Concurrency Control for Restlient Nested Transactions

Nancy A Lynch
Maesadhusetts Institute of Yechnology
Cambridge, Massachusetts 02139

January, 1983

1 Introduction

In the past few years there has been consileratile research on
concurrency control, ncluding both systems design and
theoretical study The problem is roughly as foliows Data in a
large (centralized or distributed) database 15 assumed to be
accessible to users via transacuons, each of which 1s a sequential
program which can carry out many steps accessing individual
data objects It 1s 1mportant that the transactions appear to
execute "atomically”, 1e without intervening steps of other
transactions However, 1t 1s also desirable to permit as much
concurrent operation of different transactions as possible, for
efficiency Thus, it 1s not generally feasible to insist that
transactions run completely senally 2 notion of equivalence for
executions is defined, where two executions are equivalent
provided they "look the same" to all transactions and to all data
objects The senalizable executions are just those which are
equivalent to senal executions One goal of concurrency control
design 1s to insure that all executions of tiansactions be

senalizable

*This work was supported in part by the Army Research Office
under #DAAG 29 79 C 0155, Defense Advanced
Research Projects Agency #NO00014 75 C0661, and by the
National Science Foundation under Grants MCS 79 24370

Contract

Permission to copy without fee all or part of this matenal is granted
provided that the copies are not made or distnbuted for direct
commercial advantage, the ACM copyright notice and the title of the
publication and 1ts date appear, and notice 1s given that copying 1s by
permussion of the Association for Computing Machinery To copy
otherwise, or to republish, requires a fee and/or specific permission

© 1983 ACM 0-89781-097-4/83/003/0166 $00 75

166

Several characterization theorems have been proved for
serializability, generally, they amount to the absence of cycles in
some relation describing the dependencies among the steps of
the transactions A very large number of concurrency control
algorithms have been devised Typical algorithms are those based
on two phase locking [EGLT), and those based on timestamps
[La] Although many of these algorithms are very different from
each other, they can all be shown to be correct concurrency
control algonthms The correctness proofs depend on the

absence of cycles charactenzations for senahzabihty

More recently, it has been suggested [Re, M, LiS] that some

addiional structure on transactons might be useful for
programming distributed databases, and even for programming
more general distnbuted systems The suggested structure
permits transachons to be nested Thus, a transaction is not
necessarlly a sequental program, but rather can consist of
(sequential or concurrent) sub transactions The mtention is that
the sub transactrons are to be seriahized with respect to each
other, but the order of senalization need not be completely
specified by the witer of the transaction Thius Hexibility allows
more concurrency in the implementation than would be possible
with a single level transaction structure consisting of scquential
transactions The general structure allows transactions to be
nested to any depth, with only the leaves of the nesting tree

actually performing accesses to data

Transactions are often used not only as a umt of concurrency,
but also as a umit of recovery In a nested transaction structure, it
1s natural to try to localize the effects of fallures within the closest
possible level of nesting in the transaction nesting tree One 1s
naturally led to a style of programming which permits a transaction
to create children, and to tolerate the reported failure of some of
its children, using thie information about the occurrence of the
failures to decide on its further activty The intention is that failled
transactions are to have no effect on the data or on other

transactions This style of programming is a generalization of the

"recovery block” style of [Ra] to the domam of concurrent
programming Indeed, this style szems to be especially suitable
for programming distributed systems, since many types of failures

of pieces of programs are likely to occur in such systems

Reed 1s currently implementing a system which uses multiple
versions of data to implement nested transactions which tolerate
failures of sub transactions Moss has abstracted away from
Reed's specific implementation of nested transactions, and has
presented a clear intuihive description of the nested transaction
model He has also developed an alternative impiementation of
the nested transaction model, based on two phase locking This
model and mplementation are fundamental to the Argus
distnbuted computing language, now under development by

Liskov's group at MIT

The basic correctness criteria for nested transactions seem to
be clear enough, intutively, to allow implementors a sufficient
understanding of the requirements for their implementation
However, some subtle issues of correctness have arisen In
connection with the behavior of faled sub transactions For
example, the Argus group has decided that a pleasant property for
an implementation to have 1s that all transacttons, including even
"orphans" (subtransactions of falled transactions), should see
‘consistent views of the data (1 e views that could occur duting
an execution in which they are not orphans) The mplementatnoq
gocs to considerable lengths to try to insure this property, but it1s

difficult for the implementors to be sure that they have succeeded

It seems clear that some basic groundwork is needed before
such properties can be proved Namely, the theory already
developed for concurrency control of single level transaction
systems without failures needs to be generalized to incorporate
considerations of nesting and failures The mode! needs to be
formal, 1n order to allow careful specification of all the correctness
requirements the simple and intuitive ones, as well as the rather

subtle ones

Tius paper begins to develop this groundwork First, a simple
"action tree"” structure 1s defined, which descrbes the ancestor
relationships among executing transactions and also descrbes
the views which different transactions have of the data A
nested
transactions with failures, 1s defined A characterization 1s given

generalization of senalizabibty to the domain of
for this generalization of senahizabiity, in terms of absence of
cycles in an appropriate dependency relation on transactions A
shghtly simphfied version of Moss' algorithm 1s presented in detall,

and a careful correctness proof is given

167

The style of correctness proof for the algonthm appears to be
qu:ite interesting in its own right The description of the algonthm
1s presented tn a series of levels, each of which 1s an "event state"
algebra with unary operations, and each (but the first) of which
"simulates" the previous one The basic problem statement 1s
given as the highest level algebra, and successively fower levels
provide increasing amounts of implementation detail In
particular, both the problem specification and the implementation
are presented as the same kind of mathematical object, an event
state algebra At every level, we want to present algonithms with
the maximum posstble amount of nondetermimism consistent with
correctness, not forcing any unnecessary implementation
decisions Therefore, we do not describe algorithms in the usual
way, using programs with specified flow of control Rather, we
present algorithms as collections of events with corresponding

preconditions

One novel aspect of the simulabions we use different rom the
usual notions of 'abstraction” mappings, 1s that our simulations
map single lower level states to sets of higher level states rather
than just single higher level states (We call them "possibilities™
mappings) This extra flexibility seems quite convenient for many
implementations, allowing the more “"concrete” algebra
sometimes to contain less information than the more “abstract™
algebra For example, it might be easy to prove correctness of an
algonthm which maintans lots of auxihary informaton The
correctness of an algonthm which maintains less information
could be proved, in our model, by showing that it simulates the

algorithm which maintains the auxihary information

While possibilities mappings are convenient for proving
correctness of ordinary centralized algorithms, they produce their
greatest payoff for distributed algonthms Namely, a distributed
algorithm 1s described as a spectai case of an event state algebra,
a "distributed algebra” In a distnibuted algebra, the state set 1s
just a Cartesian product, with event preconditions and transitions
defined componentwise To show that a distributed algebra
simulates some other "abstract" algebra, it suffices to define an
appropnate possibiities mapping from the global states of the
distributed aigebra, to sets of states of the abstract algebra It
turns out to be extremely natural to describe such a mapping by
first describing a possibilities mapping from the local state of each
component to sets of abstract states The image of a local state
under this mapping Just represents the set of possible global
states consistent with the knowledge of the particular component

