
Designing Algorithms for Distributed Systems with Partially Synchronized Clocks*

Soma Chaudhuri Rainer Gawlick Nancy Lynch

Massachusetts Institute of Technology

Abstract

Much of modern systems programming involves designing
algorithms for distributed systems in which the nodes have
access to information about time. Time information can be

used to estimate the time at which system or environment

events occur, to detect process failures, to schedule the use of
resources, and to synchronize activities of different system

components. In this paper we propose a simple program-
ming model that is baaed on the timed automaton model

of Lynch and Vaandrager [9], which gives algorithms direct
access to perfectly accurate time information.

Unfortunately, this programming model is not realistic.
In a realistic distributed system, clocks have skew and a

finite granularity. Furthermore, other details neglected by
the timed automaton model such as processor step times
must also be considered. We provide two simulations that
show how to transform an algorithm designed in the simple

programming model to run in a more realktic distributed
system. One of our simulations is an extension of previous

results on the use of inaccurate clocks by Lamport [5], Neiger
and Toueg [13], and Welch [17]. Our extensions suggest

several powerful design techniques for algorithms that are to
be run in distributed systems with clocks whose divergence
from real time is bounded. We demonstrate these techniques
by providing a new algorithm for distributed linearizable
read-write objects. This algorithm significantly improves
over previous results [1 O] in terms of time complexity and

algorithmic simplicity.

1 Introduction

In most real distributed systems, the timing information

that is available is imprecise. Individual nodes in a dis-
tributed system are usually provided with clocks, which pro-
vide estimates of the real time. These clocks often have a
small skew c, which bounds the amount by which their val-
ues may differ from real time. Clocks with a small skew are

“Supported by NSF grant CCR-89- 15206, by DARPA contracts
NOO014-89-J-1988 and NOO014-92-J-4033, and by ONR contract
NOOO14-91-J-1O46.

Permission to copy without fee all or part of this material IS

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the
title of the publication and ITS date appear, and notice IS given

that copying IS by permission of the Association for Comput!ng

Machinery. To copy otherwise, or to republlsh, requires a fee

and/or speclflc permission

1 2th ACM Symposium on Prlnclples on Dlstrlbuted Computing,

Ithaca NY
@ 1993 ACM (j. sg791-613- l/93/0008 /012150.5O

now achievable by means of time services such as NTP [12]
and the Digit al Time Service [3]. For example, [12] states
that its protocol is “capable of accuracies in the order of a
millisecond, even after extended periods when synchroniza-
tion to primary reference sources has been lost.”

Programming with imprecise clocks can be quite dMicult.
Additional complexity is introduced by a host of mundane

but significant issues such as the granularity of the clocks
and the processor speeds. For example, a processor might
only be able to obtain new clock estimates every so often,
which means that it might “miss seeing” a particular clock

value, and might not be capable of performing a particular

action when its local clock reaches exactly a particular value.

This paper provides a very simple programming model
for the design and verification of realistic timing based dis-
tributed algorithms. By “realistic”, we mean that the algo-
rithms can run in systems that suffer from all of the com-
plications we have discussed above.

The programming model we propose is based on the
timed automaton model of [4, 8, 9, 16]. We have chosen
this model because it is very general and simple. Further-

more, it has a powerful set of proof techniques for reasoning
about timing-based distributed systems. In fact, a subst an-
tial practical verification project [6] which uses some of these

proof methods is being carried out. The timed automaton
model presumes direct access to real time. Furthermore, a
timed automaton is able to schedule actions at exactlv a

predetermined real time.
Our model of a more “realistic system” uses a simple

special case of the model of [7, 11] which we call the MMT
model. The M MT model is an extension of the 1/0 aut oma-

ton model [15] that includes time bound restrictions on the

tasks performed by the automaton. The knowledge that

each node haa of the time is derived from a separate clock
subsystem, which occasionally informs the node of its time.
We suppose that the clock subsystem always provides a node
with a clock value that is within c of real time. However,
the clock may change in discrete jumps, so that any partic-
ular time value might be missed. W bile the MMT model
accounts for many of the complications present in real sys-
tems, it still cent ains some unrealistic assumptions that we

hope to eliminate in future work.

The main result of this paper is a transformation from

algorithms written in the simple abstract model into al-
gorithms in the realistic model, more precisely, from algo-
rithms written in the timed automata model to algorithms
written in the MMT model. The transformation is accom-

plished with two simulations. Both simulations preserve the
real-time behavior of the system, to within a small amount.

121

The purpose of the transformation is to permit algorithms
to be designed and verified in the simple abstract model.

The algorithms can then be transformed using our transfor-
mation to run correctly in the realistic model. This frees the

algorithm designer from worrying about the complications
of the realistic model.

The first simulation transforms an arbitrary timed au-
tomaton conforming to our network interface to a special

case of a timed automaton called a clock automaton. A clock
automaton is a timed automaton with a special clock compo-

nent, where the automaton’s behavior depends only on the
clock, not on real time. The transformation is essentially
the same as the one used by Neiger and Toueg [13] and by
Welch [17], reformulated in terms of timed automata. This

transformation preserves not only logical correctness prop
erties (‘internal specifications”, in t he t erminology of [1 3]),

but also real-time behavior. In this way, it extends the result
of Neiger and Toueg. This extension leads to several new

design techniques that apply to specifications with real-time
behavior as well as internal specifications.

The second simulation transforms any clock automaton
(with some simple restrictions) to a corresponding MMT au-

tomaton. Recall that the MMT model deals with the messy
details of clock granularity and processor step time. The

key observation of the second simulation is that the MMT
automaton might miss seeing particular clock values. Thus,

it will carry out a delayed simulation, continually “catching
up” whenever it has an opportunity to take a step.

