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‘The usual models for distributed databases [RSI.,BG] are based on a set
of "entities™ distributed amount the nodes of a network. "Thesc entities
arc accessed by users of the database through “transactions”, which are
certain sequences of steps ("actions”) involving the individnal entitics.
‘The steps are grouped into transictions for two distinet purposes. First,
a transaction is used as a unit of recovery: either all of the steps of a
transaction should be carried out, or none of them should: thus, if a
transaction cannot be completed, its initial steps must be “undone” in
some way. Second, a wansaction is used to define atomicity: all of the
steps of a transaction form a logical atomic unit in the sense that it
should appear to users of the database that all of these steps are carried
out consecutively, without any intervening steps of other transactions.
This requirement that transactions appear to be atomic is called
"scrializability” in the fierawre [FGLT, RSL., BGJ, and has been
widely accepted as an important correctness criterion for distributed
databascs.

It seeins to me that these two purposes should not be served by the
same transaction mechanism,  While [ think the usual notion of
"transaction” is adequate for purposcs of recovery, I think that it is less
appropriate for defining atomicity.  Namely, the requirement of
serislizability s so strong that it scoms to exclude efficient
implementation of many application databases. This paper suggests
supcrimposing a new mechanism on the trapsaction mechanism, in
erder 1o define atomigity. '

Tie model Tuse hi this paper for a distributed database consists of two
completly distinet fovels - a physical level consisting of nade precessors
connected by a message tysiem and communicating with users by pores.
aned o togicd Jevel consisting of a gomralized congurrent application
deiabas2s (The Togical level does pot involve nodes, inessages, or any
other districution information.) Itis the job of the physical system to
“Implement”, in same approprinte sease, e appiicadon database,
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‘The steps of different application database transactions might be
allowed to interleave in various ways: the set of allowable interleavings
is deterinined by the application represented. At one extrenie, it mnight
be specified that all allowable interlea -ings be serializable; (his amounts
to requiring that the application database be a centralized serial
database. At the wother oxtreme. the inferleavings might Le
unconstrained.  fn a bunking datbase, a transfer trunsaction might
censist of a withdrawal siep followed by a deposit step.  In order to
obtain fast performance, the withdrawals and deposits of different
transfers might be allowed w0 interleave arbitrarily, even though the
users of the bankisig datubase are thereby presented with a view of the
account balances which includes the possibility of moncy being "in
transit” from one account to another, In between the two extremes,
there are imany other reasonable possibilitics.

In {FGL], we assumc an application database allowing any sct of
allowable interleavings of transactions.  We show how to modify a
distributed systen implementing such an application, so that it has an
additiona’ capacity to determine a global dutabase state, without
stopping transactions in progress.  Consistency of such a global
database state can be checked, and repeated use of this capacity can also
aid in recovery from inconsistent global states. In that work, any sct of
allowable interleavings can be assumed: we guarantee that if the
original distributed system only produces allowable interlcavings, then
the modified system will also produce only allowable interleavings.
Thus, a global state can be obtained for application databases which are
serializable, arbitrarily interleaved, or anything in between these two
extremes.,

In this paper, only certain sets of interleavings are considered. The
intention is to consider sets of interlcavings v hich can be specified in a
way which scems to be suiteble for use by a concurrency control
algorithim. At the same time, the sets of interfcavings considered should
b2 general enough to allow representation of the allowable interleavings
for important application databases such as those for banking.

As u fist approximition 10 a specitication method, we nighe asseciate
with cach trassaction its "stomicity” (or "grandarity™ {GELPE], which
is farmally described by aset of "breakpoints” betweea different sets of
consecutive steps. Steps not scparated by & breakpoint would always be
required o ocenr atomically, (at least from the point of view of the
system users).  As a special case ot this definition, if there arc no
breakpoints for any transaction except at the beginaing and end, then
this reguirement is simply the usual tequirement of serializability, As
enother special case, if there are always breakpoints between every pair
of steps of cach transaction, then this requirement allows arbitrary
interleaving, In addition, many intermediate cases arc possible.



