
Concurrency Control for Resilient Nested Transactions

.IdnUdry, 1983

1 In1 roductton

In the pdst few years there has been consrc’er&le research on

concurrency control, tncludmg both systems design and

theoretIcal study The problem IS roughly as follows D&i in a

large (centrahzed or dlstrlbuted) database IS assumed to be

accessible to users VIM transactlons, each of wh1c.h IS a sequential

program which can carry out many steps accessmg lndlvldual

data objects It 155 Import& that the transactions appear to

execute “atomically”, I e without intervening steps of other

transactions However, It IS also desirable to permit as much

concurrent operation of different transactIons as possible, for

efficiency Thus, it IS not generally feasible to mslst that

transactions run completely serially P notion of equivalence for

executions IS defined, where two executions are equivalent

provided they “look the same” to all transactions and to all data

objects The senallzable executions are lust those which are

equivalent to serial executions One goal of concurrency control

design IS to insure that all executions of bansactions be

serlallzable

‘This work was supported m part by the Army Research Office

under Contract # DAAG 29 79 C 015.5, Defense Advanced

Resedrch Projects Agency #NO0014 75 C0661, and by the

National Science Foundation under Grants MCS 79 24370

PermIssIon to copy without fee all or part of tius matenal IS granted
provided that the copies are not made or dlstnbuted for direct
commerual advantage, the ACM copyrIght notice and the We of the
pubhcatlon and its date appear, and notice IS given that copymg IS by
pexrnlsslon of the Assoclatton for Computrng Machmery To copy
otherwise, or to repubhsh, requires a fee and/or specdic pernusslon

@ 1983 ACM O-89781-097-4/83/003/0166 $00 75

Several characterrzatlon theorems have been proved for

serlallzablllty, generally, they amount to the absence of cycles In

some relation descrtbmg the dependencies among the steps of

the transactlons A very large number of concurrency control

algorithms have been devised Typlcal algorithms are those based

on two phase locking [EGLT], and those based on tlmestamps

[La] Although many of these algonthms are very different from

each other, they can all be shown to be correct concurrency

control algorithms The correctness proofs depend on the

absence of cycles characterlzatlons for serializability

More recently, it has been suggested [Re, M, LIS] that some

additional structure on transactlons might be Useful for

Programmmg dlstrrbuted databases, and even for programmrng

more general dlstrlbuted systems The suggested structure

Permits transactlons to be nested Thus, a transaction IS not

neCeSSarllY a SeqUenhal program, but rather can consist of

(sequential or concurrent) sub transactlons The mtenhon IS that

the sub transactlons are to be serialized with respect to each

other, but the order of seriallzatlon need not be completely

speLlfled by the VJI~W of the trdnsdctioii Ttlls Ilex~b~l~ly dlluws

more concurrency In the lmplementatlon than would be possible

with a single level trdnsaction structure conslstmg of scquentldl

transactions The general structure allows transactlons to be

nested to any depth, with only the leaves of the nesting tree

actually performing accesses to data

Transactions are often used not only as a unit of Concurrency,

bUt also as a umt of recovery In a nested transaction structure, It

IS natural to try to localize the effects of failures wlthm the closest

possible level of nesting In the transactIon nesting tree One Is

naturally led to a style of programming which permits a transaction

to create children, and to tolerate the reported failure of some of

Its children, using the InformatIon about the occurrence of the

failures to decide on Its further actlvlty The intention IS that failed

transacttons are to have no effect on the data or on other

transactlons This style of programming IS a generalization of the
166

“recovery block” style of [Ra] to the domatn of concurrent

programmmg Indeed, this style seems to be especially sultable

for programming dlstnbuted systems, smce many types of failures

of pieces of programs are likely to occur In Such systems

Reed IS currently lmplementmg a system which uses multlple

versions of data to Implement nested transactlons which tolerate

failures of sub transactions Moss has abstracted away from

Reed’s specific Implementation of nested transactIonS, and has

presented a clear mtuitlve descnptlon of the nested tranSactIon

model He has also developed an alternatlve Implementation of

the nested transaction model, based on two phase locking This

model and lmplementatlon are fundamental to the Argus

dlstnbuted computing language, now under development by

Liskov’s group at MIT

The basic correctness crltena for nested transactlons seem to

be clear enough, mtuitlvely, to allow implementors a sufficient

understanding of the requirements for their lmplementatlon

However, some subtle issues of correctness have arisen in

connection wrth the behavior of failed sub transactions For

example, the Argus group has decided that a pleasant property for

an implementation to have IS that dll transacttons, mcludmg even

“orphans” (subtransactions of failed transactlons), should see

‘torlsistant vkws of the ddtd (I e views that wuld wcilr duiiny

an execution in which they are not orphans) The Implementation .
goes to conslderdble lengths to try to insure this property, but It IS

difficult for the Implementors to be sure that they have succeeded

It seems clear that some basic groundwork IS needed before

such propertles can be proved Namely, the theory already

developed for concurrency control of single level transaction

systems without failures needs to be generalized to incorporate

considerations of nesting and failures The model needs to be

formal, m order to allow careful specification of all the correctness

requirements the simple and mtultive ones, as well as the rather

subtle ones

TIIIS paper begins to develop this groundwork First, a simple

“action tree” structure IS defined, which describes the ancestor

relabonshlps among executing transactions and also describes

the views which different transactlons have of the data A

generalization of senallzability to the domam of nested

transactions with failures, IS defined A characterization IS gtven

for this generallzatlon of seriallzabrlity, in terms of absence of

cycles In an appropriate dependency relation on transactions A

slightly slmpllfled version of Moss’ algorithm IS presented in detail,

dnd a careful correctness proof IS given

The style of correctness proof for the algorithm appears to be

qul;e interesting in its own right The description of the algorithm

IS presented In a series of levels, each of which IS an “event state”

algebra with unary operations, and each (but the first) of which

“simulates” the previous one The basic problem statement IS

given as the highest level algebra, and successively lower levels

provide increasing amounts of lmplementatlon detail In

pdrticular, both the problem speclflcatlon and the Implementation

are presented as the same kind of mathematical object, an event

state algebra At every level, we want to present algonthms with

the maximum possible amount of nondetermmlsm consistent with

correctness, not forcing any unnecessary implementation

declslons Therefore, we do not describe algorithms In the usual

way, using programs with specified flow of control Rather, we

present algorithms as collections of events with correspondmg

precondltlons

Olle IlOVe! d5,M,t C,t ble 5IIIlU~dtlCJil5 We Ube c]lk2l~llt flUIll the

usual notlons of ‘abstractlon” mappings, IS lhdt ow simul&ons

map smgle lower level st,ltcs to m of higher level states rather

than just single higher level states (We cdl1 them “posslbllities”

mappings) This extra flexlblllty seems quite convenient for many

implementations, allowmg the more “concrete” algebra

sometimes to contain less mformatlon than the more “abstract”