The possibiliies tor the entire distributed algebra are simply

obtained by taking the ntersection of the possibiiities consistent

with the knowledge of all the components

It appears that this technique extends to give natural proofs of
many algonthms, especially distnibuted algonthms, and thus
warrants further nvestigation Goree [G] presents a more
complete (and shghtly more general) development of the

technique than is presented 1n this paper

The defintions given In this paper express the most

fundamental correctness requirements, but not subtle conditions
nd

views lgsues of fairn
ViewsS iSsues of 1a

U Poralrn

€SS

w

eventual progress are not addressed, but rather only safety
propertics, serializability in particular Future work involves
ertending the framework presented here to allow expression of
these other properties, and to allow correctness proofs for the
difficult algorthms which guarantee these properties Some
further work In these directions has already been carned out
Goree [G] has gtven a definition for correctness of orphans’ views,
and has given a correctness proof for a comphcated algonthm
used 1n the implementation of Argus to maintain correctness of

orphans' views in the face of transaction aborts

Other related work 1s that of Stark {S] He I1s carrying out a very

general treatment of eventstate algebras, incorporating
considerations of modularity to a much greater extent than 1s
present in this paper, and handiing farrness and eventuahty

properties as well as safety properties

2 Event-State Algebras

In this section, we describe the event state algebra framework

An event state algebra A = <A, g, [1>, consists of a set A of
states, an element ¢ € A, the imitial state, and a set [l of partial

unary operations In this paper, we will usually refer to an event

state algebra as simply an algebra

Let a be a state, and let ® = (711, ,'nk) be any finite sequence
of operations chosen from OP Then & is said to be vahd from a
provided b = "'k("k 1(('n1(a))) 1s defined, in this case, b is

called the result of & apphled to a An infinite sequence of

operations 1s said to be valid from a provided all its finite prefixes
are vahd from a We say that ¢ 1s valid provided it i1s valid from o,
and the result of ¢ 1s defined to be the result of ¢ appliedto ¢ We
write a = b provided there i1s some finite @, valid from a, for which

b s the result of ¢ applied to a b 1s computable provided o b

Now assume A = <A, ¢, [1> and L' = <A’, ¢, IT"> are two
algebras An interpretation of A by A'isamappngh IT" - TT U
{A} We extend h to map operation sequences of A’ to operation
sequences of A in the obvious way (deleting occurrences of A)
An interpretation, h, 1s a simulation of A by A’ provided that h(®’)

1s a valid operation sequence for A whenever ®' 1s a vald

operdtion sequence for 4’

Lemma 1 Assume that A, A and A" uare
algebras, that h 1s a sunulation of A by A" and h’ 1s a
simulation of 4' by A" Then h ° b’ is a simulation of A
by A"

Proof Straightforward

Next, we give a sufficient condition for a mapping h to be

a
Alh
Aj D

eth A
ein

9]
AN N

= HAAUITU{
HA) for all 2’ € A, and h restricted to I1' is an interpretation Then
his a possibilities mapping from .4’ to A provided the following are

true
(a) o € h(o")

Assume 7' € Il Assume a and a' are computable in A and
A, respectively, and a € h(a’) Assume a’ € doman(n’) and b’ =

7'(a’)
(b) i h(n') = = €T, then a € domain(x) and #(a) € h(b")

(c)fh(7') = A, thena € h(b’)

Lemma 2 Let h be a possibilities mapping from 4’
to 4 If ¢’ 1s a vaiid operation sequence for A', and
h(®') = @, then ¢ 1s a valid operation sequence for A
In addition, if ®' s finite, @’ 1s the result of ¢’ and a1s
the result of ¢, then a € h(a’)

Proof By induction on the length of ¢’

a

Lemma 3 Any possibilities mapping from A' to A
1s a simulation of A by A’

Proof Immediate by Lemma 2

|

If we think of A’ as a "concrete" algebra, and A as a more
"abstract" algebra, then we see that a possibilites mapping
allows single "concrete" states to be mapped to sets of "abstract”

states rather than just single abstract states

An algebra, A = <A, o, TI>, is said to be distnbuted over a finite

index set | using d, provided ihat A is the Cartesian product of sels

At €1, dis amapping, d 11 - |, giving the doer" of each

operation, and the following two conditions are satislied

{Local Domain) Let1 - d(#) Ifa,b€Aanda = b,lhena €

domain(x) if and only if b € domain{sr)

(Local Changes) If a, b € domain(n), @ = w(a),b’ = w(b)and

a = b, thena' = b’

We now consider the simulation of an algebra by a distributed
algebra Namely, we define a "local mapping”, from the local
state of each component of the distributed algebra to a set of
abstract states The result of this mapping should be thought of
as the set of possible abstract states, as far as a particular node

can tell The mapping from a global state of the distributed

o~ a

aigebra can then be defined to f the imag

yield the intersectio the images
of all the component states The conditions we require for local
mappings are Just those which guarantee that the derived global

mapping 18 a possibilities mapping

Let A’ = <A, o', TI" be an algebra, distributed over | using
d Let A = <A, g, TI> be any algebra Let h be an interpretation
from A'to A Foreach 1€l leth A — HA) be such that h,
depends on A'| only te if a = bI then h.(a) = h‘(b) Then we say
thathand h 1 € |, form a local mapping from A’ to A provided the

following conditions are satisfied
(a)Foralli€1,0 € h o)

Assume 7’ € T1', d(w) = 1 Assume a and a' are computable in

A and AL, respectively Assume a € h(a) Assume a' €

domain(7’), and b’ = »'(a’) '

(b) i h(n') = @ € 1, then a € domain(rr)

(c) Assume h(') = w €I1,) € landa € hl(a‘) Then =(a) €
h(®)

(d) Assume h(z’) = A,j€landa€ h,(a‘), Thena € h‘(b’)
Lemmad Let.Land A’ = <A, ¢, [1'> be algebras,
where A’ 1s distributed over | Assume thathand h,1 €
| form a local mapping from L' to A Extend hto A’ U
I’ by defining h(a’) = ﬁ' € |h.(a') Then h 1s a
possibiliies mapping from A’ to A

Proof We check the thiee properttes of the
possibilities mapping definition

(a) To see that o € h(g"), it suffices to show that ¢ €
h/(o’) for all 1 € | But this 1s exactly the statement of
property (a) of the local mapping definition

169

Now we assume the hypotheses supplied for parts
(b) and (c) of the possibilities mapping definition
Assume also thatd(#’) =1

(b) Since a € h(a’), it 1s obvious that a € h (@)
Property (b) of the local mapping definition implies that
a € domain(w) In order to show that #(a) € h(b’), it
suffices to fix an arbitrary § € | and show that #(a) €
h](b') Since a € h’(a’), the needed property foliows
from (c) of the local mapping definition

(c) It suffices to show that a €\hl(b') for any } €
| This follows as in the preceding argument from (d) of
the local mapping defimition

a

If the definitions in this section are to be used n correctness
proofs for the widest possible class of algorithms, they will
probably need to be generahized In particular, 1t seems
appropnate to permit single operations of a more concrete
algebra to be interpreted by sequences of operations of a more
abstract algebra (See Goree (G) for definitions and uses for this
generalization) Also, sets of initial states rather than single initial

states are probably useful

3 Action Trees

In this section, basic definitions are given for action trees and

senahzabihty

Let gbj be a universal set of data objects For each x € oby, let
values(x) denote the set of values x can assume, including a