However, this definition does not seem to me to be sufficiently gencral
to express all commonly-used constraints on interleavings.  For
example, consider a banking system with transfer transactions as
described ubove. Transfers might be allowed to interleave arbitrarily
with cach other. However, we might also want w have another type of
transaction, #n "audit transaction” [FGL], which rcads all of the
account balances and returns their total. This audit transaction should
probably not be allowed to interrupt a transfer transaction between the
withdrawal and deposit steps, for then the audit would miss counting
the money "in transit”. That is, the entire transfer transaction should
be atomic with respect to the entire audit transaction, Thus, the same
transfer transaction should have one set of breakpoints with respect to
other transfers, and another set with respect to audit transactions.

This example seems to be represcntative of a  fuirly general
phenomenon: it might be appropriate for a transaction to have
different sets of breakpoints with respect to different ather transactions.
That is, cach transaction might altow different "viev ;" of its activity to
different other transactions. Thus, a natural specification for allowable
interlcavings might be in terms of the "relative atomicity” of each
transaction with respect to cach other transaction, rather than just in
terms of each transaction’s (absolute) "atomicity".

In this paper, a formal definition is given for a type of rolative
atomicity, called "multilevel atomicity”.  The two-Jevel model for
distributed databascs is described. A combinatorial lemma s
presented, which yields a necessary and sufficient condition for
achieving multilevel atomicity. Some suggestions are made for using
this condition as the basis for a concurrency control desien for
multifevel atomicity.

Other rescarchers [I..GILPT,G.C] have also noted that the wsual notion
of serializability needs o be weakened. I particular, [G] contains
interesting prefiminary work on spevification and concurrency control
design, for cortain non-seriafizable interleavings.  The multilevel
atomicity of this paper is a generadization of the (wo-level atoricity
deseribed in {G] under the designation "compatibility scts”.

Much work remains o be done, in designing and  evaluating
concurrency control algorithms for multilevel atomicity. This paper
merely suggests some preliminary definitions and ways in which they
might be used. [t remains to sce whether new concurrency control
algorithms which achicve nwilti- level atomicity can be made to operate
wuch more efficiently than existing concurrancy control algorithms
which achicve scrializability. It also remains to determine whether
these weaker notions than serializability are useful for describing the
constraints required for real-world database applications.

2. A Model for Asynchironous Paratlel Pracesses

Both the application databases and the physical systems of this paper
can be formalized within the model of {I.F] for asynchronous paratiel
computation,  This unified model allows precise description of
distributed algorithms as processes accessing yvariables (i.e. cither shared
variables or distributed system message ports). In this paper, T will be
informal, Ouly a brief description of the model is provided; the reader
is referred o fLL1F) for a conplete, rigorous treatinent,

The basic entities of the model are processes (nondeterministic
automata) and variables. Processes have states (including start states
and possibly also final states), while variables take on values. An
atomic exccution step of a process involves accessing one variable and
possibly changing the process’ state or the variable’s value or both. A
svstem_of processes is a set of processes, with certain of its varidbles
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designated as jnternal and others as cxternal, Internal variables are to
be nsed only by the given system. Lixternal variables are assumed to be
accessible to some "environment” (c.g. other processes or,users) which
can change the valucs between steps of the given system.

The exccution of a system of processes is described by a set of execution
sequences. 'Each sequence is a (finite or infinite) list of steps which the
system could perform when interleaved with appropriate actions by the
environment. Each sequence is obtained by interleaving sequences of
steps of the processes of the system. Each process must have infinitely
many steps in the sequence unless that process reaches a 1inal state,

For describing the external behavior of a system, certain information in
the exceution sequences is irrelevant. "The external behavior of a system
of processes is the set of sequences derived from the execution
scquences by “crasing” information about process identity, change of
process state and accesses Lo internal variables. What remains is just the
history of accesses to external vagiables.

In this paper, the techinical assumption that no state canbe both a start
state and a final slate is reguired.  Also, one general definition not in
fL1]is required. Namely, if S and $ are systems, then § is a subsystem
of §"if the processes, nterpal variables and external variables of § are
included, respectively, among those of 8, and the internal variables of §
are initialized exactly as they are in §°.

