
A Serialization Graph Construction for Nested Transactions 

Alan Fekete’ 
University of Sydney 

Sydney, Australia 

Nancy Lynch+ William E. Weihlt 
MIT Laboratory for Computer Science MIT Laboratory for Computer Science 

545 Technology Square 545 Technology Square 
Cambridge, MA 02139 Cambridge, MA 02139 

Abstract 

This paper makes three contributions. First, we present a 
proof technique that offers system designers the same ease 
of reasoning about nested transaction systems as is given 
by the classical theory for systems without nesting, and yet 
can be used to verify that a system satisfies the robust “user 
view” definition of correctness of [lo]. Second, as applica- 
tions of the technique, we verify the correctness of Moss’ 
read/write locking algorithm for nested transactions, and of 
an undo logging algorithm that has not previously been pre- 
sented or proved for nested transaction systems. Third, we 
make explicit the assumptions used for this proof technique, 
assumptions that are usually made implicitly in the classical 
theory, and therefore we clarify the type of system for which 
the classical theory itself can reliably be used. 

1 Introduction 

The notion of “atomic transaction” was originally developed 
to hide the effects of failures and concurrency in central- 
ized database systems. Recently, a generalization to “nested 
transactions” has been advocated as a way of organizing 
distributed systems in which information is maintained in 
persistent modifiable objects. Nested transactions allow the 
benefits of atomicity to be used within a transaction, so that, 
for example, a transaction can include several simultaneous 
remote procedure calls, which can be coded without consid- 
ering possible interference among them. Examples of sys- 
tems using nested transactions are Argus [9] and Camelot 
[15]. In these systems “atomic” objects can be created and 
operations on these objects are guaranteed to be serializable, 
even though they execute concurrently. In both Argus and 
Camelot the default algorithm used for concurrency control 
and recovery is the locking protocol of Moss [13], but the 
implementor of an object has the option of writing his or 
her own concurrency control and recovery routines. 

A natural question is what “correctness” means for con- 
currency control and recovery algorithms in a nested trans- 
action system. Once a specification for correct functioning 
has been given, one seeks to prove that existing algorithms 
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are correct. Moreover, the possibility of user-defined concur- 
rency control in a system leads one to seek proof methods 
that are modular, so that when one object is reimplemented 
(for performance reasons) in a previously correct system, the 
new system= be prodcorrect without needing to recon- 
sider those parts that have not changed. Such specification 
and proof issues have been addressed in a major research 
project started by Lynch and Merritt [lo] and continued in 
[4, 6, 6, 5, 1, 111. 

In [lo], a notion of correctness called “serial correctness” 
is defined for nested transaction systems. The definition of 
“serial correctness” presented there is a “user view” specifi- 
cation: the users of the transaction system should only be 
able to observe behavior that they could observe when in- 
teracting with a system in which their transactions were run 
without concurrency and without failure after partial activ- 
ity. The definition of serial correctness embodies not only 
the serializability condition of the classical theory, but also 
the “external consistency” condition, i.e., that the appar- 
ent serial execution must not reverse the order of any pair 
of transactions for which one completed before the other 
was invoked. Also, unlike the classical theory, this definition 
of serial correctness is explicitly formulated to apply to sys- 
tems in which transactions can abort; in the classical theory, 
aborts are handled by considering only executions in which 
all transactions commit.’ 

The definition of serial correctness from [lo] is used in 
[lo, 41, where a proof technique is developed for verifying 
Moss’ algorithm. Modular proof techniques for locking al- 
gorithms can be found in [5]. The same definition and proof 
techniques have been used in proofs of the correctness of 
several other kinds of transaction-processing algorithms, in- 
cluding multi-version timestamp-based algorithms for con- 
currency control and recovery [l], algorithms for manage- 
ment of replicated data [6], and algorithms for management 
of orphan transactions [8]. The proof techniques of these pa- 
pers are very general. They apply to large classes of systems, 
including those where different data objects are implemented 
independently, and where the type of the objects can be used 
to obtain increased concurrency (as in [17]). We summarize 
the system model, definition of serial correctness, and main 
proof technique in the next section. 

We can contrast the development of our theory of serial 
correctness for nested transaction systems with the classical 
serializability theory for systems without transaction nest- 
ing, as presented (for example) in [14] and [3]. The classical 
theory uses a system model and correctness definition that 
are somewhat more restrictive than necessary; for example, 
the classical correctness definition is not stated in terms of 

‘As discussed in [16], aborts must be modeled explicitly to ana 
lyze the subtle interactions between concurrency control and recovery. 
Because it does not model aborts explicitly, and implicitly assumes 
an “update-in-place” model for recovery, the classical theory is not 
general enough to model certain kinds of algorithms. 



the user view of the system, but rather in terms of the activ- 
ity at the data objects. The classical model and definition 
work very well for a number of simple update-in-place algo- 
rithms, but a different definition of correctness is needed to 
cope with multiversion algorithms, and yet another for repli- 
cation management. The classical theory is also restricted 
in that it deals almost exclusively with data objects allowing 
only read and write operations. 

An advantage of the classical theory, however, is that 
for the simplest concurrency control algorithms such as 
two-phase locking or single-version timestamps, it yields 
extremely simple and intuition-supporting proofs. These 
prooh are based on the absence of cycles in a “serialization 
graph,” a graph whose nodes are the transactions and whose 
edges record conflicts between activity of the transactions. 

We would like to be able to combine the best features of 
both theories. In particular, we would like to be able to use 
serialization graph proof techniques similar to those of the 
classical theory to reaSon about nested transaction systems, 
wherever this is possible. We would especially like to use 
such techniques to prove that such systems satisfy the user 
view serial correctness condition of [lo]. We would also like 
to extend the applicability of serialization graph techniques 
to data objects that admit other kinds of operations besides 
reads and writes. In this paper, we show how to combine 
the two theories in these ways. 

More specifically, we develop a proof technique for nested 
transaction systems in which proofs have the same simple 
form as in the classical theory, namely, one must show that 
a graph (having transactions for nodes, and edges repre- 
senting necessary ordering between transactions) is acyclic. 
Thus, we define a new kind of “serialization graph” and 
prove that, under certain assumptions, the absence of cy- 
cles in this graph is a sufficient condition to ensure the serial 
correctness of a system. In the first part of the paper, we 
restrict our attention to systems in which each data object 
admits only read and write operations. For such systems, 
we assume that (once aborted transactions’ activity is ig- 
nored) a read operation always returns the value written by 
the most recent write operation. This assumption is true 
of systems in which each data object is stored in a single 
location that is overwritten by any write access, and where 
an underlying recovery system restores the appropriate old 
value when an ancestor of the most recent write is aborted. 

In much of the classical work on database concurrency con- 
trol, these restrictions and assumptions are made early on, 
and in fact the definition of correctness often includes them. 
Systems satisfying these assumptions are very common, and 
while we feel that it is inappropriate to make these assump- 
tions when defining the correctness condition to be satisfied, 
it is clearly useful to find a simple sufficient condition that 
guarantees correctness when the system does satisfy them. 

We note that in contrast to the classical theory, the 
acyclicity of the graphs we construct is merely a sufficient 
condition for serial correctness, rather than necessary and 
sufficient. This is primarily because our notion of serial cor- 
rectness, based as it is on the user’s view of the system, is 
not as restrictive as the one used in the classical theory. 

After presenting our results for reads and writes, we in- 
dicate how they can be generalized to arbitrary data types. 
That is, we define serialization graphs for systems with ob- 
jects of arbitrary data type, and prove once again that ab- 
sence of cycles implies serializability. Once again, the values 
returned by accesses to objects are assumed to satisfy special 
restrictions. 

We use our serialization graphs to prove correctness of 
two algorithms-the read/write locking algorithm of Moss 
and an undo logging algorithm. (The latter algorithm is a 
generalization to nested transaction systems of an algorithm 
due to Weihl [IS]). 

Other work has also been done on modeling nested trans- 
action systems. Hadzilacos and Hadzilacos [7] present a gen- 
eralization of the classical theory to handle “object bases,” 
which exhibit a nesting structure very much like that consid- 
ered in this paper. (Our objects correspond to the instance 
variables in their objects, and our accesses to objects corre- 
spond to the local steps that access the instance variables.) 
They define a serialization graph construction, and give an 
acyclicity condition for serializability. However, they do not 
consider recovery’, and their basic model is significantly less 
general than ours (for example, their correctness condition is 
appropriate only with an update-in-place single-version im- 
plementation of objects, while we permit multi-version im- 
plementations). Beeri, Bernstein and Goodman [2] present 
proof techniques that are useful for systems organized using 
multiple levels of abstraction, with concurrency control per- 
formed separately at each level. The nesting in such systems 
corresponds to levels of data abstraction, while the nesting 
considered here corresponds more to levels of procedural ab- 
straction. It may be that the techniques in [2] could be 
applied to the kinds of systems we consider here, but their 
techniques are more complicated, allowing replacement of 
entire subtrees of nested activity by single actions as well 
as the reordering of actions in a history. Also, they do not 
present a simple acyclic graph condition for correctness, and 
they do not model recovery in their work. 

The remainder of this paper is organized as follows. First, 
in Section 2, we summarize our earlier work on which this 
work is based. Then, in Section 3, we give the assumptions 
we make for systems based on read/write objects; that is, we 
define such systems and define the condition that says that 
all reads return the latest value. In Section 4, we present 
our serialization graph construction and the theorem that 
says that acyclicity of the serialization graph implies serial 
correctness. In Section 5, we give a proof of Moss’ algorithm 
using our serialization graphs. In Section 6, we indicate how 
to extend the work to other data types besides read/write 
objects; this section includes a description and proof of the 
general undo logging algorithm. Finally, we conclude with a 
discussion and some suggestions for further work. 

2 Background 
In this section, we summarize the main concepts from our 
earlier work that are used in the rest of the paper. Complete 
details can be found in [ll]. The reader who is already fa- 
miliar with our work, or who is not interested in the details 
of the proofs, may skip or skim this section. 

2.1 Review: The Input/Output Automaton 
Model 

The following is a brief introduction to the formal model that 
we use to describe and reason about systems. This model is 
treated in detail in [12] and [ll]. 