A value assignment 1s a total
mapping, f, from ob) to values(oby), having the property that f(x) €

distinguished nitial value 1nit(x)

values(x) for all x € oby

Let act be a universal set of actions (ie transactions) Let U
be a distinguished action We assume that the actions are
configured a priori into a tree, representing therr nesting
{U}, let
parent(A) denote a unique parent action for A Let siblings denote
{(AB) € act® parent(A) = parent(B)} If A € act, let chiidren(A)
denote {B € act parent(B) = A} If A B € act, let Ica{A,B) denote
the least common ancestor of A and B If A € act, let desc(A)
(resp anc(A)) be the set of descendants (resp ancestors) of A Let
proper desc(A) (resp proper anc(A)) be the set of proper
descendants (resp ancestors) of A

relabonship, with U as the root For every A € act

It might be convenient for the reader to think of this a prion
configuration of all possible actions into a tree as a preassigned
"naming scheme" for achions That s, the "name" of any action i1s
assumed to carry within it information which tocates that action in
In any particular execution, only
The (virtual)
action U, the parent of all top level actions, has been added for the

this universal tree of actions

some of these possible actions will be "activated”

sake of uniformity

Let seq C siblings be any fixed parhial order, representing
If (AB) € seq, it means that A 1s
constrained to run before B For the sake of notational simplicity,

sequential dependency

we are assuming this relation 1s also fixed a prion, this amount to
assuming that the "name" of any action carries within 1t
information about which siblings the action can assume have
completed The use of an arbitrary partial order is a generalization
of both the total order usually specified for the steps which occur
within a single level transaction, and the unconstrained order
usually specified among the transactions themselves We also
assume a priori determination of which actions actually access
data, which objects they access and the functions they perform on
those objects let accesses denote the leaves of the tree descrnibed
above (We assume that U ¢ accesses, so that the set of actions is
nontrivial) Let gbject accesses — obj be a fixed function If
object(A) = x, we say that A ig an access to x For A € accesses,
let update(A) values{object(A)) — values(object(A)) be a fixed
function Let samegbiect denote {(A,B) € accesses 2 object(A) =

object(B)}
| am departing from the usual approach in senalizability theory

by mciuding ¢ varlicuiar function (rather than an uninterieted

functionjir b Jeltion of an action which accesses data This

15 becatse | vant to state correciness conditions i terms of
preserving certain relatonstups among the data values seen and
wniten This 'semantic” style of correctness condition seems to
me to be more basic than the usual correctness definttions In
serializability theory, in that t says less to constramn the

implementation
Note that the usual read and wnte operations of serializability

theory can be regarded as special cases of my accesses Namely,
"read accesses" have the identity finction as their associcated
update function, while "write accesses” have an associated

update function which 1s a constant function

Next, | give a way of descrnibing a “snapshot™ of a particular
execution, using a structure called an "action tree" An action

tree can be regarded as the generalization of the log from orcinary

sernalizabtity theory

170

An action tree T has components vertices, active,,
commtttggT, abortedT and Iagng, where

vertices Is a fimte subset of act, closed under the parent

operation if A € vertices, {U}, then parent(A)} € vertices.,
(These represent the actions which have ever been created during

the current execution)

acte, commnttedT and abortedT comprise a partition of
vertices,, (These classtfications indicate the current status of
each action that has ever been created When a non access
action is first created, it 13 classified as active At some later time,
its classification can be changed to either committed or aborted
By "committed", we mean that the action 1s committed relative to
its parent, but not necessarly committed permanently Permanent
commit of an action would be represented by classification of all
ancestors of the action, except for U, as committed)

IabelT datastepsT —~ values(obj), (where gata§3e9§¥ =
committed, M accesses), with labet (A) € values (object(A)) (The
label of an access to an object 1s intended to represent the value
read by that access Since the access has an associated function,
the value which the access writes into the object i1s deducible from

the value iead, and therefore need not be explicilly represented)

Let @ﬂgT denote committed T U abortedT Let status, be

defined by §tatg§r(A_) = ’active’ (resp 'comnmitted’, 'aborted’)
provided A € active; (resp commlttedr, abortedT) Let accesses.

= vertices, M accesses, accesses;(x) = {B € accesses;

T
object(B) = x} and datastegsTm = {B € datasteps, object(B) =
)2

x} Let seq denote seq n (vertncesr

Next, we describe actions whose existence 1s intended to be
known to other actions (e not masked fiom those other actions
let

by intervening failures or active actions) For A € vertices

T
usible_(A) denote {B€ vertices, anc(B) M proper desc(ica(A,B))
c commlttedT} That s, vusaneT(A) 1s just the set of actions whose
existence 1s known to action A, because they and all their
ancestors, up to and not including some ancestor of A, have
committed For A € vertices;, x € ob), let wisible (A.x) denote
vnsubIeT(A) n datastepsT(x) The following lemma describes
elementary properties of "visibility”
Lemma 5 Let T be an action tree, A, B, C €

vemcesT

a If A € desc(B), then B € visible (A)

b A € visible (B) f and only f A €
vnsubIeT(Ica(A,B))

cltAE vusnbleT(B) and B € vusnbleT(C), then
A€ wsubIeT(C)

d If A € desc(B)and C € vusnbleT(B), then C
€ VISlbleT(A)

e WA € desc(B)and A € wisible(C), then B
€ vnsnbleT(C)

Proof

a Immediate

b Immediate from the fact that Ica(AB) =
Ica(A,lca{A,B))

¢ Let D € anc(A) N proper desc(ica(A,C))

We must show that D € committed 1D
€ pioper desc{ica(A,B)), then the fact

that A € visible, (B) imphes the result So
assume that D € proper desc(lca(A,B)) It
must be the case that D € anc(ica(A,B)),
and that Ica(B,C) = Ica(A,C) Thus, D €
anc(B) N proper desc(lca(B,C)), so the
fact that B € wisible (C) implies the result

d Immediate from partsa and ¢
e Immediate from partsaand ¢

O

It A € vertices,, then we say A 1s live in T provided anc(A) N
abortedT = @, and we say A 1s dead in T otherwise

Lemma 6 If A, B € vertices;, Aislivein T, and B €
vnsnb\eT(A), thenBistvein T

Proof If B 1s dead i T, then there exists C €
anc(B) N aborted, We know C ¢ proper
desc(ica(A,B)), since B € visible (A) Thus, C €
anc(lca(A,B)) C anc(A), so A 1s dead in T, a
contradiction

O

If x € obj and s 1s a finite sequence of datasteps, then we

define result(x.s) as follows
result(x,s) = mit(x) Otherwise, lets = s'A Then result(x,s) =

If s 18 the empty sequence, then

update(A)(result(x,s")) ff Amnvolves x, = result(x,s’) otherwise

It S 1s a set, and < 15 a total order on the elements of S, then
we let <<S, <>> denote the sequence consisting of the elements of

S, in the order given by <

171

fet T be an action tree A partial order p C sibiings 1s
lneanzing for T provided p totally orders all siblings n TA
lineanzing partal order p induces a total order, |_nd_u<_:ggT‘ o On
datasteps,, in the obvious way If A € datastepsr(x) and pisa
lineanzing partial order for T, let preds, pLA) denote K{B €
visible (A x) (B,A) € mducedTl o and B # A}, nduced, p>>

A lineanzing partial order p for T 1s said to be a genalizing
partial order for T provided p is consistent with seq, and label(A)
= resull(x,predsrp(A)) for all A € ddtastepsr(x) s sdid to be

seniahizable provided there exists some senalizing partal order for
T

Stating the simplest correctness requirements only requires
consideration of actions whose effects become 'permanent”
Therefore, we restrict attention to a portion of T, as follows A new
action tree perm(T) 1s defined as follows

vertices = wsaneT(U) (Lemma Se shows that perm(T)

perm(T)
1satree)

fAE vemcespermm ,then statusperm(T)(A) = status(A)
IfA€ datastepsper ™) * then iabel r,erm(T)(A) = label (A)

Lemma 7 f T 1s an action tree and A, B €
vertices perm(T) thenB € VISlblepe,m(T)(A)

Proof Since B € vertices ——— visible(U),
Lemma 5d imphes that B € visible(A) Then B €

vnsmleper mm(A), since the status of each vertex 1s the
same in T and perm(T)

O

We will require that any tree T created by our algorithm have
perm(T) serializable