3. Applicition Databases

My notion of an application database is a centralized, concurrent
system consisting of transactions acting on entitics, together with a set
of allowable interfeavings of the steps of those transactions, This is
maodelted very direetly in the model of Scction 2:  transactions are
simply formalized as processes, while entities are formalized as
variables. More precisely, an applic: “ion database (S,A) consists of a
system S of processes {called Lansactions), together with a subset A of
the exccution sequences of subsystems of S (called the allowable
exccution scquences), such that the following two conditions are
satisfied.

a. All variables of § are internal (e, internal to the
system). (They are called gntitics. "This assumption
says that the entitics are only accessed via the
transactions.) ’

b. In every execution sequence ¢ in A, every transaction
which appears, eventually appears in a final state.
{Thus, all transactions are supposed to terminate.)

This definition gives a very gencral notion of an application database.
The (indivisible) steps of transactions arc arbitrary accesses to entities,
not necessarily just reading or writing steps (although these two types of
steps arc permissible special cases).  Transactions can branch
conditionally: for example, based on the values encountered for certain
entitics, they might access different entities at later steps. This model of
a transaction is general enough to include most others in the literature.
[t also includes some other notions usually regarded as somewhat
different from ordinary transactions: the “transactions with revoking
actions” in [G] arc a particular type of nondeterministic transaction in
the present model.

4, Coherent Partial Orders

[ want to show how to deseribe certain sets of allowable exccution
sequences. In this scction, | present some preliminary, rather abstract,
definitions involving sets and partial crders, The definitions of this
scction are given at an abstract level since they will be used for a general



combinatorial lemmit in Scetion 7,

[ first describe the partitions of an arbitrary set T (to be thought of as a
set of transactions) into levels.

Aknest, 1 = ('”l ..... k) for a set T is a scquence of equivalence
relations on 1, satisfying the Jollowing conditions:

@ a7 consists of exactly one cquivalence class,
) 7, consists of singleton equivalence classes, and
©

Iach M is a refinement of its predecessor, LIvE
Ifet €1, then Icvcl”(_t,t‘) is the largest i for which t o, t.
— b

Next, 1 deseribe an abstract "breakpoint” function which defines a set
of breakpoints within a totally ordered sct for cach of several "levels",
in such a way that the higher level sets of breukpoints always include
the lower level sets. Fach totally ordered set should be thought of as
the set of steps of some execution sequence of a particular transaction,

if X.is totally ordered by <, k € 1IN, then a k-level breakpoint
function, b, for (X, <) assigns a set of pairs of <-consecutive clements
of X toecachi, 1 < i<k in sucha way that:

(@) b(1) contains no pairs,
(b) b(k) contains all pairs, and
© b() C b (i+1), foralli

If T is a set, then a k-fevel interleaving specilication, J, for 1 has the
following components:

(a) a collection of disjoint totally ordered sets, (X..< <)
onc forcacht € T, and e

(b) a collection of k-level breakpoint functions, b one
for each (X <)

Next, I define an important condition for a partiat order on X I

want to cxpress the fact that < prescryes all of the mdeual <
orderings and also respects the restrictions cxpm:ﬂd by the glvcn
collection Hf breakpoint functions.

Let I be a k-nest for a set including 1, 3 = {{(X ,_<_ ),h ):LG'I'} a k-

- X
two

level interbeaving specification for 't
Then < is eghere;

conditions hold.
(a)
()

t, < a partial order on l
af (for i1 and 9) provided the tolkm.n

‘The partial order < contuins cach total order <¢

Assume fevel () == L Assume o, @ € X and «

<o Assume £ € X and o < 8. Finally, assume

lhcn i5 no p“u (v.y) € b (i) with @ S v and y' £,
DThena’ < 8.

