
Eventually-Serializable Data Services

Alan Fekete* David Guptat Victor Luchangcot Nancy Lyncht Alex Shvartsmant

Abstract

We present a new specification for distributed data ser-

vices that trade-off immediate consistency guarantees

for improved system availability and efficiency, while

ensuring the long-term consistency of the data. An

eventually-serializable data service maintains the oper-

ations requested in a partial order that gravitates over

time towards a total order. It provides clear and unam-

biguous guarantees about the immediate and long-term

behavior of the system. To demonstrate its utility, we

present an algorithm, based on one of Ladin, Liskov,

Shrira, and Ghemawat [12], that implements this spec-

ification. Our algorithm provides the interface of the

abstract service, and generalizes their algorithm by al-

lowing general operations and greater flexibility in spec-

ifying consistency requirements. We also describe how

to use this specification as a building block for applica-

tions such as directory services.

1 Introduction

Providing distributed and concurrent access to data ob-

jects is a fundamental concern of distributed systems.

The simplest implementations maintain a single central-

ized object that is accessed remotely by multiple clients.

While conceptually simple, this approach does not scale

well as the number of clients increases. To address this

problem, many systems replicate the data object, and

allow each replica to be accessed independently. This

enables improved performance and reliability through

increased locality, load balancing, and the elimination

of single points of failure.

*Department of Computer Science, University of Sydney 2006,
AustraIia

t Laboratory for Computer Science, Massachusetts bstitute

of Technology, Cambridge, MA 02139. This work was sup-
ported by ARPA contract F19628-95-C-0118, AFOSR-ONR con-

tract F49620-94-1-0199, and NSF contract 9225124-CCR.

krmiuion to meke digitalhmi copies of ●ll or pmt of Ihh meteti for
paeond or classroom we is grmtcd without fee provided that tbe copies
em MI nude or ditibuted & profit or commercial edvantage, the copy-
right notice, the tiUe of the publication ●nd ite date ●ppear, ●nd notice is
given tit capy@tt u by pemtiuion of the ACM, k. To copy otbewiec,
to republidt, to poet on eewem or to redktribute to Iii, requires qecitlc
penttiseion andhr f-.
FQDC’%, Philadelphia PA, USA
O 1~ ACM (&89791.8~~9(j/05, .$3.50

Replication of the data object raises the issue of con-

sistency among the replicas, especially in determining

the order in which the operations are applied at each

replica. The strongest and simplest notion of consis-

tency is atornicity, which requires the replicas to col-

lectively emulate a single centralized object. Methods

to achieve atomicity include write-all/read-one [4], pri-

mary copy [1, 21, 18], majority consensus [22], and quo-

rum consensus [8, 9]. Because achieving atomicit y often

has a high performance cost, some applications, such as

directory services, are willing to tolerate some transient

inconsistencies. This gives rise to different notions of

consistency. Sequential consistency [13], guaranteed by

systems such as Orca [3], allows operations to be re-

ordered as long as they remain consistent with the view

of individual clients. An inherent disparity in the per-

formance of atomic and sequentially consistent objects

has been established [2]. Other systems provide even

weaker guarantees to the clients [6, 5, 7] in order to get

better performance.

Improving performance by providing weaker guaran-

tees results in more complicated semantics. Even when

the behavior of the replicated objects is specified un-

ambiguously, it is more difficult to understand and to

reason about the correctness of implementations. In

practice, replicated systems are often incompletely or

ambiguously specified.

1.1 Background of our Work

As it is important that our specification be applicable

for real systems, we build heavily on the work of Ladin,

Liskov, Shrira, and Ghemawat [12] on highly available

replicated data services. They specify general condi-

tions for such a service, and present an algorithm based

on lazy replication, in which operations received by each

replica are gossiped in the background. Responses to op-

erations may be out-of-date, not reflecting the effects of

operations that have not yet been received by a given

replica. However, the user can indicate, for a newly re-

quested operation, a set of previously completed opera-

tions on which the new one depends, so that the new one

will not be applied at any replica until after the previ-

ous ones have been applied. Other than this, the system

may respond with any value that is consistent with an

arbitrary subset of previous operations. This allows any

300

causality constraints to be expressed. They also provide

two other types of operations, which provide stronger

ordering constraints, when causality constraints are in-

sufficient toimplement a data object: ~orced operations

must be totallyordered with respect to all other forced

operations, and immediate operations must be totally

ordered with respect to all operations. As long as most

of the operations are of the weakest variety, their algo-

rithm is very efficient.

The specification in [12] is tuned for their algorithm,

and exposes some of the implementation details to the

clients. This makes it difficult to decompose the algo-

rithm into modules with clear benefits and costs that

can be easily understood. For example, their specifica-

tion exposes the client to multipart timestamps, which

are used internally to order operations, and it is not

clear which properties of their algorithm depend their

use of multipart timestamps, and which depend only on

the lazy replication strategy, nor how to compare their

algorithm with others that do not use multipart times-

tamps. Also, their algorithm requires that all opera-

tions be either read-only queries or write-only updates,

and, to guarantee consistency, that the ordering type of

each update be specified by the application programmer

rather than the user. Their algorithm requires that for

any pair of operations with effects on the state of the

data that are not commutative, one must depend on the

other. If this is not valid, the algorithm can leave repli-

cas inconsistent forever. That is, the apparent order on

operations may not converge to a limiting total order.