All components in our systems, transactions, objects and 
schedulers, will be modelIed by I/O automata. An I/O au- 
tomaton A has a set of states, some of which are designated 
as initial states. It has actions, divided into input actions, 

2A later manuscript of their paper has extended the results to 
include recovery. 
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output actions and internal actions. We refer to both input 
and output actions as external actions. We use the terms 
in(A), out(A), and ext(A) to refer to the sets of input ac- 
tions, output actions and external actions of the automaton 
A. An automaton has a transition relation, which is a set 
of triples of the form (s’, A, a), where a’ and a are states, 
and x is an action. This triple means that in state a’, the 
automaton can atomically do action x and change to state 
a. An element of the transition relation is called a step of 
the automaton.3 

The input actions model actions that are triggered by 
the environment of the automaton, while the output actions 
model the actions that are triggered by the automaton itself 
and are potentially observable by the environment, and in- 
ternal actions model changes of state that are not directly 
detected by the environment. 

Given a state a’ and an action x, we say that r is enabled 
in a’ if there is a state a for which (a’, I, s) is a step. We 
require that each input action A be enabled in each state a’, 
i.e., that an I/O automaton must be prepared to receive any 
input action at any time. 

A finite execution fragment of A is a finite alternating se- 
quence 30~181~z.. . ~,,a,, of states and actions of A, ending 
with a state, such that each triple (a’, A, a) that occurs as 
a consecutive subsequence is a step of A. We also say in 
this case that (SO, x1 . . .x ,,, s,,) is an extended step of A, and 
that (30, p, sn) is a moue of A where p is the subsequence of 
xi . . . rr,, consisting of external actions of A. A finite execu- 
tion is a finite execution fragment that begins with a start 
state of A. 

From any execution, we can extract the schedule, which is 
the subsequence of the execution consisting of actions only. 
Because transitions to different states may have the same 
actions, different executions may have the same schedule. 
From any execution or schedule, we can extract the behavior, 
which is the subsequence consisting of the external actions 
of A. We write finbehs(A) for the set of all behaviors of finite 
executions of A. 

We say that a finite schedule or behavior p can leave A in 
state a if there is some execution with schedule or behavior 
o and final state s. We say that an action r is enabled after 
a schedule or behavior o, if there exists a state a such that 
A is enabled in a and Q can leave A in state a. 

Since the same action may occur several times in an exe- 
cution, schedule or behavior, we refer to a single occurrence 
of an action as an event. 

We describe systems as consisting of interacting compo- 
nents, each of which is an I/O automaton. It is convenient 
and natural to view systems as I/O automata, also. Thus, 
we define a composition operation for I/O automata, to yield 
a new I/O automaton. A collection of I/O automata is said 
to be strongly compatible if any internal action of any one 
automaton is not an action of any other automaton in the 
collection, any output action of one is not an output action 
of any other, and no action is shared by infinitely many au- 
tomata in the collection. A collection of strongly compatible 
automata may be composed to create a system S. 

A state of the composed automaton is a tuple of states, 
one for each component automaton, and the start states are 
tuples consisting of start states of the components. An ac- 
tion of the composed automaton is an action of a subset of 

3Also, an I/O automaton has an equivalence relation on the set of 
output and internal actions. This is needed only to discuss fairness 
and will not be mentioned further in this paper. 

the component automata. It is an output of the system if 
it is an output for any component. It is an internal action 
of the system if it is an internal action of any component. 
During an action x of S, each of the components that has 
action rr carries out the action, while the remainder stay in 
the same state. If /3 is a sequence of actions of a system 
with component A, then we denote by PIA the subsequence 
of p containing all the actions of A. Clearly, if p is a finite 
behavior of the system then PIA is a finite behavior of A. 

Let A and B be automata with the same external actions. 
Then A is said to implement B if finbehs(A) c finbeha(B). 
One way in which this notion can be used is the following. 
Suppose we can show that an automaton A is “correct,” in 
the sense that its finite behaviors all satisfy some specified 
property. Then if another automaton B implements A, B is 
also correct. 

2.2 Review: Serial Systems and Correctness 

In this section of the paper we summarize the definitions for 
serial systems, which consist of transaction automata and se- 
rial object automata communicating with a serial scheduler 
automaton. More details can be found in [ll]. 

Transaction automata represent code written by applica- 
tion programmers in a suitable programming language. Se- 
rial object automata serve as specifications for permissible 
behavior of data objects. They describe the responses the 
objects should make to arbitrary sequences of operation in- 
vocations, assuming that later invocations wait for responses 
to previous invocations. The serial scheduler handles the 
communication among the transactions and serial objects, 
and thereby controls the order in which the transactions 
can take steps. It ensures that no two sibling transactions 
are active concurrently-that is, it runs each set of sibling 
transactions serially. The serial scheduler is also responsible 
for deciding if a transaction commits or aborts. The serial 
scheduler can permit a transaction to abort only if its par- 
ent has requested its creation, but it has not actually been 
created. Thus, in a serial system, all sets of sibling trans- 
actions are run serially, and in such a way that no aborted 
transaction ever performs any steps. 

A serial system would not be an interesting transaction- 
processing system to implement. It allows no concurrency 
among sibling transactions, and has only a very limited 
ability to cope with transaction failures. However, we are 
not proposing serial systems as interesting implementations; 
rather, we use them exclusively as specifications for correct 
behavior of other, more interesting systems. 

We represent the pattern of transaction nesting, a aya- 
tern type, by a set ‘T of transaction names, organized into 
a tree by the mapping parent, with TO as the root. In re- 
ferring to this tree, we use traditional terminology, such as 
child, leaf, ancestor, lea (that is, least common ancestor), 
and descendant. (A transaction is its own ancestor and de- 
scendant.) The leaves of this tree are called acceSSea. The 
accesses are partitioned so that each element of the partition 
contains the accesses to a particular object. In addition, the 
system type specifies a set of return values for transactions 
(henceforth simply called values). If T is a transaction name 
that is an access to the object name X and u is a value, we 
say that the pair (T, v) is an operation of X. 

The tree structure can be thought of as a predefined nam- 
ing scheme for all possible transactions that might ever be 
invoked. In any particular execution, however, only some of 
these transactions will actually take steps. We imagine that 
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the tree structure is known in advance by all components 
of a system. The tree will, in general, be infinite and have 
infinite branching. 

The classical transactions of concurrency control theory 
(without nesting) appear in our model as the children of a 
“mythical” transaction, To, the root of the transaction tree. 
Transaction TO models the environment in which the rest of 
the transaction system runs. It has actions that describe the 
invocation and return of the classical transactions. It is often 
natural to reason about To in the same way as about all of 
the other transactions. The only transactions that actually 
access data are the leaves of the transaction tree, and thus 
they are distinguished as “accesses.” (Note that leaves may 
exist at any level of the tree below the root.) The internal 
nodes of the tree model transactions whose function is to 
create and manage subtransactions, but not to access data 
directly. 

A serial system of a given system type is the composition 
of a set of I/O automata. This set contains a transaction 
automaton for each non-access node of the transaction tree, 
a serial object automaton for each object name, and a serial 
scheduler. These automata are described below. 

2.2.1 Transactions 

A non-access transaction T is modelled as a transaction au- 
tomaton AT, an I/O automaton with the following external 
actions. (In addition, AT may have arbitrary internal ac- 
tions.) 

Input: 
CREATE(T) 
REPORTCOMMIT(T’,u), for T’ a child of T, v a value 

output: 
REQUESTCREATE( for T’ a child of T 
REQUEST-COMMIT(T,u), for v a value 

The CREATE input action “wakes up” the transac- 
tion. The REQUEST-CREATE output action is a re- 
quest by T to create a particular child transaction. The 
REPORT-COMMIT input action reports to T the suc- 
cessful completion of one of its children, and returns a 
value recording the results of that child’s execution. The 
REPORTABORT input action reports to T the unsuccess- 
ful completion of one of its children, without returning any 
other information. The REQUEST-COMMIT action is an 
announcement by T that it has finished its work, and in- 
cludes a value recording the results of that work. 

We leave the executions of particular transaction au- 
tomata largely unconstrained; the choice of which children to 
create and what value to return will depend on the particu- 
lar implementation. For the purposes of the systems studied 
here, the transactions are “black boxes.” Nevertheless, it is 
convenient to assume that behaviors of transaction automata 
obey certain syntactic constraints, for example that they do 
not request the creation of children before they have been 
created themselves and that they do not request to commit 
before receiving reports about all the children whose creation 
they requested. We therefore require that all transaction 
automata preserve transaction well-formedneaa, as defined 
formally in [ll]. 

2.2.2 Serial Objects 

Recall that transaction automata are associated with non- 
access transactions only, and that access transactions model 
abstract operations on shared data objects. We associate 
a single I/O automaton with each object name. The ex- 

ternal actions for each object are just the CREATE and 
REQUEST-COMMIT actions for all the corresponding ac- 
cess transactions. Although we give these actions the same 
kinds of names as the actions of non-access transactions, it is 
helpful to think of the actions of access transactions in other 
terms also: a CREATE corresponds to an invocation of an 
operation on the object, while a REQUEST-COMMIT cor- 
responds to a response by the object to an invocation. Thus, 
we model the serial specification of an object X (describing 
its activity in the absence of concurrency and failures) by a 
aerial object automaton Sx with the following external ac- 
tions. (In addition, SX may have arbitrary internal actions.) 

Input: 
CREATE(T), for T an access to X 

output: 
REQUEST-COMMIT(T,v), for T an access to X, 

v a value 

As with transactions, while specific objects are left largely 
unconstrained, it is convenient to require that behaviors of 
serial objects satisfy certain syntactic conditions. Let cr be 
a sequence of external actions of SX. We say that (Y is aerial 
object well-formed for X if it is a prefix of a sequence of 
the form CREATE(Tr)REQUCOMMIT(Tr,vr)CRE- 
ATE(Ta)REQUCOMMIT(Ts,vs). . . , where T, # T3 
when i # j. We require that every serial object automa- 
ton preserve serial object well-formedness.’ 

2.2.3 Serial Scheduler 

The third kind of component in a serial system is the se- 
rial scheduler. The transactions and serial objects have been 
specified to be any I/O automata whose actions and behavior 
satisfy simple restrictions. The serial scheduler, however, is 
a fully specified automaton, particular to each system type. 
It runs transactions according to a depth-first traversal of 
the transaction tree. The serial scheduler can choose non- 
deterministically to abort any transaction whose parent has 
requested its creation, as long as the transaction has not 
actually been created. Each child of T whose creation is re- 
quested must be either aborted or run to commitment with 
no siblings overlapping its execution, before T can commit. 
The result of a transaction can be reported to its parent at 
any time after the commit or abort has occurred. 

The actions of the serial scheduler are as follows. 