We also provide an application of the powerful design
techniques provided by our results. In [10], Mavronicolas

presents two algorithms for implementing Iinearizable read-

write objects in a network, one for our simple abstract pro-
gramming model and a second complicated algorithm for a
realistic distributed system model that corresponds closely
to our clock automaton model. We use the algorithm sug-
gested by [10] for the simple abstract programming model
and apply our first simulation result to obtain an algorithm
for linearizable read-write objects in the clock automaton
distributed system model. The algorithm that results from
the transformation is simpler and has better complexity
than the second algorithm of [10]. In addition to applica-

tions, we discuss some practical implementation issues sur-

rounding our results.

Our model at present only considers safety conditions
and not liveness conditions. In addition, we do not consider

failures. However, it appears that the results will extend to
cases involving faulty nodes and also faulty message chan-
nels. See [17] for an indication of how the first simulation

applies to faulty processes.
The timed automaton and clock automaton models are

introduced in Section 2. Section 3 introduces the simple pro-

gramming model. The transformation to the clock automa-
ton model is the focus of Section 4. Section 5 presents the

transformation to the MMT automaton model. In Section 6
we demonstrate the new design techniques made mailable by

our results with a new algorithm for distributed linearizable
read-write objects. Finally, Section 7 offers some discussion
of the results.

2 Model and Definitions

2.1 Timed Automaton Model

Timed automata are based on the timed automaton model of
Lynch and Vaandrager [9], an extension of that model in [4],

and the 1/0 automaton model of Lynch and Tuttle [15]. A

timed automaton is essentially a (finite or infinite) state ma-
chine. The transitions of this state machine are labeled using
action names. The action names are the means by which a
timed automaton communicates with its environment. The
actions of a timed automaton are dhided into four disjoint
sets, input actions, output actions, internal actions and a

time-passage action. Input actions are controlled by the en-
vironment. To model this fact, each state must have a state
transition for each input actionl. Output actions are con-
trolled by the timed automaton. The time-passage action,

v, signals the passage of time. Internal actions are also con-
trolled by the timed automaton. But, Internal actions are
not observable by the environment.

Definition 2.1 (timed automata) A timed automaton

A consists of four components:

a set states(A) of states. Each state s of A has a state

component s. now which represents the real time in
state s. The domain for the now component is the
non-negative reals, 32+. We denote by s. tbasic all state
components of s except the now component.

a nonempty set start(A) ~ states(A) of start states.

an action signature sig(A) = (in(A), out(A), int(A))
where in(A), out(A), int(A) are disjoint sets of input,

output and internal actions, respectively. We denote
by uis(A) the set in(A) U out(A) of visible actions. We

denote by ezt(A) the set vis(A)U {v} of external actions
where v is the special time-passage action. We denote

by acts(A) the set ezt(A)U int(A) of all actions. Finally
we denote by uacts(A) the set vis(A) U int(A) of non
time-passage actions.

● a transition relation trans(A) G states(A) x acts(A) x

states(A).

A must satisfy the following five axioms:

S1 If s c start(A) then s. now = O.

S2 If (s, a, s’) c trans(A) and a # u, then s’. now = s. now.

S3 If (s, v, s’) c trans(A) then s’. now > s. now.

S4 If (s, v, s’) E trans(A) and (s’, v, s“) E trans(A), then

(s, v, s“) E trans(A).

S5 if (s, v, s“) E trans(A) where s“. now = s. now +A, then
for any A; such that O < Al < At there exists state s’
such that s’. now = s. now +A{, (s, v, s’) 6 trans(A),
and (s’, v, s“) c trans(A). 9

In any state s of a timed automaton A an action a is said
to be enabled if there exists a state s’ such that (s, a, s’) E

trans(A). An ezecution of A is a (finite or infinite) sequence
of alternating states and actions starting with a start state

and, if the execution is finite, ending in a state. For example

1Since we distinguish between input and output setions and re-

quire that each state have a state transition for each input action,

it would be rotationally more correct to call our model the timed

1/0 automaton model rather than the timed automaton model. We

simplify the presentation by dropping the 1/0 prefix from the model

name.
2 There are two ~mall inconsistencies between our definition of

timed automata and the definition of timed 1/0 automata given in

[4]. We define the now as a state component whale [4] defines it as

a function from states(A) to R+. Also, [4] has a slightly stronger

version of S5. Our version of S5 can be strengthened to the version

in S5 by choosing now from the non-negative rationals [9].

122

CY = s~a~g~a~s~ . . . where each (s,-I, a,, s,) G trans(A) and
so c start(A). We denote by ezecs(A) the set of executions

of A.
We now introduce the notion of a timed sequence over

a set B of non time-passage actions. A timed sequence is
a sequence of action-time pairs, (a, t),where a c B and

t E 3?+. If the pair (a, t) precedes the pair (a’, t’)in a
timed sequence then t s t’. The timed schedule of an execu-
tion a of timed automaton A, denoted by t-sched(a), is the
timed sequence constructed sa follows. Suppose that a =

soalslazsz Define ti = si-l. now. Then t-sched(a) =

((al, tl)(az, tz).. .)l(uacts(A) X$?+). Denote the timed sched-

ules of A by t-scheds(A). We extend the definition of a
timed schedule to timed traces. Specifically, t-trace(a) =

t-sched(cv)l(uis(A) x !R+). Denote the timed schedules of A
by t-scheds(A) and the timed traces of A by t-traces(A).

For any execution a, let a. ltime be the smallest num-
ber larger than or equal to s. now for all states s in a. An
execution for which ltime = co is said to be admissible.
If /3 is a timed schedule or a timed trace derived from an
admissible execution a, then ~ is admissible. Denote the
admissible executions of timed automaton A by esecsm (A).