1.2 Our Contributions

We present a formal specification for a data service that

admits efficient implementations by permitting some

transient inconsistencies in the state of the replicas,

while providing unambiguous guarantees about system

responses to clients’ requests, and ensuring the even-

tual serialization of all operations requested. We also

present an algorithm that implements the abstract spec-

ification, which we prove using invariants and a forward

simulation [15]. By making simple assumptions about

the timing of message-based communication, we also

provide time bounds for the data service.

The eventually-serializable data service specification

uses a partial order on operations that gravitates to a to-

tal order over time. We provide two types of operations:

(a) strict operations, that are required to be stable at

the time of the response, i.e., all operations that pre-

cede it must be totally ordered, and (b) operations that

may be reordered after the response is issued. As in [12],

clients may also specify constraints on the order in which

operations are applied to the data object. Our specifi-

cat ion omits implement at ion details, allowing users to

ignore the issues of replication and distribution, while

giving implementors the freedom to design the system

to best satisfy the performance requirements. Our spec-

ification makes no assumptions about the semantics of

the data object, and thus can be used as the basis for

a wide variety of applications. Particular system imple-

mentations, of course, may exploit the semantics of the

specific data objects to improve performance.

The algorithm we present is based on the lazy replica-

tion algorithm from [12]. We present a high-level formal

description of the algorithm, which takes into account

the replication of the data, and maintains consistency

by propagating operations and bookkeeping information

amongst replicas via gossip messages, It provides a

smooth combination of fast service with weak causal-

ity requirements and slower service with stronger re-

quirements. It does not use the multipart timestamps

of [12], which we view as an optimization of the basic

algorithm. By viewing the abstract algorithm as a spec-

ification for more detailed implementations, we indicate

how to incorporate this, and other optimizations, may

be incorporated into the framework of this paper, and

we demonstrate this with some examples.

The eventually-serializable data service exemplifies

the synergy of applied systems work and distributed

computing theory, defining a clear and unambiguous

specification for a useful module for building distributed

applications. By making all the assumptions and guar-

antees explicit, the formal framework allows us to rei~-

son carefully about the system. Together with the ab-

stract algorithm, the specification can guide the imple-

mentation of distributed system building blocks layered

on general-purpose distributed platforms (middleware)

such as DCE [19], and the specification of the middle-

ware components themselves. We provide an example

of this, using a distributed directory service.

2 Specification of an

Eventually-Serializable Data Service

The memory system manages data whose serial behav-

ior is defined by some data object, and a collection of

operators on that object. Formally, a data object is de-

fined by a set E of states, with a distinguished initial

state a., a set V of reportable values, a set O of opera-

tors, and a transition function f: X x O * E x V. We

use state and va! selectors to extract the appropriate

components. We define f+ : 2 x O+ + X x V by re-

peated application off, i.e., f+ (u, (op)) = f (a, op) ancl

f+(~, (%, 0P2, . . .)) = f+(f(~> oPl)”s~ate> (W2, ~. .)).

In the serial data specification, the resulting state ancl

value for each of a sequence of operations are uniquely

determined. To allow more efficient and fault-tolerant

distributed implementations, our specification admits

reordering of operations. However, it specifies that, in

the limit, a total order, the eventual total order, be es-

tablished on all operations. An operation is said to be

301

State

wait j for each front end j: a subset of Cl, initially empty; the operations requested but not yet responded to

rept ~ for each front end j: a subset of 0 x V, initially empty; operatiOm =d responses tO be returned tO clients

ops: a subset of 0, initially empty; the set of all operations that have ever been entered

PO, a partial order on 0.id, initially empty; constraints on the order operations in ops are applied

stabilized: a subset of 0, initially empty; the set of stable operations

Actions
Input request=(z) Internal stabilize(z)

Eff Wdf + Wdf U {x} Pre: z E OPS

Vy E ops, (y.id, s.id) C po V (z.id, ~.id) e PO V v = z

Internal enteT[x. new-vo) Vy E ops, (y.id, x.id) E PO & v G stabilized

Pre:

Eff

.,
x 6 wa;tf for some f Eff: stabilized ~ stabilized U {x}

x.pvev C ops. id

new-po~s a partial order on 0.id Internal calculate (z, v)

PO ~ new-po Pre: z C ops

CSC({z}) ~ new-po

{(y.id, z.id) : y 6 stabilized} s new-p.

z.strict ~ x c stabilized

v E vaket(z, ops, PO)

Ops t Ops u {z} Eff: if z 6 wait ~ then rept ~ - Tept ~ U {(m, v)}

po t new-po where ~ = fronteni (client (;. id)).