Note that the style in which senalzability 1s defined here
constrains the implementation less than the type of definihon used
in 'traditional” concurrency control theory The earlier definitions
regard the data as external to the concurrency control algorithm,
the algorithm s to take requests for data accesses and translate
them nto actual accesses, observing appropnate rules
Generally, the accesses performed by the concurrency control
algonithm simply obtain the latest version of the data object A
clue that the earlier definitions are too constraining is that they do
not apply unchanged to algonthms such as Reed’s, which use
sophisticated management of versions of the data The earher
defimtions require extensions (KP, BG) to handie algorithms such

as Reed's These extensions still regard the data as external to

and so the modified
correctness conditions contain explicit

the concurrency control algorithm,
information about

particular "versions” of the data objects It seems to me, however
that the appediance of senalizability, m terms of the values seen
by the daccesses, s really all that matters it is posstbie that this
appearance could be preserved by some algonthm which does

not operate in terms of versions at all

The less constraining approach which 1s taken here 1s to
regard the data as mnternal to the concurrency control algonthm,
at least for the purpose of stating the basic correctness
conditions Thus, the definttions introduced in this paper are
intended to be applicable to algonthms which use single versions
of data objects, algonthms that use multiple versions of data

objects, as well as to other implementations as yet unforeseen

4 An Algebra Based on Action Trees

We now define a set of operations on action trees That s, we
define an algebra A = <A, o, I, where A 1s the set of action
trees, o Is the tnivial action tree with the single vertex U, with status
'active’, and [1 contains the four kinds of operations described n
(a) (d) below We define the operations as follows First, we let C
denote the set of all action trees, T for which perm(T) s
senalizable (In particular, ¢ € C) We constrain the ranges of all
of the operations to be subsets of C Within this constraint, we
define the domain by giving a precondihion on action trees T, and
use assignment notation to describe the effect of the operation on
T

In all operations, we assume that A € act {U}

(a) createA

(a1) Precondition
(atnHA¢ vertices,
(a12) parent(A) € vertices, committed
(a13) If (B,A) €seqand B # A, then B €
doneT

(a2) Effect
(a21) vertices, — vertices, U {A}
(a22) statusT(A) + 'active’

(b) commit,,, A ¢ accesses

{b1) Precondition

b11)AE active,

(b12) children(A) M vertices C done,
(b2) Effect

{b21) smtus1(A) « committed’

172

{c) abortA

(c1) Precondition
(c11)AE€ active;

(c2) Effect
(c21) stdtusT(A) « 'aborted’

(d) perform, . A € accesses, x = object(A), u €
values(x)

(d1) Precondition
(d11) A€ active,

(d2) Effect
(d21) statusT(A) «— 'committed’
(8272) IabeIT(A) — U

5 Augmented Action Trees

The definitions which make specific reference to versions are
stil useful 1 conjunction with the approach of this paper Therr
tole 1s n supplying sufficient conditions for senalizability, and

thereby helping to organize correctness proofs

In this section, a new structure called an "augmented action
tree" 1s defined Augmented action trees are just action trees with
a tle additional information Namely, in the spint of the earlier
information 1s added which describes a

definitions, some

sequence of versions for each data object Senalizability 1s
defined for augmented action trees It i1s seen that senahzabihty

for augmented action trees imples senalzabiity for

corresponding action trees Moreover, senahzability for
augmented action trees has a cycle free charactenization similar
to those in usual concurrency control theory Thus, this structure

can be useful in procfs of senalizability for action trees

An augmented action tree (AAT), T, 1s a parr (S,D), where S1s
an action tree and D C sameob;ects 1S a partial order on
datastepss which totally orders the datasteps for each object In
this case, we write data, for B We extend action tree notation to
T, for example, we write dataste@r to denote datastepsS fTis
an AAT then let sibling data, denote {(A,B) € siblings (CD) €
datay for some U € desc(A), D € desc ()} I A e dalaste b (0
then let v data (A) denote (B¢ visble (A7) (B,A) € data; and B
A}

The following 's a technical lemma needed for the

characterization theorem

Lemma 8 Let T be an AAT
length greater than onc In seq U sibling datar then

If thcre 1s a cycle of

there 1s a cycle of length greater than one in seq, U

sibling data,

Proof Assume not Choose a cycle, C, of minimum
length greater than one, in seq U sibling data; There
must be an action, A, on Cwith A € vertices, Let (B,A)
and (A,C) be the two paws on C involving A Then both
pairs are elements of seq Thus, (B,C} Cseqand B #

C since seq 15 a partial order Removing A from c

leaves a cycle with at least two elements (B and C),
having one fewer element than C This contradicts the
minimahty of C

a

i T = (S,D) 1s an AAT, then erase(T) is just the action tree
S We extend the definitions of wisible, lve, dead, hneanzing,
induced, preds and senalizable to an AAT, T, by applying them to
erase(T) An AAT, T, s data serializable provided there exists p, a
senalizing partial order for T, with the additiona! property that
|nducedT'p 1S consistent with dataT Data senalizabtity for AAT’s
provides a sufficient condition for correctness
Lemma 9 Let T be an AAT Let p be a lineanzing
partial order for T, x € ob), and A € datasteps{x)
Assume that induced, p'S consistent with data, Then
preds, p(A) = (v dataT(A), dataT»
Proof Straightforward

]

Data senalizability for AAT’s has a cycle free characterization
Fust, we give a defimiion which says that the label of each access
describes the correct object value which the access should see,
the versions of objects are ordered according to the data order
Formally, an AAT is version compatibie provided for every x € oby,
and every A € datastepsT(x), it 15 the cise that labelT(A) =

result(x,s}, where s = (v data(A), dala;>>
Theorem 10 An AAT, T, s data senalizable if and
only if both of the following are true

a Tis version compatible

b There are no cycles of length greater than
one n seq U sibling dataT

Proof Assume T is data senalizable, and obtain p,
a serializing partial order for T for which mducedTp [
consistent with dataT

a Let A € datasteps.(x), s = (v data(A),
dataT» Then IabeIT(A) =
result(x,predsT p(A)), by the definition of

senahzability, = result(x,s}, by Lemma 9

173

b sed; U sibling dataT C p Thus, there are
no cycles of length greater than one in
seqy U sibling data,

Now assume a and b Lemma § imples that there
are no cycles of length greater than one in seq U
sibling dataT Let p be any partial order which totally
orders all siblings and is consistent with seq U
sibling data, Then p I1s linearizing for T, and
mducedT 'S consistent with dataT We will show that p
15 a seralzing partial order for T Let x € obj, A €
datastepsT(x) We must show that IabelT(A) =
result(x,predsT p(A)) Since T 1s version compatible, we
know that IabelT(A) = result(x,s), where s = «v dataT.
dataT» Then Lemma 9 implies that s = predsT’ p(A).
as needed

o

6 An Algebra Based on Augmented
Action Trees

In order to prove that an algorthm generates only correct
operation sequences, it 1s helpful to include the additional
information present in AAT's Thus, we define operations on
AAT's, analogously to the definttions for action trees Once agam,
we carry out the definittons within the algebra framework defined
earlier We define d new algebra A’ = <A, ¢', 11D, where A s the
set of AAT's, g’ 1s the trivial AAT which has a single vertex U with
status active’, and the operations in {1’ correspond closely to the
operations of A, and are destgnated by the same names (We will
rely on context to distinguish the two cases) The only differences
are that there 1s no global constraint corresponding to C, and
performA,u introduces two additional preconditions and an
additional change These new conditions can be thought of as
captuning the abstract effect of a vanant of Moss’ locking
algonthm

(d1) Precondition
(d12) Let B € datasteps (x), Blive n T
ThenB € wstbleT(A,x)
(d13) If Ais ive in T, then u = result(x,s),
where s = visible (Ax), data;>>

