
A Serialization Graph Construction for Nested Transactions

Alan Fekete’
University of Sydney

Sydney, Australia

Nancy Lynch+ William E. Weihlt
MIT Laboratory for Computer Science MIT Laboratory for Computer Science

545 Technology Square 545 Technology Square
Cambridge, MA 02139 Cambridge, MA 02139

Abstract

This paper makes three contributions. First, we present a
proof technique that offers system designers the same ease
of reasoning about nested transaction systems as is given
by the classical theory for systems without nesting, and yet
can be used to verify that a system satisfies the robust “user
view” definition of correctness of [lo]. Second, as applica-
tions of the technique, we verify the correctness of Moss’
read/write locking algorithm for nested transactions, and of
an undo logging algorithm that has not previously been pre-
sented or proved for nested transaction systems. Third, we
make explicit the assumptions used for this proof technique,
assumptions that are usually made implicitly in the classical
theory, and therefore we clarify the type of system for which
the classical theory itself can reliably be used.

1 Introduction

The notion of “atomic transaction” was originally developed
to hide the effects of failures and concurrency in central-
ized database systems. Recently, a generalization to “nested
transactions” has been advocated as a way of organizing
distributed systems in which information is maintained in
persistent modifiable objects. Nested transactions allow the
benefits of atomicity to be used within a transaction, so that,
for example, a transaction can include several simultaneous
remote procedure calls, which can be coded without consid-
ering possible interference among them. Examples of sys-
tems using nested transactions are Argus [9] and Camelot
[15]. In these systems “atomic” objects can be created and
operations on these objects are guaranteed to be serializable,
even though they execute concurrently. In both Argus and
Camelot the default algorithm used for concurrency control
and recovery is the locking protocol of Moss [13], but the
implementor of an object has the option of writing his or
her own concurrency control and recovery routines.

A natural question is what “correctness” means for con-
currency control and recovery algorithms in a nested trans-
action system. Once a specification for correct functioning
has been given, one seeks to prove that existing algorithms

‘Supported in part by the Defense Advanced Research Projects
Agency (DARPA) under Contract N0001483-K-0125.

tSupported in part by the National Science Foundation under
Grant CCRS6-11442, in part by the Defense Advanced Research
Projects Agency (DARPA) under Contract N0001489-J-1988, and in
part by the Office of Naval Research under Contract N00014-85-0168.

*Supported in part by the National Science Foundation under
Grant CCRS716884, and in part by the Defense Advanced Research
Projects Agency (DARPA) under Contract N0001489-J-1988.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791-352-3/90/0004/0094 $1.50 94

are correct. Moreover, the possibility of user-defined concur-
rency control in a system leads one to seek proof methods
that are modular, so that when one object is reimplemented
(for performance reasons) in a previously correct system, the
new system= be prodcorrect without needing to recon-
sider those parts that have not changed. Such specification
and proof issues have been addressed in a major research
project started by Lynch and Merritt [lo] and continued in
[4, 6, 6, 5, 1, 111.

In [lo], a notion of correctness called “serial correctness”
is defined for nested transaction systems. The definition of
“serial correctness” presented there is a “user view” specifi-
cation: the users of the transaction system should only be
able to observe behavior that they could observe when in-
teracting with a system in which their transactions were run
without concurrency and without failure after partial activ-
ity. The definition of serial correctness embodies not only
the serializability condition of the classical theory, but also
the “external consistency” condition, i.e., that the appar-
ent serial execution must not reverse the order of any pair
of transactions for which one completed before the other
was invoked. Also, unlike the classical theory, this definition
of serial correctness is explicitly formulated to apply to sys-
tems in which transactions can abort; in the classical theory,
aborts are handled by considering only executions in which
all transactions commit.’

The definition of serial correctness from [lo] is used in
[lo, 41, where a proof technique is developed for verifying
Moss’ algorithm. Modular proof techniques for locking al-
gorithms can be found in [5]. The same definition and proof
techniques have been used in proofs of the correctness of
several other kinds of transaction-processing algorithms, in-
cluding multi-version timestamp-based algorithms for con-
currency control and recovery [l], algorithms for manage-
ment of replicated data [6], and algorithms for management
of orphan transactions [8]. The proof techniques of these pa-
pers are very general. They apply to large classes of systems,
including those where different data objects are implemented
independently, and where the type of the objects can be used
to obtain increased concurrency (as in [17]). We summarize
the system model, definition of serial correctness, and main
proof technique in the next section.

We can contrast the development of our theory of serial
correctness for nested transaction systems with the classical
serializability theory for systems without transaction nest-
ing, as presented (for example) in [14] and [3]. The classical
theory uses a system model and correctness definition that
are somewhat more restrictive than necessary; for example,
the classical correctness definition is not stated in terms of

‘As discussed in [16], aborts must be modeled explicitly to ana
lyze the subtle interactions between concurrency control and recovery.
Because it does not model aborts explicitly, and implicitly assumes
an “update-in-place” model for recovery, the classical theory is not
general enough to model certain kinds of algorithms.

the user view of the system, but rather in terms of the activ-
ity at the data objects. The classical model and definition
work very well for a number of simple update-in-place algo-
rithms, but a different definition of correctness is needed to
cope with multiversion algorithms, and yet another for repli-
cation management. The classical theory is also restricted
in that it deals almost exclusively with data objects allowing
only read and write operations.

An advantage of the classical theory, however, is that
for the simplest concurrency control algorithms such as
two-phase locking or single-version timestamps, it yields
extremely simple and intuition-supporting proofs. These
prooh are based on the absence of cycles in a “serialization
graph,” a graph whose nodes are the transactions and whose
edges record conflicts between activity of the transactions.

We would like to be able to combine the best features of
both theories. In particular, we would like to be able to use
serialization graph proof techniques similar to those of the
classical theory to reaSon about nested transaction systems,
wherever this is possible. We would especially like to use
such techniques to prove that such systems satisfy the user
view serial correctness condition of [lo]. We would also like
to extend the applicability of serialization graph techniques
to data objects that admit other kinds of operations besides
reads and writes. In this paper, we show how to combine
the two theories in these ways.

More specifically, we develop a proof technique for nested
transaction systems in which proofs have the same simple
form as in the classical theory, namely, one must show that
a graph (having transactions for nodes, and edges repre-
senting necessary ordering between transactions) is acyclic.
Thus, we define a new kind of “serialization graph” and
prove that, under certain assumptions, the absence of cy-
cles in this graph is a sufficient condition to ensure the serial
correctness of a system. In the first part of the paper, we
restrict our attention to systems in which each data object
admits only read and write operations. For such systems,
we assume that (once aborted transactions’ activity is ig-
nored) a read operation always returns the value written by
the most recent write operation. This assumption is true
of systems in which each data object is stored in a single
location that is overwritten by any write access, and where
an underlying recovery system restores the appropriate old
value when an ancestor of the most recent write is aborted.

In much of the classical work on database concurrency con-
trol, these restrictions and assumptions are made early on,
and in fact the definition of correctness often includes them.
Systems satisfying these assumptions are very common, and
while we feel that it is inappropriate to make these assump-
tions when defining the correctness condition to be satisfied,
it is clearly useful to find a simple sufficient condition that
guarantees correctness when the system does satisfy them.

We note that in contrast to the classical theory, the
acyclicity of the graphs we construct is merely a sufficient
condition for serial correctness, rather than necessary and
sufficient. This is primarily because our notion of serial cor-
rectness, based as it is on the user’s view of the system, is
not as restrictive as the one used in the classical theory.

After presenting our results for reads and writes, we in-
dicate how they can be generalized to arbitrary data types.
That is, we define serialization graphs for systems with ob-
jects of arbitrary data type, and prove once again that ab-
sence of cycles implies serializability. Once again, the values
returned by accesses to objects are assumed to satisfy special
restrictions.

We use our serialization graphs to prove correctness of
two algorithms-the read/write locking algorithm of Moss
and an undo logging algorithm. (The latter algorithm is a
generalization to nested transaction systems of an algorithm
due to Weihl [IS]).

Other work has also been done on modeling nested trans-
action systems. Hadzilacos and Hadzilacos [7] present a gen-
eralization of the classical theory to handle “object bases,”
which exhibit a nesting structure very much like that consid-
ered in this paper. (Our objects correspond to the instance
variables in their objects, and our accesses to objects corre-
spond to the local steps that access the instance variables.)
They define a serialization graph construction, and give an
acyclicity condition for serializability. However, they do not
consider recovery’, and their basic model is significantly less
general than ours (for example, their correctness condition is
appropriate only with an update-in-place single-version im-
plementation of objects, while we permit multi-version im-
plementations). Beeri, Bernstein and Goodman [2] present
proof techniques that are useful for systems organized using
multiple levels of abstraction, with concurrency control per-
formed separately at each level. The nesting in such systems
corresponds to levels of data abstraction, while the nesting
considered here corresponds more to levels of procedural ab-
straction. It may be that the techniques in [2] could be
applied to the kinds of systems we consider here, but their
techniques are more complicated, allowing replacement of
entire subtrees of nested activity by single actions as well
as the reordering of actions in a history. Also, they do not
present a simple acyclic graph condition for correctness, and
they do not model recovery in their work.

The remainder of this paper is organized as follows. First,
in Section 2, we summarize our earlier work on which this
work is based. Then, in Section 3, we give the assumptions
we make for systems based on read/write objects; that is, we
define such systems and define the condition that says that
all reads return the latest value. In Section 4, we present
our serialization graph construction and the theorem that
says that acyclicity of the serialization graph implies serial
correctness. In Section 5, we give a proof of Moss’ algorithm
using our serialization graphs. In Section 6, we indicate how
to extend the work to other data types besides read/write
objects; this section includes a description and proof of the
general undo logging algorithm. Finally, we conclude with a
discussion and some suggestions for further work.

2 Background
In this section, we summarize the main concepts from our
earlier work that are used in the rest of the paper. Complete
details can be found in [ll]. The reader who is already fa-
miliar with our work, or who is not interested in the details
of the proofs, may skip or skim this section.

2.1 Review: The Input/Output Automaton
Model

The following is a brief introduction to the formal model that
we use to describe and reason about systems. This model is
treated in detail in [12] and [ll].

All components in our systems, transactions, objects and
schedulers, will be modelIed by I/O automata. An I/O au-
tomaton A has a set of states, some of which are designated
as initial states. It has actions, divided into input actions,

2A later manuscript of their paper has extended the results to
include recovery.

