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Abstract 

The consensus problem involves an 
asynchronous system of processes, some of 
which may be unreliable The problem ~9 for 
the reliable processes to agree on a binary 
value We show that every protocol for thus 
problem has the posslblhty of nontermmatlon, 
even with only one faulty process By way of 
contrast, solutions are known for the 
synchronous case, the “Byzantine Generals” 
problem 

1. Introduction 
The problem of reachmg agreement among 

remote processes IS one of the most fundamental 
problems m dlstrlbuted computmg It 1s at the core 
of many algorithms for distributed data processmg, 
dlstrlbuted file management, and fault-tolerant 
distributed apphcatlons 
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A well-known form of the problem rs the 
Sransactron commit problem” which arrses m 
distributed database systems [DSl, G, LS, La, Le, 
Lr, R, RLS, S, SS] The problem 1s for all the data 
manager processes which have partrcrpated m the 
processing of a particular transaction to agree on 
whether to Install the transactron’s results m the 
database or to discard them The latter action 
might be necessary, for example, d some data 
managers were for any reason unable to carry out 
the required transactron processmg Whatever 
decrsron IS made, all data managers must make the 
same decrsron III order to preserve the consrstency of 
the database 

Reaching the type of agreement needed for the 
Ycommitn problem UI straightforward d the 
partrcipating processes and the network are 
completely reliable However, real systems are 
subject to a number of possrble faults such as 
process crashes, network partrtronmg, and lost, 
distorted or duplrcated messages One can even 
consider more Byzantine types of failure [DS2, DLM, 
DFFLS, FL, LFF, LSP, PSL] m which faulty 
processes mrght go completely haywire, perhaps even 
sendrng messages accordmg to some malevolent 
plan One therefore wants an agreement protocol 
which rs as reliable as possible m the presence of 
such faults Of course, any protocol can be 
overwhelmed by faults that are too frequent or too 
severe, so the best that one can hope for rs a 
protocol which ICI tolerant to a prescribed number of 
“expected” faults 

In this paper, we show the surprrsmg result that 
no completely asynchronous consensus protocol can 
tolerate even a smgle unannounced process death 
We do not consider Byzantine failures, and we 
assume that the message system rs relrable - It 
delivers all messages correctly and exactly once 
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Nevertheless, even with these assumptions, the 
stopping of a single process at an rnopportune tune 
can cause any distributed commit protocol to fail to 
reach agreement Thus, thw rmportant problem has 
no robust solutron without further assumptrons 
about the computing envrronment or still greater 
restrlctlons on the kind of farlures to be tolerated! 

Every message is eventually dehvered as long as the 
de&matron process makes mf’inrtely many attempts 
to receive, but m-sages can be delayed arbitrarrly 
long and dehvered out of order 

Crucial to our proof w that processing is 
completely asynchronous, that IS, we make no 
assumptrons about the relatrve speeds of processes 
nor about the delay time m dehvermg a message 
We also assume that processes do not have access to 
synchronized clocks, so algorithms based on 
timeouts, for example, cannot be used (In 
partrcular, the solutrons m [DSl] are not apphcable ) 
Finally, we do not postulate the ablhty to detect the 
death of a process, so rt rs impossible for one process 
to tell whether another has dred (stopped entrrely) 
or is Just running very slowly 

The asynchronous commrt protocols m current 
use all seem to have a “wmdow of vulnerabihty” - 
an Interval of tune durmg the execution of the 
algorithm m whrch the delay or macceasrblhty of a 
single process can cause the entrre algorithm to wart 
mdefmrtely It follows from our rmpossrblhty result 
that every commrt protocol has such a “wrndow”, 
confrrmmg a wrdely-believed tenet m the folklore 

Our nnpossrbrhty result applies to even a very 
weak form of the conuen8u8 problem Assume every 
process starts with an mltlal value in (0, 1) A 
nonfaulty process decides on a value in (0, 1) by 
entering an appropnate decrslon state Au 
nonfaulty processes which decide are requrred to 
choose the same value For the purpose of the 
lmposslbrhty proof, we requue only that dome 
process eventually make a declsron (Of course, any 
algorithm of interest would requrre that all 
nonfaulty processes make a declsron ) The trrvml 
solutron m which, say, 0 rs always chosen rs ruled 
out by stlpulatlng that both 0 and 1 are possible 
declsron values, although perhaps for drfferent mrtral 
configurations 