algebra For example, It might be easy to prove correctness of an

algorithm which maintains lots of auxiliary mformatlon The

correctness of an algorithm which maintains less information

could be proved, m our model, by showing that it simulates the

algorithm which maintains the auxiliary mformatlon

While possibllltles mappings are convenient for proving

correctness of ordinary centralized algonthms, they produce their

greatest payoff for distributed algorithms Namely, a distnbuted

algorithm IS described as a speclal case of an event state algebra,

a “distributed algebra” In a distributed algebra, the state set IS

lust a Cartesian product, with event preconditions and transltlons

defined componentwise To show that a distributed algebra

simulates some other “abstract” algebra, it suffices to define an

appropriate possibilities mappmg from the global states of the

distributed algebra, to sets of states of the abstract algebra It

turns out to be extremely natural to descnbe such a mapping by

first describing a posslbllltles mapping from the local state of each

component to sets of abstract states The image of a local state

under this mapping just represents the Set of possible global

states consistent with the knowledge of the particular component

The posslblllties for the entire distr@uted algebra are simply

167

obtamed by takmg the mtersectlon of the posslbllltles consistent

with the knowledge of all the components

It appears that thts techruque extends to give natural proofs of

many algorithms, especially distributed algonthms, and thus

warrants further mvestlgatlon Goree [G] presents a more

complete (and slightly more general) development of the

technique than IS presented In this paper

The defmltlons given in this paper express the most

fundamerltal correctness requirements, but not subtle conditions

such as correctness of orohans’ views Issues of fairness and

eventual progress dre not dddresscd, but r,lLIiLr only sdft.ty

propertlcs, serial~zdb~lity in particular Future work Involves

erttlndmg the framework presen’k>d here to allow ewpresslon of

these other properties, dnd to allow correctness proofs for the

dlfflcult algorithms which guarantee these properties Some

further work In these directtons has already been carried out

Goree [G] has given a defmitlon for correctness of orphans’ views,

and has given a correctness proof for a complicated algorithm

used In the Implementation of Argus to maintain correctness of

orphans’ views m the face of transaction aborts

Other related work IS that of Stark [S] He IS carrying out a very

general treatment of event state algebras, incorporating

considerations of modularity to a much greater extent than IS

present rn this paper, and handling fairness and eventuality

properties as well as safety properties

2 Event-State Algebras

In this section, we describe the event state algebra framework

An event state alqebra -4 = <A, 0, n>, consists of a set A of

m, an element D E A, the mltlal state, and a set n of partial

unary operations In this paper, we wilt usually refer to an event

state algebra as simply an alsebra

Let a be a state, and let CJ = (n,, ,nk) be any finite sequence

of operations chosen from OP Then (1, IS said to be m from a

provided b = nk(nk ,((n,(a))) IS defined, in this case, b IS

called the & of @ applied to a An infinite sequence of

operations IS said to be ya&J from a provided all its finite prefixes

are vahd from a We say that Cp IS m provided It IS valid from o,

and the-of Cp IS defined to be the result of 0 applied to u We

write a l- b provided there IS some finite @, valid from a, for which

b IS the result of Q, applied to a b IS comoutable provided D I- b

Now assume A = <A, CJ, II> and A’ = <A’, u’, n’> are two

algebras An mteroretatlon of A by A’ IS a mapping h n’ -+ n U

{A) We extend h to map operation sequences of A’ to operation

sequences of J(m the obvious way (deleting occurrences of h)

An Interpretation, h, IS a simulation of A by A’ provided that h(@‘)

IS a vnhd ooeratlon sequence for A whenever @’ IS a valid

operdtion sequence for A’

LernniB 1 Assume that A, ,2’ and A” are

algebras, that h IS a sirnuidtlon of ,t by A’ and h’ IS d

simulation of A’ by A” Then h 0 h’ IS a slmulatlon of A

by A”

Proof Straightforward

0

Next, we give a sufftcient condltlon for a mapping h to be a

slmulatlon Let h A’ U 11’ + V(A) U I1 U {A) be such that h(a’) E

‘4A) for all a’ E A, and h restricted to n’ IS an Interpretation Then

h IS a pm maooinq from A’ to A provtded ihe following are

true

(a) u E h(o’)

Assume n’ E rI Assume a and a’ are computable in d and

A’, respectively, and a E h(a’) Assume a’ E domam(n’) and b’ =

n’(a’)

(b) If h(n’) = n E ll, then a E domam(n) and n(a) E h(b’)

(c) If h(n’) = A, then a E h(b’)

Lemma 2 Let h be a posslbllities mapprng from d

to A If @’ IS a valid operation sequence for A’, and

h(V) = 0, then @ IS a valid operatton sequence for A

In addition, if Cp’ IS finite, a’ IS the result of 4)’ and a IS

the result of @, then a E h(a’)

Proof By induction on the length of a’

cl

Lemma 3 Any posslbllltles mapping from A’ to A

IS a simulation of A by A

Proof Immediate by Lemma 2

cl

If we think of A’ as a “concrete” algebra, and A as a more

“abstract” algebra, then we see that a possibilities mapping

allows single “concrete” states to be mapped to sets of “abstract”

states rather than lust single abstract states

An algebra, A = <A, O, n>, IS sard to be distributed over a fmite

index set I usmg d, provided Lhnt A IS the Cartesian product of sets

168

A,, I E I, d IS a mapping, d II -+ I, CJIVIII~ the doer” of e&h

operation, and the followmg two conclltionn are satlslled

(Local Domain) Let I - d(7r) If a, b E A and a, = b,, then a E

domain(n) if and only If b E domam(n)

(Local Changes) If a, b E domain(n), a’ = n(a), b’ = n(b) and

a, = b,, then a’, = b’,

We now consider the simulahon of an algebra by a dlstnbuted

algebra Namely, we defme a “local mapping”, from the local

state of each component of the distnbuted algebra to a set of

abstract states The result of this mappmg should be thought of

as the set of possible abstract states, as far as a particular node

can tell The mapping from a global state of the distributed

algebra can then be defined to yield the mtersection of the Images

of all the component states The condlttons we require for local

mappings are lust those which guarantee that the derived global

mapping IS a posslbllltles mapping

Let A’ = <A’, u’, Jl’> be an algebra, dlstnbuted over I usmg

d Let A = <A, O, fl> be any algebra Let h be an mterpretatlon

from A’ to A For each I 6 I, let h, A’ + q(A) be such that h I
depends on A’, only I e if a, = b, then h,(a) = h,(b) Then we say

that h and h,, I E I, form a w maoomq from A’ to A provided the

following condltlons are satisfied

(a) For all I E I, u E h,(o’)

Assume n’ E Ill, d(n) = I Assume a and a’ are computable In

A and A’, respectively Assume a E h,(a’) Assume a’ E
I

domam(n’), and b’ = n’(a’)

(b) If h(n’) = n E n, then a E domain(n)

(c) Assume h(n’) = n E n, J E I and a E h/a’) Then n(a) E

hi(b’)

(d) Assume h(n’) = A, f E I and a E h,(a’), Then a E h/b’)

Lemma 4 Let A and A’ = <A’, u’, ll’> be algebras,

where A’ IS dlstnbuted over I Assume that h and h,, I E

I form a local mappmg from A’ to d Extend h to A’ U

n’ by defmmg h(a’) = fl, E ,h,(a’) Then h IS a

posslbllltles mappmg from j4’ to A

Proof We che(,k the thiee properttes of the
posslbllltles mapping defmltlon

(a) To see that u E h(u’), it suffices to r,how that (I E

h,(u’) for all I E I But this IS exactly the statement of

property (a) of the local mapping defmitlon

Now we assume the hypotheses supplied for parts

(b) and (c) of the posslbilitles mapping defmltlon

Assume also that d(n’) = I

(b) Since a E h(a’), it IS obvtous that a E h,(a’)

Property (b) of the local mapping defmition tmplies that

a E domain(n) In order to show that n(a) E h(b’), it

suffices to fix an arbitrary) E I and show that n(a) E

h,(b’) Since a E hja’), the needed property follows

from (c) of the local mapping defmltlon

(c) It suffices to show that a E’h,(b’) for any l E

I This follows as in the preceding argument from (d) of

the local mapping definition

cl

If the defmltlons in this section are to be used in correctness

proofs for the widest possible class of algorithms, they will

probably need to be generalized In particular, it seems

appropriate to permit single operations of a more concrete

algebra to be interpreted by sequences of operations of a more

abstract algebra (See Goree (G) for defmlttons and uses for this

generalization) Also, sets of initial states rather than single initial

states are probably useful

3 Action Trees

In this section, basic defmltions are given for action trees and

senallzabMy

Let &be a universal set of data objects For each x E obf, let

valuesfx) denote the set of values x can assume, including a

distinguished mitral value m) A w assianment IS a total

mapping, f, from obj to values(obf), having the property that f(x) c

values(x) for all x E obj

Let & be a universal set of actions (I e transactions) Let u

be a dlstmgulshed action We assume that the actions are

configured a priori into a tree, representing their nesting

relatlonshlp, with U as the root For every A E act {U}, let

parent(A) denote a umque parent action for A Let m denote

((A,B) E act* parent(A) = parent(B)} If A E act, let children(A)

denote {B E act parent(B) = A) If A, B E act, let Ica(A.B) denote

the least common ancestor of A and B If A E act, let desc(A)