Input: 
REQUEST-CREATE(T), for T # TO 
REQUEST-COMMIT(p,u), for !F a transaction name, 

v a value 
output: 

CREATE(T), for T a transaction name 
COMMIT(T), for T # TO 
ABORT(T), for T # TO 
REPORT-COMMIT(T,v), for T # To, v a value 
REPORT-ABORT(T), for T # To 

The REQUEST-CREATE and REQUEST-COMMIT in- 
puts are intended to be identified with the corresponding 
outputs of transaction and serial object automata, and cor- 
respondingly for the CREATE, REPORT-COMMIT and 
REPORT-ABORT output actions. The COMMIT and 
ABORT output actions mark the point in time where the 
decision on the fate of the transaction is irrevocable. 

‘This is formally defined in [ll] and means that the object does 
not violate well-formedness unless its environment has done so first. 
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The details of the states and transition relation for the 
serial scheduler can be found in [ll]. 

2.2.4 Serial Systems and Serial Behaviors 

A aerial system is the composition of a strongly compatible 
set of automata consisting of a transaction automaton AT 
for each non-access transaction name T, a serial object au- 
tomaton Sx for each object name X, and the serial scheduler 
automaton for the given system type. 

The discussion in the remainder of this paper assumes an 
arbitrary but fixed system type and serial system, with AT 
as the non-access transaction automata, and SX as the serial 
object automata. We use the term aerial behaviors for the 
system’s behaviors. We give the name aerial actions to the 
external actions of the serial system. The COMMIT(T) and 
ABORT(T) actions are called completion actions for T. 

We introduce some notation that will be useful later. 
Let T be any transaction name. If A is one of 
the serial actions CREATE(T), REQUESTCREATE( 
REPORT-COMMIT(T’,v’), REPORT_ABORT(T’), or 
REQUEST,COMMIT(T,v), where T’ is a child of T, then 
we define transaction(r) to be T. If K is any serial action, 
then we define hightransaction to be transaction(%) if x 
is not a completion action, and to be T, if A is a comple- 
tion action for a child of T. Also, if A is any serial action, 
we define lowtransaction to be transaction(x) if x is not 
a completion action, and to be T, if rr is a completion ac- 
tion for T. If A is a serial action of the form CREATE(T) 
or REQUEST-COMMIT(T,v), where T is an access to X, 
then we define object(x) to be X. 

If /3 is a sequence’ of actions, T a transaction name 
and X an object name, we define PIT to be the subse- 
quence of ,9 consisting of those serial actions A such that 
transaction(x) = T, and we define /31X to be the subse- 
quence of @ consisting of those serial actions A such that 
object(s) = X. We define aerial(p) to be the subsequence 
of /? consisting of serial actions. 

If /3 is a sequence of actions and T is a transaction name, 
we say T is an orphan in p if there is an ABORT(U) action 
in /3 for some ancestor U of T. We say the T is live in p 
if /3 contains a CREATE(T) event but does not contain a 
completion event for T. 

2.2.5 Serial Correctness 

We use the serial system to specify the correctness condition 
that we expect other, more efficient systems to satisfy. We 
say that a sequence /3 of actions is aerially correct for trans- 
action name T provided that there is some serial behavior 
y such that PIT = -/IT. We will be interested primarily in 
showing, for particular systems of automata, representing 
data objects that use different methods of concurrency con- 
trol and a controller that passes information between trans- 
actions and objects, that all finite behaviors are serially cor- 
rect for To. 

We believe serial correctness to be a natural notion of cor- 
rectness that corresponds precisely to the intuition of how 
nested transaction systems ought to behave. Serial correct- 
ness for T is a condition that guarantees to implementors 
of T that their code will encounter only situations that can 
arise in serial executions. Correctness for TO is a special case 
that guarantees that the external world will encounter only 
situations that can arise in serial executions. 

‘We make these definitions for arbitrary sequences of actions, be- 
cause we will use them later for behaviors of systems other than the 
serial system. 

2.3 Review: Simple Systems and the Serializ- 
ability Theorem 

In this section we outline a general method for proving that 
a concurrency control algorithm guarantees serial correct- 
ness. This method is treated in more detail in [ll], and is an 
extension to nested transaction systems of ideas presented 
in [18, 171. These ideas give formal structure to the sim- 
ple intuition that a behavior of the system will be serially 
correct so long as there is a way to order the transactions 
so that when the operations of each object are arranged in 
that order, the result is legal for the serial specification of 
that object’s type. For nested transaction systems, the cor- 
responding result is Theorem 2. Later in this paper we will 
see that the essence of a nested transaction system using 
locking algorithms like Moss’ is that the serialization order 
is defined by the order in which siblings complete. 

It is desirable to state our Serializability Theorem in such 
a way that it can be used for proving correctness of many 
different kinds of transaction-processing systems, with rad- 
ically different architectures. We therefore define a “sim- 
ple system,” which embodies the common features of most 
transaction-processing systems, independent of their concur- 
rency control and recovery algorithms, and even of their divi- 
sion into modules to handle different aspects of transaction- 
processing. 

2.3.1 Simple Systems 

Many complicated transaction-processing algorithms can be 
understood as implementations of the simple system. For ex- 
ample, we will see that a system containing separate objects 
that manage locks and a “controller” that passes informa- 
tion among transactions and objects can be represented in 
this way. 

We first define an automaton called the simple database. 
There is a single simple database for each system type. The 
actions of the simple database are those of the composition 
of the serial scheduler with the serial objects: 

Input: 
REQUEST-CREATE(T), for T # TO 
REQUEST-COMMIT(T,v), for T a non-access trans- 

action name, v a value 
output: 

CREATE(T) for T a transaction name 
COMMIT(T), for T # TO 
ABORT(T), for T # To 
REPORT-COMMIT(T,v), for T # To, v a value 
REPORTABORT( for T # TO 
REQUEST-COMMIT(T,v), for T an access trans- 

action name, v a value 

The simple database embodies those constraints that we 
would expect any reasonable transaction-processing system 
to satisfy. It does not allow CREATE, ABORT or COMMIT 
events without an appropriate preceding request, does not 
allow any transaction to have two creation or completion 
events, and does not report completion events that never 
happened. Also, it does not produce responses to accesses 
that were not invoked, nor does it produce multiple re- 
sponses to accesses. On the other hand, the simple database 
allows almost any ordering of transactions, allows concur- 
rent execution of sibling transactions, and allows arbitrary 
responses to accesses. The details can be found in [ll]. We 
do not claim that the simple database produces only seri- 
ally correct behaviors; rather, we use the simple database to 
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model features common to more sophisticated systems that 
do ensure correctness. 

A simple system is the composition of a strongly compat- 
ible set of automata consisting of a transaction automaton 
AT for each non-access transaction name T, and the simple 
database automaton for the given system type. When the 
particular simple system is understood from context, we will 
use the term simple behaviors for the system’s behaviors. 

The Serializability Theorem is formulated in terms of sim- 
ple behaviors; it provides a sufficient condition for a simple 
behavior to be serially correct for a particular transaction 
name T. 

2.3.2 The Serializability Theorem 

The type of transaction ordering needed for our theorem 
is more complicated than that used in the classical theory, 
because of the nesting involved here. Instead of just ar- 
bitrary total orderings on transactions, we will use partial 
orderings that only relate siblings in the transaction nest- 
ing tree. Formally, a sibling order R is an irreflexive partial 
order on transaction names such that (T,T’) E R implies 
parent(T) = parent( 

A sibling order R can be extended in two natural ways. 
First, Rtra,, is the binary relation on transaction names con- 
taining (T,T’) exactly when there exist transaction names 
U and U’ such that T and T’ are descendants of U and U’ 
respectively, and (U, U’) E R. Second, if /3 is any sequence 
of actions, then R event(P) is the binary relation on events 
in /3 containing (4, x) exactly when 4 and x are distinct se- 
rial events in /3 with lowtransactions T and T’ respectively, 
where (T, T’) E Rtrons. It is clear that Rtrons and Revent(/3) 
are irreflexive partial orders. 

In order to state the Serializability Theorem we must in- 
troduce some technical definitions. Motivation for these can 
be found in [ll]. 

First, we define when one transaction is “visible” to an- 
other. This captures a conservative approximation to the 
conditions under which the activity of the first can influ- 
ence the second. Let /3 be any sequence of actions. If T 
and T’ are transaction names, we say that T’ is visible to T 
in 0 if there is a COMMIT(U) action in /3 for every U in 
anceatora(T’) - ancestors(T). Thus, every ancestor of T’ up 
to (but not necessarily including) the least common ances- 
tor of T and T’ has committed in ,8. If /3 is any sequence 
of actions and T is a transaction name, then uiaible(P,T) 
denotes the subsequence of /3 consisting of serial actions A 
with hightranaaction(7r) visible to T in p. 

We define an “affects” relation. This captures basic 
dependencies between events. For a sequence p of ac- 
tions, and events 4 and x in p, we say that (4,~) E 
directly-affects(@) if at least one of the following is true: 
tranaaction(q5) = tranaaction(7r) and 4 precedes x in p,’ 
4 = REQUEST-CREATE(T) and A = CREATE(T), 
4 = REQUEST-COMMIT(T,v) and rr = COMMIT(T), 
4 = REQUEST-CREATE(T) and A = ABORT(T), 4 = 
COMMIT(T) and K = REPORT-COMMIT(T,v), or 4 = 
ABORT(T) and x = REPORTABORT( For a sequence 
,9 of actions, define the relation aflecta(/3) to be the transitive 
closure of the relation directly-aflecta(@. 

The following technical property is needed for the proof 
of Theorem 2. Let p be a sequence of actions and T a trans- 
action name. A sibling order R is suitable for /3 and T if the 
following conditions are met. 

‘This includes accesses as well as non-accesses. 

1. R orders all pairs of siblings T’ and T” that are low- 
transactions of actions in visible@, T). 

2. R euent(8) and affects(P) are consistent partial orders 
on the events in visible@, T). 

The following lemma will be used later in proving that 
certain sibling orders are suitable: 

Lemma 1 Let p be a sequence of aerial events and let A be 
an irreflexiue partial order on the events in /3. Let R be a aib- 
ling order satisfying the following condition: If K and x’ are 
events in /3 such that (x,vr’) E A and lowtransaction(7r) is 
neither an ancestor nor a descendant of lowtransaction( 
then (r, x’) E Revent(/3). Then R,,,,t(P) and A are conaia- 
tent partial orders on the events of p. 