95

output actions and internal actions. We refer to both input
and output actions as external actions. We use the terms
in(A), out(A), and ext(A) to refer to the sets of input ac-
tions, output actions and external actions of the automaton
A. An automaton has a transition relation, which is a set
of triples of the form (s’, A, a), where a’ and a are states,
and x is an action. This triple means that in state a’, the
automaton can atomically do action x and change to state
a. An element of the transition relation is called a step of
the automaton.3

The input actions model actions that are triggered by
the environment of the automaton, while the output actions
model the actions that are triggered by the automaton itself
and are potentially observable by the environment, and in-
ternal actions model changes of state that are not directly
detected by the environment.

Given a state a’ and an action x, we say that r is enabled
in a’ if there is a state a for which (a’, I, s) is a step. We
require that each input action A be enabled in each state a’,
i.e., that an I/O automaton must be prepared to receive any
input action at any time.

A finite execution fragment of A is a finite alternating se-
quence 30~181~z.. . ~,,a,, of states and actions of A, ending
with a state, such that each triple (a’, A, a) that occurs as
a consecutive subsequence is a step of A. We also say in
this case that (SO, x1 . . .x ,,, s,,) is an extended step of A, and
that (30, p, sn) is a moue of A where p is the subsequence of
xi . . . rr,, consisting of external actions of A. A finite execu-
tion is a finite execution fragment that begins with a start
state of A.

From any execution, we can extract the schedule, which is
the subsequence of the execution consisting of actions only.
Because transitions to different states may have the same
actions, different executions may have the same schedule.
From any execution or schedule, we can extract the behavior,
which is the subsequence consisting of the external actions
of A. We write finbehs(A) for the set of all behaviors of finite
executions of A.

We say that a finite schedule or behavior p can leave A in
state a if there is some execution with schedule or behavior
o and final state s. We say that an action r is enabled after
a schedule or behavior o, if there exists a state a such that
A is enabled in a and Q can leave A in state a.

Since the same action may occur several times in an exe-
cution, schedule or behavior, we refer to a single occurrence
of an action as an event.

We describe systems as consisting of interacting compo-
nents, each of which is an I/O automaton. It is convenient
and natural to view systems as I/O automata, also. Thus,
we define a composition operation for I/O automata, to yield
a new I/O automaton. A collection of I/O automata is said
to be strongly compatible if any internal action of any one
automaton is not an action of any other automaton in the
collection, any output action of one is not an output action
of any other, and no action is shared by infinitely many au-
tomata in the collection. A collection of strongly compatible
automata may be composed to create a system S.

A state of the composed automaton is a tuple of states,
one for each component automaton, and the start states are
tuples consisting of start states of the components. An ac-
tion of the composed automaton is an action of a subset of

3Also, an I/O automaton has an equivalence relation on the set of
output and internal actions. This is needed only to discuss fairness
and will not be mentioned further in this paper.

the component automata. It is an output of the system if
it is an output for any component. It is an internal action
of the system if it is an internal action of any component.
During an action x of S, each of the components that has
action rr carries out the action, while the remainder stay in
the same state. If /3 is a sequence of actions of a system
with component A, then we denote by PIA the subsequence
of p containing all the actions of A. Clearly, if p is a finite
behavior of the system then PIA is a finite behavior of A.

Let A and B be automata with the same external actions.
Then A is said to implement B if finbehs(A) c finbeha(B).
One way in which this notion can be used is the following.
Suppose we can show that an automaton A is “correct,” in
the sense that its finite behaviors all satisfy some specified
property. Then if another automaton B implements A, B is
also correct.

2.2 Review: Serial Systems and Correctness

In this section of the paper we summarize the definitions for
serial systems, which consist of transaction automata and se-
rial object automata communicating with a serial scheduler
automaton. More details can be found in [ll].

Transaction automata represent code written by applica-
tion programmers in a suitable programming language. Se-
rial object automata serve as specifications for permissible
behavior of data objects. They describe the responses the
objects should make to arbitrary sequences of operation in-
vocations, assuming that later invocations wait for responses
to previous invocations. The serial scheduler handles the
communication among the transactions and serial objects,
and thereby controls the order in which the transactions
can take steps. It ensures that no two sibling transactions
are active concurrently-that is, it runs each set of sibling
transactions serially. The serial scheduler is also responsible
for deciding if a transaction commits or aborts. The serial
scheduler can permit a transaction to abort only if its par-
ent has requested its creation, but it has not actually been
created. Thus, in a serial system, all sets of sibling trans-
actions are run serially, and in such a way that no aborted
transaction ever performs any steps.

A serial system would not be an interesting transaction-
processing system to implement. It allows no concurrency
among sibling transactions, and has only a very limited
ability to cope with transaction failures. However, we are
not proposing serial systems as interesting implementations;
rather, we use them exclusively as specifications for correct
behavior of other, more interesting systems.

We represent the pattern of transaction nesting, a aya-
tern type, by a set ‘T of transaction names, organized into
a tree by the mapping parent, with TO as the root. In re-
ferring to this tree, we use traditional terminology, such as
child, leaf, ancestor, lea (that is, least common ancestor),
and descendant. (A transaction is its own ancestor and de-
scendant.) The leaves of this tree are called acceSSea. The
accesses are partitioned so that each element of the partition
contains the accesses to a particular object. In addition, the
system type specifies a set of return values for transactions
(henceforth simply called values). If T is a transaction name
that is an access to the object name X and u is a value, we
say that the pair (T, v) is an operation of X.

The tree structure can be thought of as a predefined nam-
ing scheme for all possible transactions that might ever be
invoked. In any particular execution, however, only some of
these transactions will actually take steps. We imagine that

96

the tree structure is known in advance by all components
of a system. The tree will, in general, be infinite and have
infinite branching.

The classical transactions of concurrency control theory
(without nesting) appear in our model as the children of a
“mythical” transaction, To, the root of the transaction tree.
Transaction TO models the environment in which the rest of
the transaction system runs. It has actions that describe the
invocation and return of the classical transactions. It is often
natural to reason about To in the same way as about all of
the other transactions. The only transactions that actually
access data are the leaves of the transaction tree, and thus
they are distinguished as “accesses.” (Note that leaves may
exist at any level of the tree below the root.) The internal
nodes of the tree model transactions whose function is to
create and manage subtransactions, but not to access data
directly.

A serial system of a given system type is the composition
of a set of I/O automata. This set contains a transaction
automaton for each non-access node of the transaction tree,
a serial object automaton for each object name, and a serial
scheduler. These automata are described below.

2.2.1 Transactions

A non-access transaction T is modelled as a transaction au-
tomaton AT, an I/O automaton with the following external
actions. (In addition, AT may have arbitrary internal ac-
tions.)

Input:
CREATE(T)
REPORTCOMMIT(T’,u), for T’ a child of T, v a value

output:
REQUESTCREATE(for T’ a child of T
REQUEST-COMMIT(T,u), for v a value

The CREATE input action “wakes up” the transac-
tion. The REQUEST-CREATE output action is a re-
quest by T to create a particular child transaction. The
REPORT-COMMIT input action reports to T the suc-
cessful completion of one of its children, and returns a
value recording the results of that child’s execution. The
REPORTABORT input action reports to T the unsuccess-
ful completion of one of its children, without returning any
other information. The REQUEST-COMMIT action is an
announcement by T that it has finished its work, and in-
cludes a value recording the results of that work.

We leave the executions of particular transaction au-
tomata largely unconstrained; the choice of which children to
create and what value to return will depend on the particu-
lar implementation. For the purposes of the systems studied
here, the transactions are “black boxes.” Nevertheless, it is
convenient to assume that behaviors of transaction automata
obey certain syntactic constraints, for example that they do
not request the creation of children before they have been
created themselves and that they do not request to commit
before receiving reports about all the children whose creation
they requested. We therefore require that all transaction
automata preserve transaction well-formedneaa, as defined
formally in [ll].

2.2.2 Serial Objects

Recall that transaction automata are associated with non-
access transactions only, and that access transactions model
abstract operations on shared data objects. We associate
a single I/O automaton with each object name. The ex-

ternal actions for each object are just the CREATE and
REQUEST-COMMIT actions for all the corresponding ac-
cess transactions. Although we give these actions the same
kinds of names as the actions of non-access transactions, it is
helpful to think of the actions of access transactions in other
terms also: a CREATE corresponds to an invocation of an
operation on the object, while a REQUEST-COMMIT cor-
responds to a response by the object to an invocation. Thus,
we model the serial specification of an object X (describing
its activity in the absence of concurrency and failures) by a
aerial object automaton Sx with the following external ac-
tions. (In addition, SX may have arbitrary internal actions.)

Input:
CREATE(T), for T an access to X

output:
REQUEST-COMMIT(T,v), for T an access to X,

v a value

As with transactions, while specific objects are left largely
unconstrained, it is convenient to require that behaviors of
serial objects satisfy certain syntactic conditions. Let cr be
a sequence of external actions of SX. We say that (Y is aerial
object well-formed for X if it is a prefix of a sequence of
the form CREATE(Tr)REQUCOMMIT(Tr,vr)CRE-
ATE(Ta)REQUCOMMIT(Ts,vs). . . , where T, # T3
when i # j. We require that every serial object automa-
ton preserve serial object well-formedness.’

2.2.3 Serial Scheduler

The third kind of component in a serial system is the se-
rial scheduler. The transactions and serial objects have been
specified to be any I/O automata whose actions and behavior
satisfy simple restrictions. The serial scheduler, however, is
a fully specified automaton, particular to each system type.
It runs transactions according to a depth-first traversal of
the transaction tree. The serial scheduler can choose non-
deterministically to abort any transaction whose parent has
requested its creation, as long as the transaction has not
actually been created. Each child of T whose creation is re-
quested must be either aborted or run to commitment with
no siblings overlapping its execution, before T can commit.
The result of a transaction can be reported to its parent at
any time after the commit or abort has occurred.

The actions of the serial scheduler are as follows.

Input:
REQUEST-CREATE(T), for T # TO
REQUEST-COMMIT(p,u), for !F a transaction name,

v a value
output:

CREATE(T), for T a transaction name
COMMIT(T), for T # TO
ABORT(T), for T # TO
REPORT-COMMIT(T,v), for T # To, v a value
REPORT-ABORT(T), for T # To

The REQUEST-CREATE and REQUEST-COMMIT in-
puts are intended to be identified with the corresponding
outputs of transaction and serial object automata, and cor-
respondingly for the CREATE, REPORT-COMMIT and
REPORT-ABORT output actions. The COMMIT and
ABORT output actions mark the point in time where the
decision on the fate of the transaction is irrevocable.

‘This is formally defined in [ll] and means that the object does
not violate well-formedness unless its environment has done so first.

97

The details of the states and transition relation for the
serial scheduler can be found in [ll].

2.2.4 Serial Systems and Serial Behaviors

A aerial system is the composition of a strongly compatible
set of automata consisting of a transaction automaton AT
for each non-access transaction name T, a serial object au-
tomaton Sx for each object name X, and the serial scheduler
automaton for the given system type.