Similarly, denote the admissible timed schedules and admis-
sible timed traces of timed automaton A by t-schedsm (A)

and t-tracesm (A) respectively. A timed automaton is said
to be feasible if every finite execution can be extended to an

admissible execution.
We introduce the following notation. Let a be an execu-

tion of timed automaton A. Then a, (a) is the ith action in

a, s,(a) is the ith state of a not counting the initial state,
and t,(a)is the value of the now component in state si-1(~).
The initial state is denoted by so(a). Let a be a timed se-

quence. Then a,(a) is the action of the ith action-time pair

in a and t,(a) is the time of the ith action-time pair in a.
Furthermore, if a is an execution or timed sequence then i
is the index of action a, (a) in a. If a is an execution then

Q(a) is the set of indices of all non time-passage actions in
cr. Similarly, if a is a timed trace then Q(a) is the set of

indices of all actions in a.
Next we consider the composition, hiding, and renaming

operators. The composition of timed automata provides a
means by which complex timed automata can be constructed

from simpler ones. The constituent timed automata of a
composition communicate on their shared actions. Let A,
for all i c I be a finite set of timed automata. We say
that these timed automata are compatible iff for all i, j E 1,

out(A,) n out(AJ) = 0 and int(A,) n acts(Aj) = 0.

Definition 2.2 (timed automata composition) Define

tbasic(A,) = {s. tbasic I s G states}. Let {A, I i 6 1}
be a finite set of compatible timed automata where 1 =

{l,..., n}. The composition A = ~,el A, is the timed au-

tomaton defined as follows3:

states(A) = ~,,_l tbasic(A,) x R+. If s E states(A),

i.e. S=(sl, ..., s~, now), then for all i c 1, sIA, =
(s,, now).

start(A) G states(A) such that for all i c 1, sIA, <

start(A,).

sig(A) = (in(A), out(A), int(A)) where in(A) =

U,=r ‘n(A~) - U,EI ‘“IAI)? Out(A) = LL Out(A1)
and int(A) = U,GI :nt(Ai).

trans(A) is the set of triples (s, a, s’) such that sIAt =
s’IA, when a @ acts(Al) and (sIA,, a, s’IA,) G trans(A,)

when a c acts(Ai). ■

The projection operator I extends to executions of compo-

sitions. Let A = H,CI At, where {Ai I i c 1} is a finite
set of compatible timed automata. If a is an execution of
A then crlA, is the sequence that results from deleting all

a~(~), ~~(~) when aj(a) is not in acts(Ai), and replacing all
remauung states s, (a) by SJ(a) IAi. The projection operator

extends naturally to schedules, traces, and timed sequences.
The following lemmas are analogs of lemmas in [15].

Lemma 2.1 Let A = ~t61 A,, where {Ai I i G 1} is a

finite set of compatible timed automata. If a E erecsm(A)

then ~lAi E execsm(A,) jor all Ai.

Lemma 2.2 Let A = ~,el A,, where {Ai I i G 1} is a

jinite set of compatible timed automata. Dejine a sequence
of action-time pairs, a = (al, tl)(az, tz). . . . such that a, ~
acts(A) and t, G 32+ for all i. Then CXIA, G t-schedsm(A,)
for all A, ifl a G t-schedsm(A).

Two additional operators that are used for timed automata
are hiding and renaming. The hiding operator is used to
reclassify output actions to be internal actions so that they

are no longer visible to the environment. The renaming
operator renames some subset of the actions of a timed au-

tomaton. See [4, 16] for a formal discussion of the hiding

and renaming operators for timed automata.

2.2 Clock Automaton Model

As a special csae of a timed automaton we define a clock
automaton. A clock automaton is a timed automaton with
a state component, clock, which represents a clock time.

Definition 2.3 (clock automata) A clock automaton A
is a timed automaton where each state contains a state com-

ponent, s. clock, which indicates the current clock time in
state s. Denote by s. cbasic all the state components of s

except the now and clock components. A must satisfy the
following four additional axioms:

Cl Ifs c start(A) then s. clock = O.

C2 If (s, a, s’) c trans(A) and a # v then s’. clock = s. clock.

C3 If (s, v, s’) c trans(A) then s’. clock > s. clock.

C4 If (s, v, s“) c trans(A) where s“. now = s. now +At and
s“. clock = s. clock +A. then for any A: such that O <

A; < At and any A; such that O < A: < A= there ex-

ists state s’ such that s’. now = s. now +A{, s’. clock =
s. clock +A~, (s, v, s’) G trans(A), and (s’, v, s“) E

trans(A). ■

For some clock automata we wish to specify the behavior
of the clock with respect to real time. This is done be re-
stricting the set of reachabie states of the clock automaton.
A state is reachable if it is the final state of some finite ex-
ecution. To formalize this notion, we introduce the concept
of a clock predicate.

Definition 2.4 (clock predicate) A clock predicate, C, is

a binary relation from R + to R+. A state s of any clock

automaton satisfies the predicate C iff (s. now,s. clock) E C.
We say that a particular clock automaton A satisfies C iff
for every reachable state s c states(A), it is the case that s
satisfies C. ■

3~~e ~ ~Y~b~] “Sed ti~ define states(A) represents the nOrmal

Cartesian product.

123

In the following definition we consider a specific type of clock
predicate that bounds the difference between the real time

and the clock time.

Definition 2.5 (CC) Cc is the clock predicate such that

(z, y)~C6ifflz-yl <c. m

To formalize the concept that clock automata are not sup-
posed to use the now component in the transition decision,
we introduce the c-time independence property.