(resp u)) be the set of descendants (resp ancestors) of A Let

prooer desc(A) (resp prooer ancfA)) be the set of proper

descendants (resp ancestors) of A

169

It might be conventent for the reader to thmk of this a prfon

configuration of all possible actions into a tree as a preassigned

“nammg scheme” for actlons That IS, the “name” of any action IS

assumed to carry within it mformatlon whtch locates that action in

this universal tree of actions In any particular execution, only

some of these possible actlons will be “activated” The (virtual)

action U, the parent of all top level acbons, has been added for the

sake of uniformity

Let m E siblings be any ftxed partial order, representrng

sequential dependency If (A,B) E seq, it means that A IS

constrained to run before B For the sake of notational slmpllaty,

we are assuming this relation IS also fixed a pnon, this amount to

assuming that the “name” of any action carries within It

information about which siblings the action can assume have

completed The use of an arbitrary parbal order IS a generallzatlon

of both the total order usually specified for the steps which occur

within a single level transaction, and the unconstrained order

usually specified among the transactions themselves We also

assume a priori determination of which actions actually access

data, which objects they access and the functions they perform on

those obfects let gccesses denote the leaves of the tree described

above (We assume that U @ accesses, so that the set of actlons IS

nontnvlal) Let w accesses + obf be a fIxed function If

object(A) = x, we say that A E an access fn x For A E accesses,

let godate values(obfect(A)) + values(obfect(A)) be a fixed

function Let gameoblect denote {(A,@ E accesses * object(A) =

obfect(B)}
I am departmg from the usual approach in senallzahlllty theory

IJY IIIL/U‘,III~I I Il~llh.l~kif lur Ictlon (ralher 111dil till ulilnlbi,,rctc4

functlonj ir lhi f6hnitlon of dn dLtion which C1ccesses datd Th1-i

15 beCd1 52 l \~rlt to ilale correLtnesr, condltlons In terms of

preserving ccrtam relationships among the datd values seen and

wnlten Thus ’ semantic” style of correctness condltron seems to

me to be more basic than the usual correctness defmltlons In

serializablllty theory, m th,tt tt says less to constram the

implementation

Note that the usual read and write operations of serializability

theory can be regarded as specidl case; of my accesses Namely,

“read accesses” have the Identity frmction as their assoclcated

update function, while “write accesses” have an a%Oclated

update function which IS a constant function

Next, I give a way of descnbmg a “snapshot” of a particular

executton, using a structure called an “action tree” An action

tree can be regarded as the generallzatlon of the log from ordinary

senallzabillty theory

70

An w &e T has components -, active,,

committed,, aborted, and UT, where

vertices, IS a fmlte subset of act, closed under the parent

operation If A E vertlcesT {U}, then parent(A) E vertlcey,

(These represent the actlons whtch have ever been created during

the current execution)

active,, commlttedT and aborted, comprise a partltlon of

vertices,, (These classifications indicate the current status of

each action that has ever been created When a non access

action IS first created, it IS classlfled as active At some later time,

its classification can be changed to either committed or aborted

By “committed”, we mean that the actlon IS committed relative to

Its parent, but not necessanly committed permanently Permanent

commit of an action would be represented by classlflcatlon of all

ancestors of the action, except for IJ, as committed)

Iabe+ datasteps, -+ values(obf), (where datasteas, =

commlttedT fl accesses), with Iabe+ E values (object(A)) (The

label of an access to an object IS intended to represent the value

read by that access Since the access has an associated function,

the value which the access writes tnto the object IS deductble from

the v&e lead, dnd therefore need not be expllcllly represented)

Let &OJ+ denote committed T U abortedT Let &&, be

defined by status,@) = ‘active’ (resp ‘committed’, ‘aborted’)

provided A E actlveT (resp committed r, abortedT) Let accesses?

= vertices, rl accesses, accesses &) -----T = {B F accebsesT

object(B) = x) and datasteos, (xl = (R E datasteps, object(B) =

x} Let m, denote seq fl (vertices,)*

Next, we d-scribe actions whose evlstence ts Intended to be

known to other actions (I e not masked ft om those other actions

by Intervening failures or active actions) For A E vertices,, let

vlslble, (Al denote {B E vertlcesr ant(B) fl proper desc(lca(A,B))

C committed,} That IS, vislble+A) IS just the set of actions whose

existence IS known to action A, because they and all their

ancestors, up to and not including some ancestor of A, have

committed For A E vertices,, x E obf, let vIsible+A.x) denote

vlslble,(A) fl datastep% The followmg lemma describes

elementary properties of “vlslblllty”

Lemma 5 Let T be an action tree, A, B, C E

vertices,

a If A E desc(B), then B E visible,(A)

b A E vlslble+B) If and only if A c

vlslble,(lca(A,B))

c If A E wslble+B) and B E wslble+C), then

A E vls~ble+)

d If A E desc(B) and C E vlslbleJB), then C

E vtslbleJA)

e If A E desc(B) and A E v\ableT(C), then B

E nslble,(C)

Proof

a Immediate

b Immediate from the fact that Ica(A,B) =

Ica(A,lca(A,E))

c Let D E ant(A) fl proper desc(lca(A,C))

We must show that D C commltted If D
c ploper desc(lcd(A,B)), then the fact

that A E visible,(B) ImplIes the result So

assume that D $ proper desc(lca(A,B)) It

must be the case that D E anr(lca(A,B)),

and that Ica(B,C) = Ica(A,C) Thus, D E

ant(B) n proper desc(lca(B,C)), so the

fact that B E visible,(C) ImplIes the result

d Immediate from parts a and c

e Immediate from parts a and c

0

If A E vertices,, then we say A s & m T provided ant(A) fl

aborted, = 0, and we say A IS dead in T otherwtse

Lemma 6 If A, B E vertlce+ A IS live in T, and B E

vlslble+A), then B IS live In T

Proof If E? IS dead in T, then there exists C E

ant(B) rl aborted7 We know C $ proper

desc(lca(A,B)), since B E wslbleT(A) Thus, C E

anc(lca(A,B)) C_ ant(A), so A IS dead In T, a

contradiction

0

If x E obj and s IS a finite sequence of datasteps, then we

define result(u) as follows If s IS the empty sequence, then

result(x,s) = mlt(x) Otherwise, let s = s’A Then result(x,s) =

update(A)(result(x,s’)) if A involves x, = result(x,s’) otherwise

If S IS a set, and 2 IS a total order on the elements of S, then

we let <<S, s>> denote the sequence conslstmg of the elements of

S, m the order given by 5

Let T be an action tree A partial order p c siblings IS

lmeanzlng for T provided p totally orders all slbllngs In T A

lmeanzmg partial order p induces a total order, MT,,, on

datastep+ m the obvious way If A E datasteps+x) and P Is a

lmeanzmg partial order for T, let QE&#Y denote <<IB E

vlslbleT(A,x) @,A) E mducedT p and B # AI, induced, p>>

A llnearlzmg partial order p for T IS said to be a serlallzlnq

partial order for T provided p IS consistent with sect, and ISbe+

= WSUk(X,pWdsrp(A)) for dll A t ddtdStepS+X) r I& Sdltl to be

senallzable provided there exists some senalizmg partial order for

T

Statmg the smiplest correctness requirements only requires

consideration of actlons whose effects become ’ permanent”

Therefore, we restrict attention to a portion of T, as follows A new

action tree perm(T) IS defined as follows

vertices PeWTl = visible+U) (Lemma 5e shows that perm(T)

IS a tree)

If A E verticesper,,, , then statuspe,m(Tj(A) = status,(A)

If A E datastepspermfTj , then labelp,rm(Tj(A) = label,(A)

Lemma 7 If T IS an action tree and A, B E

vertlceswrmlT), then B E vislblepe,,,,&A)

Proof Since B E verticesperm(Ti = vlslble,(U),

Lemma 5d implies that B E vlsibleT(A) Then B E

visible perm(T+A), since the status of each vertex IS the

same tn T and perm(T)

