e start(p), '|{((s,p,t),(u,x,v)) e oksteps(p); t =t }l = 0,

Lemma 5.2. If p is a process, then there is a treelike process q with

Beh(p) = Beh(q).

Proof Sketch. Process p can be "opened up into a tree" by replicating states:

process q has states corresponding to finite paths in p. [

It remains to remove internal variables.

[R%]
0

theorem 5.1. For any system S, there is an atomic system S' such that S' = S.

Proof Sketch. By Lemma 5.1, we can assume proc(S) = {p}. By Lemma 5.2, we can

assume p is treelike. A process transformation is carried out in two steps
(the intermediate result of which need not be a process). First, Py is
constructed from p by "pruning” p's tree so that only (int(S),init(S))-consis-

tent paths remain. Since p is treelike, there is no ambiguity involved in

deciding when to prune. Now Py is constructed from Py by condensing paths
involving variables in int(S). This construction is not carried out in stages
because of the possible condensation of infinite paths to finite paths. The
possibility that pl could continue forever on branches involving only variables
in int(S) involves transition to a final state of P,- Finally, S' is the
atomic system such that proc(S') = {pz} and ext(S') = ext(S). J
We argue next that our countably nondeterministic process model is not too
» general.
Restriction of processes to finitely many states would surely be unnatural,
ruling out processes which resemble natural sequential computation models such
as Turing machines. But the usual sequential computation models, though
allowing infinitely many states, are restricted to finite nondeterminism. This
restriction does not seem overly strong in the sequential setting, since it is
preserved by natural sequential combination operations. But for the asynchronous
parallel case, finite nondeterminism would not be preserved by fair combination
operations such as our &. The next result says that the external behavior of
any system can be realized as the external behavior of a pair of communicating
deterministic (and therefore finitely nondeterministic) processes. However, Example
5.1 below shows that the set of external behaviors realizable by atomic systems of
finitely nondeterministic processes is a proper subset of the set of external

behaviors realizable by arbitrary systems.

30

More precisely, a process p is finite branching (resp. deterministic) provided

start(p) is finite, (resp. of cardinality 1), and also for any s € nonfinal(p),

x ¢ variables(p), u € values(x), there are only finitely many (resp. at most 1) pairs
(t,v) with ((s,p,t), (u,x,v)) € oksteps(p). A system S is finite branching (resp.
deterministic) if every process in proc(S) is finite branching, (resp. determini-
stic).

In the following theorem, let p denote the process of Example 2.2. Process p

It

is deterministic and finite state. Assume variables(p) = {x}, and f(x) 0.

I

Let T be the atomic system with proc(T) = {p}, ext(T) = {x}, and int(T)

init(T) = @.

Theorem 5.2. Let S be a system of processes. Then there is a deterministic

atomic system S, such that S = consist (s, 8 T).
{x}, 71

1

Proof Sketch. By Theorem 5.1, we can assume that S is atomic. Let proc(S) = {q}.

For each s ¢ states(q), y € variables(q), u ¢ values(y), there are only countably
many pairs (t,v) such that ((s,q,t),(u,y,v)) e oksteps(q). Fix an ordering for
each such set of pairs. Also fix an ordering for the elements of start(q).
Process 9y simulates a step of process q as follows. Process 44 alternately
tests x and increments a counter until it sees that x has been set to 1. It
then simulates a step of g, using thé counter value to select one of the possible
alternative moves, and then resets the counter and variable x to 0 for the next
step of simulation. S1 is the system with proc(Sl) = {ql}, ext(Sl) = ext(S) v
{x}, int(Sl) = init(Sl) = ¢. 0
We conclude this section with an example of a set of sequences which can

be realized as the external behavior of an atomic system,but not of any finite-

branching atomic system.

o,

31

Lemma 5.3. Let p be a finite-branching process, x e variables(p), b ¢ (act(x))w.
If beh(p) contains infinitely many prefixes of b, then b e beh(p).

Proof Sketch. By Konig's Lemma. 0

Example 5.1. Consider the problem of writing a specific value any finite number
of times.

More specifically, let x be a variable, v € values(x), A = {(u,x,v):
u e values(x)}. A% is the set of all finite sequences of actioms, each of which
"writes v" into x. A¥* can easily be obtained as beh(p) for a process p which
uses countable nondeterminism to choose an element of N for a counter initiali-
zation. Process p alternately decrements the counter and writes v, halting
when the counter is 0. Therefore, A* can be realized as the external behavior
of an atomic system.