Definition 2.6 (c-time independent) Let A be a clock
automaton. We say that A is c-time independent iff, for
every (s, a, s’) E trans(A) and all states u, u’ c dates(A)
such that u. clock = s. clock, u. cbasic = .s. cbasic, u sat-
isfies clock predicate Ce, u’. clock = s’, clock, u’. cbasic =
s’. cbasic, and u’ satisfies clock predicate CC, the follow-

ing holds: (u, a, u’) E trans(A) when a # v and u. now =

U1. now or when a = v and u. now < u’. now ■

Finally we define a composition operator that applies only to
clock automata. The difference between this operator and
the composition operator for timed automata is that the
clock component as well as the now component is a global
entity in the composed clock automaton.

Definition 2.7 (clock automaton composition) Define
cbasic(A,) = {s. cbasic I s c states}. Let {A, I i G 1}

be a finite set of compatible clock automata where 1 =
{1 , n}. The composition A = ~iel A, is the following

clock automaton. The states(A) = H,C1 cbasic(A,) x 3?+ x

W+. If s c states(A), i.e. s = (sl, sn, clock, now), then

for all i c 1, sIA, = (s,, clock, now). The other components,
start(A), sig(A), and trans(A), are as in Definition 2.2. ■

Lemma 2.3 Let A = ~tel A,, where {A, I i G 1} is a

finite set of compatible clock automata. If a E execsm (A)

then alA, c ezecsm(Al) for all A,.

2.3 Relations on Traces

Consider the following equivalence relations on timed se-
quences. The first equivalence relation preserves the order
between specified sets of actions. It also preserves the real
time of each action to within some constant.

Definition 2.8 (=.,x) Let al and CYZbe timed sequences,
e E $?+, and K a set of disjoint sets of actions. Then al =c,~
az iff there exists a bijective function ~ from fl(crl) to Q(az)
such that for all i, j:

● af(t)(~z) = af(crl), and

● if k G K and a,(al), a~(al) ~ k then i < j iff ~(i) <

~(~), and

● Itf(t)(az) — tl(%)l 5 ‘. ■

The next relation, <b,., just shifts the occurrence of some

actions by 6 in real time. Consider a set of actions k G K.
The occurrence of these actions may be shifted up to $ time
units into the future. The ordering of the actions in k may
change with respect to actions not in k but not with respect
to each other.

Definition 2.9 (<6,.) Let al and cr2 be timed sequences,

6 E !I?+, and K a set of disjoint sets of actions. Then al <b
rrz if there exists a bijective function ~ from Q(al) to Q(cM)
such that for all i, j:

●

●

●

●

2.4

af(i)(~2) = ai(o’l)j

if there exists no k E K such that a; (al) c k, and
aj(czl) @ k then i < j iff f(i) < f(j),

if there exists no k E K such that a, (CYl) c k then
tt(al) = tf(,)(cr2),

if k G K and a,(crl) ~ k then $i(@l) < ~j(i)(crz) <

L(CM) +6. ■

Algorithms and Problems in Distributed Systems

A distributed system is characterized by a set of processes
or nodes that are interconnected with a communication net-
work consisting of unidirectional links. The topology of the

d~tributed system is represented by a graph (V, E) where
the set of nodes in the distributed system is given by V =

{v,... V.} and a set of edges connecting the nodes in V is
given by E where e~,~ c E if there is a link from node v, to

node v,. Let N = {1... n}. The nodes share no memory

and communicate only using messages passed over the links

represented by the edges in E. The message system can
have various delay characteristics. A message system where
the real time delay of any message is between dl and d2
will have its delay characterized using the notation [dl, d2].
We assume the distributed system to be reliable, in other
words, messages are neither duplicated nor lost. However,

messages may be reordered4.
In each of the models we represent each of the nodes

and each of the edges of the distributed system by an au-
tomaton. The algorithm run by the distributed system is

encoded in the automata that model the nodes. The com-

position of the automata modeling the nodes and the edges
is the automaton that models the entire distributed system.

A problem P defined on the graph (V, E) consists of a
set of external actions sig(P) = (in(P), out(P)), a partition

part(P) of the actions in aci?s(P) = in(P) Uout(P), and a set
of timed sequences over the actions in sig(~) called tseg(P).

For partition part(P) = {PI . . . Pn}, where pi ~ actg(P),
we denote the input actions of pi by in (P,) and the output

actions of P* by out (P,). The purpose of the partition is
to associate particular actions with particular nodes in the
graph of the distributed system. Let PI and P2 be two
problems defined on the same graph. We say that a problem

PI is a subset of problem Pz, denoted P1 ~ Pz, iff sig(Pl) =
sig(Pz), part(P1) = part(Pz), and tseq(Pl) ~ tseq(Pz).

Definition 2.10 (solve) Consider a graph (V, E). Let D
be an automaton that models a distributed system with

topology (V, E) such that node v, is modeled by automa-
ton A, for all v, c V. Furthermore let P be a problem
defined on (V, E). Let part(P) = {PI . . . Pn}. D is said to

solve problem P ifi (in(A,), o~t(Ai)) = (in(p,), out (p,)) for

all i such that v, c V and t-tracesm(D) ~ tseq(P). m

We now define two types of generalizations for problems.

Definition 2.11 (P,) Suppose P is a problem with parti-
tion {Pl . .. Pn}. Let K = {pi,...,pn}. Define P. as fol-
lows: (1) sig(P,) = sig(P), (2) part(P6) = part(P), (3)
tseq(PC) = {a I a’ =.,. a for some a’ e tseg(P)}. ■

Definition 2.12 (Pb) Suppose P is a problem with parti-

tion {PI . . . P~}. Let K = {out(Pl),..., out(P~)}. Define P’

as follows: (1) sig(P6) = sig(P), (2) part(P6) = part(P),

(3) k3t?q(p6) = {Cl I ~’ <6,. Cl for some ~’ E tseq(p)}. .