0

We will require that any tree T created by our algorithm have

perm(T) serializable

Note that the style in which senallzablllty IS defmed here

constrains the implementation less than the type of defmdion used

In ‘traditional” concurrency control theory The earlier defmihons

regard the data as external to the concurrency control algorithm,

the algorithm IS to take requests for data accesses and translate

them into actual accesses, observmg appropriate rules

Generally, the accesses performed by the concurrency control

algorithm simply obtain the latest version of the data object A

clue that the earher definitions are too constraining IS that they do

not apply unchanged to algorithms such as Reed’s, whtch use

sophisticated management of versions of the data The earlier

defmitlons require extensions (KP, BG) to handle algorithms such

as Reed’s These extensions still regard the data as external to

171

the concurrency control algonthm, and so the modIf&

correctness condmons contam exphclt tnformatlon about

Particular “versrons” of the data objects It seems to me, however

that the douedldll(e ot seridlizdbllity, 111 lerms of the vdlueb seen

by the dCCCSSdS, IS really all that mattprs it IS posstbie that this

appearance could be preserved by some algorllhrri v~l;~ch does

not operate in terms of versions at all

The less constraining approach which IS taken here IS to

regard the data as internal to the concurrency control dlgonthm,

at least for the purpose of stating the basic correctness

condltlons Thus, the defmltlons Introduced m this paper are

intended to be applicable to algorithms which use single versions

of data objects, algorithms that use multiple versions of data

objects, as well as to other implementations as yet unforeseen

4 An Algebra Based on Action Trees

We now define a set of operations on action trees That IS, we

define an algebra A = <A, u, fl>, where A IS the set of action

trees, IJ IS the trivial actlon tree with the smgle vertex U, with status

‘active’, and n contams the four kmds of operations described in

(a) (d) below We defme the operations as follows First, we let C

denote the set of all action trees, T for which perm(T) IS

senallzable (In particular, u E C) We constrain the ranges of all

of the operations to be subsets of C WIthin this constraint, we

define the domain by giving a precondition on action trees T, and

use assignment notation to describe the effect of the operation on

T

In all operations, we assume that A E act {U}

(a) createA

(al) Precondltton
(al 1) A e vertices,
(al 2) parent(A) E vertices, committed,
(a13) If (B,A) E seq and B f A, then B E

doneT

(a2) Effect
(a21) vertlce% + vertlce% U {A}
(a22) stat+(A) + ‘active’

(b) commitA, A $ accesses

(bl) Precondition
(bll) A E actlveT
(b12) children(A) fl v&Ices, C done,

(b2) Effect
(1321) stntus,(A) +- committed

(c) abort A

(cl) Precondition
(cl I) A E actlveT

(~2) Effect
(~21) Sldtu+A) +- ‘aborted’

(d) perform, “, A E accesses, x = object(A), u E
values(x) ’

(dl) Precondition
(dll) A E activeT

(d2) Effect
(d21) status,(A) +- ‘committed’
(d?‘) label,(A) + u

5 Augmented Action Trees

The defmltlons which make speclflc reference to versions are

still useful In con)unction with the approach of this paper Their

hole IS In supplying sufflclent conditions for serlallzabllrty, and

thereby helping to organize correctness proofs

In this sectlon, a new structure called an “augmented action

tree” IS defmed Augmented actlon trees are just action trees with

a IlltIe additional information Namely, m the spmt of the earlier

defmltlons, some information IS added which describes a

sequence of versions for each data object Senalizablllty IS

defined for augmented actlon trees It IS seen that serializability

for augmented action trees ImplIes senallzablllty for

corresponding actlon trees Moreover, sertalizability for

augmented action trees has a cycle free charactenzntlon slmllar

to those In usual concurrency control theory Thus, this structure

can be useful In proofs of serializablllty for action trees

An auqmented action tree (AAT), T, IS a pair (S,D), where S IS

an action tree and D C sameobjects IS a partial order on

ddtastepss which totally orders the d&steps for each object In

this case, we write a, for D We extend action tree notation to

T, for example, we write tlatasteos, to denote datastepss If T IS

an AAT then let ,Ih~iadar denote ((A,B) E slbllncfi (CD) E

dLLtdT for sonle L t &SC(A), D t dcsc (tj)} If 14 t ddld.A bz,(x)

then let vclatal(A) denote (B E vlslble$A,r) (B,A) E data, 2nd B

f Al

The followmg 8s a technical lemma needed for the

characterization theorem

Lemma 8 Let T be an AAT If there IS a cycle of

length greater than one In seq U sibling datar then

there IS a cycle of length greater than one In seq, U

172

srblmg data,

Proof Assume not Choose a cycle, C, of mmknum

length greater than one, m seq U srbhny data, There

must be an achon, A, on e wrth A a vertices, Let (B,A)

and (AC) be the two pairs on e involving A Then both

pairs are elements of seq Thus, (B,C) C seq and B *

C since seq IS a partial order Removmg A frorn C

leaves a cycle wrth at least two elements (B and C),

having one fewer element than e Thrs contradtcts the

mm~mality of e

0

If T = (SD) IS an AAT, then erase(T) IS just the actron tree

S We extend the defmrtrons of m, &, &&, !!%ZtG!?g,

Induced. oreds and serializable to an AAT, T, by applying tlleln to

erase(T) An AAT, T, IS data seriahzable provrded there exists p, a

senalrzmg partral order for T, with the addrtional property that

mducedr p IS conststent with datar Data serraflzabrlrty for AAT’s

provides a suffrcrent condrhon for correctness

Lemma 9 Let T be an AAT Let p be a linearrzmg

partial order for T, x E obt, and A E datasteps,

Assume that Induced, p IS consistent wtth data, Then

preds, n(A) = <<v dataT(A), dab+>

Proof Strarghtforward

0

Data serralnabrlrty for AAT’s has a cycle free characterlzatron

Frrst, we give a defmrtron which says that the label of each access

describes the correct object value which the access should See, If

the versrons of ohtects are ordered according to the datdr order

Formally, an AAT IS version comonhble provided for every X E obt,

and every A E datastepsJx), 11 IS the else that label,(A) =

resu)t(x,s), where s = <<v data,(A), ddla,>>

Theorem 10 An AAT, T, IS datd serrahzdble If dnd

only If both of the followmg are true

a T IS version compattble

b There are no cycles of length greater than

one m seq, U stbhng datar

Proof Assume T IS data serraltzable, and obtain p,

a serlalrzmg parhal order for T for whrch rnducedr p IS

consistent wrth dataT

a Let A E datasteps,(s = <<v dataT(A),

data,>> Then label,(A) =

result(x,preds, ,,(A)), by the defmdton of

serralrzabrkty, = result(x,s), by Lemma 9

b seq, U sibling data, C p Thus, there are

no cycles of length greater than one m

seq, U srblmg datar

Now assume a and b Lemma 8 rmplres that there

are no cycles of length greater than one In seq U

srblmg data, Let P be any partrat order which totally
orders all stblmgs and IS consrstent wrth seq U

srblmg data, Then p IS lmeanzmg for T, and
Induced T p IS consrstent with datar We WIII show that p
IS a seriakzmg parhal order for T Let x E obj, A E

datasteps, We must show that Iabe+ =

result(x,Preds., n(A)) Since T IS versron compahbfe, we

know that Iabe+ = result(x,s), where s = <<v datar,

data,>> Then Lemma 9 Implies that s = predsT n(A)!

as needed

q

6 An Algebra Based on Augmented
Actron Trees

tn order to prove that an algorithm generates only correct

operation sequences, it IS helpful to include the addrtronaf

Information present in AAT’s Thus, we defme operahons on

AAT’s, analogously to the defmtttons for action trees Once agam,

we carry out the defrmttons wrthm the algebra framework deft&

edrlrer We define d stew alyebra A’ = <A , (I’, II’), where A IS the

set of AAT’s, u’ IS the tnvtal AAT which has a smgle vertex U wrth

status ‘achve’, and the operations III fl’ correspond closely to the

operahons of 31, and are designated by the same names (We will

rely on context to distmgursh the two cases) The only differences

are that there IS no global constramt corresponding to C, and

perform* u introduces two addlhonal precondrhons and an

additional change These new condrtrons can be thought of as

capturmg the abstract effect of a varlant of Moss’ locking

algorithm

(dl) Precondrhon
(d12) Let B E datastepsr(x), B live In T

Then B E vlsibler(A,x)
(d13) If A IS hve m T, then u = result(x,s),

where s = <<vrsrbler(A,x), data,>>

(d2) Effect
(d23) data, t-data, U {(B,A) B E

datasteps,(U {(A,A)}

173

Lemma 11 If T IS computable m A’, then the

followmg are true

a If A E vertlcesr and parent(A) E

commtttedT, then A E doneT

b If A E vertlcesT and (B,A) E seq and B f

A, then B E doneT

c Ll E actweT

d If (B,A) E data,, then either B IS dead in T,

or else B E visible,(A)

e If A E committedT and B E desc(A) II

vertlcesT then either B IS dead m T or else

B E visible,(A)