Internal add.constraints(new-po) Output response= (z, v)

Pre: new-po is a partial order on C?.id Pre: (a, v) E Tept ~

PO ~ new-po z C waitf
EM: PO + new-po Eff: waitj + toaitf - {z}

reptf + reptf – {(z, d) : (~,v’) G ~e@f)

Figure 1: Spec: An Eventually-Serializable Data Service

stable when the prefix of the eventual total order up

to that operation is known. Clients submit requests

with operation descriptors that may restrict the even-

tual tot al order and the set of possible return values.

An operation descriptor is a record consisting of a data

object operator op, a unique identifier id, a set prev

of identifiers of operations that must precede the re-

quested operation, and a boolean flag, strict, that indi-

cates whether the operation must be stable at the time

of the response. The identifier id also specifies the client

issuing the request; each client is responsible for ensur-

ing that it issues unique identifiers to ope~tions. The

clients must also ensure that prev sets contain only iden-

tifiers of operations that have already been requested by

some client.

To formally describe the system and its requirements,

we use the 1/0 automaton model [16]. The system

is defined by Spec in Figure 1, where 0 is the set of

all operation descriptors. We denote the set of iden-

tifiers of the operations in X ~ 0 by X. id. The in-

puts are of the form request, and the outputs are

of the form responsec(x, v), where x c 0, v c V, and

c = client (r. id) is the name of the client submitting

the request. To model the clients, we use the automa-

ton Vsers in Figure 2 to capture the well-formedness

assumptions. It represents all clients, and uses shared

state to encode the restrictions on the clients as gener-

ally and abstractly as possible; in a real implementation,

there need not be any shared state.

State

vequ ested, a subset of 0, initially empty

Tesponded, a subset of Tegtiested, initially empty

Actions

Outpnt request

Pre: c = Aent(x.id)

x.id f reqtiested.id

x.prev ~ requested .id

Eff: mque.ted + requested U {x}

Input response c(op, v)

Eff responded + responded U {z}

Figure 2: Users: Well-formed Clients

Each client c has a frontend fronted, and there

are state variables waitj and rept j for each frontend ~. 1

The set waitj contains an operation descriptor for each

outstanding request, and the set rept j cent sins opera-

tions with values that still need to be returned to the

client.

Spec maintains a set ops of operations that have been

entered, and a partial order po of constraints on the or-

der of the entered operations, which evolves toward the

event ual total order. This partial order must be consis-

1 In this paper, we assume each client has its own frontend,

and we equate the two, i.e., .frontend(c) = c. We maintain the

name distinction for clarity and extensibility, and use c for the

external interface, and j internally.

302

tent with the ch’ent-speci$ed constraints given by the

prev sets. We denote the client-specified constraints

of a set X of operation descriptors by CSC(X) =

{(v.~d, ~.~d) : ~ E X A y.itt G z.prev}. Spec also main-
tains a set stabilized of operations whose prefix in the

eventual tot al order is fixed by po.

For each operation z, there are three internal ac-

tions of the form enter(x, new-po), stabilize(x) and

calculate%, v). The enter(z, new-po) action adds

enough constraints to po to ensure that the new op-

eration will follow everything specified by the client,

and will maintain the stability of any operations in

stabilized.2 The calculate(x, v) action chooses an arbi-

trary return value consistent with theconstraints speci-

fied in po; it requires strict operations to be in stabilized.

The stabilize(x) action can occur only if the operation

is totally ordered with respect to other operations in

ops, andallprecedin goperationsare already stabilized.

These actions maybe done repeatedly for each opera-

tion, though the response, of course, isonly done once.

Repeated calculate actions may produce different re-

turn values from which the response action may select
nondeterministically. There is also an internal action

add-constraints(new-po) which extends the partial or-

der of constraints.

To formally specify the transition relation, we use an

auxiliary function valset. Given a totally-ordered finite

set (X, to) = ({xl, . . . ,zn}, {(zi. id, zj. id) : i < j}),

we define the outcome of an operation x c X to be

outcome (xk, X,io) = f+(cro, (xl. op, . . . ,zk. op)). If po

is a partial order on the identifiers of X, we define

the set of reportable values va/set(z, X,po) so that

outcorne(z, X,io). va/ ~ vaLsef(z, X,po) iff to is a total

order consistent with po.

Finally, we impose two Iiveness requirements on the

system, that every request should receive a response,

and that every operation must stabilize. This ensures

that the limit of po defines a sequence, that is, a total

order in which each operation is preceded by a finite

number of operations. This total order must respect

the client-specified order, and all requests entered after

an operation has stabilized must follow that operation

in this order. Thus, if all requests are strict, the data

service becomes atomic.

3 An Abstract Algorithm with

Replicated Data

In this section, we present an abstract algorithm

that implements the eventually-serializable data-service

specification in the previous section. Again, we assume

that each client has a frontend,3 and that processes com-

2Further constraints may be specified, but it must place at
least thk many.