The discussion in the remainder of this paper assumes an
arbitrary but fixed system type and serial system, with AT
as the non-access transaction automata, and SX as the serial
object automata. We use the term aerial behaviors for the
system’s behaviors. We give the name aerial actions to the
external actions of the serial system. The COMMIT(T) and
ABORT(T) actions are called completion actions for T.

We introduce some notation that will be useful later.
Let T be any transaction name. If A is one of
the serial actions CREATE(T), REQUESTCREATE(
REPORT-COMMIT(T’,v’), REPORT_ABORT(T’), or
REQUEST,COMMIT(T,v), where T’ is a child of T, then
we define transaction(r) to be T. If K is any serial action,
then we define hightransaction to be transaction(%) if x
is not a completion action, and to be T, if A is a comple-
tion action for a child of T. Also, if A is any serial action,
we define lowtransaction to be transaction(x) if x is not
a completion action, and to be T, if rr is a completion ac-
tion for T. If A is a serial action of the form CREATE(T)
or REQUEST-COMMIT(T,v), where T is an access to X,
then we define object(x) to be X.

If /3 is a sequence’ of actions, T a transaction name
and X an object name, we define PIT to be the subse-
quence of ,9 consisting of those serial actions A such that
transaction(x) = T, and we define /31X to be the subse-
quence of @ consisting of those serial actions A such that
object(s) = X. We define aerial(p) to be the subsequence
of /? consisting of serial actions.

If /3 is a sequence of actions and T is a transaction name,
we say T is an orphan in p if there is an ABORT(U) action
in /3 for some ancestor U of T. We say the T is live in p
if /3 contains a CREATE(T) event but does not contain a
completion event for T.

2.2.5 Serial Correctness

We use the serial system to specify the correctness condition
that we expect other, more efficient systems to satisfy. We
say that a sequence /3 of actions is aerially correct for trans-
action name T provided that there is some serial behavior
y such that PIT = -/IT. We will be interested primarily in
showing, for particular systems of automata, representing
data objects that use different methods of concurrency con-
trol and a controller that passes information between trans-
actions and objects, that all finite behaviors are serially cor-
rect for To.

We believe serial correctness to be a natural notion of cor-
rectness that corresponds precisely to the intuition of how
nested transaction systems ought to behave. Serial correct-
ness for T is a condition that guarantees to implementors
of T that their code will encounter only situations that can
arise in serial executions. Correctness for TO is a special case
that guarantees that the external world will encounter only
situations that can arise in serial executions.

‘We make these definitions for arbitrary sequences of actions, be-
cause we will use them later for behaviors of systems other than the
serial system.

2.3 Review: Simple Systems and the Serializ-
ability Theorem

In this section we outline a general method for proving that
a concurrency control algorithm guarantees serial correct-
ness. This method is treated in more detail in [ll], and is an
extension to nested transaction systems of ideas presented
in [18, 171. These ideas give formal structure to the sim-
ple intuition that a behavior of the system will be serially
correct so long as there is a way to order the transactions
so that when the operations of each object are arranged in
that order, the result is legal for the serial specification of
that object’s type. For nested transaction systems, the cor-
responding result is Theorem 2. Later in this paper we will
see that the essence of a nested transaction system using
locking algorithms like Moss’ is that the serialization order
is defined by the order in which siblings complete.

It is desirable to state our Serializability Theorem in such
a way that it can be used for proving correctness of many
different kinds of transaction-processing systems, with rad-
ically different architectures. We therefore define a “sim-
ple system,” which embodies the common features of most
transaction-processing systems, independent of their concur-
rency control and recovery algorithms, and even of their divi-
sion into modules to handle different aspects of transaction-
processing.

2.3.1 Simple Systems

Many complicated transaction-processing algorithms can be
understood as implementations of the simple system. For ex-
ample, we will see that a system containing separate objects
that manage locks and a “controller” that passes informa-
tion among transactions and objects can be represented in
this way.

We first define an automaton called the simple database.
There is a single simple database for each system type. The
actions of the simple database are those of the composition
of the serial scheduler with the serial objects:

Input:
REQUEST-CREATE(T), for T # TO
REQUEST-COMMIT(T,v), for T a non-access trans-

action name, v a value
output:

CREATE(T) for T a transaction name
COMMIT(T), for T # TO
ABORT(T), for T # To
REPORT-COMMIT(T,v), for T # To, v a value
REPORTABORT(for T # TO
REQUEST-COMMIT(T,v), for T an access trans-

action name, v a value

The simple database embodies those constraints that we
would expect any reasonable transaction-processing system
to satisfy. It does not allow CREATE, ABORT or COMMIT
events without an appropriate preceding request, does not
allow any transaction to have two creation or completion
events, and does not report completion events that never
happened. Also, it does not produce responses to accesses
that were not invoked, nor does it produce multiple re-
sponses to accesses. On the other hand, the simple database
allows almost any ordering of transactions, allows concur-
rent execution of sibling transactions, and allows arbitrary
responses to accesses. The details can be found in [ll]. We
do not claim that the simple database produces only seri-
ally correct behaviors; rather, we use the simple database to

98

model features common to more sophisticated systems that
do ensure correctness.

A simple system is the composition of a strongly compat-
ible set of automata consisting of a transaction automaton
AT for each non-access transaction name T, and the simple
database automaton for the given system type. When the
particular simple system is understood from context, we will
use the term simple behaviors for the system’s behaviors.

The Serializability Theorem is formulated in terms of sim-
ple behaviors; it provides a sufficient condition for a simple
behavior to be serially correct for a particular transaction
name T.

2.3.2 The Serializability Theorem

The type of transaction ordering needed for our theorem
is more complicated than that used in the classical theory,
because of the nesting involved here. Instead of just ar-
bitrary total orderings on transactions, we will use partial
orderings that only relate siblings in the transaction nest-
ing tree. Formally, a sibling order R is an irreflexive partial
order on transaction names such that (T,T’) E R implies
parent(T) = parent(

A sibling order R can be extended in two natural ways.
First, Rtra,, is the binary relation on transaction names con-
taining (T,T’) exactly when there exist transaction names
U and U’ such that T and T’ are descendants of U and U’
respectively, and (U, U’) E R. Second, if /3 is any sequence
of actions, then R event(P) is the binary relation on events
in /3 containing (4, x) exactly when 4 and x are distinct se-
rial events in /3 with lowtransactions T and T’ respectively,
where (T, T’) E Rtrons. It is clear that Rtrons and Revent(/3)
are irreflexive partial orders.

In order to state the Serializability Theorem we must in-
troduce some technical definitions. Motivation for these can
be found in [ll].

First, we define when one transaction is “visible” to an-
other. This captures a conservative approximation to the
conditions under which the activity of the first can influ-
ence the second. Let /3 be any sequence of actions. If T
and T’ are transaction names, we say that T’ is visible to T
in 0 if there is a COMMIT(U) action in /3 for every U in
anceatora(T’) - ancestors(T). Thus, every ancestor of T’ up
to (but not necessarily including) the least common ances-
tor of T and T’ has committed in ,8. If /3 is any sequence
of actions and T is a transaction name, then uiaible(P,T)
denotes the subsequence of /3 consisting of serial actions A
with hightranaaction(7r) visible to T in p.

We define an “affects” relation. This captures basic
dependencies between events. For a sequence p of ac-
tions, and events 4 and x in p, we say that (4,~) E
directly-affects(@) if at least one of the following is true:
tranaaction(q5) = tranaaction(7r) and 4 precedes x in p,’
4 = REQUEST-CREATE(T) and A = CREATE(T),
4 = REQUEST-COMMIT(T,v) and rr = COMMIT(T),
4 = REQUEST-CREATE(T) and A = ABORT(T), 4 =
COMMIT(T) and K = REPORT-COMMIT(T,v), or 4 =
ABORT(T) and x = REPORTABORT(For a sequence
,9 of actions, define the relation aflecta(/3) to be the transitive
closure of the relation directly-aflecta(@.

The following technical property is needed for the proof
of Theorem 2. Let p be a sequence of actions and T a trans-
action name. A sibling order R is suitable for /3 and T if the
following conditions are met.

‘This includes accesses as well as non-accesses.

1. R orders all pairs of siblings T’ and T” that are low-
transactions of actions in visible@, T).

2. R euent(8) and affects(P) are consistent partial orders
on the events in visible@, T).

The following lemma will be used later in proving that
certain sibling orders are suitable:

Lemma 1 Let p be a sequence of aerial events and let A be
an irreflexiue partial order on the events in /3. Let R be a aib-
ling order satisfying the following condition: If K and x’ are
events in /3 such that (x,vr’) E A and lowtransaction(7r) is
neither an ancestor nor a descendant of lowtransaction(
then (r, x’) E Revent(/3). Then R,,,,t(P) and A are conaia-
tent partial orders on the events of p.

We introduce some terms for describing sequences
of operations. For any operation (T, w) of an ob-
ject X, let perform(T, v) denote the sequence of actions
CREATE(T)REQUESTCOMMIT(T,v). This definition is
extended to sequences of operations: if .$ = (‘(T, v) then
perform(<) = perform perform(T,v). A sequence < of
operations of X is aerial object well-formed if no two oper-
ations in < have the same transaction name. Thus if < is a
serial object well-formed sequence of operations of X, then
perform(<) is a serial object well-formed sequence of actions
of X. We say that an operation (T, v) occurs in a sequence /3
of actions if a REQUEST-COMMIT((,T), v) action occurs in
/3. Thus, any serial object well-formed sequence p of external
actions of Sx is either perform(t) or perform(<)CRE
for some access T, where [is a sequence consisting of the
operations that occur in 0.

Finally we can define the “view” of a transaction at an ob-
ject, according to a sibling order in a behavior. This is the
fundamental sequence of actions considered in the hypoth-
esis of the Serializability Theorem. Suppose p is a finite
simple behavior, T a transaction name, R a sibling order
that is suitable for /3 and T, and X an object name. Let
C be the sequence consisting of those operations occurring
in ,8 whose transaction components are accesses to X and
that are visible to T in p, ordered according to Rtrans on
the transaction components. (The first condition in the def-
inition of suitability implies that this ordering is uniquely
determined.) Define view@, T, R, X) to be perform(<).

Theorem 2 (Serializability Theorem[ll])
Let /3 be a finite simple behavior, T a transaction name such
that T is not an orphan in p, and R a sibling order auit-
able for p and T. Suppose that for each object name X,
view(P,T, R,X) E finbehs(Sx). Then /3 is serially correct
for T.