Proof Most of the arguments are straightforward

We argue cases d and e

d If Ei = A, the result IS mimedlate If B f A, then

the only way we get @,A) E datar IS by virtue of some

performA u event That IS, there exists T’ such that T

I- T, such that the precondltlon for some step

perfcm* ” I5 b<lllbtlcd III 1 rh 13 I‘, dtdd III i ol u

E vlslhlc, (A) Thsrc>foI(tr IS cl~,~l In T or B C

visible,(A)

e If 13 = A, the result IS Immediate So aS.sume A #

B Let A C committed,, 0 C desc(A) (1 vertlce+ B IIW

in T, and B c vIsiblei Then there exist C, D E

desc(A) n ant(G) for which C = parent(D), C E

commlttcdr and D C actlveT But this contradicts part

a

Lemma 12 Let r dnd T’ be computable In A’, and

assume that T l- T

a vertlcesT C vertlcesT, comrmttedT C

commltted, , aborted, E nbortedT, and

data, C data,

b If A E datasteps, then Iabe+ =

label, (A)

c If A E datastcpsT and (B,A) E data, , then

@,A) E dataT

d If A E vertlce+ then visibleT(A) C

vlslbleT (A)

e If A f verticesT and A IS live in T’, then A

IS live in T

f If A = parent(B) and A E commItted, and

B E verticesT , then B’E done,

Proof The only case that takes some arguing IS

f Let A = parent(B), A C commlttedT and B E vertlcesT

Let T’ be the result of Ct, applred to T, and let T be the

result of + Then \I’ contams a step n of the form

commitA, dild *(I, contains a step p of the form

create, n cannot precede p, since the precondition

for p would be vlolated So p precedes n Then the

precondltlon for n lmplles that B E done,

0

Note that there IS no corrcctnc ‘ib contlltlon for AAT’s eYpllrltly

nientimiiny seridhzdbihty lhis I> bcaust for AA1 J

computablllty alone IS sulficient to rJuarantec scrlallrablllty of

perm(T), as we show m the next theorem

I emma 13 If T ts computable in A’, then perm(T)

IS version compdtible

Proof Let A E datastepsper,cT,(x) We mtlst show

that u (= labelpenntTj (A)) = result(x,s), where s -

<<v datape,n,(Tj(B), datapermIT)>> A IS Inserted into the

tree by a performA u step n, so let the operotlon

sequence producmg T be written as @n* Let T

denote the result of @, and T” the result of @V The

precondltlons for “r show that Iabe+ (A) = result(x,s’),

where s’ = <<vislble,(A,x) dataT>> By Lemma 12b

and the defmltlon of perm(T), It follows that

label perm(T+A) = result(x,s) Thus, It suffices to show

that s = s’ Smce both data, and datapetmtTj are

consistent with data, it suffices to show that s and s’

contain the same elements

First, let B E s Then (B,A) E data, and so by

Lemma 12~ B E datasteps, (x) Since A IS the only

element m T” which IS not in T’, B E datasteps, (x)

Since A E verticesp,r,(Tj = vlstble,(U), and U $

aborted, (by Lemma It), it follows that A IS live m

T Since B E vlslbleT(A), Lemma 6 shows that l3 15 live m

T Thus, B IS IIW in T’, by Lemma 12e The

precondition for n Implies that B C vlslble, (A,x), so B E

S’

Conversely, suppose B E s’ Then B f A since A $

vertices, Then (B,A) E data, , so by Lemma 12a,

(B,A) E dataT By Lemma 12d, B E vlslble,(A,x) By

Lemma 7, it suffices to show that B E vertIcesper, =

vlslbleT(U) But B E visible,(A) and A E visible,(U), so

174

Lemma 5c suffices

cl

Lemma 14 If T IS computable III A’, then there are

no nontrlvml cycles m seqperm(Tj U slblmg dataFrmtTj

Proof Assume the contrary let (o,A,, ,A,= a), k

2 2, be a mmlmum length cycle such that (A,,A,+ ,) E

seqper,,,tTJ U slbllng datapermtTj for all I, 0 5 I 2 k 1

Let a sequence (I, of operations be defined SO that T 1s

the result of @ We WIII show that for each I, 0 5 I <

k 1, tllere exists d prelix \1’, of 9 such that If r IQ the

result of \L, then A, E done, , and A, + , ff doneT If we

fix I for which \1’, IS of maxlmum length and let T’ be the

result of this q,, then we see that A, + , cf done, But

‘I, ,+ , IS no longer than ‘I’,, so Lemma 12a implies that

A ,+, EdoneT , which IS a contradlctlon

FIX I If (Al A, + ,) E seqpe,nl(Tj, then 6 has a prefix

\l’n, where n IS a create, operation Let T’ be the

result of + The precon&&s for n imply that A, E

done, Thus q, = 9suffices

Now assume that (A,,A,+,) E sibling datapermtTj

Then there exist B E desc(A,), C E desc(A,+,) with

(RC) E datapermIT) Since B, C E vertices~,,(,), it

follows that (ant(B) U ant(C)) fl proper desc(U) C

committed, Now, Cp has a prefix \I’n, where n IS a

performc u step Let T’ be the result of 9, and T” the

result of 4, Lemma 12c ImplIes that (B,C) E data, ,

so that B E datasteps, Since B IS live In T (using

Lemma llc), Lemma 12e lmpltes that B IS live in T’

Then the precondition for n implies that B E

vtslble,(C), which means that A, E ant(B) tl proper

desc(lca(B,C)) C_ committedT C done,, We must

show that A, + , e doneT, if we can do this, then taking

9, = i’ yields the result Assume A, ~, E done,, Then

let D be the lowest ancestor of C for which D E done,,,

It must be the case that D E ant(C) fl proper

desc(lca(B,C)) C commtttedT so D E committedT

Since C cf vertrcesT , we know that D f C Let E be the

single element of children(D) fl ant(C) Then E d

done, Then E tf verticesT by Lemma 12f This means

C Q vertices, This IS a contradiction

cl

Theorem 15 If T IS computable in A’, then

perm(T) IS data serlahzable

Proof Immediate from Lemma 13, Lemma 14 and

Theorem 10

q

Next, we show that It IS sufflclent to restrict attention to

correctness of operation sequences for AAT’s We define a

mapping h from A’ to A as follows If T IS an AAT then h(T) =

(erase(T)} If 71 IS 111 II , then II(+) IS just the operdllon m I I with

the same name

Lemma 16 h IS a slmulatlon of A bi A’

Proof (d) and (c) are Immediate To see (b), the

first conclusion follows lmmedlately from the fact that

a E domam(n’) (since only <iddltional cotlstramts are

added for a’), note that Theorem 15 ImplIes that the

C constramt IS always satisfied The second

conclusion IS then straightforward Thus, h IS a

posslbllltles mapping Lemma 3 shows that h IS a

simulation

cl

7 An Algebra Based on Version Maps

In this section, .ve introduce another data structure Thus one

records, for each object and actlon, the sequence of accesses to

the object whose result IS available to the acbon

A version maq IS a partial mappmg V from obt x act to

sequences of accesses, such that the followmg propertres are

satisfied

V(x,U) IS defined for all x,

each V(x,A) consists of accesses to x,

for each x, If V(x,A) and V(x,B) are both dehned, then either A

E desc(B) or B E desc(A),

if V(x,A) and V(x,B) are both defmed and B E desc(A), then

V(x,B) IS an extension of V(x,A)

If A IS the least action for which V(x,A) IS defmed, then we call

A the pnncmal w for x In V, m this case, if result(x,V(x,A)) = u,

we say that u IS the grmcmal &of x n V

We define another algebra, A” = <A”, u”, II”>, as follows A”