3 We use c for the external interface and j internally.

State

wait j, a subset of 0, initially empty

rept ~, a subset of O x V, initially em@Y

Actions

Input reguestc(z)
Eff: waitj + Wdf U {c}

Output seno!f,:((“request”, z})
Pre: x G w.;tj

Input receive ~,f ((“response”, x, v))
Eff: if m G waitf then rept ~ + reptf U {(z, v)}

Output response c(op, v)

Pre: (Z, v) E reptf

z G waitf

Efi waitf + Waitf – {z}
reptf + reptf – {(2,0’) : (Z, v’) G repff}

Figure 3: Automaton for frontend f

municate using point-to-point channels, For now, we
assume the system is entirely reliable (i.e., there are

no process or communication faults), though it is easy

to modify the algorithm to tolerate processor crashes

and message losses. We make no assumptions, however,

about the order of delivery. We also assume that local

computation time is insignificant compared with com-

munication delays, so that a process is always able to

handle any input it receives. This is reasonable if the

computation required by each operation is not excessive.

When a client submits a request, its frontend simply

relays the request to one or more replicas that main-

tain a copy of the data object, and, when it receives a

response, relays that back to the client. The frontend

automaton is shown in Figure 3. A channel from pro-

cess i to process j is modelled trivially with send~,j and

receivei, j act ions and a single state variable channeli,j;

the automaton is omitted.

The automaton in Figure 4 for replica r has a number

of state components. The component rcvdr is the set c~f

operation descriptors of all requests that this replica has

received, either directly from a frontend, or else through

gossip from other replicas. The component doner is

an array of sets of operation descriptors, one for each

replica. Each set represents the operations known to be

“done” at the corresponding replica, that is, the oper-

ations for which the replica can compute a value. The

component solidr is also an array of sets of operation

descriptors, again one for each replica. The interpreta-

tion of z E solid. [i] is that replica r knows that replica

i knows that every replica hss x in its done set.

Replicas assign labels uniquely4 to operations from

a well-ordered set Z. Each replica keeps a function
rnirdabel: 0 _ L U {co}, which encodes the mini-

4Process identifiers can be used to break ties.

303

State

pen ding,, a subset of 0; the messages wfi~ require a response

TCvd,, a subset of O; all operations that have been received

doner[i] for each replica i, a subset of 0; the operations r knows that i has “done”

solid r [i] for each replica i, a subset of O; the operations that r knows are “stable at i“

tninh.bel,: 0 + L U {m}; the smallest label r has seen for z G O

Derived from doner[r] and rnin~abelr: valr: doner [r] ~ V; the value for z G done, [~] using the minlabel, order

Actions

Input ~ecei~ef,~((’’rewest’’, ~)) Output sendr,r, ((’’gossip”, R, D, L, S))
Eff pending, i- pending. u {z} Pre: R = ~cvdr; D = done, [~];

rcvdr + rcvd ~ U {z} L = minlabelr; S = solid, [r]

Internal do-itr(z, 1)
Pre: z E rcvd, – doner[~]

z.prev ~ doner[r]. id

J > minhbelr(y) for all y E doner[~]

Eff doner[r] + doner[r] U {z}

mislabel, +-- 1

Output sendr,f ((’’response”, z, v))

Pre: z c pending, n doner[r]

Z. ShiCt ~ z 6 n, solidr[i]

v = oalr(z)

f = jrontend(ckent(z. id))

Eff pending. + pending, – {z}

Input receiver, ,r((’’gossip”, R, D, L, S))
Eff. r’cvdr + rcvd. U R

doner[r’] + doner[r’] U D U S

doner[r] + doner[r] U D U S
doner[i] +- doner[i] U S for all i # r,r’

minlabelr = min(minlabelr, L)
Solidr[rj] t Solidr[?’q u s
$Olid.[r] + Sokdj.[r] u Su (f), done, [i])

Figure 4: Automaton for replica r

mum label that the replica knows has been assigned

to an operation (by any replica), where i < co for

all 1 c Z. As information is gossiped between repli-

cas, the value of rninlabeir (x) may be reduced when

r learns of a lower label for ~; however, an invari-

ant shows that once ~ E solid. [r], no further re-

duction is possible. The function miniabelr defines

a partial order local. consr (on operation identifiers),

where local -consr = {(y.id, x.id) : minlabelr(y) <

minlabelr (z)}. Because labels are assigned uniquely,

total.-cons. defines a total order on doner [r]. A replica

uses this order to compute the value of an operation,

valr(x) = outcome (x, doner[r], Iocal-consr). vai for x C

doner[r].

Replicas use gossip messages to keep each other in-

formed about operations issued to other replicas, send-

ing around the operations received and processed, as

well as the labels associated with each. Hence a gos-

sip message essentially contains the state of a replica

at a given point in time, which will be “merged”

with the state of the receiving replica. For each mes-

sage m = (“gossip” , R, D, L, S) c channel,,,., we de-

fine the partial order msg.cons(m) = {(g. id, x.id) :

min(mmlabelr(y), L(y)) < min(mmlabe~r(z), L(z))} on

operations. As information about the operations is

gossiped, the system conyerges on certain constraints.