Intuitively. this latter condition says the following. If a step, f, of one
transaction fullows a step, w, of another transaction, ¢, then f also
follows any other step. o, of t which follows a but precedes any
bicakpoints. (Here, "follows™ means follows in the partial order <")
“The breakpoints are defined solely by the nesting ]cwl i for the two
transactions, tand ¢,
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5. Multilevel Atomicity

The definitions of this section deal cxplicitly with a system § of

-transactions. [ use the abstract definitions in the preceding section to

help describe sets of allowable exccution scquences. . Intuitively,
transactions are grouped in nested classes so that for each t, the sct of
places where a transaction t' can interrupt t is determined solely by the
smallest class containing both t and t.  Moreover, smaller classes
determine at least all of the breakpoints determined by containing
classes (and possibly more). This says that transactions which are
grouped in a common small class might have many relative breakpoints
(i.e. can interleave a great deal), while transactions which are only
grouped in a common large class might have fewcr relative breakpoints
(i.c. cannot interleave very much).

For each pair of transactions t and t', I must describe the places at
which t is permitied to be interrupted by steps of . Since the
transactions need not be straight-line programs, but can branch in
complicated ways, | am forced to describe separately the places at which
cach different execution sequence, ¢, of t can be interrupted by steps of
t.

A X-level breakpoint specification, 8, for a system, S, of transactions is a
family, {b, e b is a wansaction of S, ¢ an execution sequence of t},
where each’ b 15 a k-level breakpoint function for the steps of e, totally
ordered accoldma to their occurrence in ¢, (Formally, the elements of
the ordered sct of steps are pairs n,gi), where ‘Si is the ith step of e.)

A k-nest, T1, for the transactions of a system S, and a k-level breakpoint
specification, B, for S can be used in a straightforward way to define an
application database, (S,A(f1.B)). Namely, fet ¢ be an cxccution
sequence of a subsystem of 8, (ie. an exccution of some of the
transactions of §), and "I the set of transactions appearing in e. For each
t € T, let ¢ denote the exccution sequence of t occurring as a
subscquence of e, X the set of steps of t occurring in ¢, gl the order in
which those steps occur in e. and let b, denote b € B lLet < denote
the total order on LL_ X, describing the order ih which ail the steps
occur in ¢, Then ' multilevel_atomic (for TT and 3) provided < is
coherent for [Tand J = {((X,< )b )t €T} (Ihis definition just says
that all the interruptions occur at thu given breakpoints.)

et /_\_(U_é) denote the set of execution sequences of S which are
multilevel atomic for [T and 3.

For example, if [T = (= .my), and 3 is the only possible breakpoint
specification (i.c. no pairs f01 b (1. and all pairs for b e () ), then the
multiievel atomic exccution scqucnccs are just the serial cxuunons

‘The reader is referred to [G] for treauneat of a special case of our
definition corresponding to It = (':r1 w“"”s) where b (2) consists of
all pairs of consccutive steps, for afl t and c. That is, lmnﬂmons in a
common 7, class can interleave arbitrarily, but transactions not in a
common 7, class must be serialized with respect to cach other. The
“multilevel” definition of this paper also allows intermediate degrees of
interleaving as well as the two cxtremes represented in (G).

6. Simulation of an Application Database

Having csscribed the logical-level centralized and concurrent
application database, I now must describe how this database is to be
“implemented” by a distributed system (or any other system). ‘There
are many possible ways to define ' ‘implementation”. For definiteness, 1
choose a weak definition based on external behavior, The physical
system implements the application database by presenting an external



interface to the users which is compatible with allowable exccutions of
the application database. Correctness for the physical system is thus
defined entirely in terms of its external behavior, ‘The physical system
might produce this behavior by many different methods. For example,
it might centralize, distribute or replicate the entitics. It might
implement each transaction on one processor which communicates with
other processors in order to access entities.  Alternatively, it might
divide up the entitics among the nodes of a network, and allow
transactions to "migrate” from entity to entity as necessary, executing
some of their steps on different processors. Itis only the external view
which determines correctness.