(d2) Effect
(d23) data, — data, U {(BA) B€
datasteps,(x)} U {(A,A)}

e ffAC vertices; and A 1s live n T, then A

Ltemma 11 If T 1s computable n A, then the
islveinT

following are true

alf A € vertices; and parent(A) €
committed,, then A € done,

f If A = parent(B) and A € committed and
B € vertices, , then B'€ done,

Proof The only case that takes some arguing is

f Let A = parent(B), A C commutted; and B € vertices,
Let T’ be the result of ¢ applied to T, and let T be the
result of ¥ Then W contains a step = of the form

b If A € vertices, and (B,A) € seq and B #
A thenB€ done,

act
¢ U€actve commit,, and ¥d contains a step p of the form

createB 7 cannot precede p, since the precondition

' ,th her B dinT,
d If(B.A) € datay, then either B 1s dead in for p would be violated So p precedes 2 Then the

| le_ (A
or else B € visib eT() precondition for = imphes that B € doneT

elf A€ committed, and B € desc(A) N
vertices, then either B 1s dead in T or else
BE visible (A)

0

Note that there i1s no correctness condition for AAT's explicitly
Proof Most of the arguments are straightforward mentioning serializability This 15 because for AAT
We argue casesd and e computability alone 1s sulficient to guarantee scnalizabiity of

perm(T), as we show (n the next theorem

d If B = A, the result 1Is immediate 1f B # A, then
the only way we get (B,A) € data 1s by virtue of some
perform A, event That 1s, there exists T' such that T'
k- T, such that the precondition for some step
purlonnA glovaustiedm b Thus Brsdeadnl o1 B
€ vnsmlo] (A) Thereforr b s drad n T or B C
wsnbler(!\)

e 1fB = A theresult i3 immediate So assume A #
B LetAC c0|nm|tted1, B Cdesc(A) N vertices,, B live
in T, and B ¢ wsaneT(A) Then there exist C, D €
desc(A) N anc(b) for which C = parentD), C €

commmodr and D C active, But this contradicts part

T
a

D

Lemma 12 Let I and T' be computable in A’, and
assumethat TH T

a vertices; C vertices,, committed, C
committed , aborted Cc abortedT, and

data, C data,

bit A€ datasteps, then label (A) =
label.(A)

c If A € datasteps; and (B,A) € data, , then
(B,A) € data

dif A€ vertices,, then vnsrbteT(A) (-
vnsabIeT(A)

lemma 13 If T 1s computable in A, then perm(T)
IS version compatible

Proof Let A€ datastepspermm(x) We must show
that u (= Iabelpermm(A)) = result(x,s), where s -
Ky dataperm(T)(B), data

tree by a perform

perm(T)>> A 1s inserted into the
Au step @, 30 let the operation
sequence producing T be wntten as ¢a¥ Llet T
denote the result of ®, and T" the result of dn The
preconditions for 7 show that IabelT (A) = result(x,s'),
where §' = <<vnsubleT (A,x) dataT > By Lemma 12b
and the defimition of perm(T), it follows that
Iabelperm(T)(A) = result(x,s) Thus, 1t suffices to show
that s = s° Sincé both dataT and datape,mm are
consistent with data it suffices to show that s and &'
contain the same elements

First, let B € s Then (B,A) € data, and so by
Lemma 12¢, B € datastepsT (x) Since A s the only
element in T which 1s not n T', B € datastepsT (x)
Since A € vertices o vy = visible (U), and U ¢
aborted; (by Lemma 11), it follows that A 15 lve n
T Since B € visible(A), Lemma 6 shows that B 1s Iive in
T Thus, B 1s live n T, by Lemma 12e The
precondition for # imphes that B C visible (A,x), so B €

U

S

Conversely, suppose B€ s’ ThenB # Asince A ¢
vertices, Then (B,A) € dataT , 80 by Lemma 12a,
(B,A) € data; By Lemma 12d, B € visible (A,x) By
Lemma 7, it suffices to show that B € verllcespermm =

wsnbleT(U) ButB € vnsaneT(A) and A € vistble_(U), so

Lemma 5c suffices

]
Lemma 14 If T 1s computable in A', then there are
no nontrivial cycles in €406 m(T) U sibling datapermm

Proof Assume the contrary let (a,A1, ,Ak= o), k
> 2, be a mmimum length cycle such that (A A) €
€0 0 (T U sibling datape[mm foralt, 0 <1<k
Let a sequence @ of operations be defined so that T 1s
the result of ® We will show that for each 1,0 <1 <

k 1, there exists a prefix \l'. of © such that f T 1s the

result of ¥ then A € done, ,and A | ¢ done_ lfwe

T
fix 1 for which \I'I 1s of maximum length and let T’ be the

But

‘l"+1 15 no longer than ‘lfl, so Lemma 12a implies that

A . €done
+1

result of this ¥, then we see that A | ¢ done,

- which is a contradiction

Fix 1 If (A A) € seq
Yo, where 7 1s a create

peim(Ty’ then ® has a prefix

A operation Let 7' be the
1
result of ¥ The preconaxfnons for @ imply that A. €

done, Thus \I'I = ¥ suffices

T

Now assume that (A.A) € sibling datapermm
Then there exist B € desc(A), C € desc(A) with
(BC) € datapermm Since B, C € vertnceswmm, it
follows that (anc(B) U anc(C)) N proper desc(U) C
committed; Now, ¢ has a prefix V¢, where 7 I1s a
perl‘ormc,u step Let T’ be the result of ¥, and T" the
resuit of ¥# Lemma 12c imples that (B,C) € data ,
so that B € datastepsT Since B is ive in T (using
Lemma 11¢), Lemma 12e implies that B 1s ve n T’
Then the precondition for 7 1mples that B €
vasnbleT (C), which means that A| € anc(B) N proper
desc(lca(B,C)) C committed, C done, We must
show that A, € done,, if we can do this, then taking
¥, = ¥yeldsthe result Assume A, € done;, Then
tet D be the lowest ancestor of C for which D € done.,,
it must be the case that D € anc(C) N proper
desc(lca(B,C)} C commmedT so D € commlttedT.
Since C ¢ vertices, , we know that D # C Let E be the
single element of children(D) N anc(C) Then E ¢
doneT ThenE ¢ vertices by Lemma 12f This means
C ¢ vertices; Thisis a contradiction

O

Theorem 15 If T i1s computable in L', then
perm(T) is data senalizable

Proof Immediate from Lemma 13, Lemma 14 and
Theorem 10

O

175

Next, we show that it 1s sufficient to restrict attention to
We define a
If Tis an AAT then h(T) =

It 2 s 1L, then h(z) is just the operation in [with

correctness of operation sequences for AAT's

mapping h from A’ to A as foliows

{erase(T)}

the same name

Lemma 16 his a sunulation of A by A'

Proof (a) and (c) are immediate To see (b), the

first conclusion follows immediately from the fact that

a € domamn(n') (since only additional cofstraints are

added for A’), note that Theorem 15 imphes that the

C constraint The second

Thus, h 15 a

Lemma 3 shows that h is a

1Is always satisfied
conclusion 1s then straightforward
possibilities mapping
simulation

(]

7 An Algebra Based on Version Maps

In this section, we introduce another data structure This one
records, for each object and action, the sequence of accesses to
the object whose result is available to the action

A version map 1s a partial mapping V from obj x act to
sequences of accesses, such that the following properties are
satisfied

V(x,U) 1s defined for all x,
each V(x,A) consists of accesses to x,

for each x, if V(x,A) and V(x,B) are both defined, then either A
€ desc(B) or B € desc(A),

if V(x,A) and V(x,B) are both defined and B € desc(A), then
V(x,B) ts an extension of V(x,A)

If A 1s the least action for which V(x,A) 1s defined, then we call
A the pringipal action for x in V, in this case, if result(x,V(x,A)) = u,
we say that u 1s the principal value of x in V

We define another algebra, A" = <A”, ¢", I, as follows A”
1s the set of pairs (T,V), where T s an AAT and V is a version map
¢" consists of the tnvial AAT consisting of a single node U with
status 'active’, and the version map which has V(x,U) equal to the
empty sequence, for all x, and 1s otherwise undefined 11"

consists of the six operations defined below in () (f)