3 Assumptions
In this section, we present our two main assumptions. First,
for all of this paper except Section 6, we will assume that
the fixed serial system (with respect to which serial correct-
ness is defined) contains only objects of a particularly simple
type, where the only ways to access an object are to read
it or to write it. This assumption reflects the reality at the
lowest level of many database management systems, since
these are the only accesses possible to a disk. While many
systems do contain more complicated data types at a higher
level of abstraction (for example, in a relational database
the accesses at the conceptual level include joins, selections,
etc.) the assumption that all the objects have this simple

99

type is usually made in the classical development of serializ-
ability theory, and we make it here to show the relationships
between our results and the classical theory. In Section 6 we
remove this assumption.

3.1 Read/Write Serial Objects

Formally, our first assumption is that every serial object in
the serial system is a specific kind of object, described be-
low, which we call a “read/write object.” That is, for each
object name X there is a domain of values V, a function
kind (which indicates for each access whether it is a read
or a write), a function data (which indicates for each write
access the value written-in our model, all parameters of an
access are regarded as encoded in its name, so this function
serves to decode one parameter), and an initial value d, such
that the serial object automaton Sx has the following state
and transition relation. Its state contains two components:
active (either nil, or the name of an access to X) and data
(an element of V, representing the most recently written
value). The start state s has sactiue = nil, and s.data = d.
The transition relation is as follows:

CREATE(T), T an access to X
Effect:

s.active = T

REQUEST-COMMIT(T,v), T a write access to X
Precondition:

s’.active = T
v=OK

Effect:
s.active = nil
s.data = data(T)

REQUEST-COMMIT(T,v), T a read access to X
Precondition:

s’.active = T
s’.data = v

Effect:
s.active = nil

The definition of the automaton Sx ensures that, in a
serial system, each read access returns the most recent
value written. This can be seen from the effects of a
REQUEST-COMMIT for a write access, which stores the
value written by the access in the state component data,
and from the preconditions for a REQUEST-COMMIT for
a read access, which ensure that the value returned is the
value of the state component data.

In the sequel, we will need a definition for the “final
value” of a read/write object after a sequence of write ac-
cesses. If /3 is a sequence of serial actions and X is an ob-
ject name, we define write-sequence@,X) to be the sub-
sequence of p consisting of REQUEST-COMMIT events
for transactions that are write accesses to X; then we de-
fine last-write(p,X) to be transaction(z) where x is the
last event in write-sequence@, X) (if write-sequence@, X)
is empty, last-write@, X) is undefined.) Finally, we define
final-ualue(P, X) to be the initial value d if last-write@, X)
is undefined, and data(last-write@,X)) otherwise. Thus,
final-value@, X) is the latest value written in ,B for X. The
following lemmas characterize the state and behaviors of the
read/write object SX in terms of final-value:

Lemma 3 Let ,B be a finite schedule of read/write serial ob-
ject SX, and let s be the (unique) state of SX after p, Then
s.data = final-value(P, SX).

Lemma 4 Let p be a finite behavior of SX. Then
/Jperform(T, v) is a behavior of Sx exactly when either T
is a write access to X and v = OK, or T is a read access to
X and v = finaGvalue(/3, X).

3.2 Appropriate Return Values
In a real transaction-processing system, different transac-
tions can access an object concurrently. Concurrency control
and recovery algorithms are needed to ensure that the effect
of a concurrent execution is the same as that of some exe-
cution of the serial system, as far as the users of the system
can observe. Rather than developing a complex model of a
real transaction-processing system, we prove results about
behaviors of simple systems satisfying certain restrictions;
we then show that a particular real transaction-processing
system implements the simple system (so each of its behav-
iors is also a simple behavior) and that its behaviors satisfy
the necessary restrictions. One advantage of this approach
is that it allows us to make very few assumptions about
the structure of a transaction-processing system; instead, we
make assumptions about its behaviors, represented as simple
behaviors.

In defining these assumptions, and in the remainder of the
paper, we will apply the definitions above of write-sequence,
last-write, and final-value to behaviors of simple systems.
Notice that each of these was defined in terms of general
sequences of serial actions, so applying them to simple be-
haviors does not cause any problems.

Our first assumption described above, namely that each
serial object is a read/write object, applies to serial sys-
tems. Our second assumption applies to behaviors of sim-
ple systems. Informally, we assume the existence of some
underlying recovery system that ensures that descendants of
aborted and uncommitted transactions appear never to have
h appened; once the actions of these transactions have been
removed from consideration, the return value for an access
is what one would expect from a simplistic model of the sim-
ple system, where each object’s value is stored in a location,
being overwritten with a new value by write accesses and
unaffected by read accesses. Much of the classical work on
concurrency control has used this simplistic model without
comment.

To make this formal, we introduce a definition: if
p is a simple behavior, then we say that p has ap-
propriate return values provided that whenever A is a
REQUEST-COMMIT(T,e) event occurring in uisible(/3, To)
and T is an access to an object X, then either T is a
write access and v = OK, or T is a read access and
v = final-ualue(&X), where 6 is the prefix of uisible(/3,Tc)
preceding x. Notice that we here restrict attention to the
part of the sequence /3 that is visible to To. This restriction
corresponds to the classical theory’s focus on the “perma-
nent” part of the computation (called the “committed pro-
jection” in [3])-the part that has committed to the outside
world.

The following is a convenient characterization of appro-
priate return values for systems in which all serial objects
are read/write objects.

Lemma 5 Let ,@ be a finite simple behavior. Then p has
appropriate return values if and only if perform(opera-
tions(uisible@, To))lX)’ is a behavior of SX for all X.

‘An “operation” is a pair (T, v); the operator “operations” extracts
the sequence of operations corresponding to the REQUEST-COMMIT

100

Proof: Suppose p has appropriate return values
and X is an object name. We must show that
perform(operations(visible(p, To)lX)) is a behavior of SX.
We show the equivalent statement that for any prefix t of
operations(uisible(P, To)lX), perform(e) is a behavior of SX,
which we do by induction on the number of operations in
[. The base case, when there are no operations, is triv-
ial. Otherwise t = [‘(T, v). By the induction hypothesis,
perform is a behavior of SX. Now since (T,v) is in
operations(uisible(P,To)lX), we see that T is an access to
X and there is an event K = REQUEST-COMMIT(T,v)
in visible(P,To). Since /3 has appropriate return values,
either T is a write access and v = OK, or T is a read
access and v = final-ualue(6,Sx), where 6 is the pre-
fix of visible@, To) preceding x. In the case where T is
a read access, then we note that write-sequence(6,Sx) =
write-sequence(perform(E’), SX) and so final-ualue(6, SX) =
final-value(perform(E’), Sx). Thus perform(E(T, v)) is a be-
havior of Sx by Lemma 4.

Conversely, suppose per-
form(operations(visible(/3,To)lX)) is a behavior of SX for all
X. Consider A, a REQUEST-COMMIT(T,v) event occur-
ring in visible@, To)lX where T is an access. We must have
(T, v) in operations(uisible(P, To)lX), where object(T) = X.
Let <’ be the prefix of operations(uisible@, To)lX) preced-
ing (T, v). Since perform(t’(T, v)) is a behavior of SX, by
Lemma 4 we conclude that either T is a write access and
v = OK, or T is a read access and v = jinal-ualue(per-
form({‘), Sx). However, we note that if 6 is the prefix of uis-
ible(/3, To) preceding A, then write-sequence(6, SX) = mrite-
sequence(perform(t’), Sx) and so final-value(6,Sx) = final-
ualue(perform(<‘), Sx). Thus, either T is a write access and
v = OK, or T is a read access and v = final-ualue(6, Sx).
Since x was arbitrary, /3 has appropriate return values. 0

3.3 A Sufficient Condition for Appropriate Re-
turn Values

The hypothesis that a system’s behaviors have appropriate
return values is commonly made, and in the classical de-
velopment of serializability theory it is usually regarded as
axiomatic. However when one studies or designs a real sys-
tem one must consider how particular algorithms lead to this
hypothesis being met. For write accesses it is certainly easy
to ensure that the return value is OK. However the situation
with read accesses is very different. In this section, we define
simple conditions that are sufficient to ensure appropriate re-
turn values. While these conditions are not only sufficient
and not necessary, they do apply to many algorithms.

following:
evy; RE~%ST~~OM%~(T vihzvent ?r in visible@ Tr):
where T is a read access to X: the return value v is dqual
to final-ualue(6,X), where 6 is the prefix of visible(P,To)
preceding x. Now, at the time * occurs, the sequence 6 is
not yet determined, since it depends on all the COMMIT
events in ,9, including those that follow x. It is useful to
have conditions that can be checked when A occurs and that
are sufficient to ensure appropriate return values. We de-
fine two conditions. The first requires that the return value
for a REQUEST-COMMIT event be “current” using the se-
quence of events that occur before the REQUEST-COMMIT
event. Informally, a REQUEST-COMMIT event for a read
access is current if the return value provides the appear-
ance of accessing a variable that is overwritten when each

events in an event sequence.

new write access requests to commit and is restored when a
transaction ABORT occurs in order to remove all trace of
the descendants of the aborted transaction. The second con-
dition requires that the return value be “safe,” in the sense
that all the needed COMMIT events are already present in
the sequence before the REQUEST-COMMIT. Informally,
a REQUEST-COMMIT event for a read access is safe if the
writer of the current value (under the assumption that there
is a current value that is overwritten and restored) is visible
to the reader. This ensures that any ancestor of the writer
that is not yet committed is also an ancestor of the reader.
Thus, the writer cannot be aborted (by aborting one of its
ancestors) without also aborting the reader. A read access
that is not safe is sometimes described as reading “dirty
data.”

More formally, if p is any sequence of serial actions,
we define clean@) to be the subsequence of p contain-
ing all events whose hightransactions are not orphans in
/3. Then if p is a sequence of serial actions and X
is an object name, we define clean-write-sequence(p, X)
to be write-sequence(clean(P), X). Also, we define
clean-last-write@, X) to be last-write(clean(p),X). Simi-
larly, we define clean-finaGvalue(/3, X) to be
final-value(clean(p), X).

Now, if p is a sequence of serial actions and z is a
REQUEST-COMMIT(T,v) event that appears in /3, where
T is a read access to X, then we say that 1~ is cur-
rent in p if v = clean-final-value(P’,X), where /3’ is the
longest prefix of p that does not include the event x. In
addition, if /3 is a sequence of serial actions and x is a
REQUEST-COMMIT(T,v) event that appears in /3, where
T is a read access to X, then we say that x is safe in p if
clean-last-write@‘, X) is either undefined or visible to T in
p’, where p’ is the longest prefix of p that does not include
the event x.

We have the following key lemma.

Lemma 6 Let /3 be a simple behavior such that the following
hold.