A definition for implementation follows. I'ix an application database
(S,A). Dlefine a finite nonempty sct of variables called ports, each of
which can contain « finite sct of transaction status words: a transaction
status word is a pair (t,8) where tis a transaction of § and s is cither a
start state or a final state of t. 1.ct a be a sequence of access to ports,
each access tagged by the label "users” or "system” (to indicate who is
doing the accessing). Then a is syntactically correct provided, in a, the
following conditions hold.

a. liach port starts out empty, and cach successive access
to a port begins with the samie valuc left at the end of
the preceding access to that port.

b. The changes of port values are all of the following
types. ‘The uscrs can initiate a transaction t at any
time by inserting a pair (t.s) into a port, where s is a
start state of t. The system can chunge (ts) to (t,8),
where s is a start state of t and s” is a final state of t.

n

. Bach transaction is initiated at most once. (lhis is a

technical convenience, assumed for the sake of
consistency with the forimal model of [LF). If the
same transaction is intended to be run twice, it is
simply duplicated.)

d. Each transaction which is initiated by the users is
subscquently completed by the system.

1t remains to express the semantic requireinent that a provide the users
with results “consistent with” an allowable executicn sequence of the
application database.

Let a be a syntactically correct sequence, e an exccution sequence of a
subsystem of S. Then a is consistent with ¢ provided exactly the same
transactions appear in a and ¢, with the same start states and same final
states. A scquence, a, is correct for the users and system together
provided a is syntactically correct and consistent with some e in A.

I need a definition of correctness for the system alone. Informally, a
system exccution sequence is “correct” if whenever it is run with a
“correct user”, the result is correct for the users and system together. In
a little more detail, a sequence of accesses to ports is correct for the
uscrs provided all changes made are among those allowed for the users
in (b) and (¢) above. (That is, the users can only initiate transactions,
cannot retract a transaction once it is initiated, and cannot initiate the

system provided that whenever it is interleaved consistently with a
correct user sequence (and the steps of the resulting sequence labelied
appropriately), the result is correct for the users and system together.
(The interested reader is referred to [LF] for a completely fornal
definition for this interleaving.)
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A system of processes S' imploments application database (S,A)

provided all external behavior sequences of § are correct for the
system.

Thus, T use a weak notion of implementation which simply preserves
input-output results. I do not require preservation of ordering of
transactions; a transaction t is permitted to complete (at a port) before
another transaction tis initiated (at a port) and yet it might be the case
that some of the steps of ¢ precede some of te steps of tin all
exccution sequences of the application database consistent with the port
behavior.

The weakness of the implementation definition allows some freedom in
design of the physical system. In particular, for any execution sequence
c of asystem S of transactions, a dependency partial order <of the steps
of ¢ is defined as follows. For every pairof steps e, rineg Ieta < 7
if & precedes 7 in € and cither (i) a and 1 are steps of the“same
transaction, or (ii) « and r are steps accessing the samc entity, Then
cvery total order of the steps of ¢ consistent with < is also an
execution sequence of S, having the same sequence of;alucs for each
entity and the same exccution subsequence for cach transaction, as
¢. Two exccution sequences, ¢ and ¢ of S are cquivalent if < is
identical to — It follows that if a scquence, a, of port accesses is
syntactically correct and consistent with an cxecution sequence, e,
which is cquivalent to some ¢” in A, then a is correct.

Example. If A is the sct of "serial” executions of the transaction system,
then "cquivalence with some e in A" amounts to the usual definition
for “serializable” cxccutions. If a physical systemn guarantees that its
pott behavior is consistent with a serializable execution sequence, then

it is also consistent with a serial exccution sequence.

Fxample. A nopular model for distributed databases is the "migrating
transaction” model described in [RSL). In this model, cutitics of the
database reside at nodes of a nctwork of processors, and the
transactions niigrate Irom entity to entity as necessary, exccuting some
of their steps on different processors. In more detail, a transaction t,
with start state s, originates at a processor 0. A message (0.t.8) is sent to
the processor owning the entity which t accesses when it is in state 8. A
pracessor receiving a message (o,Ls) "performs” (he indicated step by
changiag the value of the entity, updating U's state, and sending a new
message (o,,s"), where 8™ is the new state. 1fs” is not a final state, the
message is sent 1o the processur owning the appropriate entity. 1fs"isa
final state, the message is sent back to the vriginator o. In this way, an
exccution sequence ¢ of the system of tansactions is actually
"performed” by the processors. (Fhe tom}xurdcr of the sequence is
determined by reat clock time.) “This exceufion sequence is constructed
to be cousistent with the port behavior of the system. It suffices for
external port correctness to insure that the exccution sequence e
“performed” by the processors is one which is equivalent to some ¢ in
A.