4our results ~1~0 hold for the case where messages cannot be

reordered

124

3 Programming Model (Timed Automaton Model)

We specify formally the simple abstract programming model

using timed automata. This is the model in which algorithm

designers should specify their algorithms and prove them to

be correct. In this model the programmer has direct access
to real time using the now state component5. The messages
sent over edges are taken from an arbitrary message set M.
In order to simplify the proofs we assume that each message

sent is unique, i.e. the same message cannot be sent twice
in a given execution. It is easy, though tedious, to remove
this restriction [1]. In the following sections we describe how
each component of a distributed system is modeled by timed
automat a.

3.1 Algorithm

The timed automaton modeling node v, is referred to as
A,. Since the timed automata A, encode the algorithm,
they must be supplied and proved to be correct by the al-

gorithm designer. A, is arbitrary except for a few restric-
tions. The action signature of A, must include output ac-

tions SENDMSG, (j, m) for each j such that e,,j E E and input

actions RECVMSG, (j, rn) for each j such that ej,, c E, where

m c M. All other actions in act9(A:) are restricted only
by the requirement that acts(A,) n acts(Aj) = {v} when

j # i. This restriction ensures that all communication be-
tween nodes uses the edges in E. The SENDMSG, (j, m) action
sends the message m from v, to Vj. The RECVMSG, (j, m) ac-

tion receives message m sent by V3 to v,. Finally, A, must,

be feasible.

3.2 Communication

Denote the timed automaton that models edge e,,j with
communication delay [dl, &] by E,j,[dl ,dal. The state of E*J

consists of an initially empty buffer & whose elements are

pairs (m, t) where m c M and t c !I?+. The action sig-
nature of E,j consists of input actions SENDMSG, (j, m) and
output actions RECVMSGj (i, m). The action SEFJDMSG, (j, m)

adds (m, t), where t is the now value in the state preceding
the action, to buffer b,j. The action RECVMSG, (j, m) deletes

(m, t), where t is the now value in the state preceding the
corresponding SEPJDMSG, (j, m) action, from buffer ~i,. The
transitions of E,j,[dl ,dzl are shown in Figure 1. The notation

v(At) refers to a time-passage action that increases the now
component by At.

3.3 System

Consider a distributed system with topology G = (~ E)

where each node v, is modeled by timed automaton A, and
each edge e,,3 is modeled by timed automaton E,j ,Idl ,dzl.

Let A be a mapping assigning a timed automaton to each
node in V such that timed automaton A, is assigned to

node v,. Simfiarly, E[dl ,d,] is a mapping from edges in E to
timed automata such that edge e,,~ is mapped to E,$,[d, ,d~].

The timed automaton created by the composition of ail

the A, and E,J,Id, ,&], and the subsequent hiding of the
RECVMSGJ (i, m) and SENDMSG, (j, m) actions, denoted by

D~(G, A, EId, ,~zl), represents the distributed system run-
ning the algorithm described by the mapping A. The sub-
script T on D is meant to indicate that DT(G, A, ~[dl ,d2])

is based on the timed automaton model.

5 In addition to real time, the now state component can also be

viewed as a perfectly accurste clock.

4 Inaccurate Clock Model (Clock Automaton Model)

The clock automaton model is more realistic than the timed

automaton model since it only gives programmers access to

a clock rather than real time. The clock keeps time with
some minimum predetermined accuracy c. In other words,
the clock differs by at most c from real time. The clock is
modeled by the clock component of the clock automaton.

We show how the collection A: of timed automata that

are used to solve a problem in the timed automaton dis-
tributed system model can be transformed to solve a similar

problem in the clock automaton distributed system model
when the clock at each node has a minimum predetermined

accuracy c. The intuition behind the transformation is that
an execution in the clock automaton model should look to
the algorithm at each node like a possible execution of the
timed automaton model. Since the algorithms have no ac-
cess to real time, this is achieved automatically except in
situations where a message arrives at a clock time that is
less than the clock time at which the message was sent. The
problem with this situation is that it cannot occur in the
timed automaton model as long as message delivery times

cannot be negative. We avoid these situations in the trans-

formed clock automata by introducing message buffers at

each node6. In the next two sections we formally specify a

distributed system in the clock automaton model and give
the transformation.

4.1 Algorithm, Communication, System

The node v, is modeled by a clock automaton denoted by
A:,e. A~,e is arbitrary except for a few restrictions. A~,C
must be feasible. Furthermore, A: ~ must satisfy clock pred-
icate Cc, be c-time independent, ‘and conform to the edge

interface.

Denote the timed automaton that models edge e,,~ with
communication delay [dl, dz] by E~J,Idl ,dz]. E~j,Idl ,&] is the

same as the timed automaton E:j,[dl ,dz] in the timed au-

tomaton model except that the messages are taken from
the domain M x Y?+, and the actions RECVMSGj (i, m) and
SENDMSG, (j, m) are renamed to ERECVMSGJ (z, (m, c)) and
ESENDMSG, (j, (m, c)) respectively.

The automaton modeling the distributed system in the
clock automaton model, denoted Dc(G, A:, E~dl ,dz]), is con-

structed as the composition of all A~,e and E~j,[dl ,dzl in the

same manner as in the timed automaton distributed system
model. In the clock automaton distributed system model

the actions ERECVMSG1 (i, (m, c)) and ESENDMSG, (j, (m, c))

are hidden since they constitute the edge interface.