We introduce some terms for describing sequences 
of operations. For any operation (T, w) of an ob- 
ject X, let perform(T, v) denote the sequence of actions 
CREATE(T)REQUESTCOMMIT(T,v). This definition is 
extended to sequences of operations: if .$ = (‘(T, v) then 
perform(<) = perform perform(T,v). A sequence < of 
operations of X is aerial object well-formed if no two oper- 
ations in < have the same transaction name. Thus if < is a 
serial object well-formed sequence of operations of X, then 
perform(<) is a serial object well-formed sequence of actions 
of X. We say that an operation (T, v) occurs in a sequence /3 
of actions if a REQUEST-COMMIT((,T), v) action occurs in 
/3. Thus, any serial object well-formed sequence p of external 
actions of Sx is either perform(t) or perform(<)CRE 
for some access T, where [ is a sequence consisting of the 
operations that occur in 0. 

Finally we can define the “view” of a transaction at an ob- 
ject, according to a sibling order in a behavior. This is the 
fundamental sequence of actions considered in the hypoth- 
esis of the Serializability Theorem. Suppose p is a finite 
simple behavior, T a transaction name, R a sibling order 
that is suitable for /3 and T, and X an object name. Let 
C be the sequence consisting of those operations occurring 
in ,8 whose transaction components are accesses to X and 
that are visible to T in p, ordered according to Rtrans on 
the transaction components. (The first condition in the def- 
inition of suitability implies that this ordering is uniquely 
determined.) Define view@, T, R, X) to be perform(<). 

Theorem 2 (Serializability Theorem[ll]) 
Let /3 be a finite simple behavior, T a transaction name such 
that T is not an orphan in p, and R a sibling order auit- 
able for p and T. Suppose that for each object name X, 
view(P,T, R,X) E finbehs(Sx). Then /3 is serially correct 
for T. 

3 Assumptions 
In this section, we present our two main assumptions. First, 
for all of this paper except Section 6, we will assume that 
the fixed serial system (with respect to which serial correct- 
ness is defined) contains only objects of a particularly simple 
type, where the only ways to access an object are to read 
it or to write it. This assumption reflects the reality at the 
lowest level of many database management systems, since 
these are the only accesses possible to a disk. While many 
systems do contain more complicated data types at a higher 
level of abstraction (for example, in a relational database 
the accesses at the conceptual level include joins, selections, 
etc.) the assumption that all the objects have this simple 
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type is usually made in the classical development of serializ- 
ability theory, and we make it here to show the relationships 
between our results and the classical theory. In Section 6 we 
remove this assumption. 

3.1 Read/Write Serial Objects 

Formally, our first assumption is that every serial object in 
the serial system is a specific kind of object, described be- 
low, which we call a “read/write object.” That is, for each 
object name X there is a domain of values V, a function 
kind (which indicates for each access whether it is a read 
or a write), a function data (which indicates for each write 
access the value written-in our model, all parameters of an 
access are regarded as encoded in its name, so this function 
serves to decode one parameter), and an initial value d, such 
that the serial object automaton Sx has the following state 
and transition relation. Its state contains two components: 
active (either nil, or the name of an access to X) and data 
(an element of V, representing the most recently written 
value). The start state s has sactiue = nil, and s.data = d. 
The transition relation is as follows: 

CREATE(T), T an access to X 
Effect: 

s.active = T 

REQUEST-COMMIT(T,v), T a write access to X 
Precondition: 

s’.active = T 
v=OK 

Effect: 
s.active = nil 
s.data = data(T) 

REQUEST-COMMIT(T,v), T a read access to X 
Precondition: 

s’.active = T 
s’.data = v 

Effect: 
s.active = nil 

The definition of the automaton Sx ensures that, in a 
serial system, each read access returns the most recent 
value written. This can be seen from the effects of a 
REQUEST-COMMIT for a write access, which stores the 
value written by the access in the state component data, 
and from the preconditions for a REQUEST-COMMIT for 
a read access, which ensure that the value returned is the 
value of the state component data. 

In the sequel, we will need a definition for the “final 
value” of a read/write object after a sequence of write ac- 
cesses. If /3 is a sequence of serial actions and X is an ob- 
ject name, we define write-sequence@,X) to be the sub- 
sequence of p consisting of REQUEST-COMMIT events 
for transactions that are write accesses to X; then we de- 
fine last-write(p,X) to be transaction(z) where x is the 
last event in write-sequence@, X) (if write-sequence@, X) 
is empty, last-write@, X) is undefined.) Finally, we define 
final-ualue(P, X) to be the initial value d if last-write@, X) 
is undefined, and data(last-write@,X)) otherwise. Thus, 
final-value@, X) is the latest value written in ,B for X. The 
following lemmas characterize the state and behaviors of the 
read/write object SX in terms of final-value: 

Lemma 3 Let ,B be a finite schedule of read/write serial ob- 
ject SX, and let s be the (unique) state of SX after p, Then 
s.data = final-value(P, SX). 

Lemma 4 Let p be a finite behavior of SX. Then 
/Jperform(T, v) is a behavior of Sx exactly when either T 
is a write access to X and v = OK, or T is a read access to 
X and v = finaGvalue(/3, X). 

3.2 Appropriate Return Values 
In a real transaction-processing system, different transac- 
tions can access an object concurrently. Concurrency control 
and recovery algorithms are needed to ensure that the effect 
of a concurrent execution is the same as that of some exe- 
cution of the serial system, as far as the users of the system 
can observe. Rather than developing a complex model of a 
real transaction-processing system, we prove results about 
behaviors of simple systems satisfying certain restrictions; 
we then show that a particular real transaction-processing 
system implements the simple system (so each of its behav- 
iors is also a simple behavior) and that its behaviors satisfy 
the necessary restrictions. One advantage of this approach 
is that it allows us to make very few assumptions about 
the structure of a transaction-processing system; instead, we 
make assumptions about its behaviors, represented as simple 
behaviors. 

In defining these assumptions, and in the remainder of the 
paper, we will apply the definitions above of write-sequence, 
last-write, and final-value to behaviors of simple systems. 
Notice that each of these was defined in terms of general 
sequences of serial actions, so applying them to simple be- 
haviors does not cause any problems. 

Our first assumption described above, namely that each 
serial object is a read/write object, applies to serial sys- 
tems. Our second assumption applies to behaviors of sim- 
ple systems. Informally, we assume the existence of some 
underlying recovery system that ensures that descendants of 
aborted and uncommitted transactions appear never to have 
h appened; once the actions of these transactions have been 
removed from consideration, the return value for an access 
is what one would expect from a simplistic model of the sim- 
ple system, where each object’s value is stored in a location, 
being overwritten with a new value by write accesses and 
unaffected by read accesses. Much of the classical work on 
concurrency control has used this simplistic model without 
comment. 

To make this formal, we introduce a definition: if 
p is a simple behavior, then we say that p has ap- 
propriate return values provided that whenever A is a 
REQUEST-COMMIT(T,e) event occurring in uisible(/3, To) 
and T is an access to an object X, then either T is a 
write access and v = OK, or T is a read access and 
v = final-ualue(&X), where 6 is the prefix of uisible(/3,Tc) 
preceding x. Notice that we here restrict attention to the 
part of the sequence /3 that is visible to To. This restriction 
corresponds to the classical theory’s focus on the “perma- 
nent” part of the computation (called the “committed pro- 
jection” in [3])-the part that has committed to the outside 
world. 

The following is a convenient characterization of appro- 
priate return values for systems in which all serial objects 
are read/write objects. 

Lemma 5 Let ,@ be a finite simple behavior. Then p has 
appropriate return values if and only if perform(opera- 
tions(uisible@, To))lX)’ is a behavior of SX for all X. 

‘An “operation” is a pair (T, v); the operator “operations” extracts 
the sequence of operations corresponding to the REQUEST-COMMIT 
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Proof: Suppose p has appropriate return values 
and X is an object name. We must show that 
perform(operations(visible(p, To)lX)) is a behavior of SX. 
We show the equivalent statement that for any prefix t of 
operations(uisible(P, To)lX), perform(e) is a behavior of SX, 
which we do by induction on the number of operations in 
[. The base case, when there are no operations, is triv- 
ial. Otherwise t = [‘(T, v). By the induction hypothesis, 
perform is a behavior of SX. Now since (T,v) is in 
operations(uisible(P,To)lX), we see that T is an access to 
X and there is an event K = REQUEST-COMMIT(T,v) 
in visible(P,To). Since /3 has appropriate return values, 
either T is a write access and v = OK, or T is a read 
access and v = final-ualue(6,Sx), where 6 is the pre- 
fix of visible@, To) preceding x. In the case where T is 
a read access, then we note that write-sequence(6,Sx) = 
write-sequence(perform(E’), SX) and so final-ualue(6, SX) = 
final-value(perform(E’), Sx). Thus perform(E(T, v)) is a be- 
havior of Sx by Lemma 4. 

Conversely, suppose per- 
form(operations(visible(/3,To)lX)) is a behavior of SX for all 
X. Consider A, a REQUEST-COMMIT(T,v) event occur- 
ring in visible@, To)lX where T is an access. We must have 
(T, v) in operations(uisible(P, To)lX), where object(T) = X. 
Let <’ be the prefix of operations(uisible@, To)lX) preced- 
ing (T, v). Since perform(t’(T, v)) is a behavior of SX, by 
Lemma 4 we conclude that either T is a write access and 
v = OK, or T is a read access and v = jinal-ualue(per- 
form({‘), Sx). However, we note that if 6 is the prefix of uis- 
ible(/3, To) preceding A, then write-sequence(6, SX) = mrite- 
sequence(perform(t’), Sx) and so final-value(6,Sx) = final- 
ualue(perform(<‘), Sx). Thus, either T is a write access and 
v = OK, or T is a read access and v = final-ualue(6, Sx). 
Since x was arbitrary, /3 has appropriate return values. 0 

3.3 A Sufficient Condition for Appropriate Re- 
turn Values 

The hypothesis that a system’s behaviors have appropriate 
return values is commonly made, and in the classical de- 
velopment of serializability theory it is usually regarded as 
axiomatic. However when one studies or designs a real sys- 
tem one must consider how particular algorithms lead to this 
hypothesis being met. For write accesses it is certainly easy 
to ensure that the return value is OK. However the situation 
with read accesses is very different. In this section, we define 
simple conditions that are sufficient to ensure appropriate re- 
turn values. While these conditions are not only sufficient 
and not necessary, they do apply to many algorithms. 

following: 
evy; RE~%ST~~OM%~(T vihzvent ?r in visible@ Tr): 
where T is a read access to X: the return value v is dqual 
to final-ualue(6,X), where 6 is the prefix of visible(P,To) 
preceding x. Now, at the time * occurs, the sequence 6 is 
not yet determined, since it depends on all the COMMIT 
events in ,9, including those that follow x. It is useful to 
have conditions that can be checked when A occurs and that 
are sufficient to ensure appropriate return values. We de- 
fine two conditions. The first requires that the return value 
for a REQUEST-COMMIT event be “current” using the se- 
quence of events that occur before the REQUEST-COMMIT 
event. Informally, a REQUEST-COMMIT event for a read 
access is current if the return value provides the appear- 
ance of accessing a variable that is overwritten when each 

events in an event sequence. 

new write access requests to commit and is restored when a 
transaction ABORT occurs in order to remove all trace of 
the descendants of the aborted transaction. The second con- 
dition requires that the return value be “safe,” in the sense 
that all the needed COMMIT events are already present in 
the sequence before the REQUEST-COMMIT. Informally, 
a REQUEST-COMMIT event for a read access is safe if the 
writer of the current value (under the assumption that there 
is a current value that is overwritten and restored) is visible 
to the reader. This ensures that any ancestor of the writer 
that is not yet committed is also an ancestor of the reader. 
Thus, the writer cannot be aborted (by aborting one of its 
ancestors) without also aborting the reader. A read access 
that is not safe is sometimes described as reading “dirty 
data.” 