On the other hand, Lemma 5.3 implies that A* is not beh(p) for any finite-
branching process p, since b = (v,x,v)w has all of its finite prefixes in A%*.
Therefore, A* cannot be realized as the external behavior of any finite~-branching

atomic system.

32

VI. Complexity Measures

Separation of behavior and implementation opens the way for comparison
of different implementations of the same behavior, a fundamental subject of
study for any theory of computation. Intuitively, comparisons might be made
on the basis of process configuration, local process space requirements,
communication space requirements, number of process steps executed, number
of changes made to variables, and possible "amount of concurrency'. Tradeoffs
would be expected.

Configuration and space measures seem easy to formalize; one can simply
count numbers of processes and variables, numbers of states and variable values.
Time and concurrency measures are not so straightforward. We use a version of
a measure described in [PF]. Intuitively, fixed upper bounds are assumed for
the intervals between the occurrence of certain events. (For instance, each
process might be assumed to take a step withincl units of time. Also, when

the system makes certain changes to an external variable, the environment

might be assumed to respond in a specific way within c, units of time.) With

2
such assumptions, an upper bound can be proved for the running time of a

finite execution sequence. Then an upper bound for the time required for a
particular event to occur is just the maximum of the upper bounds on the

running times of all possible execution sequences, up to the point when that
event occurs. No lower bounds are assumed for the intervals between the
occurrence of events. Thus, all fair interleavings of steps are still possible,
even with the time assumptions. These assumptions are therefore of no use in

proving logical correctness of systems. Their only use is for bounding running

time.

33

VII. Example: An Arbiter

Behavior Specification Method

In this section, we specify behavior for a typical distributed system —-
an arbiter. We do not here espouse any particular formal specification language, but
rather express behavior restrictions in general mathematical terminology.

We also describe three particular and diverse implementations within our
model that exhibit (i.e. solve) this behavior. Finally, we compare these
implementations using our complexity measures.

The specification follows a pattern which has more general applicability,
so we first describe that pattern. A finite set X of variables is accessed by
a "user'and by a "system". The user is required to follow a simple and restric-
tive behavior pattern; formally, a set U < B(X) of "correct user sequences"
is defined. The system is to be designed so that when it is combined with a
user exhibiting correct behavior, with correct initialization of variables, cer-
tain conditions (on the values of variables) hold. Formally, a set
M ¢ ({user,system} x act(X))Count is defined in order to describe the desired
conditions. A total assigmment f for X is defined in order to describe cor-
rect initialization of variables.

In a sense, U, M and £ may together be regarded as a specification for
the behavior of the desired system: any b e B(X) can be considered "acceptable"
if whenever it is combined consistently with a sequence in [, the resulting
combination is in M. A system of processes is a correct implementation if all
of its external behavior sequences are acceptable.

More formally, if A 1is any set, ¢t ¢ ACount », L any set, x any element
of L, then _Ef denotes that element of ({x} x A)Count whose ith element

. . .th . .
is (x,bi), where bi is the i element of b. (That is, the entire se-

quence is labelled by x .) This superscript operator is extended to subsets of

5,

on,

34

count .
A in the obvious way.

For X, Y sets of variables, L any set, b e (L x act(X))Count, f a
total assignment for Y, we say that b is (Y,f)-consistent provided the se-
quence of second components of b is (Y,f)-consistent.

In the present examples, L 1is taken to be {user,system}, a set of iden-

tifying labels for the modules of interest.

A sequence b e B(X) is called (U,M,f)-acceptable provided

user , system
3

{c e shuffle(U b): c is (X,f)-consistent} < M. Then a system of pro-
cesses S 1is a correct implementation provided S "solves" {b : b is (U,M,f)-accep-
table} (that is, provided every sequence in extbeh(S) is (U,M,f)-acceptable).
This type of description may be somewhat difficult for a system designer to
use as a specification, so that it may be helpful to define explicitly a set B
of (u,M,f)~acceptable sequences. Any system of processes § that solves B is
then considered correct. B should be as large as possible so as not to constrain
the system designer unnecessarily. In the following example, we are able to ob-
tain B exactly equal to the set of (U,M,f)-acceptable sequences, thus providing

an explicit correctness characterization. We do not yet have a general equivalence

theorem for specifications, however.

Arbiter Specification

Let values(x) = {E,A,G} for each x ¢ X. Intuitively, E indicates "empty",

A indicates "ask" and G indicates "grant" of a resource. The user is restric-
ted to initiating requests and returning greanted resources. More precisely,

U ¢ BX) is defined as follows.