1. If x is a REQUEST-COMMIT(T,v) event that occurs
in uisible(P,To) where T is a write access to X, then
v= OK.

2. If r is a REQUEST-COMMIT(T,u) event that occurs
in uisible(P,To) where T is a read access to X, then x
is current and safe in p.

Then j3 has appropriate return values.

Proof: Condition (1) above is the first condition needed
to argue that /3 has appropriate return values. It remains
to show that if r a REQUEST-COMMIT(T,v) event that
occurs in uisible(/J,To) where T is a read access to X, and
A is current in p and safe in p, then v = final-ualue(6,Sx)
where 6 is the prefix of uisible(P, To) preceding x.

Now, if x is current in p then by definition v =
clean-final-value@‘, Sx) where /3’ is the prefix of /3 preceding
K. Thus we need only prove that clean-last-write@‘, SX) =
last-write(6, SX). Since /3 is a simple behavior (and so
does not contain both a COMMIT and an ABORT for
any transaction), any transaction that is visible to To in
/3 is not an orphan in /J, and hence is not an orphan
in /3’. Thus write-sequence(6,Sx) is a subsequence of
clean-write-sequence(P’, SX).

We will show that the last event in clean-write-
sequence@‘, SX) if any, does occur in 6. Note that this last

101

event is a REQUEST-COMMIT for clean-last-write@‘, Sx).
By the hypothesis that A is safe, we see that
clean-last-write@‘, Sx) is visible to T in /3’, and hence in /3.
Since x occurs in visible(P,Ts) we have that T is visible to
To in p. We deduce that clean-last-write@‘, Sx) is visible to
TO in p, and so the last event in clean-write-sequence@‘, SX)
occurs in visible@, Sx). Since it precedes A, it occurs
in 6 as claimed. Now (as it is a REQUEST-COMMIT
for a write access to X) we can deduce it will occur in
write-sequence(6,Sx). Further, since the order of events in
write-sequence(6, SX) is the same as the order of those events
in clean-write-sequence@‘, Sx) (each order is just the order
in p), it must be the last event as required. 0

4 The Serialization Graph Construction

In this section, we present our serialization graph construc-
tion. Recall that the serial correctness condition of [ll] em-
bodies not only the serializability condition of the classical
theory, but also the external consistency condition. There-
fore, our serialization graphs will have two kinds of edges,
“conflict edges” and “precedence edges.” The former are
similar to those used in the classical theory, and serve to fix
the order of conflicting operations. The latter are added to
capture restrictions required for external consistency.

We define a conflict relation between accesses so that two
write accesses to the same object conflict, as do a write and
a read access to the same object, but not two read accesses
or two accesses to different objects. More formally, let Sx
be a serial object for object name X, and let T and T’ are
accesses to X. Then we say that T and T’ conflict if either
T or T’ is a write access.

We extend the preceding definition to a conflict relation on
operations: if Sx is a serial object for object name X, (T, v)
and (T’, v’) are operations where T and T’ are accesses to X,
then we say that (T, v) and (T’, v’) conpict if and only if T
and T’ conflict. The following proposition shows that non-
conflicting operations can be reordered in serial behaviors:

Proposition 7 Suppose that E is a sequence of operations
of X such that perform(t) is a serial object well-formed be-
havior of 5’~. Suppose that n is a reordering of 6 such that
all pairs of conflicting operations occur in the same order in
7 and in F. Then perform(q) is a behavior of Sx.

We next derive a conflict relation between sibling trans-
actions, based on conflicts between descendant operations.
Formally, if /3 is a sequence of serial actions, we define
conflict@) to be the relation such that (T,T’) E conflict(p)
if and only if T and T’ are siblings and the following
holds: there are events d, and 4 in visible@,To) such that
4 = REQUEST-COMMIT(U,v) where U is a descendant of
T, 4’ = REQUEST,COMMIT(U’,u’) where U’ is a descen-
dant of T’, (U, v) conflicts with (U’, v’) and 4 precedes 4’
in visible@, To). Informally, T conflicts with T’ if a descen-
dant of T’ accesses some object X after a descendant of T
accesses X in a conflicting manner (i.e., at least one access is
a write). Note that if two siblings are related by conflict(p)
then they (and thus their common parent) are visible to To
in /3.

If p is a sequence of serial actions, define precedes(P) to be
the relation such that (T, T’) E precedes(P) if and only if T
and T’ are siblings whose common parent is visible to TO in
,/J, and a report event for T and a REQUEST-CREATE(T’)
occur in p, in that order. Informally, T precedes T’ if their

parent knows that T finished before it requests the creation
of T’.

If p is a sequence of serial actions, we incorporate the
information in the relations conjlict(/3) and precedes(P) into
a graph, as follows. We define the serialization graph SG(/3)
to be the union of a collection of disjoint directed graphs
SG(P,T), one for each transaction T that is visible to TO in
p. The graph SG(P,T) has nodes labelled by the children
of T, and a directed edge from the node labelled T’ to the
node labelled T” if and only if T’ and T” are children of T
and (T’, T”) E precedes(P) u conflict(@).

The following theorem gives a sufficient condition for a
sequence p of serial actions to be serially correct for To. It
relies on our Serializability Theorem (Theorem 2).

Theorem 8 Let /3 be a finite simple behavior that has ap-
propriate return values. Suppose that SG(P) is acyclic.
Then p is serially correct for To.

Proof: For each transaction T that is visible to To in /3,
we can choose some total order on the children of T that
is a topological sort of the directed graph SG(P,T), since
that graph is acyclic. Let R denote the sibling order given
by the union of the chosen total orders. We claim that R is
suitable for p (as defined in Section 2.3) and that for every
object name X, view@, To, R, X) is a behavior of Sx. Once
we have shown the truth of these claims, Theorem 2 (the
Serializability Theorem of [l II-in Section 2.3) completes
the proof.

To show that R is suitable we need to check that it orders
all pairs of siblings T and T’ that are lowtransactions of
events in visible(P,Ts), and that Reven@) and a#ects(p)
are consistent partial orders on the events in visible@, To).

By construction, R orders all pairs of siblings whose com-
mon parent is visible to To in /3. We argue that this includes
all pairs of siblings that are lowtransactions of actions in
visible@, To) as follows: the hightransaction of an action in
visible(P,Ts) is visible to To in /3, and the parent of an ac-
tion’s lowtransaction is either the action’s hightransaction
(for completion actions) or the parent of the action’s high-
transaction (for other actions). Since the action’s hightrans-
action is visible to To in p, so is the parent of the action’s
hightransaction. Thus R orders all pairs of siblings T and
T’ that are lowtransactions of events in visible@, To).

Suppose that A and K’ are events in visible(P,To) such
that x affects z’ in p and lowtransaction is neither
an ancestor nor a descendant of lowtransaction(It is
easy to show that there must be a common ancestor T of
lowtransaction and lowtransaction such that a report
event for TI precedes a REQUESTCREATE event in
/3, where Tl and T2 are the children of T that are ancestors
of lowtransaction and lowtransaction(respectively. It
follows that (TI, T2) E precedes(/l). Since R was chosen using
a topological sort of the graphs SG(/3, T), precedes(P) C_ R.
Thus (TI,T~) E R, and so (x,x’) E Revent(P). It follows
from Lemma 1 that R event(P) and a#ects(@) are consistent
partial orders on the events in visible@, TO). Thus R is suit-
able for ,f3.

Now let X be an object name. We must show that y =
view@, To, R, X) is a behavior of Sx. Lemma 5 implies that
nerform(operations(visible(~, To)lX)) is a behavior of Sx.
‘Now 7 is-of the form perfo&(i?;:vl)(Ts, 02). . . (T,, v,)),
where the (Ti.v;) are the ooerations of X that occur in
visible(P,Ts), and (T;, Ti+l)‘E Rtrans for every i from 1
to n - 1 inclusive. We make the claim: If Ti conflicts with

102

T3 and i < j, then REQUEST-COMMIT(Ti,vi) precedes
REQUEST-COMMIT(Tj,v,) in visible@, To). In other
words, y can be obtained from perform(opemtions(vis-
ibZe(P, To)lX)) simply by reordering non-conflicting opera-
tions.

The claim is proved as follows: Since REQUEST-COM-
MIT(Ti, vi) and REQUEST-COMMIT(Tj, ~j) both occur
in visible(P, To) it is enough to show that REQUEST-COM-
MIT(Z, vi) does not precede REQUEST-COMMIT(Tj, vj)
in visible@, TO). Suppose it did. Then letting U and U’
denote the children of lca(Ti, T;) that are ancestors of Ti
and Tj respectively, we would have (U’, U) E conflict(/3),
and so (U’, U) E SG(/3, lca(Ti, Tj)) and therefore (U’, U) E
R. Thus (Tj,Ti) E Rtrens, contradicting (Ti,Tj) E RtronJ
which follows from i < j. Thus the claim is established.

BY definition, the operations in
operations(visible(/3,Ts)]X) are exactly the same as those
in the sequence (TI, vl)(Tz, ~2). . . (T,, vn). Moreover, as the
claim above asserts, conflicting operations occur in the same
order. Therefore, by Proposition 7 and the fact that per-
form(operations(visible(P,To)lX)) is a behavior of SX, we
have that y is a finite behavior of SX.

Theorem 2 then implies the result.

5 MOSS’ Algorithm

0

In this section we use the serialization graph described above
to prove the correctness of Moss’ algorithm for read/write
locking [13], the basic concurrency control mechanism in the
Argus and Camelot systems.

5.1 Generic Systems

First we describe one way to model a transaction-processing
system that includes concurrency control and recovery algo-
rithms. We will model such a system as a “generic system,”
which is composed of transaction automata, “generic object
automata” and a “generic controller.” In this paper, we in-
clude only a sketch; complete definitions appear in [S].

Unlike the serial object for X, the corresponding generic
object is responsible for carrying out the concurrency control
and recovery algorithms for X, for example by maintaining
lock tables. In order to do this, the automaton requires in-
formation about the completion of some of the transactions,
in particular, those that have visited that object. Thus, a
generic object automaton has (besides the CREATE and
REQUEST-COMMIT actions) special INFORM-COMMIT
and INFORMABORT input actions to inform it about the
completion of (arbitrary) transactions.

There is a single generic controller for each system type.
It passes requests for the creation of subtransactions to the
appropriate recipient, makes decisions about the commit or
abort of transactions, passes reports about the completion of
children back to their parents, and informs objects of the fate
of transactions. Unlike the serial scheduler, it does not pre-
vent sibling transactions from being active simultaneously,
nor does it prevent the same transaction from being both
created and aborted. Rather, it leaves the task of coping
with concurrency and recovery to the generic objects.