We denote this by system_cons = n, local-cons, n

n,,, flmccha~~eir,,r ms9-@~4~)

To show that this system meets the specification, we

establish a simulation [15] from the algorithm automa-

ton to the specification. Let AbsAlg be the composition

of all the frontend, channel, and replica automata, with

the send and receive actions hidden. We have the fol-

lowing theorem:

Theorem 3.1 The relation F in Figure 5 defines a sim-

ulation from AbsA!g x Users to Spec x Users.

To prove this theorem, we first establish several in-

variant about A bsA!g. The following are the key ones:

doner[r] = Ui done, [i] and

solid, [r] = Ui solid. [i] = ni dorzer[i]

(J, rcvdr - Llf waitj s (J. done~[r]

donei[r] ~ doner[r] and solidi[r] ~ solidr[r].

doner[r] = {x : minlabelr(z) < m}

If z c solid, [r] then miniabeir(z) ~ minlabeli(z)

for all i. (Corollary: If x E nr solid, [r] then

minlabeli(z) = miniabetj(z) for all i, j.)

x G nr sohdr[r] ~ vali(~) = va~j(z) for all i, j.

TC(CSC(Ur doner[r]) U sys~em-cons) is a partial

order, where TC(R) is the transitive closure of R.

If ~ c done, [r] then

valset(z, Ui donei[i], /ocal-consr) = {vai, (z)}.

304

We define the relation F between states in AbsAlg and states in Spec such that u E F[s] if and only it

● u. wattf = s. waitf for all frontends/clients f

● U.reptf = s. reptj U s.potential-rept~

where potential. reptf = {(z, v) : x c waitf A Elr(”response”, x, v) E channelr,j }.

● u.ops =Ur.s. doner[r]

● u.po =TC(CSC(Ur s.doner[r]) Us. systern_cons)

● unstabilized =nrs. solidr[r]

Figure 5: Forward Simulation from Algorithm to Specification

The table in Figure 6gives, for each action of AbsA/g,

the corresponding action or sequence of actions of Spec.

Notice that some actions do not have any corresponding

action in the specification, and the receipt of a gossip

message corresponds possibly to several actions in the

specification.

Performance

If we assume there is no congestion and ignore local com-

putation time, then the delay for strict operations is at

most 2dfr + 3(drr + g) where djr is the maximum mes-

sage delivery delay from frontend to replica, drr is the

maximum message delivery delay bet ween two replicas,

and g is the “gossiping interval”, the maximum interval

between two gossip messages from one replica to an-

other. Similarly the delay for a nonstrict operation is at

most 2df ~+drr +g. In the common case where each fron-

tend always communicates with the same replica, and

where each client-specified dependency mentions only

operations which occured previously at the same fron-

tend (or whose name was communicated through shared

data), the delay for nonstrict operations is reduced to

at most 2drf.

4 Optimization of the Abstract

Algorithm

While the algorithm we present deals with the funda-

mental problems of maintaining consistency in a dis-

tributed, replicated data service, it is still written at

a rather high level, ignoring important issues of local

computation, local memory requirements, message size,

and congestion. In this section, we explore some ways to

improve the algorithm, that address these issues better.

4.1 Memoizing Stable State

In the A bsAlg automaton, since we were not concerned

with modelling local computation, the valr function at

each replica is derived by computing all the preceding

operations in the miniabelr order each time a response

is issued by that replica. Of course, this is computa-

tionally prohibitive, and a real implementation wculd

do some sort of memorization of the state of the data

type to avoid redundant computation. In particular,

once an operation has stabilized, as long as its value

is remembered, it never needs to be recomputed since

its place in the eventual total order is fixed. However,

because a replica may temporarily misorder some oper-

ations, some recomputation of unstable operations may

be necessary.

We modify the replica automata to model this

more explicitly by augmenting the state with two

new state variables, stable-statev and stable-valuer.

The stabie-value, function stores the values for all

the stable operations, i.e., those in solid, [r], while

stable-state, reflects the state of the data after apply-

ing all those operations. The return value of later

operations can then be computed from st able-st ai er,

rather than the initial state of the data. For-

mally, we parametrize the outcome function with an

initial state.5 Then valr(x) is stable-valuer(x) when

X C Soladr [r], and OUtCOme$taHe.stater (a, doner[r] -

solidr [r], local-cons,). ual otherwise. With this new clef-

inition of valv, the only change to the automaton

is in processing gossip, where the stable-state~ amd

stabie-vaiuer values have to be computed (see Figure 7).