(Let a ¢ shuffle({ax : x ¢ X}), where each a_¢€ B(X).

a e U 1iff for each x & X, (a)-(c) hold

}ength(ax).
i=1

)

(Let a_ = (ui,X,Vi)

iy

35

(a) Correct Transitions

For all i, 1 <4 < 1ength(ax), if u, = E then v, = E or A, and if u, = A
then v, = A (The user cannot grant a request, and once he has initiated a re-
quest he cannot retract it.)

(b) Stopping

‘s fini _—
If a 1is inite and nonempty, then vlength(ax) E (The user cannot leave
the system when a request is pending or granted.)

(¢) Return of Resource:

For all i, if u, = G then there exists j 2 i with vy T E or A. (If the user

sees that his request has been granted, he must eventually return the resource.)

Thus, user correctness is defined locally at each variable. 1In particular,
the user can consist of separate processes, one for each variable, with no com-
munication between them. It is easy to design a set of processes with behavior
a subset of U.

Correct operation for our arbiter system will require that all requests
eventually be granted, and that no two requests be granted simultaneously.

count

Let f = Ax[E], L = {user,system}. M c (L x act(X)) is defined as

follows.

¢c e M iff ¢ 1is (X,f)-consistent and both (a) and (b) hold.

(a) Local Conditions

count

(Let ¢ € shuffle({cx : x € X}), each c € (L x act(x)))

For each x ¢ X, both (al) and (a2) hold.

length(c)

(Let e = (2;,(u%,v)) x.)

(al) Correct Transitions

fi

For all i, 1 <141 < 1ength(cx), either u v, or else one of (all)-

(al3) holds.

(all) 2. user, u, = E and v, = A.
i i i

o

36

[t

(al2) 2, user and u, = G.
i i

(al3) 2 system, u, = A, and v, = G.

i

(The allowed transitions are depicted at right.)

user,

() system
user user,
system
AO

E

system

user user,
G

user,(i_:>
(a2) Progress

system

For all i, if 2 # E then there exists j > i with v, # v, .
j i

(Any value other than E is eventually changed.)

(b) Global Conditions

_ length(c) _ length(c)
(Let C (Q»i, (ui’xi;vi)) i=1 > d = (ui ’xi’vi) i=1 ')

(bl) Mutual Exclusion

For no X;sX, € X, X # X2 and no prefix e of d is it the case that

latest(e,xl,f) = latest(e,xz,f) = G.

Next, we define B, thereby providing an explicit characterization of the

set of correct sequences.
b e B iff either (a) or (b) holds.

(a) 1Initialization or User (Observed to be Incorrect

(Let b ¢ shuffle({bX : x € X}) as before.)
For some x ¢ X, one of (al)-(a3) holds.

_ length(b
(Let bx = (ui,x,vi)i=1

x).)

(al) u, =G

1
(az) For some i, it is the case that v = E and Ui = G, or
and Ui © E or G.

else v, = A
i

37

(a3) length (bx) = o, and u, = G for all sufficiently large 1.
(Thus, we have not required any particular error detection behavior; we permit
arbitrary system behavior if incorrect action by the user or incorrect variable
initialization occurs. Note that it would be easy to program a system to check for
errors such as those represented in (al) and (a2), but (a3) errors cannot
be detected at any finite point during the computation.)

(b) Correctness Conditions

Both (bl) and (b2) hold.

(bl) Local Conditions

(Let b ¢ shuffle({bX : x € X}) as before.)

For each x ¢ X, (bll)-(bl3) all hold.

length(bx).

(b = (ui’X’Vi) i=1)

X

(bll) Correct Transitions

For all i, if u, =E or G, them v, =u., and if u, = A,
i i i i

then vi = A or G.

(bl2) Infinite Examination

bx is infinite.

(b13) Response

For all i, if u, = A, then for some j 2 i it is the case that
v, #A.
J
(b2) Global Conditions

_ length(b)
(Let b = (ugox,5v.)o oy .

)

(b21) Mutual Exclusion

For no Xys Xy € X, Xy # X, and no prefix d of b it is the
case that latest(d,xl,f) = latest(d,xz,f) = G.]

The following theorem shows that our explicit characterization for system

behavior is as general as possible.

2N

(bll) fails: Any a € U, c e shuffle(a

38

Theorem 7.1: B = {b : b is (U,M,f)-acceptable}.

user , system
y)]

Proof: < : Let be B, aeU, ¢ e shuffle(a b (X,f)-consistent.