IS the set of pairs (T,V), where T IS an AAT and V IS a version map

(I” consists of the trivial AAT consisting of a single node U with

status ‘active’, and the version map which has V(x,U) equal to the

empty sequence, for all x, and IS otherwise undefined I-I”

consists of the SIX operations defined below In (a) (f)

175

In dll the operdtions to follow we d55ume tlldt A t dLt (U)

Operations (a) (c) are ldentlcal to (a) (c) of Jz

(d) performA,“, A E accesses, x = object(A), u E
values(x)

(dl) Precondltlon
(dll) A E achveT
(d12) (B V(x 8) IS defined) C

proper ant(A)
(d13) u IS the prmctpal value of x in V

(d2) Effect
(d21) status,(A) +- ‘committed’
(d22) IabelJA) +- u
(d23) data, t dataT U ((B,A) B E

accesses,(x)) U {(A,A)}
(d24) V(x,A) +- V(x,E) 0 (A)

(e) release lock, x, x E obl

(el) Precondition
(ell) V(x,A) IS defined
(e12) A E commltted,

(e2) Effect
(e21) V(x,parent(A)) +- V(x,A)
(e22) V(x,A) + undefined

(f) lose lockA,+, x E obj

(fl) Precondition
(fll) V(x,A) IS defined
(f12) A IS dead in T

(f2) Effect
(f21) V(x,A) + undefined

Lemma 17 If (T,V) IS computable In A”, then the

following are true

a If V(x,A) IS dehned, then A E vertices,

b If B E datasteps, and B IS live m T, then

there exists A E ant(B) with V(x,A)

defrned and Ban element of V(x,A)

c If V(x,A) IS defmed, then each element of

V(x,A) IS rn wslble,(A)

d If V(x,A) IS defined, then the elements of

V(x,A) are In data, order

Proof Stralghtforward We argue b , for example

Imniedldtf+ dltei un operation porformB u owzurs, we

see that V(x B) IS defined, and G C V(x,B) Assume

mductlvelk that there IS SOIW ,ncestot C, ot i? nlth

V(x,C) defmed dnd B E V(x C) Smce 0 remdIns live,

there are no steps of the form lose lockc x Thus, if

V(x,C) IS ever changed, it must be because of a

release lock step There are two posslbllltles First, the

change could occur because of a release lockCx

step But SlJCh a step causes V(x,parent(C)) to tdke on

the old value of V(x,C), ther-by preserving the needed

property Second, the change rould occur because

V(x,C) gets redcftned to be Ihe previous value of V(x,D),

where D E children(C) But because the succosslve

sequences are extensions of each other, B IS an

element of V(x,D) as well Thus, the needed property IS

preserved in this case also

q

Define a mapping h’ from A” to A’ as follows h’ maps (T,V) to

{T), and maps operations (a) (d) to operdions of the s&me name,

and operations (e) and (f) to A

Lemma 18 h’ IS a simulation of A’ by A”

Proof It suffices to show that h IS a po%lblhtles

mapping The first and last properties are easy to

check We consider the second property Let n’ E II”,

where h’(n’) = n E ll’ Then n’ IS either of the form

create*, commitA, abortA or performA,+ In the frrst

three cases, the second property IS easy to check So

assume that n’ IS of the form performA u Assume

(T,V) IS computable In A” and n’ IS defmkd on (T,V),

yielding (T’,V’) We must show that performA u (I e

the operation of 4’) IS defined on T Let x = obfe&A)

Condition (dll) for JI’ follow ImmedOately from the

corresponding condlhon foi A” We consider (d12)

Let B E datasteps&x), and assume that B IS live m

T Since (T,V) IS computable in A”, Lemma 17 implies

that there IS some C E ant(B) for which V(x,C) IS

defined and for which B IS an element of V(x,C) Then

Lemma 17 implies that B 6 vlslbleT(C) Since n’ IS

defined on (T,V), (dl1) for A” implies that C E ant(A)

Since A E verhcesT Lemma 5 ImplIes that B E

vIabIer(ds needed

176

Next, we conslJer (d 13) Assu~ne A Is live In r, dnd

let s = <<vlslbleT(A,x), data,>> We must show that u

= result(x,s) Let B be the principal action for x in

V Condition (d13) for A” implles thdt u =

result(x V(x B)) It suffices to show that s and V(x,B)

are Identical Since the elements of V() ,B) are in data,

order (by Lemma lr), it suffices to show that s dnd

V(x,B) contain the same srt of elements

First dssume C IS in s, I e C E vIslbleT(A,x) Since A

IS live m T, Lemma 6 implies that C IS live in T Then

Lemma 17 Implies that there exists D E ant(C) for

which V(x D) IS defmed and C IS an element of V(x,D)

Since B IS the pnncipal element for x In V, the

sequence extension property of the defimtion of

version maps ImplIes that C IS also an element of

W,B)

Conversely, assume that C IS an element of V(x,B)

Lemma 17 implies that C C visibleT(B) Condition (d12)

for A” Implies that B E ant(A) Thus, C E vlslble+A)

It IS easy to check thdt the changes correspond

correctly, once we know that the defmabllity conditions

correspond Therefore, h’ IS a posslbilitles mapping

cl

Theorem 19 h 0 h’ IS a simulation of A by A”

Proof lmmedlate from Lemmas 16,18and 1

cl

8 An Algebra Based on Value Maps

In this section, we Introduce another data structure rhls one

records, for each object and action, the latest value of the object

which IS available to the action

A value maD IS a partial mapping V from obf x act to

values(obf), such that the followmg properties are satlsfled

V(x,U) IS defined for all x,

each V(x,A) E values(x), and

lor e&11 x, 11 V(x A) dlic1 V(x,U) are both defined, t111.n elll,er A

E desc(l3) or B C desc(A)

If A IS the least action for which V(x,A) IS defmed, Lhen we call

A the principal dctlon for x In V, in this case, if V(x,A) = u, we call

u the prrnclpaf u of x In V

We define another algebra, A”’ = <A”‘, u”‘, n”‘>, as follows

A”’ IS the set of pairs (T V), where T IS an AAT and V IS a value

map u’ consists of the tnvlal AAT conslstmg of a smgle node U

with status active , and the value map whtch has V(x,U) equal to

init for di1 x and IS otherwise undefmed II”’ cons& of the SIX

operations defined below In (a) (f)

In all the operations to follow, we assume that A E act (U}

Operations (a) (c), (e) and (f) are identical to the correspondtng

operations of A” Operation (d) IS dlso identical, except for the

change indicated below

(d2) Effect
(d24) V(x,A) +- update(A)(u)

If V IS a version map, then let eval(V) be the value map defined

on exactly the same domain, so that eval(V)(x,A) =

result(x,V(x,A))

Lemma 20 Let V be a version map, x E obf Then

the prmclpal action for x in V IS the same as the

principal actlon for x In eval(V), and the prmclpal value

of x In V IS the same as the principal value of x tn

eval(V)

Proof Straightforward

Define a mapping h” from A”’ to A” ds follows Let h”(T,V) =

{(T,W) eval(W) = V} h” maps all operations to operations of the

same name

Lemma 21 h ’ IS a simulation of .A” by A”’

Proof It suffices to show that h” IS a possibilities

mapping The first and last properties are easy to

check We consider the second property Let n’ E

n” If n’ IS one of (a) (c), (e) or (f), then the second

property IS obvious

Assume n’ IS performA,” Assume (T,V) IS

Lomputable 111 4 , (I iv) t n (1,V) (T,W) 1s

computable I 1 .l ’ n’ IS defmr>d for (1 V) 11~1 (r ,V’) =

n (TV) Le nma 20 im;llrq that the definability

condition holds, I c that n = performA u IS deflred on

(T,W) It follows from the effects of the two operntlons

that n(T,W) = (T W’) for some version map W’ It

suffices to show thdt eval(W’) = V Since eval(W) = V,

we only need to consider the values which change

because of the present operation I e we need to show

that result(x W’(x,A)) = V (x,A) But result(K,W’(x A)) =

resuN(x,W(x B) 0 (A)), where B IS the prmclpal action

for x in W, = upddte(A)(result(r,W(x,B))), =

177

update(A)(V(x,B)) stnce evaI = V But B IS the

prmcrpal actron for Y m V, by 1 emma 20, so u = V(x,B)