Now consider the case in which A is a set of muliilevel atomic
sequences; that is, assume that [T is a k-nest for the transactions of S, P
={b:tisa transaction of S, ¢ an cxecution sequence of (} is a k-level
breakpoint specification for S, and A = A(TLBY. We say that an
execution sequence ¢ of § is totally ¢oherent (resp. partially coherent
for T and. R provided the dependency partial order <is extendable to a
total order (resp. partial order) which is cohcrcxﬁ—for Mand § =
{ ((Xl,_<_l),b}t €T} wheree, = (Xl.ﬁl) denotes the exceution sequence
of t occurring as a sub-scquence of ¢, and b, denotes b, . By definition,
an execution sequence ¢ of § s equivalent to one which is multilevel
atomic for Tl and B if and only if ¢ is totally coherent for JT and B.



Thus. it suffices to insure Lhat cach sequence of port accesses is
consistent with some totally coherent cxecution sequence of S.In
particular, if the migrating transaction madel is used, it suffices to
insure that the cxecution seguence "perfurmed” by the processors is
totally coherent.

Note that “totally coherent” gencralizes "serializable” in the same sense
that "multilevel atomic” generalizes "serial”.

[t is not at all obvious how a concurrency contral might insure total
coherence. Some help might be provided by the lemma in the next
scction.

7. A Combinatoriat [.emma

In this section, I state and prove a combinatorial lemma which will be
used in the next scction to derive a necessary and sufficient condition
for multilevel atomicity, The lemna requires only the abstract
definitions in Section 4. 1t is suggested that the reader vmnit the proof
on a first reading.

For this section, let T be a fixed set. let IT = (..., Joea fixed k-nest
for a st including T, and et § = {{(X,.< )b LCT} be a fixed k-level
interlcaving spx.Lthalkm for I 1et” cohcn"nt mean "coherent tor 11
and 3", and write “level” for "level, "

Lerama. 1 < is a coherent pariial order, then there is a cohereat total
order <7 which containg <.

Proof. Tet < D denote <. A sequence of stages numbered 2,..% is
carried out. Fach stage, i, inserts additional pairs into the ordering
relation, yickding <W. Then < is defined 10 be <. 1t is shown,
inductivelyon i, 1 <1 < %, that ( (@) :_“’ is a coherent partial order, and
(M if a € X, and

B € X, and Iud (t.t) <i, thern a and # are <(’ - uunpambic
Conmuons (a) and (b) are wivially true for i=1.

Conditions (a) and (b) for i = k clearly imply the nceded result. |
Stage 1(2 <1i < k).

Partition X = h X1 into segments. where each segment S is a
maximal subsct of some X, with the property that there are no pairs in
b (i-1) having both comnponents in S.(That is, each X is divided into
SLngICll!S at the breakpoints given by b (- 1))

Define a directed graph G whose nodes are all the segments. G
contains an cdge from segment S to scgment S exactly if there exist a
€5,8€S, witha <1,

Totally order the strongly conncclcd components of G, S < S <.

so that G contains no cdgcs from any scgmcnt in Sm o any scgmcnt in
S,n < m.-Then define < by adding to < 1) ap pairs (a.f3), where o
€S € Sy BESES p and m < n, and then taking the transitive
Closurc

END

I now prove thc needed properties (a) and (b) foré(') assuming that
they hold for <UD,

Claim 1. Sm is a partial order.
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I___fnf Claim 1. 'There are no edges in <& from a € §, € S, wBE
2 E},n where n < m. Also, all cdges in <( not in <(' ) g0 from a €
5,€8 t0oBES, €S whcrc m < n."Thus, there is no cycle in < @
1nml\ mg anew cdgu Smcc < Misa partial order, there are no cycles

in<®.
[}

Claim 2. g“’ is coherent.