Our system model rs rather strong so as to make 
our lmposslblhty proof as widely applicable as 
possible Processes are modelled as automata (wrth 
possrbly mfmltely many states) which commumcate 
by means of messages In one atomrc step, a process 
can attempt to receive a message, perform local 
computatron based on whether or not a message was 
delivered to It and 11 so on which one, and send an 
arbrtrary but fmlte set of messages to other 
processes In particuIar, an “atomic broadcast” 
capability w assumed, so a process can send the 
same message m one step to all other processes with 
the knowledge that of any nonfaulty process receives 
the message, then all the nonfaulty processes wdl 

2. Consensus Protoeols 
A conbendub protocd P is an asynchronous 

system of N processes (N 2 2) Each process p hzr 
a one-brt mput register 5 an output tegiater y 

P 
with values I {b, 0, l}, and an unbounded amount 
of Internal storage The values m the mput and 
output regrsten together with the program counter 
and internal storage comprise the inter& et&e 
Inrtral etates prescnbe fiied starting values for all 
but the input regrster, m particular, the output 
regrster starts wrth value b The states m whrch the 
output regrster has value 0 or 1 are dlstmgulshed as 
bang decaa:on state8 p acts determmrstically 
accordmg to a transrtaon function The transrtlon 
function cannot change the value of the output 
regrster once the process has reached a decuron 
state, that is, the output regrster rs “wr&once”. 
The entire system P is specrfred by the transitron 
functions assocrated wrth each of the processes and 
the mrtral values of the Input regwters 

Processes commumcate by sendmg each other 
messages. A memzge is a parr (p, m), where p is the 
name of the de&matron process and m w a “message 
valuen from a ftxed unrverse M The message 
system marntams a multiset, calkd the message 
bujfcr, 01 messages that have been sent but not yet 
dehvered It supports two abstract operations 

send(p, m) places (p, m) in the message buffer; 

receae(p) deletes some message (p, m) from the 
buffer and returns m, m whrch case 
we say (p, m) KJ deltuered, or returns 
the special null marker 0 and leaves 
the buffer unchanged 
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Thus, the message system acts nondetermmistically, 
subject only to the condrtlon that if recerve(p) rs 
performed mfmltely many times, then every message 
(p, m) m the message buffer IS eventually delrvered 
In particular, the message system rs allowed to 
return I# a finite number of times in response to 
receive(p) even though a message (p, m) is present m 
the buffer 

A confqwratron of the system consists of the 
internal state of each process together wrth the 
contents of the message buffer An mrtd 
con/cgutat;on rs one m which each process starts at 
an mitral state and the message buffer is empty 

A step takes one configuration to another and 
con&s of a primitive step by a single process p. 
Let C be a configuration The step occurs in two 
phases First, receive(p) rs performed on the 
message buffer m C to obtam a value m E M U (4) 

Then, depending on p’s internal state m C and on 
m, p enters a new mternal state and sends a finite 
set of messages to other processes Since processes 
are determmlstlc, the step is completely determined 
by the pair e = (p, m), which we call an event 
(This “event” should be thought of as the receipt of 
m by P ) e(C) d enotes the resulting configuration 
and we say that e can be applted to C Note that 
the event (p, 4) can always be applied to C, so It rs 
always possible for a process to take another step 

A schedule from C is a finite or mfmite sequence 
o of events which can be apphed, m turn, startmg 
from C The associated sequence of steps w called a 
run If 0 IS finite, we let d(c) denote the resulting 
configuration, which rs said to be reachable from C 
A configuration reachable from some mltml 
configuration ts said to be acce88sbte Hereafter, all 
configurations mentioned are assumed to 
accessible 

The following lemma expresses 
“commutatmlty” property of schedules 

Lemm8 1. Suppose that from some 
confrguratlon C the schedules or, ua lead to 
configurations C,, C, respectively If the 
sets of processes taking steps m or and ua 
respectively are disjoint, then 6s can be 
applied to C, and or can be applied to C,, 
and both lead to the same configuration 

be 

a 

C, (See Figure 1.) 

Proof. The result follows at once from the 
system definltlon since 0, and u2 do not mteract 0 

A configuration C has dectswn value v d some 
process p rs m a declslon state with y, = v. A 
consensus protocol w partially correct if it satisfies 
two conditions 
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No accessible configuration has 
more than one deculon value 
For each v E (0, l}, some 
accessible configuration has 
decuuon value v. 