Therefore, the latest term m the extended equality IS

equal to update(A)(u), which IS equal to V’(x,A) by

definition

0

Theorem 22 h 0 h’ 0 h” IS a stmulation of A by

A”’

Proof Immediate from Lemmas 19,21 and 1

Cl

9 The Algorithm

A shghtly slmplrfred version (which doesn’t drstmgursh read

and write steps) of Moss’ algorithm IS described using a

distributed algebra

Let [k] denote { 1, ,k}

We frx a particular k, as the number of nodes

convenience, we deslgnate the nodes by Identifiers in [k]

For

Let home (act {U)) U ob) + [k], with home(A) =

home(obfect(A)) for all A E accesses Thus, home partitions the

actions and objects among the nodes Let g~g!~ (act {t-f)) + [k]

be defined so that origin(A) = home(A) if parent(A) = U, and =

home(parent(A)) otherwise

In order to describe the local state of each node, It IS

convenient to delme a generalrzahon of actron trees Thus, we

define an actloll summdry r to consist of components verticesT

active: cornmrttedT and dbortedr, where verhcesr IS any frmte

subset of dct (not necessarily closed under the parent operation)

and the remaining three components form a partrtron of verhcesr

The notatron &ngr and &tE, IS also extended In the obvious

way If T and T’ are action summanes or action trees, w e say that

T 2 T’ provided vertrcesr c veltrces, , and correspondmgly for

commrtted, and abortedr We also defme T” = T U T’ so that

verbzesT = verticesr U vertrcesr , and srmrlarly for commlttedr

and aborted,,,

We describe the algorithm as yet another algebra, % = <B, 7,

P>, which IS distributed over] = [k] U {‘buffer’} The components

are defined as follows B IS the Cartesran product of B,, where I E

I If I E [k], then B, consrsts of the values of variables I T which can

contain an action summary, and I V, which can contain a value

map defined only for pairs (x,A) having home(x) = I If I = ‘buffer’

then B, consrsts of the values of variables Ml, J E [k], each of whrch

can contain an action summary (The contents of M, are Intended

to denote mformabon which has been sent to node))

7 IS a vector of mitral states for all the components If I E [k],

then 7, has I T initialized as the tnvral action summary, havrng no

vertices, and I V mrtralrzed so that I V(x,U) = mit(x) for all x wrth

home(x) = I, and otherwise undefined If I = ‘buffer’, then 7, has

each M, equal to the tnvral achon summary

The algorithm has eight kinds of operations SIX correspond

closely to the SIX operations of A”’ four record the creatron,

commit and abort of actions and the performance of data

accesses and two manipulate locks The other two correspond to

the sending and recelvmg of messages The operations are lrsted

below As usual, we present them by lrstmg a precondrtron and

the effect on the state In addrtron, we defme d(n), the doer of

each step

In all cases, we assume that A E act {U),

(a) create,,*, origin(A) = I

(al) Precondrtron
(al 1) A @ I verticesT
(a12) If parent(A) f U, then parent(A) E

I verhcesT I commrttedT

(did) lf (B A) C saq dnd B f A,
then B F I doneT

(a2) Effect
(a21) I vertices, +- I vertices, U {A)
(a22) I stdtusr(A) + - ‘acttve’

(a3) Doer I

(b) commit,,,, A $ accesses, home(A) = I

(bl) Precondrtron
(bll) A E I achve,
(b12) children(A) fl I vertrcesr C I done,

(b2) Effect
(b21) I status,(A) + ‘committed’

(b3) Doer I

(c) abort, A, A 4 accesses, home(A) = I

(cl) Precondrtron
(cl 1) A E I actrver

(~2) Effect
(~21) I status+A) +- ‘aborted’

(~3) Doer I

178

W Perform,,A,ut A E accesses, x = object(A), u E
values(x),

home(A) = I, home(x) = I

(dl) Precondmon
(dll) A E I active,
(dl?) {B I V(x,B)) IS dehned} C_

proper ant(A)
(d13) u IS the prmclpal value of x III I V

(d2) Effect
(d21) I statusT(A) c ‘committed’
(d22) I V(x,A) t update(A)(u)

(d3) Doer I

(e) release lock, A x, home(x) = I ? I

(el) Precondition
(et 1) I V(x,A) IS defined
(e12) A E I commrttedT

(e2) Effect
(e21) I V(x,parent(A)) +- I V(x,A)
(e22) I V(x,A) + undefmed

(e3) Doer I

(f) lose lock, A x, home(x) = I

(fl) Precondition
(fll) I V(x,A) IS defined
(112) ant(A) fl I aborted, f fi

(12) Effect
(f21) I V(x A) + undefined

(f3) Doer I

(!d send ,,,,T,, T’ an action summary

(gl) Precondmon
(gll)T’<~T

(92) Effect
(921) M, + M, U T

(93) Doer I

(h) recelve,,T,, T’ an action summary

(hl) Precondmon
(hll)T’ <M,

(h2) Effect
(h21)rT+-ITUT

(h3) Doer buffer

That IS, any communication IS allowed at any time, which

sends any of the action summary mformahon from I to f

Lemma 23 9 IS an algebra, which IS drstnbuted

over I using d

Proof Straightforward

III

Now define an mterpretahon h”’ from ‘?6 to A”’ by mappmg the

first SIX types of operahons to the operations of the same name,

suppressing the index m [k], and the other two types of operahons

to A

If b E B, then we add “[b]” to the end of a variable name to

denote the value of that variable In state b

For each I E I we define a mapping h, from B to G3(A”‘) as

follows If I E fk], then (T,V) E h,(b) exactly If (T,V) IS computable m

A and the following are true

verhces, fl {A origin(A) = I} C I vertlces,[b] C verhcesT

commlttedT fl {A home(A) = I} C_ ~commrtted,[b] 5

commlttedT

aborted r fl {A home(A) - I} 5 I aborted,[b] c abortedT

I V[b] IS the restnctlon of V to {(x,A) home(x) = I]

If I = ‘buffer’, then (T,V) E h,(b) exactly If (T,V) IS computable

m A”’ and M,[b] < T for each J E [k]

If (T,V) E h,(b), then we also say that (T,V) IS I consistent with

b

Lemma 24 For all I E I, u”’ E h,(r)

Proof Immediate from the defmmons

cl

Lemma 25 Assume I E I Assume n’ E P, d(n) = I,

w = h”‘(n) E W’, a and a’ are computable in A”’ and

9, respectively, a E h,(a’) and a’ E domain(+) Then a

E domain(n)

Proof Let a be (T,V)

First, assume that n’ IS create, A’ so that n IS

createA Then origin(A) = I Since a” E domain(n), A

6 I vertmcs,[a’] Since (T,V) IS I consistent with a’, A e

vertmesT, thus showing (all) If parent(A) = U, then

the fact that (T,V) IS computable and Lemma 17 imply

that parent(A) E active,, thus showing (a12) for this

case On the other hand, If parent(A) f U, then the

precondmon for n’ shows that parent(A) E

I vertrces,[a’] I commrtted,[a’] The fact that (T,V) IS

I consmtent with a’ ImplIes that parent(A) E vertices,

commrttedT Thus, (a12) holds If (B,A) E seq and B

f A, then the precondmon for n’ shows that B E

I done,[a’] The fact that (T,V) IS I consrstent with a’

Implies that B E done,, thus showing (a13)

Second, consider n’ = commtt, A, so that n IS

commit, The precondmon for n’ khows that A E

I active,[a’] The fact that (T V) IS I consistent with a’

implies that A E actlveT, thus showmg (bll) The
precondition for n’ shows that rlnlrtren(A) fl

I vertlces,(d] C I doneJa] The fact tndt (r,v) IS I
conslstellt with a’ ImplIes that children(A) n vet ticesr

c done,, thus showmg (b12)

Third, assume n’ = abort, *,so that n IS abortA

This case IS slmllar to the first half of the previous case

Fourth, assume n’ = performlA “, so that n IS

performA u Then home(A) = I As&/me object(A) =

x, so that home(x) = I (dll) IS argued as m the

precedmg two cases We show (d12) Choose B so

thdt V(x,B) IS defined Since (T V) IS I consistent with a’

and home(x) = I, I V(x,B)[a’] IS also defmed The

precondltton for n’ ImplIes that B E proper ant(A), as

needed Next, we show (d13) The precondition for n’

implies that u IS the prmcipal value for x in I V[a’]