Assume B € X and o "ﬂ Assume there is no p1u (y.¥) €5,0)

with « :ly(xﬂdy <, . Ishow that o’ S(‘)[f. "The result is trivial if ¢
= t', so assume that t # ¢,

Proof of Claim 2, Assune level (4t) = j. a, ¢ € X and a <l a'.

CaseLa <OV

‘Then the coherence of S(i'” implics the needed result,

20ty

Thena €S, €S BE€S, €S forsomem<n.

Since a <V B and <(') contains <&, it follows that 8 ¢ OV o, s0
that a and B arc <(' -incomparable. lhcn property (bJ applied to
SGED implies that j (= level(t,t')) > i- 1. Then bl(i-l) Cb, (j) by the
definition of a k-level breakpoint funcuon. But §, includes all clements
from « up to the next b(i-1) breakpoint in X ; since a and o have no
intervening bl(_]) brcakpmms they also havc no intervening b(1 1)
breakpoints, so that a' € Sy The definition of <(’) then maurcs the
necded result.

a

tn the following, a scgment S is said to belong to an element t € T if S
CX.
=N

Claim 3. For cach m, the following holds. IfS, S E_Sm, S belongstot
and §" belongs to €', then tar, '

Proof of Claim 3. If not, then somebm contains a cycle So,Sl,...,S z =8
of segments such that foreach j, 0 <j < £-1, thereexist a €5, B
€85, witha <b B and such that two of the segiments belong to -
mcqulvalcm clements of T,

Jet S and S' be two distinct segments in this cycle, belonging to
clements t and t' respectively, where (i) t /i t, and (ii) any scgment S"
following S and preceding §' in the cycle belongs to some t* which is
wi-cquivalcnt to t. Then if o is the last (in the < -ordering) clement of*S
and B is the last (in the S[.-ordcn'ng) element of §', we claim that a
SGh B. This is shown by induction on the number of segments
following S and preceding S’ in the cycle.

Inductive Step. There cxists a’ € S such that o’ <D B, where B’ is
the last step of the cycle-successor of S. By inductive hypothesis (or
mwally, if S 1tsc]f is §s cycle successor), it follows that 8’ <(‘ b B.
Thus, o < ,B Now, j = level (t,f) < i - 1, by assumption, sob ®
C b (D). But a precedes the next b, @i-1) brcakpmnl following o', so a
also prcccdes the next b (_]) brcakpomt following a'. Coherence of

<(1‘_1) implies that @ < G-1)8.

Applying this result repeatedly around the cycle shows that there are -
two distinct scgments, S and S, such that @ <& g and B <D ¢
where a and 8 are the last stcps 0f S and § respectively. But thls
contradicts the assumption that < s a partial order.

(W]



Claim 4. 1f « € X andB € X,, and level (t,t) <, then o and B are <O-

comparable,

Proof of Claim 4. Dy Claim 3, t and t' do not have any segments in the
same strongly connected component S, . Thus, & € 5, €2, BES, €
S, and m # n. But then <% s defined to contain the pair (a.,3) if m <
n, and to contain (B, a) ifn<m.

0

8. A Necescarv and Sufficient Condition for Multilevel Atomicity

The lenuna of Section 7 is now used to restate the cotrectuess condition
at the end of Section 6. Namely, assume that IT and 8 are as at the end
of Section 6. Then an exccution sequence ¢ is equivalent to one which
is multilevel atomic for T and 3 if and only if e is partially coherent for
Tl and 6. Thus, it suffices to insure that the cach sequence of port
accesses is consistent with some partially coherent execution sequence
of S. In particular, if the migrating trapsaction model is used, it suffices
to insure that the exccution scquence ¢ "performed” Ly the processors
is partially coherent for TT and¥. In other words, e must have a
dependency partial order which is extendable to a partial order which is
coherent for IT and J {where 3 is defined as at the end of Section 6).