4.2 Transformation

Definition 4.1 (C(A,, c)) Let A, be a timed automaton.
Then C(A,, c) is the following clock automaton:

● states(C(A,, c)) = states(A,) x $?+. Consider the state

s E states(C(A,, c)), i.e. s = (si, c). Then s. cbasic =

si. tbasic, S. now = s,. now, and s. clock = c. Fur-
thermore define s.A, to be the state of A, such that

(s.A,). tbasic = s. cbasic and (s.A,). now = s. clock.

● s c start(C(A,, c)) iff s.A, E start(A,) and s. now = O.

eThe requirement that the clock time at which a message is deliv-

ered is never less than the clock time at which it was sent was first

Identified by Lam port in [5], The use of buffering to achieve this

property was suggested by Welch in [17] and Neiger and Toueg in

[13],

125

SENDMSQt(j,S?l)
Effect:

v(At)
Precondition:

~,~ := bij U{(m, now)} ~(m, t) ~ b,j ..t.t+ dz < now +At
Effect:

RECVMSG, (i, m) now := now +At

Precondition:

(m, t) C bij
t+dl<now<t+dz

Effect:

b,j := bij -{(~>t)]

Figure 1: Transitions for ~tj,[dl ,d2].

● ~ig(C(Ai, c)) = sig(A,).

● (s, a, s’) E tra~~(C(Ai, c)) if (s.Ai, ~, s’.Ai) ~ tmns(A,),

a # v implies s’. now = s. now, and a = v implies

s’. now > s. now and s’ satisfies clock predicate Cc. ■

The following lemmas are a consequence of Definition 4.1.

Lemma 4.1 Let A, be a timed automaton. Then C(Ai, ~)
satisjies clock predicate C,. Furthermore, C(Ai, e) is c-time

independent.

Lemma 4.2 Consider timed automaton A,. For any a c
ezecsm(C(A,, c)) dejine /3 = (al (a), cl(a))(az(a), c2(cY))...,
where c,(a) = s,-l(cr). clock. Then /31(uacts(A,) x R+) c

t-schedsW(A,).

Section 4.2.2 and Section 4.2.1 introduce the clock automata

%,c and Rj IF that implement the buffering needed to en-
sure that a message never arrives at a clock time that is
strictly less than the clock time at which it was sent. Us-
ing S,J,. and R,,,, along with transformation C we specify
the transformation used to make A, function properly in the
clock automaton model. Let A~,C be the parallel composi-
tion for clock automata of C(A,, e), Sij,e and R],,, for all

e,,~ c E and the subsequent hiding of the SENDMSG, (j, m)
and RECVMSGI (j, m) actions.

The following lemma, which follows immediately from
Lemma 4.2 and the definitions of .S,3,. and R,,,., is used to

compose the simulation of this section with the simulation

to the MMT model.

Lemma 4.3 Let t, k be arbitrary constants. Assume that
~or any a c ezecs(A,) and t G R+ there are at most k
output actions aj (a) such that tj (a) c (t, t + k~] and at
most k output actions a~ (a) such thattj(a)E [t,t+ ~~).
Then for any a 6 ezecs(A~,c) and c c W+ there are at most
k output actions a,(a) such that cl(a) c (c, c + k-t] and at

most k output actions a~(cr) such that Cj(@) E [c, c + k~),

where Cj(a) = s,-(a). clock.

4.2.1 Send Buffer

The sole purpose of clock automaton Sij,c k to tag the outgo-

ing messages of C(A,, c) with the clock time at which they
are sent. .%j,6 satisfies clock predicate CC. The state of

S,J,~ consists of an initially empty queue q,j with elements
from J4 x 3?+. The operations defined on the queue are
enqu(gj,, (m, c)) which adds (m, c) to the end of the queue,

degu(g,,) which removes the front element of the queue, and

jrorat(qj,) which returns the front element of the queue. The
actions of S,J,= are input actions SENDMSGi (j, ~) and output

actions’ ESENDMSG, (j, (m, c)). The SENDMSG, (j, m) action

7The E ,n ERECV&SSQstands for “external”

causes Sa3,Cto receive message m from At,~. SiJ,~ delivers the

message (%, c) to E,j with the ESENDMSGi(~, (m, c)) action.
The transitions for Sij,e are shown in Figure 2.

4.2.2 Receive Buffer

The clock automaton Rj,,~ is used to ensure that the clock

time at which a message is received by c(Ai, ~) is not Strictb

less than the clock time at which the message was sent.
RJ,,, receives messages from the communication channel and
holds them in a buffer until the clock at the node is greater
than or equal to the clock time at which the message was
sent. RJ i,6 satisfies clock predicate C,. The state consists

of an initially empty queue gj, with elements from M x R+.
The actions of Rji,. are input actions ERECVMSG, (~, (m, c))

and output actions R.ECVMSG, (j, m). ER.ECVMSGa(~, (m, c))
causes Rj,,6 to receive message (m, C) from E~i,[dl ,&]. The

message (m, c) was sent by node Vj when the clock at that
node had the value c. The RECVMSG, (j, m) action causes

R ~,,, to deliver message m to C(A,, c). The transitions for

Rj.,. are shown in Figure 2.

4.3 Simulation Proof

Consider a distributed system modeled in the timed automa-
ton model by DT(G, A, EId~ ,dy). Let Dc(G, A;, E(dl ,dzl)

be a distributed system modeled in the clock automaton

model where each A~,c is generated from A, based on the

transformation defined in Section 4.2. Assume that d; =

MAX(dl – 26, O) and dj = dz + 26.
We introduce some notational conventions. As short-

hand we refer to DT(G, A, E[d; ,dj]) and Dc(G, A:, ‘fall ,d,])

by DT and Dc respectively. This section makes extensive
use of the ‘.,K relation. K = {uacts(Al), ..., uacts(A~)} in
all cases. Consequently, we drop the subscript K for the
remainder of Section 4.3. Suppose a is an execution of

Dc. Since uacts(DC) = U,~N uacts(A~,6) and uacts(A~,,) n

uacts(Aj,e) = 0 when i # j, we can associate a clock time

with each non time-passage action in cr using the clock com-
ponents of the A~,,. Formally, for action ai(~) let c,(a) =

(~i-l(~)lAj,c). dock when at(a) c uacts(Aj).