If AbsAlg’ is the composition of these new replica iiu-

tomata and the original frontend a channel automata,

then we can prove that AbsA!g and AbsAlg’ are equiv-

alent. The key lemma is the following invariant:

Lemma 4.1 For all reachable states of .4 bsAJg’,

stable-statev = outcome (y, solidr[r], local-cons~).state,

where y = max(solidr [r]) (by the minlabel. order), and

stable-valuer(y) = outcome (y, solid, [r], local-cons,).val

for all y c soiidr [r].

Implementation

reguestc(z)

sendf,r((”request”, z))

receive~,r((”request”, x))

do-itr(z, 1)

sendr, j ({ “response”, z, v))

receiver,f ((”response”, x, v))

responsec(z, v)

sendr,r, ((”gossip”, R, D, L, S))

receive,,,r((”gossip”, R, D, L, S))

Specification

requestc(~)

no-op

no-op

enter-(x, new-po) if z E Ufwaitf

calculate(x, v)

no-op

responsec(z, v)

no-op

add-constraints(new-po), stabilize* (fls’ .solidi [i])

Figure 6: Action Correspondence

Input receive .,,, ((’’gossip”, R, D, L, S))

Eff ,cvdr +- Tcvdr U R

done,[r’] + doner[r’] U D U S

doner[r] +- done, [r] u D u S

done, [i] t doner[i] u S for all i # ~,r’

minlabelr = min(minlabel,, L)

solid ~[r’] e solid+’] U S

for y c n, doner[i] – solid, [r] in mintabel~ orde~

sohtr[r] +- solidr[r] U {y}
(stab[e-state~, $table-wahe~(y)) + j(stable-state~, y.op)

Figure 7: Computing stable information from gossip

4.2 Reducing Memory Requirements

It is also possible to significantly reduce some of the

local memory requirements implicit in the abstract al-

gorithm. In particular, AbsAlg specifies that for every

operation, all the client-specified information, plus the

minimum label, is retained at each replica. Notice, how-

ever, that the prev sets are only used by do_it action.

Once a replica has an operation in its doner[r] set, it

may free that memory for other uses.

Memoizing stable state can also have a positive im-

pact on the memory requirements. This follows from

the same observation that led us to memoize the stable

state to reduce local computation: stable operations do

not have to be recomputed, as long as we remember the

stable return values. This means that once an opera-

tion is stable, all the information about it can be purged

from the memory, except its identifier and return value.

Furthermore, if a replica knows that it will never need

to respond with the value of a stable operation again,

it can purge even that from its memor y.6 Thus, while

A bsAlg’ seems to require more memory than AbsAlg, a

reasonable implementation of AbsAlgl may in practice

be more memory efficient as well.

c For example, if communication is perfectly reliable, then once
a response is sent to a fr-ontend, it will never need to be sent again,

even if another request for the same operation is received. When

communication is not reliable, acknowledgements can be used to

achieve the same effect.

Unfortunately, the identifiers cannot be so readily dis-

pensed with, since they are required in case they are

included in the prev sets of future operations. How-

ever, by imposing some structure on these identifiers,

it is possible to summarize them so they do not take

linear space with the number of operations issued. The

simplest method for this would be a time-based strat-

egy. For example, if the identifiers included the date of

request, and all operations are guaranteed to be stable

within one day, then all identifiers more than a day old

may be expunged from the memory. A more sophisti-

cated approach might involve logical timestamps, such

as the multipart timestamps of [12].

4.3 Exploiting Commutativity

Assumptions

The algorithm of [12] is intended to be used when

most of the operations require only causal ordering, but

it allows two other types of operations which provide

stronger ordering constraints. The ordering constraints

on an operation are determined by the application de-

veloper, not the client, based on “permissible concur-

rency”. This is important because otherwise it may be

possible for clients to cause, even inadvertently, the data

at different replicas to diverge irreconcilably.

In this section, we describe how to further reduce the

need for recomputing operations, when all operations

have sufficient “permissible concurrency.” We begin

with a careful statement of the conditions under which

this optimization can be made.7

We say that two operators, Opl and Opz, (of the data

type) commute if, for all u ~ Z:

f+(u, (oPl, w2)).Sfaie = f+(a, (OP2, opl)).state

f+(~, (w2, Opl)).ual = f(r, Opl). wd

f+(u, (oPI, opz)).vai = f(o, opJ. val

?Tfis c~ndjtjon iS very ‘trong. However, a weaker variation

may be sufficient for the algorithm of [12] since updates and
queries are handled differently, and operations may not simul-

taneously read and write the data.