{u}

In all the operations to follow we assume that A ¢ act

Operations (a) {c) are Wdentical to (a) (c) of A’

(d) perform A € accesses, x = object(A),u €

A’
values(x)
(d1) Precondition
(d11) A € active,
(d12) {B V(x B) i1s defined} C
proper anc(A)
(d13) u1s the principal value of x In V

(d2) Effect
(d21) status(A) + 'committed’
(d22) IabeIT(A) —u
(d23) data; — dataT U{(B,A) BE
accesses(x)} U {(A,A)}
(d24) V(x,A) — V(x,B) ¢ (A)

(e) release lock, , x € ob)

Ax’

{e1) Precondition
(e11) V(x,A) s defined
(e12) A€ commmedT

(e2) Effect
(e21) V(x,parent(A})) «— V(x,A)
(e22) V(x,A) — undefined

() lose lock, ., x € obj

Ax'

(f1) Precondition
(F11) V(x,A} 1s defined
(f12) Aisdead n T

(f2) Effect
(f21) V(x,A) — undefined

Lemma 17 If (T,V) 1s computable in A", then the
following are true

a If V(x,A) 1s defined, then A € vertices;
b It B € datasteps (x) and B (s lve 1n T, then

there exists A € anc(B) with V(x,A)
detined and B an element of V(x,A)

¢ If V(x,A) 1s defined, then each element of
V(x,A) 1s1n vusaneT(A)

d If V(x,A) 1s defined, then the elements of
V{x,A) are In dataT order

Proof Straightforward We argue b, for example

176

Immedidtely alter on operation p:,wformB)u oLcurs, we
see that V(x B) 1s defined, and B € V(x,B) Assume
C, ot B with
Since B remains hve,

inductively that there 1s some *ncestot
V(x,C) defined and B € V(x C)
there are no steps of the form lose '°c"c,x Thus, if
V(x,C) 1s ever changed, it must be because of a
release lock step There are two possibilities First, the
change could occur because of a release Iockc,x
step But such a step causes V(x,parent(C)) to take on
the old value of V(x,C), therehy preserving the needed
property Second, the change could occur because
V(x,C) gets redefined to be the previous value of V{x,D),
where D € children(C)
sequences are extensions of each other, B is an

But because the successive

element of V(x,D) as well Thus, the needed property Is
preserved in this case also

O

Define a mapping h' from A" to A" as follows h’ maps (T,V) to
{1}, and maps operations (a) (d) to operations of the same name,
and operations (e) and (f)to A

Lemma 18 h'is asimulation of A" by A"

Proof It suffices to show that h 1s a possibilities
mapping The first and last properties are easy to
check We consider the second property lLet#’ € I1”,
where h'(n') = # € I’ Then #' 1s either of the form
create,, commit,, abort, or perl‘ormA,u In the first
three cases, the second property Is easy to check So
assume that ¢’ 1s of the form performA'u Assume
(T,V) 1s computable in A" and »' 1s defined on (T,V),
yielding (T',V') We must show that perfmmA'u {te
the operation of 4')isdefinedon T Letx = object(A)

Condition (d11) for A’ follow immed-ately from the
We consider {d12)
Let B € datastepsT(x), and assume that B 1s hve in
T Since (T,V) 1s computable in A", Lemma 17 imphies
that there 1s some C € anc(B) tor which V{(x,C) s
defined and for which B is an element of V(x,C) Then

corresponding condition for A"

Lemma 17 imphes that B € VISIbleT(C) Since 7' 18
dehined on (T,V), (d12) for A" imphes that C € anc(A)
Since A € vertices; Lemma 5 implies that B €
vnsmler(A), as needed

Next, we consider (d13) Assuine A s live in T, and
lets = (<vlstbleT(A\x), dataT>> We must show that u
= result(x,s)
V Condition
result(x V(x B))

are identical Since the elements of V(> ,B) are In ddtar

Let B be the prnincipal action for x n
(d13) A" that u =
It suffices to show that s and V(x,B)

for implies

order (by Lemma 17), 1t suffices to show that s and
V(x,B) contain the same set of elements

Firstassume Cisins,1e C€ v1srbIeT(A,x) Since A
1s ive in T, Lemma 6 imphes that C i1s hve in T Then
Lemma 17 implies that there exists D € anc(C) for
which V(x D) 1s defined and C 1s an element of V(x,D)
Since B i1s the principal element for x in V, the
sequence extension property of the defimtion of
version maps implies that C 1s also an element of
V(x,B)

Conversely, assume that C s an element of V(x,B)
Lemma 17 implies that C € VISIbIeT(B) Condition (d12)
for A" implies that B € anc(A) Thus, C € visible(A)

It 1s easy to check that the changes correspond
correctly, once we know that the definability conditions
correspond Therefore, h’ 1s a possibiliies mapping

a
Theorem 19 he h’isa simulation of A by £”

Proof Immediate from Lemmas 16, 18 and 1

0

8 An Algebra Based on Value Maps

In this section, we introduce another data structure fhis one
records, for each object and action, the latest value of the object

which is available to the action

A value map 1s a partial mapping V from obj x act to

values(oby), such that the following properties are satishied
V(x,U) is defined for ali x,

each V(x,A) € values(x), and
for each x, 1l V(x A) and V(x,B) are both dehined, then either A
€ desc(B) or B € desc(A)

If A s the least action for which V(x,A) 15 defined, then we call

A the principal action for x in V, in this case, If V(x,A) = u, we call

u the principal value of x In V

177

We define another algebra, A" = <A™, ¢, 1", as follows
A" 1s the set of pairs (T V), where T is an AAT and V i1s a value
map o' consists of the trivial AAT consisting of a single node U
with status active , and the value map which has V(x,U) equal to
nit(x) for all x and s otherwise undefined [1" consists of the six

operations defined below in (a) (f)

In all the operations to follow, we assume that A € act {U}
Operations (a) (c), (e} and (f) are identical to the corresponding
cperations of A" Operation (d) 1s dlso identical, except for the

change indicated below

(d2) Effect
(d24) V(x,A) — update(A)(u)

If Vis a version map, then let eval(V) be the value map defined

on exactly the same domain, so that eval(V)(x,A) =

result{x,V(x,A})

Lemma 20 LetV be a version map, x € ob) Then
the principal action for x in V is the same as the
principal action for x in eval(V), and the principal value
of x in V 1s the same as the principal value of x In
eval(V)

Proof Straightforward

O

Define 2 mapping h" from A" to A" as follows Leth’(T\V) =
{(T,W) eval(W) = V} h" maps all operations to operations of the
same name

Lemma 21 h'isasimulation of 4" by 4™

Proof It suffices to show that h”' 1s a possibilities
mapping The first and last properties are easy to
check We consider the second property Let o’ €
" If =’ 1s one of (a) (c), (e) or (f), then the second
property is obvious

Assume @’ 1S

1s perform Assume (T,V)

Au

computable A, (T W) &€ o (T,V) (TW) s
computable 11 A"« 1s defined for (T V) wd (T,V') =
7 (TV)
condition holds, 1e that 7 =
(T.w)

that #(T,W) = (T W') for some version map W' It

Lenma 20 mmpgles that the definability

perform, s defired on

A
It foliows from the effects of the two operations

suffices to show that eval(W') = V. Since eval(W) = V,
we only need to consider the values which change
because of the present operation 1e we need to show
that result(x W'(x,A)) = V(x,A) Butresult(x,W'(x A)) =
result(x,W(x B) ¢ (A}), where B 1s the principal action

for x in W, = update(A)(result(»W(x,B))), =

update(A)(V(x.B)) since eval(W) = V But B 1s the
principal action for y n V, by L emma 20, sou = V(x,B)
Therefore, the latest term in the extended equabty 1s
equal to update(A){u), which 1s equal to V'(x,A) by
defimtion

a
Theorem 22 h e h’ e h” 1s a stmulation of A by
.A’!H

Proof Immediate from Lemmas 19, 21 and 1

O

9 The Algornithm

A shghtly simplified version (which doesn't distinguish read
and wrte steps) of Moss' algorithm 1s descrbed using a
distributed algebra