We must show c ¢ M.

Since a € U and ¢ is (X,f)~-consistent, it follows that b fails to
satisfy (a) of (the definition of) B. Thus, b satisfies (b) of B.

We check that ¢ satisfies each condition of M. ¢ satisfies (al) of

M because of (a) of U and (bll) of B. To verify (a2) of M, write

length(cxx

c € shuffle({cX : x € X}), and for fixed x, write e, = (zi,(ui,x,vi))i=l

If (Ri,(ui,x,A)) is an element of ¢, then (bl2) and (bl3) of B together
imply that A # A for some j > 1i. If (zi,(ui,x,G)) is an element of ¢,
then let j be the largest number < i with Ej = user. By (bll) of B,
j exists and Vj = Aor G. Then by (b) of U, there exists k > i with
Qk = uger. If W # G we are done. Otherwise, (c¢) of U implies that
v # G for some m > k.

(bl) of M follows easily from (b2l) of B and (a) of U.

2: Let b ¢ B. We must produce a e U, c ¢ shuffle(auser, bsystem)

¢ (X,f)- consistent, and c¢ ¢ M. Clearly, b fails to satisfy (a) of B.
In addition, b will fail to satisfy at least ome of (bll), (b12), (b13) and
(b21) of B.

We consider four cases.

user . system
>

b) which is (X,f)-consistent
will fail to satisfy (al) of M. One such ¢ can be constructed by immediately
preceding each element (system,(u,x,v)) of ¢ which is derived from an action

of b by an element (user,(y,x,u)). The value of y is uniquely determined by

the consistency requirements on c; since b fails to satisfy (a) of B, this

determination produces a e U.

(bl2) fails: Consider x such that actions (u,x,v) only appear finitely often

in b. Construct a e U, ¢ ¢ shuffle(auser,bSYStem) s, ¢ (X,f)~-consistent,

A

(b21) fails: Let b = (ui,xi,vi)

39

with the following property. In c¢, following all elements of the form

(system, (u,x,v)) (for any u,v), there is an element of the form (user, (u,x,A))
(for some wu), and following that element there are infintely many elements of
the form (user,(A,x,A)) . Such a, ¢ can be constructed by a slight addition
to the construction for the preceding case. The resulting c¢ fails to satisfy

(a2) of M.

(b13) fails: Consider x such that (A4,x,A) occurs in b and moreover for

all following actions in b of the form (u,x,v), we have v = A.

user . system
b

Then any a € U, ¢ ¢ shuffle(a b) which is (X,f)-consistent

will fail to satisfy (a2) of M. Such a, c can be constructed as before.

Jength(b)

i=1 , where (uj,xj,G) and (uk,xk,G)

are actions witnessing the contradiction to (b21) of B. We can assume that
j <k, Xj # X and for no m, j <m < k it is the case that X, = xj.

user .
s » ¢ (X,f)-consistent, with the

bsystem)

Consider a £ U, ¢ ¢ shuffle(a
following property. In ¢, the elements derived from b's actions (uj,xj,G)
and (uk,xk,G) have no intervening elements of the form (user, (u,xj,v)) for
any u, v. Such a, ¢ fail to satisfy (bl) of M.

Such a, ¢ can be constructed as before. 0

The given description of B seems sufficiently manageable to be used to

specify system behavior.

Three Solutions and Their Comparison

The arbiter problem as stated above admits many
different implementations -- i.e. systems of processes with external behavior a
subset of B but with very different internal structure and execution behavior.
Outlines of three such implementations follow. Complexity bounds are estimated
for all of the impleméntations.

Let n = |x|, the number of external variables. Assume c, to be an upper

1

40

bound on the time between steps of each process of the implementation system.
Also, assume c, to be an upper bound on the time between the granting of a
resource and the return of that resource by the user. We calculate upper bounds
on the time between the initiation and granting of a request. We calculate si-
milar bounds with the additional restriction that at most k other requests over-
lap the given request in time.

Implementation 1: The simplest implementation is an atomic system S con-~

sisting of a single process p which polls each variable in circular se-
quence. When A 1is read, p changes it to G and then repeatedly reads
that variable until its value reverts either to E or A . When this oc-

curs, p vresumes polling with the next wvariable.

It is obvious that extbeh (8) < B (but note that equality does not hold).
The single process p has 2n states and no internal variables (where n = |xl,
the number of external variables).