A generic system of a given system type is the composi-
tion of a strongly compatible set of automata consisting of
the transaction automaton AT for each non-access transac-
tion name T (this is the same automaton as in the serial sys-
tem), a generic object automaton Gx for each object name
X, and the generic controller automaton for the system type.
The external actions of a generic system are called generic

actions, and the executions, schedules and behaviors of a
generic system are called generic executions, generic sched-
ules and gerieric behaviors, respectively.

5.2 A Read/Write Locking Object Automaton

We model a system using Moss’ algorithm as a generic
system in which every generic object automaton is the
“read/write locking object automaton” Mix described be-
low, derived from the appropriate serial object SX. The au-
tomaton Mix maintains a stack of “values,n and manages
“read locks” and “write locks.n8

We give here the definition of the read/write lock-
ing object Mix. Mix has the usual external ac-
tions for a generic object automaton for X, and it has
no internal actions. A state s of Mix has compo-
nents s.created, s.commit-requested, s.write-lockholders and
s.read-lockholders, all sets of transactions, and s.value,
which is a function from s.write-lockholders to D, the
domain of basic values. We say that a transaction in
write-lockholders holds a write-lock, and similarly that a
transaction in read-lockholders holds a read-lock. The start
states of Mix are those in which write-lockholders = {To}
and value(Te) is d (the initial value.of SX), and the other
components are empty.

The transition relation of Mix is as follows.

CREATE(T), T an access to X
Effect:

s.created = s’.created u {T}

INFORM-COMMITAT(X)OF(T), T # To
Effect:

if T E s’.write-lockholders
then

s. write-lockholders = (s’. write-lockholders - {T})
U{pa~nt(T)l

s.value(parent(T)) = s’.value(T)
s.value(U) = s’.value(U),

for U E s.write-lockholders - {parent(T)}
if T E s’.read-lockholders

then s.read-lockholders = (s’.read-lockholders - {T})
U{parent(T)}

INFORMABORTAT(X)OF(T), T # To
Effect:

s. write-lockholders =
s’. write-lockholders - descendants(T)

s.read-lockholders =
s’.read-lockholders - descendants(T)

s.value(U) = s’.value(U) for all U E s.write-lockholders

REQUEST-COMMIT(T,v), T a read access to X
Precondition:

T E s’.created - s’.commit-requested
s’. write-lockholders E ancestors(T)
v = s’.value(least(s’.write-lockholders))

Effect:
s.commit-requested = s’.commit-requested u {T}
s.read-lockholders = s’.read-lockholders u {T}

‘This automaton is a simplification of the read/update locking
automaton Mx defined in [5]. The latter is defined for any serial
object, rather than the particular read/write serial object defined in
this paper.

103

REQUESTCOMMIT(T,e), T a write access to X
Precondition:

T E s’.created - s’.commit-requested
s’.write-Jockholders U s’.read-lockholders 2 ancestors(T)
v = OK

Effect:
s.commit-requested = s’.commit-requested~ {T}
3. write-Jockholders = 9’. write-Jockholders U {T}
s.value(T) = data(T)
s.vaJue(U) = s’.vaJue(U),

for all U E s.write-lockholders - {T}

When an access transaction is created, it is added to the
set created. When Mix is informed of a commit, it assigns
any locks held by the transaction to the parent, and also as-
signs any stored value to the parent. When Mix is informed
of an abort, it discards all locks held by descendants of the
transaction. A response to an access T can be returned only
if the access has been created but not yet responded to, ev-
ery holder of a conflicting lock is an ancestor of T, and the
return value is appropriate, being OK for a write access and
the value corresponding to the least holder of a write lock if
the access is a read. (The component s.write-Jockholders will
always be a linear chain of transactions, with every element
being either an ancestor or descendant of every other. The
least element of such a set is the unique descendant of all
other elements.) When this response is given, T is added to
commit-requested and granted the appropriate lock. Also,
if T is a write access, the new value is stored as value(T),
while if T is a read access, no change is made to value.

5.3 Basic Properties of Mix.

We begin with some basic properties of Mix. These can be
proved by common techniques such as invariant assertions
or arguments about sequences of actions.

The statements of the results below use some terminol-
ogy about the information about the status of transactions
that is deducible from the behavior of Mix. If p is a
sequence of actions of M lx, and T and T’ are transac-
tion names we say that T is a local orphan at X in /3 if
an INFORMABORTAT(X)OF(V) event occurs in p for
some ancestor U of T, and we say that T is Jock-visible
at X to T’ in p if p contains a subsequence /3’ consist-
ing of an INFORM-COMMITAT(X)OF(U’) event for every
JJ E ancestors(T) - ancestors(T’), arranged in ascending or-
der (so the INFORM-COMMIT for parent(U) is preceded
by that for V). If p is a behavior of a generic system, we
note that T is lock-visible to T’ at X in P(M lx only if T
is visible to T’ in p. Similarly T is a local orphan at X in
/3lMlx only if T is an orphan in p.

First we have a fundamental invariant of the state of Mix,
which expresses the fact that conflicting locks are never held
by transactions except when one transaction is the ances-
tor of the other. This condition is enforced when locks are
granted, and preserved thereafter by all actions.

Lemma 9 Let p be a finite schedule of Mix. Suppose ,S can
leave Mix in state 3, and that T E s.write-lockholders and
T’ E s.read-Jockholders U s. write-Jockholders. Then either T
is an ancestor of T’ or else T’ is an ancestor of T.

The following lemma shows which transactions hold locks
after a schedule of Mix.

Lemma 10 Let p be a finite schedule of Mix. Suppose
that p can leave Mix in state s. Let T be an access to X

such that REQUEST-COMMIT(T,v) occurs in p and T is
not a local orphan in /3, and Jet T’ be the highest ancestor
of T such that T is Jock-visible to T’ in ~3. If T is a write
access then T’ E s.write-Jockholders. If T is a read access
then T’ E s.read-Jockholders.

The following lemma shows that when an access T’ occurs,
all prior conflicting accesses must either be local orphans or
lock-visible to T’.

Lemma 11 Let ,0 be a generic object well-formed sched-
ule of Mlx. Suppose distinct events rr =REQUEST-COM-
MIT@,v) and x’ =REQUEST-COMMIT(T’,v’) occur in 13,
where T and T’ conflict. If rr precedes rr’ in /3 then either T
is a local orphan in S’ or T is Jock-visible to T’ in ,R’, where
p’ is the prefi of /3 preceding rr’.

The following lemma characterizes the value component
of the state, showing that value(T) reflects the effects of all
transactions that are lock-visible to T.

Lemma 12 Let /3 be a finite generic object well-formed
schedule of M lx. Suppose that S can leave Mix in state
3. Let T be a transaction name that is not a local orphan
in ,S such that T E s.write-lockholders. Then s.vaJue(T) =
finaLvalue(6, X), where 6 is the subsequence of p consisting
of event3 rr such that transaction(x) is lock-visible to T in
P-

From the previous lemma, we can show a more general
characterization.

Lemma 13 Let /3 be a finite generic object well-formed
schedule of Mix. Suppose that ,S can leave Mix in state
9. Let T be a transaction name that is not a local orphan in
/3, and let U denote the least ancestor of T such that U E
s.write-lockholders. Then s.value(U) = final-value(y,X),
where 7 is the subsequence of p consisting of events z such
that transaction(x) is Jock-visible to T in ,f3.

5.4 Correctness Proof of Read/Write Locking
Consider a generic system in which each generic object is
Mix for the appropriate object name X. We will use Theo-
rem 8 to prove that every behavior of this system is serially
correct for Te. The proof relies on first establishing that the
system’s behaviors have appropriate return values and then
showing that the serialization graph is acyclic. We show
that the system’s behaviors have appropriate return values
by showing that REQUEST-COMMIT events for read ac-
cesses are current and safe.

Lemma 14 Let S be a generic system where for each ob-
ject name X, Mix is used as the corresponding generic
object automaton. Let ,B be a finite behavior of S. If
x is a REQUEST,COMMIT(T,v) event that occurs in
visible@, To) where T is a read access to X, then rr is current
and safe in serial(S).

Proof: Let p’ be the prefix of p preceding x and let p” =
P’IMlx. The preconditions of A and Lemma 13 imply that
v = final-value(y, Sx) where 7 is the subsequence of p” con-
sisting of events whose transaction is lock-visible to T in p”.
Thus, to show that K is current in p, it suffices to show that
write-sequence(-y, X) = clean-write-sequence(serial(p’), X).

Since T is not an orphan in p, any transaction lock-
visible to T in ,!?” (and hence visible to T in p) is not an

104

orphan in serial@‘). Therefore, write-sequence(y, X) is a
subsequence of clean-write-sequence(serial(p’), X). On the
other hand, consider any REQUEST-COMMIT(T’,v’) event
in clean-write-sequence(serial(p’), X). Then T’ is a write ac-
cess and T’ is not an orphan in serial@‘); thus T’ is not a
local orphan in /3”z. Since T’ conflicts with T, Lemma 11
applied to /3”x implies that T’ is lock-visible to T in /3”z and
hence in p”. Therefore, REQUEST-COMMIT(T’,v’) occurs
in write-sequence(y, Sx). Thus, clean-write-sequence(ser-
iaJ(P’), Sx) is a subsequence of
write-sequence(y, Sx), so in fact clean-write-sequence(ser-
ial(SX) = write-sequence(y, SX). Therefore, z is cur-
rent in serial(p).

If clean-last-write(serial(p’), Sx) is defined, then Lem-
ma 11 applied to /3”x implies that clean-Jast-write(ser-
ial(SX) is lock-visible to Tin p”z. Therefore, it is visible
to T in serial@‘). It follows that rr is safe in serial(S). 0

Proposition 15 Let S be a generic system where for each
object name X, Mix is used as the corresponding generic
object automaton. Let /3 be a finite behavior of S. Then
serial(S) has appropriate return values.

Proof: We claim the following:

1. If x is a REQUEST-COMMIT(T,v) event occurring in
visible@,Te), and T is a write access to X, then v =
OK.

2. If A is a REQUEST-COMMIT(T,v) event occurring in
visible(B,Tc), and T is a read access to X, then K is
current and safe in serial(p).

The first of these is immediate, since in the transition
relation for each object Mix, v = OK is a precondition on
each REQUEST-COMMIT(T,v) action where T is a write
access to X. The second follows from Lemma 14. Then the
conclusion follows from Lemma 6. 0

The following proposition shows that M lx ensures
that the serialization graph is acyclic. The serializa-
tion graph consists of two parts, confJict(seriaJ(/3)) and
precedes(serial(S)). The proof shows that each of these is
consistent with the completion order; i.e., that if (U, U’) E
conflict(seriaJ(p)), the U completes before U’ (and similarly
for precedes).

Proposition 16 Let S be a generic system where for each
object name X, Mix is used as the corresponding generic
object automaton. Let /3 be a finite behavior of S. Then
SG(serial(P)) is acyclic.