A process p IS non/a&g m a run provided it 
takes mfmltely many steps, and w /au&g otherwrse. 
A run is adm:ss:ble provided at most one process is 
faulty, and provided all messages sent to nonfaulty 
processes are eventually received 

A run is a dectdlng run provided some process 
reaches a decrslon state in that run A consensus 
protocol P w totally cmect in spate 01 one /ault if 
it IS partially correct, and every admrssible run is a 
deciding run. Our main theorem shows that every 
partmlly correct protocol for the consensus problem 
has some admwible run which rs not a decldmg ND 

3. Main Result 

Theorem L No consensus protocol is 
totally correct in spite of one fault 

Prooi. Assume to the contrary that P is a 
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consensus protocol which 19 totally correct in spite of 
one fault We prove a sequence of lemmas whrch 
eventually lead to a contradlctlon 

The basic idea IS to show circumstances under 
which the protocol remains forever mdecunve Thus 
involves two steps First, we argue that there rs 
some mltlal confrguratlon m which the declslon rs 
not already predetermined Secondly, we construct 
an admissible run which avoids ever takmg a step 
that would commit the system to a particular 
decision 

Let C be a configuration and let V be the set of 
decision values of confrguratlons reachable from C 
C is bwalent If IV1 = 2 C is unrualent if IV1 = 1, 
let us say O-vale& or 1-uatent according to the 
correspondmg decnuon value By the total 
correctness of P, and the fact that these are always 
admissible runs, V # 4 

Lemma 2. P has a brvalent lnltlal 
configuration 

Proof. Assume not Then P must have both & 
valent and 1-valent mrtral confrguratrons by the 
assumed partial correctness Let us call two initial 
configurations &ace& d they differ only m the 
mitral value xp of a single process p Any two mitral 
configurations are joined by a chain of initial 
configurations, each adjacent to the next Hence, 
there must exrst a (Fvalent mrtlal configuration C, 
adjacent to a l-valent initial configuration C, Let 
p be the process m whose lnltral value they differ 

Now consider some admlsslble decldmg run from 
C, m which process p takes no steps, and let 0 be 
the associated schedule Then D can be applied to 
Cl also, and correspondmg configurations m the two 
runs are identical except for the internal state of 
process p It IS easily shown that both runs 
eventually reach the same decision value If the 
value 1s 1, then C, 1s blvalent, otherwise, C, rs 
brvalent Either case contradicts the assumed 
nonexistence of a brvalent mitral conhguratlon 0 

Lemma 3. Let C be a blvalent 
confrguratlon of P, and let e = (p, m) be 
an event which rs applicable to C Let C 
be the set of conhguratrons reachable from 
C without applying e, and let D = e(C) = 

{e(E)1 E E C and e rs applicable to E) 
Then D contams a brvalent conhguratron 

Proof. Since e rs applicable to C, then by 
defmltlon 01 C and the fact that messages can be 
delayed arbitrarily, e rs apphcable to every E E C 

Now assume that D contains no blvalent 
confrguratrons, so every confrguratron D E D IS 
univalent We proceed to derive a contradrctron 

Let E, be an r-valent conflguratron reachable from 
c, 1 = 0, 1 (q exrsts since C rs blvalent ) If E.i E 
C, let F, = e(E,) E D Otherwrse, e was apphed m 
reaching E,, and so there exrsts F, E D from whrch 
E, 1s reachable In either case, F, rs r-valent since F, 
1s not blvalent (by assumptron) and one of E, and F, 
IS reachable from the other Smce F, E D, I = 0, 1, 
D contains both O-valent and 1-valen t 
configurations 

Call two configurations nerghbore if one results 
from the other III a single step By an easy 
mductlon, there exrst neighbors C,, C, E C such 
that D, = e(C,) rs bvalent, I = 0, 1 Without loss 
of generality, Cl = e’(C,,) where e’ = (p’, m”) 

CASE 1 If p’ # p, then D, = e’(D,,) by Lemma 
1 Thus IS rmpossrble smce any successor of a & 
valent conhguratlon rs O-valent (See Figure 2 ) 

Figure 2. 

CASE 2 If p’ = p, then conslder any hmte 
deciding p-free run from C, with correspondmg 
schedule u, and let A = o(C,) By Lemma 1, o rs 
applicable to D,, and it leads to an r-valent 
confrguratlon q = o(D,), I = 0, 1 Also by Lemma 



1, e(A) = E, and e+‘(A)) = E,. (See Frpre 3 ) 

Ffgure 8. 