Let [k] denote {1, k}

We fix a particular k, as the number of nodes For

convenience, we designate the nodes by identifiers in [k]

{U}) U oby — [k], with home(A) =
home(object(A)) for all A € accesses Thus, home partitions the

Let home (act

actions and objects among the nodes Let onigin (act {U}) — [k]
be defined so that origin(A) = home(A) if parent(A) = U, and =
home(parent(A)) otherwise

In order to describe the local state of each node, i1t 1s
convenient to define a generalization of action trees Thus, we

define an action summadry T to consist of components vertices

active, commmedT and abortedr, where verlices; Is any finite

subset of act (not necessarily closed under the parent operation)
and the remaining three components form a partition of vertices
The notation @_e_T and status, 1s also extended in the obvious
way T and T' are action summaries or action trees, w e say that
T < T provided vertices, C vettices; , and correspondingly for
committed, and aborted; We also define T" = T U T’ so that
vertices; = vertices, U vertices, , and similarly for committed -

and abortedT,,

We describe the algorithm as yet another algebra, B = <B, 7,
P>, which 1s distributed over | = [k] U {"buffer'} The components
are defined as follows B is the Cartesian product of B, where 1 €
I If1 € [k}, then B consists of the values of vanables 1 T which can
contain an action summary, and i1V, which can contain a value

map defined only for parrs (x,A) having home(x) = 1 If1 = ’buffer’

then B, consists of the values of vanables M], J € [k], each of which
can contain an action summary (The contents of M’ are intended

to denote information which has been sent to node)

715 a vector of initial states for all the components If 1 € [K],
then T, has 1 T initialized as the trivial action summary, having no
vertices, and 1 V initialized so that t V(x,U) = nit(x) for all x with
home(x) = 1, and otherwise undefined It = ’buffer’, then r has

each M, equal to the trivial action summary

The algonthm has eight kinds of operations Six correspond
closely to the six operations of A" four record the creation,
commit and abort of actions and the performance of data
accesses and two manipulate locks The other two correspond to
the sending and receiving of messages The operations are listed
below As usual, we present them by listing a precondition and
the effect on the state In addition, we define d(x), the doer of

each step
In all cases, we assume that A € act {U},
(a) create ,, ongin(A) = i

(a1) Precondition
(a11) A €1 vertices,
(a12) if parent(A) # U, then parent(A) €
1 vertices; 1 committed,

(al3) If (B A) € seqand B # A,
thenB € | doneT

(a?) Effect

(a21)1 vertices, | vertices, U {A)}
(a22) stdtusr(A) «- 'active’

(a3) Doer 1
(b) commltI’A, A ¢ accesses, home(A) =

(b1) Precondition
(b11) A€ active;
(b12) chiidren(A) M vertices, Ci dt)neT

(b2) Effect
(b21) statusT(A) — 'committed’

(b3) Doer 1
(c) abortI,A, A ¢ accesses, home(A) = 1

(c1) Precondition
(c11)A € active;

(c2) Effect
{c21)1 statusT(A) « 'aborted’

(c3) Doer 1

(d) perform A € accesses, x = object(A),u €

ynliinalu
Vaiues\xj,

home(A) = 1, home(x) =

LA W

(d1) Precondition
(d11) A €1 active,
(d12) {B 1 V(x,B)} 1s defined} C
proper anc(A)
(d13) u 1s the principal value of x m 1V

(d2) Effect
(d21)t statusT(A) + ‘committed’
(d22) 1 V(x,A) — update(A)(u)

(d3) Doer 1
{e) release '°°k|,A,x’ home(x) = 1

(e1) Precondition
(e11)1 V(x,A) 1s defined
(e12) A €1 committed

(e2) Effect
(€21) 1 V(x,parent(A)) +— 1 V(x,A)
(€22) 1 V{x,A) — undefined

(e3) Doer 1

(f) lose lock home(x) = 1

1 Ax!

(f1) Precondition
(f11) 1 V(x,A) 1s defined
(f12) anc(A) N 1 aborted # %]

(f2) Effect
(f21) 1 V(x A) ~ undefined

(f3) Doer 1

(g) send T’ an action summary

LT

(g1) Precondition
gr)T<aT

(92) Effect
(g21) M‘ — M‘ uT

(g3) Doer 1

(h) receive T' an action summary

LT

(h1) Precondition
h)T < Ml

(h2) Effect
2N T~ 1TUT

(h3) Doer buffer

That 1s, any communication is allowed at any time, which
sends any of the action summary information from 1o}
Lemma 23 9B s an algebra, which 1s distributed
overlusingd

Proof Straightforward
a

179

Now define an interpretation h'” from % to .4 by mapping the
first six types of operations to the operations of the same name,
suppressing the index in [k}, and the other two types of operations
fo A

If b € B, then we add "[b]" to the end of a vanable name to

denote the value of that vanable in state b

For each 1 € | we define a mapping h, from B to HA™) as
follows 1f1€ k], then (T,V) € h (b} exactly if (T,V) 1s computable in

A and the following are true

commutted, {A home(A) = 1} C 1committed,[b] C
commmedT

aborted . N {A home(A) - 1} C1 aborted,[b] C aborted,
1 V[b] 1s the restriction of Vto {(x,A) home(x) = 1}

If 1 = 'buffer, then (T,V) € h'(b) exactly f (T,V) is computable
n A" and Mj[b] < Tforeach € [k]

f(TV) € hl(b), then we also say that (T,V) is 1 consistent with

Lemma 24 Forall1€1,0" € h (r)
Proof Immediate from the definitions

u]

Lemma 25 Assume! €1 Assume #’' € P,d(w) =,
o = h"'(7’) €T, a and a' are computable in A"’ and
%, respectively, a € h (a’) and @’ € doman(a’) Then a
€ domamn(m)

Proof Letabe (T,V)

First, assume that =’ 1s crealehA, so that = 1s
create, Then ongin(A) = 1 Since a’ € domain(x’), A
¢ 1vertices [a'] Since (T,V) 1s1 consistent with a’, A ¢
vertices,, thus showing (a11) If parent{A) = U, then
the fact that (T,V) 1s computable and Lemma 17 imply
that parent(A) € active,, thus showing (a12) for this
case On the other hand, If parent(A) # U, then the
precondition that parent(A) €
1vertices;[a’] 1 commutted,[a’] The fact that (T,V) 1s
1 consistent with @’ implies that parent(A) € vertices,

committed. Thus, (a12) holds If (B,A) € seq and B
A, then the precondition for 7' shows that B €
|doneT[a'] The fact that (T,V) 1s 1 consistent with a’
imphes that B € done, thus showing (a13)

for @' shows

Second, consider 7' = commlthA, so that # s
commit, The precondition for 7' shows that A €
) actlveT[a’] The fact that (T V) 1s 1 consistent with @’
imphes that A € active, thus showing (b11) The
precondiion for #' shows that children(A) N
|vert|cesT[a] (& |doneT[a] The fact tnat (I,V) 1s 1
consistent with a' implies that chitldren(A) N ventlcesr
C doneT, thus showing (b12)

Third, assume #' = abortI A SO that = 1s almrtA
This case I1s similar to the first half of the previous case

Fourth, assume 7' = performlA w S0 that 7 18
performA v Then home(A) = 1| Assume object(A) =
x, so that home(x) = 1t (d11) is argued as in the

preceding two cases We show (d12) Choose B so
that V(x,B) i1s defined Since (T V) 1s 1 consistent with a'
and home(x) = 1, 1V(x,B)[a'] 1s also defined The
precondition for #’ implies that B € proper anc(A), as
needed Next, we show (d13) The precondition for #°
imples that u is the principal value for x in 1 V[a’]
Since (T,V) 1s1 consistent with a’, u 1s also the principal
value for xn V, as needed