The worst case time for a request occurs when a user makes a request just
as he returns the resource; he must wait for p to examine all of the other
variables, possibly granting the resource to each other user in turn. The upper
bound is cz(n - 1) + 2c¢;n. If there are at most k other requests active at

1

the same time as the given request, the upper bound is <y k + 2cln . (Thus, if

there are no other active requests, the time to grant the request is bounded by

2cln.

Implementation 2: Assume for simplicity that n = 2" , m=>1. The idea of Imp-

lementation 1 can be extended to allow "more concurrency'" using a binary tree

of polling processes, with the leaves accessing the interface variables x ¢ X.
Each non-root process p alternately polls its left and right son variables.

When A 1is seen, p changes its own father variable to A and waits. When

the father variable changes to G, p grants its pending son's request by

N

41

changing the appropriate A to G. ©p then waits for that son variable to
revert to either E or A. When this occurs, p changes its father variable
to E and then resumes polling its sons with the other son being polled next.

The root process acts just like p of Implementation 1 for n = 2.

All internal (i.e. father) variables are initialized at E. The alterna-
ting strategy guarantees eventual granting of all requests. All other properties
in the definition of B are easy to check, so that extbeh(S)~E B for this
system S . (Once again, equality does not hold.)

The system consists of n - 2 non-root processes, each with 12 states,
and one root process with four states. There are n - 2 internal variables,
each with three values.

If at most k other requests are active at the same time as a given re-
quest, the time for granting the given request can be bounded by
Czk + o(cl(k + 1)log n). (Thus, if there are no other active requests, the
time to grant the request is O0(log n) . If there is no bound assumed on the
number of concurrently active requests, then the time can be bounded by
cz(n - 1) + 0(clnlog n), as we show using a system of recurrence equations:

Classify the variables of S into leyels, with the root process's two
variables at level 1, the external variables of S at level m, and interme-

diate levels in the tree numbered consecutively. Let T(i), 1 < i <m, denote

the longest time between the initiation and granting of a request at level i. Let

R({i), 1 £ i < m, denote the longest time between the granting and the return of a
resource at level i. Then

R(m) = c,

R(1) = 4e; + R(iH), 1<ism-~-1,

(1) = 4cl + R(1),

T(i) = 12¢, + R(i) + 2T(i-1), 2 < i < m,

i

The first two equations are straightforward. The third equation is a special

42

case of an equation in Implementation 1. The fourth equation arises when a
process (or user) makes a request just as it returns the resource. The father
passes the return up, then polls its other son for a request. If that son has a
request, that request is passed up, and must be granted (giving rise to one
T(i-1) term). Then the father grants the resource to its other son, and

awaits the return (giving rise to the R(i) term). Next, the father passes the
return up, returns to poll the original son and finally detects its request. The
father passes this request up, waits for it to be granted (giving rise to the

second T(i-1) term) and grants the resource.

It is easy to see that R(i) = <, + 4cl(m - 1), 1 <i<m.

Thus, T(1) = c,y + 4clm , and T({) = 12cl + ¢,y + 4cl(m - i) =214 - 1),
2<41i<nm. This latter expression is in turn equal to

i-1 i-1 i i-1 .
(2 - 1) (12cl + c, + 4clm) + @) (c2 + 4clm) - (27 + 2 -1 -1) (401),
so that the needed bound, T(m) , is at most

m-1 m-1 m m—1
(2 -1 (lch + <, + 4c1m) + (2) (c2 + 4clm) - (2 + 2 -1 -m (4cl)

m+2 m

= 2 c, m + 2 ey - 8cl -cy = 4cl (n logn - 2) + cz(n - 1) , as needed.

Implementation 3: The third implementation is based on the state-model algorithms

used in [BFJLP,CrH]. The implementation system S consists of identical pro-
cesses P, each of which has access to exactly one interface variable x ¢ X.

In addition, there is a common variable y to which all the processes P, have
access. Algorithm A of [BFJLP] is used, for definiteness. This algorithm
enables asynchronous processes requiring mutual exclusion synchronization to com-
municate using y to achieve the needed synchronization, with a small bound on
the number of times any single process might be bypassed by any other (and with

a very small number of values for y). The processes themselves must be willing,
however, to execute a complicated protocol. 1In this paper, we have defined a

very simple arbiter protocol and do not require a user to learn the more compli-

on,

43

cated protocol of Algorithm A. We can still use the earlier ideas, however,
by isolating the earlier protocel in the system processes and allowing a user
to communicate with one of those processes.