306

State

pen ding., a subset of 0; the messages which require a response

Tcvd ~, a subset of 0; all operations that have been received

don e, [i] for each replica i, a subset of 0; the operations T knows that i has “done”

solidr [i] for each replica i, a subset of 0; the operations that T knows are “stable at i“

minlabelr: 0 + L U {cm}; the smallest label r has seen for z c 0

stable-stater 6 Z, initially O.; the state resulting from doing all the operations in solidr [T]

stable- value ~ : solidr[r] + V, initially empty; the values of the stable operations in the eventual total order

current- stat eT 6 Z, initially U.; the state resulting from doing all the operations in done, [r]

val, : doner[r] – so/idr[~] + V, initially empty; the value for z 6 done, [r] – solidr[r]

Actions

Input ~ecei~ef,r((’’request’’, ~))
Eff: Pending, +-- pendingr u {c}

rcvdr & rcvd, U {z}

Internal do.it, (z, 1)

Pre: x E rcvd, – doner[r]

x.prev ~ doner[r]. id

1> mislabel, for all v c done. [r]

Eff: doner[r] + doner[r] U {z}
(current-state,, valr(z)) + j(current-.tater, z.op)

mislabel, + 1

Output sendr,f ((“response”, r, v))

Pre: z E pending, n done, [~]

x.stTict =+ x E n, solid~[i]

{

stable-valuer(z) if z E solidr[r]
u=

lxdr(z) otherwise

j = jr.ntend(client(z. id))

Eff: pending, - pendingr – {x}

Output send ~,r~ ((’’gossip”, R, D, L, S))

Pre: R = rcvd,; D = done. [r];

L = minlabel,; S = solidr[r]

Input ~eceiver,,r ((“gossip”, R, D, L, S))

El% rcvdr + vcvd. U R

doner[r’] + done,[r’] U D U S

done, [i] + done, [i] U S for all i # r,r’

for y G n, D – done, [i] in any order consistent with CSC’(D):

done, [r] + done, [r] U {y}
(current-stater, valr(y)) + j(cwrent-stater, y.op)

minlabelr = min(minlabelr, L)

solidr[r’] + solidr[r’] U S

for Y c f), done~[i] – solid, [r] in minlabel, order:
solidr[r] + solid~[~] U {v}

(stable-statev, stable-valuer(g)) + .f (stable-state~, y.op)

Figure 8: Automaton for replica r with current state

We require that clients explicitly order every pair of

operations that do not commute; that is, if x is being

requested, then for all y E requested, either x. op and

y. op commute, or y. id G x.prev. Actually, it is suffi-

cient to have (y. id, z.id) E TC(CSC(requested U {z})).

Formally, we define Saje Users as the automaton result-

ing from adding this clause to the precondition of the

request action of Users.

We now again modify the automaton of replica r, by

augmenting that state with two additional state vari-

ables, current-stater and valr. The latter is no longer

a derived state variable, as in the earlier replica au-

tomata, hence, the operations do not need to be recom-

puted implicitly as before. Instead, valr is computed as

each operation is added to doner [r], whether by a do.itr

action, or by processing gossip received from another

replica, and current-sister reflects all the operations in

done. [r]. The complete code for this new replica is given

in Figure 8.

If Commute is the composition of these replica au-

tomata, and the original channel and frontend au-

tomata, then we want to show that Commute imple-

ments A bsAlg’. Notice that the computation for the

responses to stable operations has not changed at all,

so we only need to verify that the two computations

of valr are equivalent. This follows because under the

commutativity assumption above, the return value for

any operation is determined by the client-specified ccm-

straints.

4.4 Considerations for Communication

Optimizations

In the abstract algorithm, replicas send gossip messages

that include information previously gossiped. It is pos-

sible to reduce the gossip message sizes by sending olnly
the incremental information. To accomplish this, a se-

quence number is incorporated in the gossip messages to

impose a FIFO discipline on each point-to-point chan-

nel. This eliminates the need to send redundant in-

formation and allows replicas to only send incremental

information.

It is also possible to reduce the overall number of mes-

sages sent during each round of gossip when such roun~ds

are scheduled periodically according to some “gossip-

ing interval”. Instead of sending a quadratic number of

replica-to-replica messages in each round, an intelligent

307

implementation in terms of a broadcast/convergecast

protocol that combines gossip messages can reduce the

number of messages.

5 Uses of the Eventually-Serializable

Data Services

We have stated earlier that an important consideration

in our work is that our specification be reasonable for

real systems. We are planning a prototype implementa-

tion and below we give examples of the uses of the data

service specifications that we are considering.

5.1 Naming and Directory Services

Our data service framework is well-suited for specifying

and implementing directory services. In a distributed

computing enterprise, naming and directory are impor-

tant and basic services used to make distributed re-

sources accessible transparently to the locations or the

physical addresses of users and resources. Such ser-

vices include Grapevine [5], DECdns [14], DCE GDS

(Global Directory Service) and CDS (Cell Directory Ser-

vice) [19], 1S0/0S1 X.500 [11], and the Internet’s DNS

(Domain Name System) [10]. A directory service must

be robust and it must have good response time for name

lookup and translation requests in a geographically dis-

tributed setting. Access to a directory service is domi-

nated by queries and it is unnecessary for the updates

to be atomic in all cases. Consequently, the implemen-

tations use redundancy to ensure fault tolerance, repli-

cation to provide fast response to queries and lazy prop-

agation of information for updates. A service can also

provide a special update feature that ensures that the

update is applied to all replicas expediently.