More formally, if p is any sequence of serial actions, 
we define clean@) to be the subsequence of p contain- 
ing all events whose hightransactions are not orphans in 
/3. Then if p is a sequence of serial actions and X 
is an object name, we define clean-write-sequence(p, X) 
to be write-sequence(clean(P), X). Also, we define 
clean-last-write@, X) to be last-write(clean(p),X). Simi- 
larly, we define clean-finaGvalue(/3, X) to be 
final-value(clean(p), X). 

Now, if p is a sequence of serial actions and z is a 
REQUEST-COMMIT(T,v) event that appears in /3, where 
T is a read access to X, then we say that 1~ is cur- 
rent in p if v = clean-final-value(P’,X), where /3’ is the 
longest prefix of p that does not include the event x. In 
addition, if /3 is a sequence of serial actions and x is a 
REQUEST-COMMIT(T,v) event that appears in /3, where 
T is a read access to X, then we say that x is safe in p if 
clean-last-write@‘, X) is either undefined or visible to T in 
p’, where p’ is the longest prefix of p that does not include 
the event x. 

We have the following key lemma. 

Lemma 6 Let /3 be a simple behavior such that the following 
hold. 

1. If x is a REQUEST-COMMIT(T,v) event that occurs 
in uisible(P,To) where T is a write access to X, then 
v= OK. 

2. If r is a REQUEST-COMMIT(T,u) event that occurs 
in uisible(P,To) where T is a read access to X, then x 
is current and safe in p. 

Then j3 has appropriate return values. 

Proof: Condition (1) above is the first condition needed 
to argue that /3 has appropriate return values. It remains 
to show that if r a REQUEST-COMMIT(T,v) event that 
occurs in uisible(/J,To) where T is a read access to X, and 
A is current in p and safe in p, then v = final-ualue(6,Sx) 
where 6 is the prefix of uisible(P, To) preceding x. 

Now, if x is current in p then by definition v = 
clean-final-value@‘, Sx) where /3’ is the prefix of /3 preceding 
K. Thus we need only prove that clean-last-write@‘, SX) = 
last-write(6, SX). Since /3 is a simple behavior (and so 
does not contain both a COMMIT and an ABORT for 
any transaction), any transaction that is visible to To in 
/3 is not an orphan in /J, and hence is not an orphan 
in /3’. Thus write-sequence(6,Sx) is a subsequence of 
clean-write-sequence(P’, SX). 

We will show that the last event in clean-write- 
sequence@‘, SX) if any, does occur in 6. Note that this last 
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event is a REQUEST-COMMIT for clean-last-write@‘, Sx). 
By the hypothesis that A is safe, we see that 
clean-last-write@‘, Sx) is visible to T in /3’, and hence in /3. 
Since x occurs in visible(P,Ts) we have that T is visible to 
To in p. We deduce that clean-last-write@‘, Sx) is visible to 
TO in p, and so the last event in clean-write-sequence@‘, SX) 
occurs in visible@, Sx). Since it precedes A, it occurs 
in 6 as claimed. Now (as it is a REQUEST-COMMIT 
for a write access to X) we can deduce it will occur in 
write-sequence(6,Sx). Further, since the order of events in 
write-sequence(6, SX) is the same as the order of those events 
in clean-write-sequence@‘, Sx) (each order is just the order 
in p), it must be the last event as required. 0 

4 The Serialization Graph Construction 

In this section, we present our serialization graph construc- 
tion. Recall that the serial correctness condition of [ll] em- 
bodies not only the serializability condition of the classical 
theory, but also the external consistency condition. There- 
fore, our serialization graphs will have two kinds of edges, 
“conflict edges” and “precedence edges.” The former are 
similar to those used in the classical theory, and serve to fix 
the order of conflicting operations. The latter are added to 
capture restrictions required for external consistency. 

We define a conflict relation between accesses so that two 
write accesses to the same object conflict, as do a write and 
a read access to the same object, but not two read accesses 
or two accesses to different objects. More formally, let Sx 
be a serial object for object name X, and let T and T’ are 
accesses to X. Then we say that T and T’ conflict if either 
T or T’ is a write access. 

We extend the preceding definition to a conflict relation on 
operations: if Sx is a serial object for object name X, (T, v) 
and (T’, v’) are operations where T and T’ are accesses to X, 
then we say that (T, v) and (T’, v’) conpict if and only if T 
and T’ conflict. The following proposition shows that non- 
conflicting operations can be reordered in serial behaviors: 

Proposition 7 Suppose that E is a sequence of operations 
of X such that perform(t) is a serial object well-formed be- 
havior of 5’~. Suppose that n is a reordering of 6 such that 
all pairs of conflicting operations occur in the same order in 
7 and in F. Then perform(q) is a behavior of Sx. 

We next derive a conflict relation between sibling trans- 
actions, based on conflicts between descendant operations. 
Formally, if /3 is a sequence of serial actions, we define 
conflict@) to be the relation such that (T,T’) E conflict(p) 
if and only if T and T’ are siblings and the following 
holds: there are events d, and 4 in visible@,To) such that 
4 = REQUEST-COMMIT(U,v) where U is a descendant of 
T, 4’ = REQUEST,COMMIT(U’,u’) where U’ is a descen- 
dant of T’, (U, v) conflicts with (U’, v’) and 4 precedes 4’ 
in visible@, To). Informally, T conflicts with T’ if a descen- 
dant of T’ accesses some object X after a descendant of T 
accesses X in a conflicting manner (i.e., at least one access is 
a write). Note that if two siblings are related by conflict(p) 
then they (and thus their common parent) are visible to To 
in /3. 

If p is a sequence of serial actions, define precedes(P) to be 
the relation such that (T, T’) E precedes(P) if and only if T 
and T’ are siblings whose common parent is visible to TO in 
,/J, and a report event for T and a REQUEST-CREATE(T’) 
occur in p, in that order. Informally, T precedes T’ if their 

parent knows that T finished before it requests the creation 
of T’. 

If p is a sequence of serial actions, we incorporate the 
information in the relations conjlict(/3) and precedes(P) into 
a graph, as follows. We define the serialization graph SG(/3) 
to be the union of a collection of disjoint directed graphs 
SG(P,T), one for each transaction T that is visible to TO in 
p. The graph SG(P,T) has nodes labelled by the children 
of T, and a directed edge from the node labelled T’ to the 
node labelled T” if and only if T’ and T” are children of T 
and (T’, T”) E precedes(P) u conflict(@). 

The following theorem gives a sufficient condition for a 
sequence p of serial actions to be serially correct for To. It 
relies on our Serializability Theorem (Theorem 2). 

Theorem 8 Let /3 be a finite simple behavior that has ap- 
propriate return values. Suppose that SG(P) is acyclic. 
Then p is serially correct for To. 

Proof: For each transaction T that is visible to To in /3, 
we can choose some total order on the children of T that 
is a topological sort of the directed graph SG(P,T), since 
that graph is acyclic. Let R denote the sibling order given 
by the union of the chosen total orders. We claim that R is 
suitable for p (as defined in Section 2.3) and that for every 
object name X, view@, To, R, X) is a behavior of Sx. Once 
we have shown the truth of these claims, Theorem 2 (the 
Serializability Theorem of [l II-in Section 2.3) completes 
the proof. 

To show that R is suitable we need to check that it orders 
all pairs of siblings T and T’ that are lowtransactions of 
events in visible(P,Ts), and that Reven@) and a#ects(p) 
are consistent partial orders on the events in visible@, To). 

By construction, R orders all pairs of siblings whose com- 
mon parent is visible to To in /3. We argue that this includes 
all pairs of siblings that are lowtransactions of actions in 
visible@, To) as follows: the hightransaction of an action in 
visible(P,Ts) is visible to To in /3, and the parent of an ac- 
tion’s lowtransaction is either the action’s hightransaction 
(for completion actions) or the parent of the action’s high- 
transaction (for other actions). Since the action’s hightrans- 
action is visible to To in p, so is the parent of the action’s 
hightransaction. Thus R orders all pairs of siblings T and 
T’ that are lowtransactions of events in visible@, To). 

Suppose that A and K’ are events in visible(P,To) such 
that x affects z’ in p and lowtransaction is neither 
an ancestor nor a descendant of lowtransaction( It is 
easy to show that there must be a common ancestor T of 
lowtransaction and lowtransaction such that a report 
event for TI precedes a REQUESTCREATE event in 
/3, where Tl and T2 are the children of T that are ancestors 
of lowtransaction and lowtransaction( respectively. It 
follows that (TI, T2) E precedes(/l). Since R was chosen using 
a topological sort of the graphs SG(/3, T), precedes(P) C_ R. 
Thus (TI,T~) E R, and so (x,x’) E Revent(P). It follows 
from Lemma 1 that R event(P) and a#ects(@) are consistent 
partial orders on the events in visible@, TO). Thus R is suit- 
able for ,f3. 

Now let X be an object name. We must show that y = 
view@, To, R, X) is a behavior of Sx. Lemma 5 implies that 
nerform(operations(visible(~, To)lX)) is a behavior of Sx. 
‘Now 7 is-of the form perfo&(i?;:vl)(Ts, 02). . . (T,, v,)), 
where the (Ti.v;) are the ooerations of X that occur in 
visible(P,Ts), and (T;, Ti+l)‘E Rtrans for every i from 1 
to n - 1 inclusive. We make the claim: If Ti conflicts with 
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T3 and i < j, then REQUEST-COMMIT(Ti,vi) precedes 
REQUEST-COMMIT(Tj,v,) in visible@, To). In other 
words, y can be obtained from perform(opemtions(vis- 
ibZe(P, To)lX)) simply by reordering non-conflicting opera- 
tions. 