Proof: Let T be visible to Te in /3. We will
prove that SG(serial(P),T) is acyclic by showing that
both confJict(serial(I3)) and precedes(serial@)) are subre-
lations of the partial order compJetion(/J), where (U,U’) E
completion(P) if U and U’ are siblings such that either p
contains a completion event for U preceding a completion
event for U’ or p contains a completion event for U and no
completion event for U’.

Suppose (T,T’) E precedes(serial(S)). Then a re-
port event for T and a REQUEST-CREATE(T’) oc-
cur in serial(p), in that order. But there must be
a completion event for T preceding the report event;
moreover, any completion event for T’ must follow the
REQUEST-CREATE(T’). It follows that (T,T’) E
completion(I3).

Now suppose that (T,T’) E conflict(serial(/3)). Then
there are events 4 and 4’ in visible(P,To) such that 4 =
REQUEST-COMMIT(U,v) where U is a descendant of T,
4’ = REQUEST-COMMIT(U’,v’) where U’ is a descendant
of T’, U conflicts with U’ and 4 precedes c#’ in visible@, TO).
Since U and U’ conflict, there is some object name X such
that U and U’ are both accesses to X. Then ,0lMlx is
a generic object well-formed behavior of Mix that con-
tains both 4 and 4’. Since U = transaction($) is visible
to To in @ we know that U is not a local orphan in PIMlx.
Lemma 11 implies that U is lock-visible to U’ in the prefix
of PlMlx preceding 4’. Since Jca(U,U’) = parent(T), we
see that /3 contains an INFORM-COMMITAT(X)OF(T)
event preceding b’, and thus (since /3 is a generic behavior)
that a COMMIT(T) event occurs in p preceding 4’. On the
other hand, U’ is live in the prefix of /3 ending in 4’, and U’
is not an orphan in /3 (since REQUEST-COMMIT(U’,v’)
occurs in visibJe(P,Te)). Thus T’ is live in the prefix of p
ending in 4’ so any completion event for T’ in /3 must fol-
low 4 and thus follow the completion event for T. That is,
(T, T’) E completion(S). 0

Now we can prove the main correctness theorem for Moss’
algorithm.

Theorem 17 Let S be a generic system where for each ob-
ject name X, Mix is used as the corresponding generic ob-
ject automaton. Let ~3 be a finite behavior of S. Then p is
serially correct for TO.

Proof: Proposition 15 implies that serial(S) has appro-
priate return values. Proposition 16 implies that the graph
SG(seriaJ(P)) is acyclic. Then Theorem 8 implies that /3 is
serially correct for To. 0

6 Extension to General Data Types

In this section we extend some of the previous results to ar-
bitrary data types. Thus, we allow serial objects to have
arbitrary operations, rather than restricting them to be
read/write objects.

6.1 Serialization Graphs

In order to define a serialization graph analogously to our
previous definitions, we must know how to define “conflict
edges,” which in turn requires a definition of conflicts be-
tween operations of an arbitrary data type. In order to define
conflicts, we use two auxiliary definitions, of “equieffective-
ness” and “commutativity.”

Informally, we say that two finite sequences of external ac-
tions of a particular serial object automaton Sx are “equief-
fective” if they can leave Sx in states that cannot be distin-
guished by any environment in which Sx can appear. For-
mally, we express this indistinguishability by requiring that
Sx can exhibit the same behaviors as continuations of the
two given sequences. Let ,# and /3’ be finite sequences of
actions in ext(Sx). Then 13 is equieffective to ,# if for ev-
ery sequence 7 of actions in ezlt(Sx) such that both ,/37 and
/3’7 are serial object well-formed, ,@7 E finbehs(Sx) if and
only if /3’7 E finbehs(Sx).g Obviously, equieffectiveness is
a symmetric relation, so that if ,f3 is equieffective to /3’ we
often say that p and /3’ are equieflective. Note that if /3 and
/3’ are serial object well-formed sequences and /3 is equief-
fective to /3’, then if /3 is in finbehs(Sx), /3’ must also be in
finbehs(Sx).

‘This definition first appeared in [4].

105

A special case of equieffectiveness occurs when the final
states of two finite executions are identical. The classical
notion of serializability uses this special case, in requiring
concurrent executions to leave the database in the same state
as some serial execution of the same transactions. However,
this special case is more restrictive than necessary.

We next define a notion of “commutativity” of
0perations.l’ Let Sx be a serial object for object name
X, and let (T, v) and (T’, v’) be operations, where T
and T’ are accesses to X. Then we say that (T, v)
and (T’, v’) commute backwards provided that for all fi-
nite sequences of operations t the following holds. If
perform([(T,v)(T’,v’)) is a finite behavior of Sx and
both perform([(T, v)(T’, v’)) and perform([(T’, v’)(T, v))
are serial object well-formed then perform([(T , v’)(T, v)) is
equieffective to perform(<(T, v)(T’, v’)) (and hence is also a
behavior of Sx). Note that backward commutativity is a
symmetric relation.

We say that two operations (T, v) and (T’, v’) conf7ict pro-
vided that they fail to commute backwards. We say that two
accesses T and T’ confhct provided that there exist v and v’
such that (T, v) and (T’, v’) conflict. We note that the new
definition of “conflicts” generalizes the definition given ear-
lier for accesses to a read/write object (where two accesses
conflict unless both are read accesses).

The following proposition generalizes Proposition 7, which
considered only read/write objects.

Proposition 18 Suppose that < is a sequence of operations
of X such that perform(t) is a serial object well-formed be-
havior of SX. Suppose that q is a reordering of [such that
all pairs of confJicting operations occur in the same order in
r~ and in E. Then perform(n) is a behavior of Sx.

Given the generalized notion of conflict relation defined
above and the same notion of precedes used earlier, we define
serialization graphs exactly as before. However, we cannot
use the same definition of appropriate return values, since it
relies on the properties of read/write objects. We generalize
it as follows. If /3 is a simple behavior, we say that /3 has
appropriate return values provided that for all object names
X, the following is true: perform(operations(y)) is a behav-
ior of SX, where 7 = visible(/3, To)lX. Notice that Lemma 5
shows that this is indeed a generalization of the more con-
crete definition given for systems where every serial object
is a read/write object.

Now we can show our main theorem for arbitrary data
types.

Theorem 19 Let p be a finite simple behavior that has
appropriate return values. Suppose that SG(S) is acyclic.
Then p is serially correct for TO.

Proof: The proof is essentially identical to the earlier proof
for the read/write case. 0

6.2 An Undo Logging Algorithm

Now we use serialization graphs to give a proof of correctness
of a particular system, one in which a general “undo logging”
algorithm is used everywhere. This algorithm works for ob-
jects of arbitrary data type.

“The definition of commutativity required here is slightly different
from the one used in [5]. These definitions and a careful exploration
of the differences between them are described in [16].

We model a system using the undo logging algorithm as
a generic system in which every generic object automaton
is the “undo logging object automaton” UX described be-
low. A state s of Ux consists of four components: s.created,
s.commit-requested, s.committed and s.operations. The first
three are sets of transactions, initially empty, and the last is

a sequence (log) of operations of X (recording the sequence
of operations that have taken place, but with operations re-
moved if they are later found to be aborted), initially the
empty sequence. The steps of UX are as follows:

CREATE(T), T an access to X
Effect:

s.created = s’.created U {T}

INFORMCOMMITAT(X)OF(T), T # To
Effect:

scommitted = s’.committed U {T}

IN;fiFO~MABORTAT(X)OF(T), T # TO

s.operations =
s’.operations - {(T’, v’)lT’ is a descendant of T}

REQUEST-COMMIT(T,v), T an access to X and v a value
Precondition:

T E 3’. created - 9’. commit-requested
(T, v) commutes backward with all (T’, v’) in

s’.operations such that some U in
ancestors(T’) - ancestors(T) is not
in s’.committed.

perform(s’.operations(T, v)) is a behavior of Sx
Effect:

s.operations = s’.operations(T, v)
s.commit-requested = s’.commit-requestedu {T}

The algorithm is described very abstractly; for example,
the “state” is kept simply as a log of operations, rather
than in some more compact form. Practical implementa-
tions would need to compact the information in the opera-
tions log, and restrict the nondeterminism in choosing which
active invocation to respond to. Our results apply a fortiori
to implementations of the algorithm in which the state is
compacted, and in which the nondeterminism is restricted.

Informally, the algorithm works as follows. When an op-
eration is executed (i.e., a REQUEST-COMMIT occurs for
an access), the operation is appended to soperations. A
REQUEST-COMMIT(T,v) is allowed to occur only if it
commutes with all operations executed by transactions that
are not visible to T. The commit of a transaction is sim-
ply recorded in s.committed; this component is used in the
precondition for REQUEST-COMMIT(T,v) to determine
which transactions are visible to T. When a transaction
aborts, all operations executed by its descendants are re-
moved from the log; this has the effect of “undoing” all the
effects of the transaction.

6.3 Basic Properties of Ux
Here we give some properties of UX. As before, these can be
proved by common techniques such as invariant assertions
or arguments about sequences of actions.

The statements of the results below require some termi-
nology describing what can be deduced about the status
of transactions from the local behavior of Ux. Let /3 be
a sequence of actions of Ux and let T and T’ be trans-
action names. We define the notion of a local orphan as

106

for Mix: we say that T is a local orphan at X in /3 if an
INFORMABORTAT(X)OF(U) event occurs in p for some
ancestor U of T. We define a slightly different notion of vis-
ibility: we say that T is locally visible at X to T’ in p if
p contains an INFORM-COMMITAT(X)OF(U) event for
every U E ancestors(T) - ancestors(T’). (Notice the dif-
ference with the definition of lock-visible, which requires the
INFORM-COMMIT events to occur in leaf-to-root order.)
If p is a behavior of a generic system, we note that T is
locally visible to T’ at X in p1lY.J~ only if T is visible to T’
in /3. Similarly T is a local orphan at X in /3lUx only if T
is an orphan in /3.

The following two lemmas characterize the operations
component of the state of Ux.

Lemma 20 Let /3 be a finite generic object well-formed
schedule of UX that can lead to state s. Then
s.operations is exactly the subsequence of operations(P)
obtained by removing all operations (T,w) such that an
INFORM_ABORT-AT(X)OF(U) for some ancestor U of T
occurs after the REQUEST-COMMIT(T,v) in /3.

Lemma 21 Let ,f3 be a finite generic object well-formed
schedule of Ux that can lead to state s. Let T be any set
of transaction names such that 7 n s.committed = 0.

1. If (T’, v’) precedes (T”, v”) is s.opemtions, T’ is a de-
scendant of a transaction in 7 and T” is not, then
(T’, v’) commutes backward with (T”, v”).