We have specified a simple distributed directory ser-

vice (TDS, a Tiny Directory Service) layered on our

data service. Fast queries and lazy updates can be im-

plemented in terms of normal (non-strict) operations,

the forced update can be implemented as a strict op-

eration. Non-strict updates of course can be reordered

by the service and this is consistent with what might

happen in practice. Our specification includes periodic

gossip operations that, when implemented, will be used

to synchronize replicas. This is similar to, e.g., DCE

CDS, where time schedules are used to initiate the con-

vergence of replicas.

Directory services often use an object-based definition

of names in which a name has a set of attributes deter-

mined by the type of the name. When a new name

object is created it is necessary to guarantee that the

attributes of the created object can be initialized and

queried subsequently. In our implementation this is ac-

complished by including the identifier of the name cre-

ation operation in the prev sets of the attribute creation

and initialization operations.

5.2 Distributed Information

Repository

Another application of the data service is in im-

plementing distributed information repositories for

coarse-grained distributed object frameworks such as

CORBA [17]. Important components of a framework is

its distributed type system used to define object types,

and its module implementation repository used for dy-

namic object dispatching [20]. In this setting the access

patterns are again dominated by queries, while infre-

quent update requests can be propagated lazily with the

guarantee of eventual consistency. We plan to specify

such service using our framework.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

P. Alsberg and J. Day. A principle for resilient sharing

of distributed resources. In Proceedings of the 2nd In-

ternational Conference on Software Engineering, pages

627–644, Oct. 1976.

H. Attiya and J. Welch. Sequential consistency versus

linearizability. ACM Transactions on Computer Sys-

tems, 12(2), 1994.

H. Bal, M. Kaashoek, and A. Tanenbaum. Orca A

language for parallel programming of distributed sys-

tems. IEEE Transactions on Software Engineering,

18(3):190-205, Mar. 1992.

P. Bernstein, V. Hadzilacos, and N. Goodman. Con-

currence Control and Recovery in Database Systems.

Addison-Wesley, 1987.

A. Birrell, R. Levin, R. Needham, and M. Schroeder.

Grapevine: An exercise in distributed computing. Com-

munications of the ACM, 25(4):260–274, 1982.

M. Fischer and A. Michael. Sacrificing seriahzabllity to

attain high availability of data in an unreliable network.

In Proceedings of the ACM Symposium on Database

Systems, pages 70-75, Mar. 1982.

H. Garcia-Molina, N. Lynch, B. Blaustein, C. Kaufman,

and O. Schmueli. Notes on a reliable broadcaet proto-

col. Technical memorandum, Computer Corporation

America, Oct. 1985.

D. Gifford. Weighted voting for replicated data. In

Proceedings of the 7th ACM Symposium on Principles

of Operating Systems Principles, pages 150–162, Dec.

1979.

M. Herlihy. A quorum-consensus replication method for

abstract data types. ACM Transactions on Computer

Systems, 4(1):32-53, Feb. 1986.

IETF. RFC 1034 and RFC 1035 Domain Name Sys-

tem, 1990.

International Standard 9594-1, Information Processing

Systems—Open Systems Interconnection—The Direc-

tory, ISO and IEC, 1988.

R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Lazy

replication: Exploiting the semantics of distributed

308

services. A Ckl Transactions on Computer Systems,

10(4):360–391, NOV. 1992.

[13] L. Lamport. How to make a multiprocessor computer

that correctly executes multiprocess programs. IEEE

Transactions on Computers, 28(9):690-691, Sept. 1979.

[14] B. Lampson. Desiging a global name service. In Pro-

ceedings of the 5th ACM Symposium on Principles of

Distributed Computing, pages 1-10, Aug. 1986.

[15] N. Lynch and F. Vaandrager. Forward and backward

simulations – Part I: Untimed systems. Information

and Computation, 121(2):214-233, Sept. 1995.

[16] N. A. Lynch and M. R. Tuttle. An introduction to In-

put/Output automata. C WI-Quarterly, 2(3):219-246,

Sept. 1989.

[17] Object Management Group, Framingham, MA. Cotn-

mon Object Request Broker Architecture, 1992.

[18] B. Oki and B. Liskov. Viewstamp replication: A new

primary copy method to support highly-available dis-

tributed systems. In Proceedings of the 7th ACM Sym-

posium on Principles of Distributed Computing, Aug.

1988.

[19] Open Software Foundation, Cambridge, MA. Introduc-

tion to OSF DCE, 1992.

[20] A. Shvartsman and C. Strutt. Distributed object man-

agement and generic applications. Compnter Science

TR 94-176, Brandeis University, 1994.

[21] M. Stonebraker. Concurrency control and consistency

of multiple copies of data in distributed INGRES.

IEEE Transaction on Sofiware Engineering, 5(3):188-

194, May 1979.

[22] R. Thomas. A majority consensus approach to concur-

rency control for multiple copy databases. ACM Trans-

actions on Database Systems, 4(2):180–209, June 1979.

309