The claim is proved as follows: Since REQUEST-COM- 
MIT(Ti, vi) and REQUEST-COMMIT(Tj, ~j) both occur 
in visible(P, To) it is enough to show that REQUEST-COM- 
MIT(Z, vi) does not precede REQUEST-COMMIT(Tj, vj) 
in visible@, TO). Suppose it did. Then letting U and U’ 
denote the children of lca(Ti, T;) that are ancestors of Ti 
and Tj respectively, we would have (U’, U) E conflict(/3), 
and so (U’, U) E SG(/3, lca(Ti, Tj)) and therefore (U’, U) E 
R. Thus (Tj,Ti) E Rtrens, contradicting (Ti,Tj) E RtronJ 
which follows from i < j. Thus the claim is established. 

BY definition, the operations in 
operations(visible(/3,Ts)]X) are exactly the same as those 
in the sequence (TI, vl)(Tz, ~2). . . (T,, vn). Moreover, as the 
claim above asserts, conflicting operations occur in the same 
order. Therefore, by Proposition 7 and the fact that per- 
form(operations(visible(P,To)lX)) is a behavior of SX, we 
have that y is a finite behavior of SX. 

Theorem 2 then implies the result. 

5 MOSS’ Algorithm 

0 

In this section we use the serialization graph described above 
to prove the correctness of Moss’ algorithm for read/write 
locking [13], the basic concurrency control mechanism in the 
Argus and Camelot systems. 

5.1 Generic Systems 

First we describe one way to model a transaction-processing 
system that includes concurrency control and recovery algo- 
rithms. We will model such a system as a “generic system,” 
which is composed of transaction automata, “generic object 
automata” and a “generic controller.” In this paper, we in- 
clude only a sketch; complete definitions appear in [S]. 

Unlike the serial object for X, the corresponding generic 
object is responsible for carrying out the concurrency control 
and recovery algorithms for X, for example by maintaining 
lock tables. In order to do this, the automaton requires in- 
formation about the completion of some of the transactions, 
in particular, those that have visited that object. Thus, a 
generic object automaton has (besides the CREATE and 
REQUEST-COMMIT actions) special INFORM-COMMIT 
and INFORMABORT input actions to inform it about the 
completion of (arbitrary) transactions. 

There is a single generic controller for each system type. 
It passes requests for the creation of subtransactions to the 
appropriate recipient, makes decisions about the commit or 
abort of transactions, passes reports about the completion of 
children back to their parents, and informs objects of the fate 
of transactions. Unlike the serial scheduler, it does not pre- 
vent sibling transactions from being active simultaneously, 
nor does it prevent the same transaction from being both 
created and aborted. Rather, it leaves the task of coping 
with concurrency and recovery to the generic objects. 

A generic system of a given system type is the composi- 
tion of a strongly compatible set of automata consisting of 
the transaction automaton AT for each non-access transac- 
tion name T (this is the same automaton as in the serial sys- 
tem), a generic object automaton Gx for each object name 
X, and the generic controller automaton for the system type. 
The external actions of a generic system are called generic 

actions, and the executions, schedules and behaviors of a 
generic system are called generic executions, generic sched- 
ules and gerieric behaviors, respectively. 

5.2 A Read/Write Locking Object Automaton 

We model a system using Moss’ algorithm as a generic 
system in which every generic object automaton is the 
“read/write locking object automaton” Mix described be- 
low, derived from the appropriate serial object SX. The au- 
tomaton Mix maintains a stack of “values,n and manages 
“read locks” and “write locks.n8 

We give here the definition of the read/write lock- 
ing object Mix. Mix has the usual external ac- 
tions for a generic object automaton for X, and it has 
no internal actions. A state s of Mix has compo- 
nents s.created, s.commit-requested, s.write-lockholders and 
s.read-lockholders, all sets of transactions, and s.value, 
which is a function from s.write-lockholders to D, the 
domain of basic values. We say that a transaction in 
write-lockholders holds a write-lock, and similarly that a 
transaction in read-lockholders holds a read-lock. The start 
states of Mix are those in which write-lockholders = {To} 
and value(Te) is d (the initial value.of SX), and the other 
components are empty. 

The transition relation of Mix is as follows. 

CREATE(T), T an access to X 
Effect: 

s.created = s’.created u {T} 

INFORM-COMMITAT(X)OF(T), T # To 
Effect: 

if T E s’.write-lockholders 
then 

s. write-lockholders = (s’. write-lockholders - {T}) 
U{pa~nt(T)l 

s.value(parent(T)) = s’.value(T) 
s.value(U) = s’.value(U), 

for U E s.write-lockholders - {parent(T)} 
if T E s’.read-lockholders 

then s.read-lockholders = (s’.read-lockholders - {T}) 
U{parent(T)} 

INFORMABORTAT(X)OF(T), T # To 
Effect: 

s. write-lockholders = 
s’. write-lockholders - descendants(T) 

s.read-lockholders = 
s’.read-lockholders - descendants(T) 

s.value(U) = s’.value(U) for all U E s.write-lockholders 

REQUEST-COMMIT(T,v), T a read access to X 
Precondition: 

T E s’.created - s’.commit-requested 
s’. write-lockholders E ancestors(T) 
v = s’.value(least(s’.write-lockholders)) 

Effect: 
s.commit-requested = s’.commit-requested u {T} 
s.read-lockholders = s’.read-lockholders u {T} 

‘This automaton is a simplification of the read/update locking 
automaton Mx defined in [5]. The latter is defined for any serial 
object, rather than the particular read/write serial object defined in 
this paper. 
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REQUESTCOMMIT(T,e), T a write access to X 
Precondition: 

T E s’.created - s’.commit-requested 
s’.write-Jockholders U s’.read-lockholders 2 ancestors(T) 
v = OK 

Effect: 
s.commit-requested = s’.commit-requested~ {T} 
3. write-Jockholders = 9’. write-Jockholders U {T} 
s.value(T) = data(T) 
s.vaJue(U) = s’.vaJue(U), 

for all U E s.write-lockholders - {T} 

When an access transaction is created, it is added to the 
set created. When Mix is informed of a commit, it assigns 
any locks held by the transaction to the parent, and also as- 
signs any stored value to the parent. When Mix is informed 
of an abort, it discards all locks held by descendants of the 
transaction. A response to an access T can be returned only 
if the access has been created but not yet responded to, ev- 
ery holder of a conflicting lock is an ancestor of T, and the 
return value is appropriate, being OK for a write access and 
the value corresponding to the least holder of a write lock if 
the access is a read. (The component s.write-Jockholders will 
always be a linear chain of transactions, with every element 
being either an ancestor or descendant of every other. The 
least element of such a set is the unique descendant of all 
other elements.) When this response is given, T is added to 
commit-requested and granted the appropriate lock. Also, 
if T is a write access, the new value is stored as value(T), 
while if T is a read access, no change is made to value. 

5.3 Basic Properties of Mix. 

We begin with some basic properties of Mix. These can be 
proved by common techniques such as invariant assertions 
or arguments about sequences of actions. 

The statements of the results below use some terminol- 
ogy about the information about the status of transactions 
that is deducible from the behavior of Mix. If p is a 
sequence of actions of M lx, and T and T’ are transac- 
tion names we say that T is a local orphan at X in /3 if 
an INFORMABORTAT(X)OF(V) event occurs in p for 
some ancestor U of T, and we say that T is Jock-visible 
at X to T’ in p if p contains a subsequence /3’ consist- 
ing of an INFORM-COMMITAT(X)OF(U’) event for every 
JJ E ancestors(T) - ancestors(T’), arranged in ascending or- 
der (so the INFORM-COMMIT for parent(U) is preceded 
by that for V). If p is a behavior of a generic system, we 
note that T is lock-visible to T’ at X in P(M lx only if T 
is visible to T’ in p. Similarly T is a local orphan at X in 
/3lMlx only if T is an orphan in p. 

First we have a fundamental invariant of the state of Mix, 
which expresses the fact that conflicting locks are never held 
by transactions except when one transaction is the ances- 
tor of the other. This condition is enforced when locks are 
granted, and preserved thereafter by all actions. 

Lemma 9 Let p be a finite schedule of Mix. Suppose ,S can 
leave Mix in state 3, and that T E s.write-lockholders and 
T’ E s.read-Jockholders U s. write-Jockholders. Then either T 
is an ancestor of T’ or else T’ is an ancestor of T. 

The following lemma shows which transactions hold locks 
after a schedule of Mix. 

Lemma 10 Let p be a finite schedule of Mix. Suppose 
that p can leave Mix in state s. Let T be an access to X 

such that REQUEST-COMMIT(T,v) occurs in p and T is 
not a local orphan in /3, and Jet T’ be the highest ancestor 
of T such that T is Jock-visible to T’ in ~3. If T is a write 
access then T’ E s.write-Jockholders. If T is a read access 
then T’ E s.read-Jockholders. 

The following lemma shows that when an access T’ occurs, 
all prior conflicting accesses must either be local orphans or 
lock-visible to T’. 

Lemma 11 Let ,0 be a generic object well-formed sched- 
ule of Mlx. Suppose distinct events rr =REQUEST-COM- 
MIT@,v) and x’ =REQUEST-COMMIT(T’,v’) occur in 13, 
where T and T’ conflict. If rr precedes rr’ in /3 then either T 
is a local orphan in S’ or T is Jock-visible to T’ in ,R’, where 
p’ is the prefi of /3 preceding rr’. 

The following lemma characterizes the value component 
of the state, showing that value(T) reflects the effects of all 
transactions that are lock-visible to T. 

Lemma 12 Let /3 be a finite generic object well-formed 
schedule of M lx. Suppose that S can leave Mix in state 
3. Let T be a transaction name that is not a local orphan 
in ,S such that T E s.write-lockholders. Then s.vaJue(T) = 
finaLvalue(6, X), where 6 is the subsequence of p consisting 
of event3 rr such that transaction(x) is lock-visible to T in 
P- 

From the previous lemma, we can show a more general 
characterization. 

Lemma 13 Let /3 be a finite generic object well-formed 
schedule of Mix. Suppose that ,S can leave Mix in state 
9. Let T be a transaction name that is not a local orphan in 
/3, and let U denote the least ancestor of T such that U E 
s.write-lockholders. Then s.value(U) = final-value(y,X), 
where 7 is the subsequence of p consisting of events z such 
that transaction(x) is Jock-visible to T in ,f3. 