Hence, A is bnalent, which rs impossible since A is 
univalent 

In each case, we reached a contradiction, so D 
contams a blvalent configuration. 0 

Any deciding run from a blvalent initial 
configuration goes to a univalent configuration, so 
there must be some single step which goes from a 
brvalent to a univalent configuration Such a step 
determmes the eventual decision value We now 
show that it m always possible to run the system in 
a way that avoids such steps, leading to an 
admlsslble nondecidmg run. 

The run is constructed m stages, starting from an 
initial configuration We ensure that the run rs 
admissible in the followmg way. A queue of 
processes IS maintamed, initially m an arbitrary 
order, and the message buffer in a configuration rs 
ordered according to the time the messages were 
sent, earliest first Each stage consrsts of one or 
more process steps The stage ends with the first 
process m the process queue taking a step in whvh, 
11 rts message queue was not empty at the start of 
the stage, Its earliest message u received Thu 
process rs then moved to the back of the process 
queue. In any infmite sequence of such stages every 
process takes mfmrtely many steps and receives 
every message sent to it The run is therefore 
admlsslble Our problem of course rs to do this in 
such a way as to avoid a decision ever being 
reached. 

Let C, be a bivalent mitral configuration whose 
existence is assured by Lemma 2. Execution begins 
in C,, and we ensure that every stage begins from a 
bivalent configuration. Suppose then that 
configuration C is brvalent and that process p heads 
the priority queue. Let m be the earliest message to 
p m C’s message buffer, II any, and # otherwise 
Let e - (p, m) By Lemma 3, there is a blvalent 
confiiuration C’ reachable from C by a schedule m 
which e w the last event apphed. The corresponding 
sequence of steps defines the stage 

Since each stage ends m a bivalent configuration, 
every stage in the construction of the mfmite 
schedule succeeds. The resulting run is admlssrble, 
and no decision is ever reached It follows that P u 
not totally correct II 

4. Initially Dead Processes 
In this section, we exhibit a protocol which solves 

the consensus problem for N processes as long as a 
majority of the processes are non-faulty and no 
process dies during the execution of the protocol 
No process knows m advance, however, which of the 
processes are mitia dead and which are not 

The protocol works in two stages. Durmg the 
fiit stage, the processes construct a directed graph 
G with a node correspondmg to each process Every 
process broadcasts a message contammg Its process 
number and then listens for messages from L-l 
other processes, where L = [(N + 1)/21. G has an 
edge from i to j if1 j receives a message from i 
Thus, G has mdegree L-l 

In the second stage, the processes construct G+, 
the transitive closure of G, m the sense that upon 
completion of thu stage, each process k knows 
about all of the edges (J, k) incident on k m G+ 85 
well as the initial vahics of ah such J 

To carry out this stage, each process broadcasts 
to all other processes its process number and mrtml 
value together with the names 01 the L-l processes 
It heard from during the first stage It then wah 
until it has received a stage 2 message from every 
ancestor m G which It knows about Imtlally it 
knows only about the L-l processes from which it 
heard directly during the hrst stage, but it learns 
about addltlonal ancestors from the stage 2 



messages that it receives Waltmg contmues until 
such time as all currently known about processes 
have been heard from 

At thus point, each process knows all of its own 
ancestors and the edges of G mcident on them, so 3 
can compute all of the edges of G+ incident on each 
of its ancestors This enables rt to determine which 
of its ancestors belong to an initial clique of G+, 
that rs, a clique with no incoming edges, for node k 
1s III an mltlal clique rff k 1s Itself an ancestor of 
every one of its ancestors Since every node in G+ 
has at least L-l predecessors, there can be only one 
mitral clique, it has cardmahty at least L, and every 
process which completes the second stage knows 
exactly the set of processes comprlsmg it. 

Finally, each process makes a de&on based on 
the mitral values of the processes m the mrtral chque 
usmg any agreed-upon rule Since all processes 
know the mitral values of all members of the initial 
clique, they all reach the same decuuon 

The correctness of this protocol proves the 
followmg theorem 

Theorem IL There IS a partially correct 
consensus protocol m which all nonfaulty 
processes always reach a decuuon, provrded 
no processes die during Its executron and a 
strrct maJorlty of the processes are ahe 
initially 
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