2, If E is the sequence of operations obtained by remov-
ing the descendants of all transactions in 7 from
s.operations, then perform(t) is a behavior of Sx.

The next lemma parallels Lemma 11.

Lemma 22 Let /3 be a generic object well-formed sched-
ule of Ux. Suppose distinct events * =REQUEST-COM-
MIT(T,v) and r’ =REQUEST-COMMIT(T’,v’) occur in p,
where (T, v) and (T’, w’) conflict. If x precedes x’ in /3 then
either T is a local orphan in @’ or T is locally visible to T’
in /3’, where /3’ is the prefix of /3 preceding x’.

6.4 Correctness Proof

First, we show that the condition on appropriate return val-
ues is satisfied.

Proposition 23 Let S be a generic system where for each
object name X, Ux is used as the corresponding generic
object automaton. Let ,I3 be a finite behavior of S. Then
serial(p) has appropriate return values.

Proof: Fix a particular object name X. We must show
that perform(operations(visible(P, To)lX)) is a behavior of
Sx. Let s be the unique state of Ux such that ,8 can lead to
s. We define 7 to be the set of all transactions other than To
that are not committed in ,f3. It follows that no transaction
in I can be in s.committed.

Lemma 20 implies that s.operations is exactly the sub-
sequence of operations@) obtained by removing all opera-
tions (T,v) such that an INFORMABORTAT(X)OF(U)
for some ancestor U of T occurs after the RE
QUEST-COM-MIT(T,v) in ,8. Let [be the sequence of
operations that results by removing descendants of transac-
tions in 7 from s.operations. We claim that operations(uis-
ible(P, To)lX) = <.

The claim is proved as follows: Both sequences are subse-
quences of operations@), and so common operations occur
in the same order. We must show that the same operations
appear in both sequences.

Suppose that CC v) appears
in opemtions(uisible(/?,To)lX). Then no ABORT(U) ap-
pears in /3 for any ancestor U of T, and hence no INFORM-
ABORTAT(X)OF(U) appears in /3. Therefore, (T, v) is in
s.operations. Also, T cannot be a descendant of any trans-
action in 7, since T is visible to To in /3. Therefore, (T,v)
appears in E.

Now suppose (T, v) appears in [. Then T is not a descen-
dant of any transaction in 7, so that all ancestors of T except
for To are committed in p. Therefore, T is visible to To in ,5’,
and so (T, w) appears in operations(visible(/3, To)lX). This
establishes the claim.

Now Lemma 21 implies that operations(visible(/3, To)IX)
is a behavior of Sx, as needed. 0

Next, we show that the serialization graphs are acyclic; the
proof of this result is quite similar to that of Proposition 16.

Proposition 24 Let S be a generic system where for each
object name X, Ux is used as the corresponding generic
object automaton. Let /3 be a jinite behavior of S. Then
SG(serial(P)) is acyclic.

Proof: Let T be visible to To in p. We will prove
that SG(serial(P),T) is acyclic by showing that both
conf%ct(serial(p)) and precedes(serial(P)) are subrelations
of the partial order completion(P).”

Suppose (T,T’) E precedes(serial(P)). Then a re-
port event for T and a REQUEST-CREATE(T’) oc-
cur in serial(p), in that order. But there must be
a completion event for T preceding the report event;
moreover, any completion event for T’ must follow the
REQUEST-CREATE(T’). It follows that (T, T’) E
completion(P).

Now suppose that (T,T’) E conjZict(serial(p)). Then
there are events 4 and 4’ in visible@, To) such that ++ =
REQUEST-COMMIT(U,w) where U is a descendant of T,
4’ = REQUEST-COMMIT(U’,v’) where U’ is a descendant
of T’, U conflicts with U’ and 4 precedes 4’ in visible(P, To).
Since U and U’ conflict, there is some object name X such
that U and U’ are both accesses to X. Then PlUx is a
generic object well-formed behavior of Ux that contains both
q5 and 4’. Since U = transaction(d) is visible to To in /3 we
know that U is not a local orphan in PlUx. Lemma 22 im-
plies that U is locally visible to U’ in the prefix of ,8lUx
preceding 4’. Since lca(U, U’) = parent(T), we see that
p contains an INFORM-COMMITAT(X)OF(T) event pre-
ceding 4’, and thus (since /3 is a generic behavior) that a
COMMIT(T) event occurs in p preceding 4’. On the other
hand, U’ is live in the prefix of /3 ending in #, and U’ is
not an orphan in /3 (since REQUEST-COMMIT(U’,u’) oc-
curs in visible@, TO)). Therefore T’ is live in the prefix of /3
ending in 4’ so any completion event for T’ in p must fol-
low 4’ and thus follow the completion event for T. That is,
(T, T’) E completion(P). 0

Theorem 25 Let S be a generic system where for each ob-
ject name X, Ux is used as the corresponding generic object

llFlecall that (CJ, U’) E completion(~) if U and U’ are siblings such
that either p contains a completion event for U preceding a comple-
tion event for U’ or else 0 contains a completion event for U and no
completion event for U’.

107

automaton. Let ,8 be a finite behavior of S. Then p is seri-
ally correct for TO.

Proof: Proposition 23 implies that serial(p) has appro-
priate return values. Proposition 24 implies that the graph
SG(serial(@) is acyclic. Then Theorem 19 implies that /3 is
serially correct for TO. 0

7 Conclusions
In this paper we have presented a proof technique for nested
transaction systems. Using this technique, two properties
must be demonstrated to show correctness: the return val-
ues for operations must be shown to be “appropriate,” and a
“serialization graph” must be shown to be acyclic. The first
property corresponds to an assumption that is made im-
plicitly in the classical theory of concurrency control. The
second property generalizes the serialization graphs of the
classical theory to nested transactions.

The classical theory has been extended in a variety of
ways, for example to model concurrency control and re-
covery algorithms that use multiple versions, and to model
replication algorithms. l2 It should be possible to develop
techniques based on the model presented in this paper that
parallel the techniques used in the classical theory for these
other kinds of systems.

Acknowledgements
We thank Michael Merritt for many useful comments that
helped improve the content and presentation of this paper.

References

PI

PI

131

141

[51

[61

J. Aspnes, A. Fekete, N. Lynch, M. Merritt, and W. W&l.
A theory of time&-based concurrency control for nested
transactions. In Proceedings of 14th International
Conference on Very Large Dais Eases, pages 431-444,
August 1988.

C. Beeri, P.A. Bernstein, and N. Goodman. A model for
concurrency in nested transaction systems. Journal of the
ACM, 36(2):230-269, April 1989.

P. Bernstein, V. Hadzilacos, and N. Goodman.
Concurrency Conlrol and Recovery in Database Systems.
Addison-Wesley, 1987.

A. Fekete, N. Lynch, M. Merritt, and W. Weihl. Nested
transactions and read/write locking. In 6th A CM
Symposium on Principles of Database Syslems, pages
97-111, San Diego, CA, March 1987. Expanded version
available as Technical Memo MIT/LCS/TM-324,
Laboratory for Computer Science, Massachusetts Institute
Technology, Cambridge, MA, April 1987.

A. Fekete, N. Lynch, M. Merritt, and W. We&l.
Commutativity-based locking for nested transactions.
Technical Memo MIT/LCS/TM-370.b, Massachusetts
Institute Technology, Laboratory for Computer Science,
August 1989. To appear in JCSS.

K. Goldman and N. Lynch. Nested transactions and
quorum consensus. In Proceedings of 6th A CM Symposium
on Principles of Distributed Compulation, pages 27-41,

[71

PI

PI

PO1

PI

[121

[I31

1141

[I51

WI

1171

P31

August 1987. Expanded version is available as Technical
Report MIT/LCS/TM-390, Laboratory for Computer
Science, Massachusetts Institute Technology, Cambridge,
MA, May 1987.

T. Hadzilacos and V. Hadzilacos. Transaction
synchronisation in object bases. In 7th A CM Symposium
on Principles of Database Systems, pages 193-200, Austin,
TX, March 1988.

M. Herlihy, N. Lynch, M. Merritt, and W. Weihl. On the
correctness of orphan elimination algorithms. In Proceedings
of 17th IEEE Symposium on Fault-Tolerant Computing,
pages 8-13, 1987. To appear in Journal of the ACM.

B. Liskov. Distributed computing in Argus.
Communications of Ihe A CM, 31(3):300312, March 1988.

N. Lynch and M. Merritt. Introduction to the theory of
nested transactions. In International Conference on
Database Theory, pages 278305, Rome, Italy, September
1986. Also, expanded version to appear in Theoretical
Computer Science.

N. Lynch, M. Merritt, W. We&l, and A. Fekete. A theory
of atomic transactions. In International Conference on
Database Theory, Bruges, Belgium, September 1988. Also,
available as MIT/LCS/TM-362 June 1988.

N. Lynch and M. Tuttle. Hierarchical correctness proofs for
distributed algorithms. In Proceedings of 6th A CM
Symposium on Principles of Distributed Computation,
pages 137-151, August 1987. Expanded version available as
Technical Report MIT/LCS/TR387, Laboratory for
Computer Science, Massachusetts Institute Technology,
Cambridge, MA., April 1987.

J.E.B. Moss. Nested Transaclions: An Approach lo
Reliable Distributed Compuling. PhD thesis, Massachusetts
Institute Technology, 1981. Technical Report
MIT/LCS/TR260, Laboratory for Computer Science,
Massachusetts Institute Technology, April 1981. Also,
published by MIT Press, March 1985.

C. Papadimitriou. The Theory of Concurrency Control.
Computer Science Press, 1986.

A. Spector and K. Swedlow. Guide to the Camelot
distributed transaction facility: Release 1, October 1987.
Available from Carnegie Mellon University, Pittsburgh, PA.

W. E. W&l. The impact of recovery on concurrency
control (extended abstract). In Symposium on Principles of
Database Systems, pages 259-269, Philadelphia, PA, March
1989.

W. E. We&l. Local atomicity properties: modular
concurrency control for abstract data types. A CM
Transaclions on Programming Languagea and Systems,
11(2):249-282, April 1989.

W.E. Weihl. Specification and Implemenlalion of Atomic
Data Typea. PhD thesis, Massachusetts Institute
Technology, 1984. Technical Report MIT/LCS/TR-314,
Laboratory for Computer Science, Massachusetts Institute
Technology, Cambridge, MA, March 1984.

“These extensions to the classical theory have typically required
redefining the notion of correctness (e.g., introducing the notion of “l-
copy serializability”). In contrast, the definition of correctness used
in our work, namely that a system’s behaviors must be serially correct
for To, is sufficiently general to apply directly to these and many other
kinds of systems.

108