5.4 Correctness Proof of Read/Write Locking 
Consider a generic system in which each generic object is 
Mix for the appropriate object name X. We will use Theo- 
rem 8 to prove that every behavior of this system is serially 
correct for Te. The proof relies on first establishing that the 
system’s behaviors have appropriate return values and then 
showing that the serialization graph is acyclic. We show 
that the system’s behaviors have appropriate return values 
by showing that REQUEST-COMMIT events for read ac- 
cesses are current and safe. 

Lemma 14 Let S be a generic system where for each ob- 
ject name X, Mix is used as the corresponding generic 
object automaton. Let ,B be a finite behavior of S. If 
x is a REQUEST,COMMIT(T,v) event that occurs in 
visible@, To) where T is a read access to X, then rr is current 
and safe in serial(S). 

Proof: Let p’ be the prefix of p preceding x and let p” = 
P’IMlx. The preconditions of A and Lemma 13 imply that 
v = final-value(y, Sx) where 7 is the subsequence of p” con- 
sisting of events whose transaction is lock-visible to T in p”. 
Thus, to show that K is current in p, it suffices to show that 
write-sequence(-y, X) = clean-write-sequence(serial(p’), X). 

Since T is not an orphan in p, any transaction lock- 
visible to T in ,!?” (and hence visible to T in p) is not an 
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orphan in serial@‘). Therefore, write-sequence(y, X) is a 
subsequence of clean-write-sequence(serial(p’), X). On the 
other hand, consider any REQUEST-COMMIT(T’,v’) event 
in clean-write-sequence(serial(p’), X). Then T’ is a write ac- 
cess and T’ is not an orphan in serial@‘); thus T’ is not a 
local orphan in /3”z. Since T’ conflicts with T, Lemma 11 
applied to /3”x implies that T’ is lock-visible to T in /3”z and 
hence in p”. Therefore, REQUEST-COMMIT(T’,v’) occurs 
in write-sequence(y, Sx). Thus, clean-write-sequence(ser- 
iaJ(P’), Sx) is a subsequence of 
write-sequence(y, Sx), so in fact clean-write-sequence(ser- 
ial( SX) = write-sequence(y, SX). Therefore, z is cur- 
rent in serial(p). 

If clean-last-write(serial(p’), Sx) is defined, then Lem- 
ma 11 applied to /3”x implies that clean-Jast-write(ser- 
ial( SX) is lock-visible to Tin p”z. Therefore, it is visible 
to T in serial@‘). It follows that rr is safe in serial(S). 0 

Proposition 15 Let S be a generic system where for each 
object name X, Mix is used as the corresponding generic 
object automaton. Let /3 be a finite behavior of S. Then 
serial(S) has appropriate return values. 

Proof: We claim the following: 

1. If x is a REQUEST-COMMIT(T,v) event occurring in 
visible@,Te), and T is a write access to X, then v = 
OK. 

2. If A is a REQUEST-COMMIT(T,v) event occurring in 
visible(B,Tc), and T is a read access to X, then K is 
current and safe in serial(p). 

The first of these is immediate, since in the transition 
relation for each object Mix, v = OK is a precondition on 
each REQUEST-COMMIT(T,v) action where T is a write 
access to X. The second follows from Lemma 14. Then the 
conclusion follows from Lemma 6. 0 

The following proposition shows that M lx ensures 
that the serialization graph is acyclic. The serializa- 
tion graph consists of two parts, confJict(seriaJ(/3)) and 
precedes(serial(S)). The proof shows that each of these is 
consistent with the completion order; i.e., that if (U, U’) E 
conflict(seriaJ(p)), the U completes before U’ (and similarly 
for precedes). 

Proposition 16 Let S be a generic system where for each 
object name X, Mix is used as the corresponding generic 
object automaton. Let /3 be a finite behavior of S. Then 
SG(serial(P)) is acyclic. 

Proof: Let T be visible to Te in /3. We will 
prove that SG(serial(P),T) is acyclic by showing that 
both confJict(serial(I3)) and precedes(serial@)) are subre- 
lations of the partial order compJetion(/J), where (U,U’) E 
completion(P) if U and U’ are siblings such that either p 
contains a completion event for U preceding a completion 
event for U’ or p contains a completion event for U and no 
completion event for U’. 

Suppose (T,T’) E precedes(serial(S)). Then a re- 
port event for T and a REQUEST-CREATE(T’) oc- 
cur in serial(p), in that order. But there must be 
a completion event for T preceding the report event; 
moreover, any completion event for T’ must follow the 
REQUEST-CREATE(T’). It follows that (T,T’) E 
completion(I3). 

Now suppose that (T,T’) E conflict(serial(/3)). Then 
there are events 4 and 4’ in visible(P,To) such that 4 = 
REQUEST-COMMIT(U,v) where U is a descendant of T, 
4’ = REQUEST-COMMIT(U’,v’) where U’ is a descendant 
of T’, U conflicts with U’ and 4 precedes c#’ in visible@, TO). 
Since U and U’ conflict, there is some object name X such 
that U and U’ are both accesses to X. Then ,0lMlx is 
a generic object well-formed behavior of Mix that con- 
tains both 4 and 4’. Since U = transaction($) is visible 
to To in @ we know that U is not a local orphan in PIMlx. 
Lemma 11 implies that U is lock-visible to U’ in the prefix 
of PlMlx preceding 4’. Since Jca(U,U’) = parent(T), we 
see that /3 contains an INFORM-COMMITAT(X)OF(T) 
event preceding b’, and thus (since /3 is a generic behavior) 
that a COMMIT(T) event occurs in p preceding 4’. On the 
other hand, U’ is live in the prefix of /3 ending in 4’, and U’ 
is not an orphan in /3 (since REQUEST-COMMIT(U’,v’) 
occurs in visibJe(P,Te)). Thus T’ is live in the prefix of p 
ending in 4’ so any completion event for T’ in /3 must fol- 
low 4 and thus follow the completion event for T. That is, 
(T, T’) E completion(S). 0 

Now we can prove the main correctness theorem for Moss’ 
algorithm. 

Theorem 17 Let S be a generic system where for each ob- 
ject name X, Mix is used as the corresponding generic ob- 
ject automaton. Let ~3 be a finite behavior of S. Then p is 
serially correct for TO. 

Proof: Proposition 15 implies that serial(S) has appro- 
priate return values. Proposition 16 implies that the graph 
SG(seriaJ(P)) is acyclic. Then Theorem 8 implies that /3 is 
serially correct for To. 0 

6 Extension to General Data Types 

In this section we extend some of the previous results to ar- 
bitrary data types. Thus, we allow serial objects to have 
arbitrary operations, rather than restricting them to be 
read/write objects. 

6.1 Serialization Graphs 

In order to define a serialization graph analogously to our 
previous definitions, we must know how to define “conflict 
edges,” which in turn requires a definition of conflicts be- 
tween operations of an arbitrary data type. In order to define 
conflicts, we use two auxiliary definitions, of “equieffective- 
ness” and “commutativity.” 

Informally, we say that two finite sequences of external ac- 
tions of a particular serial object automaton Sx are “equief- 
fective” if they can leave Sx in states that cannot be distin- 
guished by any environment in which Sx can appear. For- 
mally, we express this indistinguishability by requiring that 
Sx can exhibit the same behaviors as continuations of the 
two given sequences. Let ,# and /3’ be finite sequences of 
actions in ext(Sx). Then 13 is equieffective to ,# if for ev- 
ery sequence 7 of actions in ezlt(Sx) such that both ,/37 and 
/3’7 are serial object well-formed, ,@7 E finbehs(Sx) if and 
only if /3’7 E finbehs(Sx).g Obviously, equieffectiveness is 
a symmetric relation, so that if ,f3 is equieffective to /3’ we 
often say that p and /3’ are equieflective. Note that if /3 and 
/3’ are serial object well-formed sequences and /3 is equief- 
fective to /3’, then if /3 is in finbehs(Sx), /3’ must also be in 
finbehs(Sx). 

‘This definition first appeared in [4]. 
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A special case of equieffectiveness occurs when the final 
states of two finite executions are identical. The classical 
notion of serializability uses this special case, in requiring 
concurrent executions to leave the database in the same state 
as some serial execution of the same transactions. However, 
this special case is more restrictive than necessary. 

We next define a notion of “commutativity” of 
0perations.l’ Let Sx be a serial object for object name 
X, and let (T, v) and (T’, v’) be operations, where T 
and T’ are accesses to X. Then we say that (T, v) 
and (T’, v’) commute backwards provided that for all fi- 
nite sequences of operations t the following holds. If 
perform([(T,v)(T’,v’)) is a finite behavior of Sx and 
both perform([(T, v)(T’, v’)) and perform([(T’, v’)(T, v)) 
are serial object well-formed then perform([(T , v’)(T, v)) is 
equieffective to perform(<(T, v)(T’, v’)) (and hence is also a 
behavior of Sx). Note that backward commutativity is a 
symmetric relation. 

We say that two operations (T, v) and (T’, v’) conf7ict pro- 
vided that they fail to commute backwards. We say that two 
accesses T and T’ confhct provided that there exist v and v’ 
such that (T, v) and (T’, v’) conflict. We note that the new 
definition of “conflicts” generalizes the definition given ear- 
lier for accesses to a read/write object (where two accesses 
conflict unless both are read accesses). 

The following proposition generalizes Proposition 7, which 
considered only read/write objects. 

Proposition 18 Suppose that < is a sequence of operations 
of X such that perform(t) is a serial object well-formed be- 
havior of SX. Suppose that q is a reordering of [ such that 
all pairs of confJicting operations occur in the same order in 
r~ and in E. Then perform(n) is a behavior of Sx. 

Given the generalized notion of conflict relation defined 
above and the same notion of precedes used earlier, we define 
serialization graphs exactly as before. However, we cannot 
use the same definition of appropriate return values, since it 
relies on the properties of read/write objects. We generalize 
it as follows. If /3 is a simple behavior, we say that /3 has 
appropriate return values provided that for all object names 
X, the following is true: perform(operations(y)) is a behav- 
ior of SX, where 7 = visible(/3, To)lX. Notice that Lemma 5 
shows that this is indeed a generalization of the more con- 
crete definition given for systems where every serial object 
is a read/write object. 

Now we can show our main theorem for arbitrary data 
types. 

Theorem 19 Let p be a finite simple behavior that has 
appropriate return values. Suppose that SG(S) is acyclic. 
Then p is serially correct for TO. 

Proof: The proof is essentially identical to the earlier proof 
for the read/write case. 0 

6.2 An Undo Logging Algorithm 

Now we use serialization graphs to give a proof of correctness 
of a particular system, one in which a general “undo logging” 
algorithm is used everywhere. This algorithm works for ob- 
jects of arbitrary data type. 