If @' 1s one of (e) or (f), then 7’ involves some x with
home(x) = 1 Assume that #' invoives A The
precondition for =’ implies that 1 V(x,A)[a] 1s defined
Since (T,V) 1s 1 constistent with a', it follows that V(x,A)

1s defined, thus showing both (e11) and (f11)

f 7' 15 a release IOCk|_A,x step, then the
precondition for 7' implies that A € 1 committed_[a']}
Since (T,V) 1s1 consistent with a', A € commmedT, thus
showing (e12)

Finally, f #' s a lose '°°k.,A,x step, the
precondition for =" implies that anc(A) N 1 aborted [a’]
@ Since (T,V) 1s1 consistent with a’, it follows that A
1sdead in T, thus showing {f12)

O

Lemma 26 Assume 1, | € | Assume 7' € P, d(7')
=1, 7 = h(w') € OP", a and a are computable in
A and %, respectively, a € hl(a‘) N h](a’), and a' C
domain(n') Ifb' = #’(a), then w(a) € hl(b’)

Proof Leta = (T,V) and w(a) = (T",\V') Lemma
25 imphes that a € domain(w)

if | # 1, then 1t 1s easy to see that all the
containients are preserved, since the sets of achons

180

on the nght sides are unly increased, while the sets on
the left sides are unchanged The property involving V
1s also easily seen to be preserved So assume | =
1 We consider the six kinds of operations in turn

First, assume #' 1s of the form createl'A.
commit , orabort , Then V' = V,and T'is exactly
hke T except that A 1s added to vertices,, commmedT
or abortedT as appropriate Also, b’ 1s just ke &
except that A is added to 1 vertices,, | committed,, or
|abortedT, as appropniate Since (T,V) I1s | consistent
with a', it i1s easy to see that all the containments
change in such a way as to insure that (T'\V') 181
consistent with b’

If #'1s of the form performllA’u, then home(A) =
I Let x = object(A) Then home(x) = 1 T"1sjust like T
except that A 1s added to commmedT and 1s given label
u, and datar 15 augmented with all pairs in {(B,A) B €
da!astepsr(x)} U (AA) V' s just ke V except that
V (x,A) 1s defined to be update(A)(u) b’ is just ke a’
except that A 1s added to lcommlttedT, and 1 V(x,A) 1s
defined to be update(A)(u) Since (T,V) i1s 1 consistent
with a’, it 1s easy to see that (T' V') 1s 1 consistent with
b’ most of the properties are immediate We just
check the last property, the only change invoives A We
have already noted that 1 V(x,A)[b'] = update(A){u) =
V'(x,A) Thisis as needed

If 7' 1s of one of the forms (e) or (f}, then T' = T and
1 To'] = 1,T[a’] Thus, it i1s clear that the containments
are all preserved It 1s also easy to check that the final
property 1s preserved

a

Lemma 27 Assume |,) € | Assume #' € P, d(=#’)
=1, h(r') = A, aand a’ are computable in A" and B,
respectively, a € h(a’) N h](a'), and a' € domain(n’) If
b' = #'(a’), thena€ hl(b')

Proof Leta = (T\V)

First, assume that 7' 1S send,,I,’T, It j # buffer’,
then b'l = a’], and the conclusion 1s immediate So
assume that ;} = 'buffer’ Since (T,V) 1s) consistent
with a’, each action summary Ml[a'] < T The

precondition for 7' unphies that ' <1 T[a’] Since (T,V)
Is 1 consistent with a, 1t follows that 1 T{a’] < T, and
hence T' < T Now, each Mb] < Mlal U T
Therefore, each Ml[b‘] < T, as needed

Next, assume that = 1s of the form recetve |, s0

that1 = 'buffer’ The only nontrivial caseis} =1 We [EGLT] Eswaren K P,Gray,J N,lone,R A
must show that j T[] < T But) T[T = Tlal U T ETut:de Il?t‘lzirs |c>lLConS|stency and Predicate
The j consistency of (T,V) with a’ shows that | T{a'} < Locks in a Database System,

T The precondition for @' shows that T' < M’[a‘] CACM. Vol 19. No_11. November, 1976
Since (T.V) ts 1 consistent with a’, Ml[a‘] < T Thus, T

< T Therefore,) T[b'} £ T, as needed [G] Goree, John

Internal Consistency of A Distributed
Transaction System with Orphan Detection
] M S Thesis, MIT Laboratory for Computer Sct,

Lemma 28 h™ and h,1 € |, form a local mapping Cambridge, MA 1982 in progress

from B to A™ [KP] Kanellakis, P and Papadimitriou, C

Proof Immediate from Lemmas 24, 25, 26, and 27 On Concurrency Control by Multiple Versions
Proceedings of the ACM Symposium on
Principles of Database Systems

. March 29 31, 1982, pp 76 82
Now extend h'"’ to B U P, by defining h"’(b) = ﬂl € |h.(b) [La] Lamport, L
Lemma 29 h'" s asimulation of A by B Time, Clocks and the Ordening of Events
in a Distributed System,
Proof Immediate by Lemma 28, Lemma 4 and ACM. Vol 21. No 7. July. 197
Lemma 3
[LiS) Liskov, B and Scheifler, R
0 Guardians and Actions Linguistic Support for

Robust, Distributed Programs,

1982 Ninth Annual ACM SIGACT SIGPLAN

theorem
We are now ready to prove the main correctness theo Svmposium on PRINCIPLES OF

Theorem 30 The mapping h e h' e h” o h'" s a PROGRAMMING LANGUAGES, Albuquerque, NM,
simulation of A by B Janyary 25 27, 1982 7.1
Proof Immediate from Lemma 29, Lemma 1 and iM] Moss. J E B
Theorem 22 Nested Transactions An Approach to Rehable
Distributed Computing, Ph D Thesis,
a Technical Report MIT/LCS/TR 260,
MIT Laboratory for Computer Science,
10 Acknowledgements Cambridge, MA 1981
Many other people have contributed their ideas and efforts to [Ra} Randell, B
this work Barbara Liskov suggested formal treatment of this area, System Structures for Software Fault Tolerance
Proc_Int Conf on Reliable Softw {April 1975
and monitored proposed formalizations for therr faithfulness in SIGPLAN Notices Vol 10 Nr_6, pp 437 457
representing the behavior of the Argus system John Goree used Also in IEEE Trans Soltw

Eng Vol 1 Nr 2 {June 1975), pp 220 232

a much earler draft of the current paper as a starting pont for the

work in his Master’s thests, in the process of wnting his thesis, he [Re] Reed, D P
discovered several major ways of clanfying the ideas of this paper Naming and Synchronization in a Decentrahized
Many of the ideas Gene Stark i1s developing for his thesis have Computer System, Ph D Thesis,

Technical Report MIT/LCS/TR 205,
MIT Laboratory tor Computer Science,

found their way into the present paper Mike Fischer discussed

some of the early attempts at formalization, and contributed Cambndge, MA 1978

several insightful suggestions Bl Welhl and Gene Siark [S] Stark. E

contributed helpful cribicisms of early drafts Foundations of a Theory of Specitication for

References Distributed Systems, Ph D Thesis, MIT

[BG] Bernsten, P and Goodman, N Laboratory for Computer Science,
Concurrency Control Algorithms for Cambridge, MA 1982 1n progress

Muitiversion Database Systems
1982 ACM SIGACT SIGOPS Symposium on
Prnciples of Distributed Computing,

Ottawa, Canada, August 18 20, 1982,
pp 209 215

181