Definition 4.2 Suppose a is an execution of Dc. We define
two timed sequences y: and ~~. Let y: = ((al (a), cl(a)),

(az(cr), cz(a)). . .)l(UaCh(&) x $?+). Thus ‘y& is essentially
the projection of the timed schedule of a onto the actions of
the DT except that the time component of each action-time
pair is a clock value rather than the now value. Reorder Y:
in non-decreasing order of the time components, retaining

the original order of action-time pairs with the same time

values. Call the resulting timed sequence y~. ■

The following lemmas give some properties of ~~ and 70.

126

SENDMSGt (j, m)

Effect:

9,3 .= engu(~,~, (m, clock))

ESENDMSG, (jj (m, c))

Precondition:

(m, c) = front(9,j)
c z clock

Effect:

!7,3 := de9U(9iJ)

V(At, Ac)
Precondition:

~(m, c) E 9,J s.t. c < clock +Ac
l(now +At) - (cJock +A=)l ~ c

Effect:

ERECVMSG, (j, (m, C))

Effect:

9J, := enqU(9ji, (m, c))

RECVMSGI (j , ?71)

Precondition:

(m, C) = &ont(9j,)
C < clock

Effect:
‘JJ, := dequ(9J,)

v(At,Ac)
Precondition:

~ (m, c) 6 qj, s.t. c < clock +Ac

l(now+At) - (clock +Ac)l ~ c
Effect:

now := now +At now := now +At
clock := clock +AC CiOC~:= clock +Ac

Figure 2: Transitions for S,j,c on the left and for R,,,. on the right

Lemma 4.4 Let a be an admissible ezecution of Dc. Then

ya 1A, is an admissible timed schedule of A,.

Proofi Let ~, = -Y~1A,. Using Definition 4.2 is is easy
to see that ~~ 1A, = ~j 1A,. Thus yi = -y: 1A,. Let admis-
sible execution a, of C(A,, c) be defined as follows: c-r, =
(CIIA~,e)lC(A,, ~). In other words ~i is the projection of ex-
ecution a onto the clock automaton modeling all parts of
the node v, except the send and receive buffers. Let ~, =

((al (a,), cl(a,))(az(cr,), Cz(al)) . . . where we define c,(cY,) =

sj–1 (~:). clock. Now the construction of y~ shows ~~ 1A, =
P,l(uacts(A,) x R+). s~nce ~, = 7&lA, we know that ~i =
,& l(uacts(A,) x R+). Using Lemma 4.2 we can now conclude
that yi c t-~cheds-(A:). ■

Lemma 4.5 Let a be an admissible execution of Dc. Then

‘!’’JIEtj,[d; ,dj] is an admissible timed schedule of E,j,[d; ,&J.

Proofi We provide an informal sketch of the proof. The
times associated with the actions in 7~ lE,,,[d; ,dj] are the

clock times of the actions in a. The proof notes that the
clock time of any send action is at most c greater than the

real time of the send action. Similarly, the clock time of
any receive action is at most c less than the real time of the
receive action. Thus the clock time used by a message is
at least dl — 2e. We note that the buffering now gives the
desired result which is that the clock time used by a message

is at least max(O, dl — 2c). The argument showing that the

clock time used by a message is at most dz + zc is similar. E

Theorem 4.6 Suppose I_Yis an admissible execution of DC.

Then there exists an admissible execution@ of DT, such that
t-trace(a) =, t-trace(~).

Proof: Lemma 4.4 shows that -yaIA, c t-schedsm (A,), and
Lemma 4.5 shows that ~~ I~,~,[d~ ,dj] C t-sckhw(EiJ,[d{ ,d~]).

As a consequence we can conclude from Lemma 2.2 that

Y. c t-schedsm (DI-). Thus there exist an admissible execu-
tion ~ of DT such that y~ = t-sche~~). It is straightforward
to show that t-trace(a) =. yal(vis(D~) x !)?+). Since ya =
t-sched(/3), we know that 7ml(uis(D~) x Y?+) = t-trace(~).

Thus we conclude that t-trace(a) =, t-trace(/3). ■

We are now ready to state the main result about the first
simulation. The result states that any algorithm that solves
a problem P in the timed automaton distributed system

model can be transformed to solve the problem P, in the
clock automaton distributed system model where the clock
error is bounded by c.

Theorem 4.7 Suppose DT(G, Ail E[d! ,d~l) solves P. Con-

sider DC(G’, A:, E[dl ,dzl) where each”~~,;-is generated from

A, based on the transformation defined in Section 4.,?. As-
sume that dj = MAX(dl – 26, O) and d; = dz + 2c. Then

DC(G> A:, ‘fall ,d,]) so~ues p..

Proofi Consider any a G execsm (Dc(G, At, E~dl ,d2])). BY

Theorem 4.6, there exists ~ G execsm (DT(G, A, E[d~ ,dj])),

such that t-trace(a) =. t-trace(/3). Since /l is an admissible

execution of DT(G, A, E[d~ ,dj}), we know that t-trace@) C

tseg(P). Consequently, t-trace(a) G tseq(P6). ■

Previous work by Lamport [5] and Neiger and Toueg [13] has

focused on interna~ specijicatiorw, which in our terminology
are specifications where P = Pm. In the context of asyn-

chronous distributed systems, Lamport in [5] was the first to
show that an algorithm solving an internal specification in a

system with access to real time can be transformed to solve
the same specification in a system with clocks that are not

related to real time. In [13] Neiger and Toueg give the first
formal definition for the concept of an internal specification.
They also extend Lamport’s original result to synchronous
systems and systems where the maximum amount by which
clocks differ from each other is bounded.