“The definition of commutativity required here is slightly different 
from the one used in [5]. These definitions and a careful exploration 
of the differences between them are described in [16]. 

We model a system using the undo logging algorithm as 
a generic system in which every generic object automaton 
is the “undo logging object automaton” UX described be- 
low. A state s of Ux consists of four components: s.created, 
s.commit-requested, s.committed and s.operations. The first 
three are sets of transactions, initially empty, and the last is 

a sequence (log) of operations of X (recording the sequence 
of operations that have taken place, but with operations re- 
moved if they are later found to be aborted), initially the 
empty sequence. The steps of UX are as follows: 

CREATE(T), T an access to X 
Effect: 

s.created = s’.created U {T} 

INFORMCOMMITAT(X)OF(T), T # To 
Effect: 

scommitted = s’.committed U {T} 

IN;fiFO~MABORTAT(X)OF(T), T # TO 

s.operations = 
s’.operations - {(T’, v’)lT’ is a descendant of T} 

REQUEST-COMMIT(T,v), T an access to X and v a value 
Precondition: 

T E 3’. created - 9’. commit-requested 
(T, v) commutes backward with all (T’, v’) in 

s’.operations such that some U in 
ancestors(T’) - ancestors(T) is not 
in s’.committed. 

perform(s’.operations(T, v)) is a behavior of Sx 
Effect: 

s.operations = s’.operations(T, v) 
s.commit-requested = s’.commit-requestedu {T} 

The algorithm is described very abstractly; for example, 
the “state” is kept simply as a log of operations, rather 
than in some more compact form. Practical implementa- 
tions would need to compact the information in the opera- 
tions log, and restrict the nondeterminism in choosing which 
active invocation to respond to. Our results apply a fortiori 
to implementations of the algorithm in which the state is 
compacted, and in which the nondeterminism is restricted. 

Informally, the algorithm works as follows. When an op- 
eration is executed (i.e., a REQUEST-COMMIT occurs for 
an access), the operation is appended to soperations. A 
REQUEST-COMMIT(T,v) is allowed to occur only if it 
commutes with all operations executed by transactions that 
are not visible to T. The commit of a transaction is sim- 
ply recorded in s.committed; this component is used in the 
precondition for REQUEST-COMMIT(T,v) to determine 
which transactions are visible to T. When a transaction 
aborts, all operations executed by its descendants are re- 
moved from the log; this has the effect of “undoing” all the 
effects of the transaction. 

6.3 Basic Properties of Ux 
Here we give some properties of UX. As before, these can be 
proved by common techniques such as invariant assertions 
or arguments about sequences of actions. 

The statements of the results below require some termi- 
nology describing what can be deduced about the status 
of transactions from the local behavior of Ux. Let /3 be 
a sequence of actions of Ux and let T and T’ be trans- 
action names. We define the notion of a local orphan as 
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for Mix: we say that T is a local orphan at X in /3 if an 
INFORMABORTAT(X)OF(U) event occurs in p for some 
ancestor U of T. We define a slightly different notion of vis- 
ibility: we say that T is locally visible at X to T’ in p if 
p contains an INFORM-COMMITAT(X)OF(U) event for 
every U E ancestors(T) - ancestors(T’). (Notice the dif- 
ference with the definition of lock-visible, which requires the 
INFORM-COMMIT events to occur in leaf-to-root order.) 
If p is a behavior of a generic system, we note that T is 
locally visible to T’ at X in p1lY.J~ only if T is visible to T’ 
in /3. Similarly T is a local orphan at X in /3lUx only if T 
is an orphan in /3. 

The following two lemmas characterize the operations 
component of the state of Ux. 

Lemma 20 Let /3 be a finite generic object well-formed 
schedule of UX that can lead to state s. Then 
s.operations is exactly the subsequence of operations(P) 
obtained by removing all operations (T,w) such that an 
INFORM_ABORT-AT(X)OF(U) for some ancestor U of T 
occurs after the REQUEST-COMMIT(T,v) in /3. 

Lemma 21 Let ,f3 be a finite generic object well-formed 
schedule of Ux that can lead to state s. Let T be any set 
of transaction names such that 7 n s.committed = 0. 

1. If (T’, v’) precedes (T”, v”) is s.opemtions, T’ is a de- 
scendant of a transaction in 7 and T” is not, then 
(T’, v’) commutes backward with (T”, v”). 

2, If E is the sequence of operations obtained by remov- 
ing the descendants of all transactions in 7 from 
s.operations, then perform(t) is a behavior of Sx. 

The next lemma parallels Lemma 11. 

Lemma 22 Let /3 be a generic object well-formed sched- 
ule of Ux. Suppose distinct events * =REQUEST-COM- 
MIT(T,v) and r’ =REQUEST-COMMIT(T’,v’) occur in p, 
where (T, v) and (T’, w’) conflict. If x precedes x’ in /3 then 
either T is a local orphan in @’ or T is locally visible to T’ 
in /3’, where /3’ is the prefix of /3 preceding x’. 

6.4 Correctness Proof 

First, we show that the condition on appropriate return val- 
ues is satisfied. 

Proposition 23 Let S be a generic system where for each 
object name X, Ux is used as the corresponding generic 
object automaton. Let ,I3 be a finite behavior of S. Then 
serial(p) has appropriate return values. 

Proof: Fix a particular object name X. We must show 
that perform(operations(visible(P, To)lX)) is a behavior of 
Sx. Let s be the unique state of Ux such that ,8 can lead to 
s. We define 7 to be the set of all transactions other than To 
that are not committed in ,f3. It follows that no transaction 
in I can be in s.committed. 

Lemma 20 implies that s.operations is exactly the sub- 
sequence of operations@) obtained by removing all opera- 
tions (T,v) such that an INFORMABORTAT(X)OF(U) 
for some ancestor U of T occurs after the RE 
QUEST-COM-MIT(T,v) in ,8. Let [ be the sequence of 
operations that results by removing descendants of transac- 
tions in 7 from s.operations. We claim that operations(uis- 
ible(P, To)lX) = <. 

The claim is proved as follows: Both sequences are subse- 
quences of operations@), and so common operations occur 
in the same order. We must show that the same operations 
appear in both sequences. 

Suppose that CC v) appears 
in opemtions(uisible(/?,To)lX). Then no ABORT(U) ap- 
pears in /3 for any ancestor U of T, and hence no INFORM- 
ABORTAT(X)OF(U) appears in /3. Therefore, (T, v) is in 
s.operations. Also, T cannot be a descendant of any trans- 
action in 7, since T is visible to To in /3. Therefore, (T,v) 
appears in E. 

Now suppose (T, v) appears in [. Then T is not a descen- 
dant of any transaction in 7, so that all ancestors of T except 
for To are committed in p. Therefore, T is visible to To in ,5’, 
and so (T, w) appears in operations(visible(/3, To)lX). This 
establishes the claim. 

Now Lemma 21 implies that operations(visible(/3, To)IX) 
is a behavior of Sx, as needed. 0 

Next, we show that the serialization graphs are acyclic; the 
proof of this result is quite similar to that of Proposition 16. 

Proposition 24 Let S be a generic system where for each 
object name X, Ux is used as the corresponding generic 
object automaton. Let /3 be a jinite behavior of S. Then 
SG(serial(P)) is acyclic. 

Proof: Let T be visible to To in p. We will prove 
that SG(serial(P),T) is acyclic by showing that both 
conf%ct(serial(p)) and precedes(serial(P)) are subrelations 
of the partial order completion(P).” 

Suppose (T,T’) E precedes(serial(P)). Then a re- 
port event for T and a REQUEST-CREATE(T’) oc- 
cur in serial(p), in that order. But there must be 
a completion event for T preceding the report event; 
moreover, any completion event for T’ must follow the 
REQUEST-CREATE(T’). It follows that (T, T’) E 
completion(P). 

Now suppose that (T,T’) E conjZict(serial(p)). Then 
there are events 4 and 4’ in visible@, To) such that ++ = 
REQUEST-COMMIT(U,w) where U is a descendant of T, 
4’ = REQUEST-COMMIT(U’,v’) where U’ is a descendant 
of T’, U conflicts with U’ and 4 precedes 4’ in visible(P, To). 
Since U and U’ conflict, there is some object name X such 
that U and U’ are both accesses to X. Then PlUx is a 
generic object well-formed behavior of Ux that contains both 
q5 and 4’. Since U = transaction(d) is visible to To in /3 we 
know that U is not a local orphan in PlUx. Lemma 22 im- 
plies that U is locally visible to U’ in the prefix of ,8lUx 
preceding 4’. Since lca(U, U’) = parent(T), we see that 
p contains an INFORM-COMMITAT(X)OF(T) event pre- 
ceding 4’, and thus (since /3 is a generic behavior) that a 
COMMIT(T) event occurs in p preceding 4’. On the other 
hand, U’ is live in the prefix of /3 ending in #, and U’ is 
not an orphan in /3 (since REQUEST-COMMIT(U’,u’) oc- 
curs in visible@, TO)). Therefore T’ is live in the prefix of /3 
ending in 4’ so any completion event for T’ in p must fol- 
low 4’ and thus follow the completion event for T. That is, 
(T, T’) E completion(P). 0 

Theorem 25 Let S be a generic system where for each ob- 
ject name X, Ux is used as the corresponding generic object 

llFlecall that (CJ, U’) E completion(~) if U and U’ are siblings such 
that either p contains a completion event for U preceding a comple- 
tion event for U’ or else 0 contains a completion event for U and no 
completion event for U’. 
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automaton. Let ,8 be a finite behavior of S. Then p is seri- 
ally correct for TO. 

Proof: Proposition 23 implies that serial(p) has appro- 
priate return values. Proposition 24 implies that the graph 
SG(serial(@) is acyclic. Then Theorem 19 implies that /3 is 
serially correct for TO. 0 

7 Conclusions 
In this paper we have presented a proof technique for nested 
transaction systems. Using this technique, two properties 
must be demonstrated to show correctness: the return val- 
ues for operations must be shown to be “appropriate,” and a 
“serialization graph” must be shown to be acyclic. The first 
property corresponds to an assumption that is made im- 
plicitly in the classical theory of concurrency control. The 
second property generalizes the serialization graphs of the 
classical theory to nested transactions. 

The classical theory has been extended in a variety of 
ways, for example to model concurrency control and re- 
covery algorithms that use multiple versions, and to model 
replication algorithms. l2 It should be possible to develop 
techniques based on the model presented in this paper that 
parallel the techniques used in the classical theory for these 
other kinds of systems. 
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