In outline, (and referring to some ideas from Algorithm A), Py examines
X until wvalue A is detected. Then P enters the trying protocol of Algo-
rithm A using y as the shared variable. When P, is allowed (in Algorithm
A) to enter its critical region, it passes the permission on by changing the
value of x to G. P, then examines x wuntil it reverts to E or A, and
then 1 enters the exit protocol of Algorithm A using y. When P has
completed its exit protocol, it is ready to begin once again, examining =x for
further requests.

Correctness of the resulting system of communicating processes is based on
the correctness of Algorithm A. Once again, extbeh (S)(; B.

The system consists of n processes, each with O(nz) states. There is
one internal variable with n + 5 wvalues. Time can be bounded by c2 (2n - 3)
+ 0 (n2) in the worst case. (The first term represents the possibility that
the requestor is forced to wait for 2n - 3 distinct returns of the resource.
For the second term, note that each time the resource is granted in Algorithm A,
an O(n)-sized count is transmitted in unary via the shared variable. It would
be easy to modify Algorithm A to transmit counts in binary, thereby reducing
the second term to O(n log n) at the cost of a small increase in number of
variable values. If there are at most k concurrent requests, then the bound
is Czk + O((k+l)2). (Thus, if there are no other active requests, the time
to grant the request is bounded by a constant.)

Thus, in the three implementations above, the systems vary both in process

configuration and in execution. There is no realistic sense in which the inter-~

nal states and transitions (i.e. the execution sequences) of the different imp-

44
lementations could be thought to simulate each other. And yet, the systems
are all solutions to the arbiter problem.
Note that the time complexity in the general case is smallest for Imple~
mentation 1, whereas Implementations 2 and 3 perform faster if requests

are relatively infrequent.

REFERENCES

[an] Atkinson, R. and C. Hewitt, "Specification and Proof Techniques
for Serializers," AI Memo 438, Massachusetts Institute of
Technology, August, 1977.

[BFJLP] Burns, J.E., M.J. Fischer, P. Jackson, N.A. Lynch, and G.L. Peterson,
"Shared Data Requirements for Implementation of Mutual Exclusion
Using a Test-and-Set Primitive," Proceedings of 1978 International
Conference on Parallel Processing (1978), Bellaire, Michigan.
Also, see '"Data Requirements for Implementation of N-Process
Mutual Exclusion Using a Single Shared Variable", GIT-ICS-79/02.

[CH] Campbell, R. and A. Habermann, "The Specification of Process Syn-

chronization Using Path Expressions, "Lecture Notes in Computer
Science, 16, Springer-Verlag, 1974.

14}

[ch] Chandra, A.K., '"Computable Nondeterministic Functions, "Proceedings
of 19th Annual Symposium on Foundations of Computer Science, 1978.

[CrH] Cremers, A. and T.N. Hibbard, "Mutual Exclusion of N Processes
Using O(N) - Valued Message Variable," USC Department of Computer
Science Manuscript, 1975.

[D] Dijkstra, E.W., "Co-operating Sequential Processes," Programming
Languages, NATA Advanced Study Institute, Academic Press, 1968.

[FLBB] Fischer, M., N. Lynch, J. Burns, and A. Borodin, ''Resource
Allocation with Immunity to Limited Process Failure,"
Proceedings of 20th Annual Symposium on Foundations of Computer
Science, 1979, Puerto Rico.

Also, see GIT-ICS-79/10.

[Ho] Hoare, C.A.R., "Communicating Sequential Processes," Technical
Report, Department of Computer Science, the Queen's University,
Bellfast, Northern Ireland, December, 1976.

1] Lynch, N., "Fast Allocation of Nearby Resources in a Distrihuted
System"”, Proceedings of 1980 ACM Symposium on Theory of Computing,
Los Angeles. '

]

[P]

[pF]

[sh]

[vax/vms]

45

Milne, G. and R. Milner, "Concurrent Processes and Their
Syntax", Internal Report CSR-2-77, Department of Computer
Science, Edinburg, May, 1977.

Petri, C.A., "Kommunikation mit Automaten," Schriften des
Reinish Westfalischen Inst. Instrumentelle Mathematik,
Bonn. 1962,

Peterson, G., and Fischer, M., "Economical Solutions to the
Critical Section Problem in a Distributed System", Pro-
ceedings of the Ninth Annual ACM Symposium on Theory of
Computing, 1977.

Shaw, A.C., "Software Descriptions with Flow Expressions",
IEEE Trans. on Software Engineering SE-4, 3 (1978).

VAX1l Software Handbook, Digital Equipment Corporation, 1978.