Smce (T,V) IS I consistent with a’, u IS also the prmclpal

value for x In V, as needed

If n’ IS one of (e) or (f), then n’ involves some x with

home(x) = I Assume that n’ involves A The

precondltlon for ?r’ Implies that I V(x,A)[a] IS defmed

Since (T,V) IS I conststent with a’, it follows that V(x,A)

IS defined, thus showing both (ell) and (fll)

If n’ IS a release lock, A x step, then the

precondition for n’ Implies that b, i I commltted,[a’])

Since (T,V) IS I consistent with a’, A E committedT, thus

showing (e12)

Finally, If n’ IS a lose lock, Ax step, the

precondition for n’ implies that ant(A) ‘?l’~ aborted,[a’]

f 0 Since (T,V) IS I consistent with a’, It follows that A

IS dead in T, thus showmg (f12)

Lemma 26 Assume I, J E I Assume n’ E P, d(n’)

= I, r = h”‘(n’) E OP” , a and a are computable m

R and Eb, respectively, a E h,(a’) fl h,(a’), and a’ f

domain If b’ = n’(a), then n(a) E h/b’)

Proof Let a = (T,V) and n(a) = (T’,V’) Lemma

25 Implies that a E domam(n)

If t f I, then it IS easy to see that all the

contamments are preserved, since the sets of aLhons

on the riQlit ,I&S are only Increased, while the sets on

the left srdes are unchanged The property mvolvmg V

IS also easily seen to bc preserved So dssume t =

I We consider the SIX kinds of ooeratlons In turn

First, assume n’ IS of the form create, A,

commit, 4 or abort, A Then V’ = V, and T’ IS exactly

like T except that A IS added to vertlcesT, committed,

or aborted, as appropndle Also, b’ IS lust like a’

except that A IS added to I verhcesT, I commlttedT, or

I abortedT, as appropriate Since (T,V) IS I consistent

with a’, it IS easy to see that all the contamments

change In such a way as to insure that (T’,V’) IS I

consistent with b

If n’ IS of the form perform, A “, then home(A) = 1 I
I Let x = object(A) Then home(x) = I T’ IS just like T

except that A IS added to committed, and IS given label

u, and datar IS augmented with all pairs in {(B,A) B E

datasteps,(U (A,A) V’ IS just like V except that

V (x,A) IS defined to be update(A)(u) b’ IS just like a’

except that A IS added to I committed,, and I V(x,A) IS

defined to be update(A)(u) Since (T,V) IS I consistent

with a’, It IS easy to see that (T’ V’) IS I consistent with

b’ most of the propertles are immediate We just

check the last property, the only change involves A We

have already noted that I V(x,A)[b’] = update(A)(u) =

V’(x,A) This IS as needed

If n’ IS of one of the forms (e) or (f), then T’ = T and

I T[b’] = I,T[a’] Thus, it IS clear that the contamments

are all preserved It IS also easy to check that the final

property is preserved

Lemma 27 Assume I, I E I Assume n’ E P, d(n’)

= I, h(n’) = A, a and a’ are computable in A”’ and J,

respectively, a E h,(a’) fl hl(a’), and a’ E domam(n’) If

b’ = n’(a’), then a E h/b’)

Proof Let a = (T,V)

First, assume that n’ IS send, ,, T, If J f ‘buffer’,

then bll = a’,, and the conclusiok’is Immediate SO

assume that J = ‘buffer’ Since (T,V) IS J consistent

with a’, each action summary MJa’] < T The

precondition for n’ implies tnat T’ _< I T[a’] Since (T,V)

Is I consistent with a, it follows that I T[a’] _< T, dnd

hence T’ 5 T Now, each Ml[b’] < M,[a’] U T’

Therefore, each Ml[b’] 5 T, as needed

Next, assume that n IS of the form rccelve, ,T,, SO

that I = ‘buffer’ The only nontnvlal case IS J = I’ We

must show that 1 T[b’] < T But] T[b’] = j T[a’l U T’

The 1 consistency of (T,V) with a’ shows that J T[a’] <

T The precondltlon for n’ shows that T’ 2 M,[a’]

Smce (T,V) IS I consistent with a’, M/a’] 5 T Thus, T’

5 T Therefore, 1 T[b’] 5 T, as needed

q

Lemma 28 h”’ and h,, I E I, form a local mapping

from J to A”’

Proof lmmedlate from Lemmas 24,25,26, and 27

q

Now extend h”’ to E? U P, by defmmg h”‘(b) = fl, E ,h,(b)

Lemma 29 h”’ IS a slmulatlon of A”’ by 56

Proof lmmedlate by Lemma 28, Lemma 4 and

Lemma 3

q

We are now ready to prove the main correctness theorem

Theorem 30 The mappmg h 0 h’ 0 h” 0 h”’ IS a

simulation of A by J

Proof lmmedlate from Lemma 29, Lemma 1 and

Theorem 22

q

i 0 Acknowledgements

Many other people have contnbuted their ideas antl efforts to

this work Barbara Llskov suggested formal treatment of this area,

and momtored proposed formallzatlons for their faithfulness in

representing the behavior of the Argus system John Goree used

a much earher draft of the current paper as a starting point for the

work m his Master’s thesis, in the process of wntmg his thesis, he

discovered several major ways of clarifying the ideas of this paper

Many of the ideas Gene Stark IS developing for his thesrs have

found their way into the present paper Mike Fischer discussed

some of the early attempts at formallzatlon, and contributed

several Insightful suggestlons Bill Weihl and Gene Stark

contributed helpful cnhclsms of early drafts

References

WI Bernstein, P and Goodman, N
Concurrency Control Algorithms for
MultiversIon Database Systems
1982 ACM SIGACT SIGOPS SvmDosrum on
Prmcmles of Qstrrbufed ComDutmq,
Ottawa. Canada, Auaust 18 20. 1982,
R& 309 2 15-

[EGLT]

PI

WI

[La1

WI

WI

FM

VW

PI

Eswaren K P , Gray, J N , I one, R A
andTrdiger I L
The Notions of Consistency and Predicate
Locks in a Database System,
CACM. 1’01 79. No 17. November-t=

Goree, John
Internal Consistency of A Distributed
Transaction System with Orphan Detection
M S Thesis, MIT Laboratory for Computer SCI ,
Cambridge, MA 1962 in progress

Kanellakq P and Papadlmltriou, C
On Concurrency Control by Multiple Versions
Proceedmas of the ACM Svmoosrum on
Prmcroles of Database Svstems
March 29 3 1. 1982. DD 76 82

Lamport, L
Time, Clocks and the Ordenng of Events
m a Distributed System,
CACM. Vof 21. No 7. Jufv. 1978

Liskov, B and Scheifler, R
Guardians and Actions Lmgulstlc Support for
Robust, Distributed Programs,
1902 Ntnth Annual ACM SIGACT SIGPLAN
Svmnoslum on PRINCIPLES OF
PROGRAhlMlNG LANGUAGES. Albuoueroue. NM,
Januarv25 27. 1982. RD 7 19

Moss, J E B
Nested Transactions An Approach to Reliable
Distributed Computing, Ph D Theas,
Technrcal Renort M/T/LCS/TR 260,
MIT Laboratory for Computer Science,
Cambridge, MA 1981

Randell, B
System Structures for Software Fault Tolerance
Proc Int Conf on &/fable Softw (Aorrf 1975L
SlGPLAN Notrces Vof 10 Nr 6, DD 437 457
Also rn fEEt Trans Softw
Eno Vol 7 Nr 2 (June 1975). DD 220 233

Reed, D P

Ndliilng and Synchromzallon in a Decentralized
Computer System, Ph D Thesis,
Trch,xcal Renort MIT/LCS/TR 205,
MIT Laboratory tar Computer Science,
Cambridge, MA 1978

Stark, E
Foundations of a Theory of Speclflcatlon for
Dlstnbuted Systems, Ph D Thesis, MIT
Laboratory for Computer Science,
Cambridge, MA 1982 m progress

181