9. Concurrency Control for Multilevel Atomicity

In this section, I discuss how a concurrency control mechanism might
take advantage of some of the preceding ideas. I want to design
concurrency controls which use the correctuess conditions stated in
Section 8. Specifically, 1 use the migiating transaction model, and
consider how to insure that any execution sequence ¢ "perforined” by
the processors has a dependency partial order €<_which is extendabie to
acoherent partial order.

It will be necessary to inake an additional assumption about a
breakpoint specification for the application database (S.A). Namely, in
order to he able to detenmine the locations of breakpoints while the
execution sequence ¢ is being performied, it is necessary to assume a
"compatibility" condition: if two execution sequences of a transaction
share a common prefix €, then either both exccution sequences have a
breakpoint immediately after T, or neither docs.

In order to insure extendability of < to a coherent partial order,
consider the "smallest possible” coherent extension of < This can be
defined as follows. Given aset T, a k-nest T1 for a sot containing T, a k-
level interleaving specification J = {((X‘,SL),bL):tE’l'} for 1, and a
partial order < on U_ X containing all the <, define the coherent
¢losure of < (with rlcspcct to I and 9) to be the partial order obtained
from < by closing under condition (b) of the coherence definition.
Then it is casy to sec that <is cxtendable to a coherent partial order if
and only if the coherent dd{s—urc of e<— is a partial order.

Assume that the concurrency control generates an execution sequence e
of §, and that the concurrency control includes some priority scheme
and rollback mechanism to insure that no initiated transaction gets

. blocked indefinitely. (Such a scheme is not specified here.) [ consider
how to insure that the coherent closure of e_{is a patrtial order.

One possible strategy is cycle-detection, using the coherent closure of <

._Namely, if the concurrency control does not otherwise guarantce tha

= s extendable to a coherent partial order, the concurrency control
mmight generate explicitly the edges of the coherent closure of < and
check for cycles. 1facycle is detected, a priority scheme can be tised to
determine which steps should be rolled back. Presumably, fewer cycles
would be detected using the multilevel atomicity definition than if
serializability were required, leading to fewer rollbacks.
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Another approach is cycle-prevention guaranteeing that the coherent
closure of cgis a partial order. One way of doing th -, might be to delay
some steps, as follows.

Fach step B first gets "scheduled”, thereby locking its entity and
delaying its transaction. f8 docs not actually get "perfortned” until it
insures the following. (Note that ¢ refers to the order in which steps
actually get performed. not the order in which they are scheduted) If
e, is the inital segment of ¢ ending with step B, and if « is the last step
of transaction t which precedes 8 in the coherent closure of ej B é- dhen a
breakpoint for 8's transaction immediately follows a in the exccution
sequence prefix of t occurring as a subsequence of ¢,. (This can be
accomplished by making £ wait until suitable breakpoints have been
reached, assuming that e concurrency control uses a priority-rollback
mechanism for preventing blocking.)

If the property above iy guaranteed, for cach /1, then the coherent
closure of <is consistent with the total ordering of steps in ¢, so it must
be a partial order.

Of course, there are still miany difficulties involved in designing a
priority-roltback scheme to guarantee that no transactions block.
Another, rclated difficulty in the design of a mechanisim for allowing
transactions to comuit:  cven though the concurrency centrol
guarantees cventuat performance of all of the steps of a correct
cxccution sequence ¢, it docs not necessarily follow that the
concurrency control can determine a particular point in time when each
transaction can no longer have any of its steps rolled back! This is
apparently a greater difficulty for multilevel atomicity than it is for
ordinary atomicity, since imultilevel atomicity atlows (even if there are
only a finite number of entities) an infinite chain of transactions
Iptyty. such that for each i there are steps e of t and 3 of ¢y with B
& a, Ihis means that it is quite plausible that a rollback of steps of t; |
can cause a rollback of steps of t, and so on.

10. Further Rescarch

Here, T have really only suggested a new, general correctness crite{ion.
It remains to design detailed concurrency controls based on this
criterion, in order to determine if the generalization can be exploited
for increased efficiency.
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