Since Theorem 4.7 covers non-internal specifications, or

real time specifications, our results extend those of [5] and

[13]. The ability to use real time specifications provides
very powerful design techniques that are demonstrated in

Section 6 and further discussed in Section 7. It should be

noted though that our model and those of [5] and [13] dif-

fer. In contrast to the asynchronous systems, we assume
that the delay on the links is bounded. Furthermore, in the

synchronous setting [13] only bounds the amount by which
clocks differ from each other, However, we note that the
clock model where the clocks differ by at most e from each
other is similar to our clock model if some of the nodes in the
distributed system are attached to real time sources such as
atomic clockss.

5 Realistic Model (MMT Automaton Model)

In this section we consider a distributed system model based

on the MMT automaton model. The MMT automaton

8 We note that we do not claim any formal equivalence between the

two clock models so that the comparison stated here is informal

127

model is more realistic than the clock automaton model in
several import ant ways. M MT automat a as defined in this

section model finite step times by only guaranteeing that
locally controlled actions occur within some time 1 of each
other. This limits the speed at which locally controlled ac-
tions are guaranteed to execute. Another consequence is

that the clock may increase in discrete “jumps”, skipping
some values and making it impossible for the automaton to

perform some output at a specified clock time.
We show how any collection of clock automata that are

used to solve a problem in the clock automaton distributed
system model can be transformed to solve a similar pro~
lem in the MMT automaton distributed system model. The
minimum clock accuracy is sssumed to be c in both models.

Furthermore, if the locally controlled actions in the MMT
model are only guaranteed to occur within / time units of

each other, then for some constant k, at most k outputs can
occur in the clock model at each node in any clock time
interval of length Id. The transformation involves maintain-
ing a buffer of pending outputs. Every time an output step
can occur in the M MT model, the first output action in
the buffer is allowed to take place. This causes each output
to be delayed by real time at most kl, if the output is in
the kth position in the buffer when it is first added to the
buffer. Because oft he restriction on the rate of output, the
buffer remains bounded in size, which implies that the out-

puts are only delayed by a constant amount of time. In the
next three sections we int reduce the M MT model, specify a

distributed system in the MMT automaton model, and give
the transformation.

5.1 MMT Model

We give a brief introduction to MMT automata and refer
the reader to [7, 11] for a more complete discussion. An

MMT automaton A, like a timed automaton, consists of a
set of states, states(A), a subset of the states, start(A), an
action signature, sig(A), and a set of transitions, trans(A).
It does not include the special state component now or the

special time-passage action v. Timing constraints are en-

coded by a partition, part(A), of the locally controlled ac-

tions, out(A) U int(A), into a set of equivalence classes and

a boundmap which maps each class in the partition to a
closed subinterval of [0, co]. The bound map provides timing

constraints for the actions in each class of the partition. In-
formally, the boundmap gives the minimum and maximum
amount of time some action from a class must be enabled
before an action from the class is executed.

An ezecutiorr cr of an MMT automaton A with boundmap
b is a (finite or infinite) alternating sequence of states and
action-time pairs starting in a start state, ending in a state
if it is finite, with the following additional conditions. If

a = sO(aI, tl)sl(a2, tl) ..., then (st-1, ai, si) c trans(A) for
all i and t,-l< t,for all i. Furthermore, if b(C) = [/, u]

for C ● part(A) and a; G C’, then there exists a consecutive

set of states 93 . . . si in which a, is enabled and t,– tjz 1.
Also, there exists no sequence of consecutive states SJ . ..s,
in which some action of C is enabled and t i — t] > u, but
there is no j < k < i such that ak E C. Finally, if a is
infinite, the time values are unbounded. A timed trace of
an execution w, denoted t-trace(A)is the projection of the
execution onto ezt(A) x Y?+. The executions and the timed

traces of MMT automaton A are denoted by ezecs- (A) and
t-tracesm (A) respectively. Finally, we note that a MMT au-

tomaton solves a problem as defined in Definition 2.10.

5.2 Algorithm, Communication, System

The node ~: is modeled by an MMT automaton denoted by

A&. Ar~,t is arbitrary except for a few restrictions. Its
boundmap should map classes of the partition to the interval
[0, t]. In the construction of the automaton representing the

entire system, A& is composed with an MMT automaton

C,~,z whose sole output action is TICK(C), where c represents
the current clock time. The value c is always within c of real
time. Finally, A& must conform to the network interface
described in SectIon 4.1.

Denote the automaton that models edge e:,j with com-
munication delay [dl, dz] by ~,~,[dl ,&]. ~,~,[dl ,dz] is the same

as timed automaton ~~,,[dl ,da].

In [7], there is a transformation T from MMT automata

to timed automata. We use this transformation so that the

MMT automata A~,t and C,~,t can be composed with the
timed automata ~i,,[dl ,d,]. Since T is trace preserving, in

other words t-tmcem (A) = t-tracem (T(A)) for any MMT
automaton A, we do not lose any of the realistic charac-
teristics of the MMT automata when using T. We com-

pose T(A&) with T(C,~,,z) to construct the automaton
representing node v,. The automaton modeling the dis-

tributed system in the MMT automaton model, denoted
) “ constructed as the composition ofDM(G, &t, E[%l,dz] , 1s

all automata representing the nodes, T(A~e,l) composed
with T(C,rnc,z), and all automata representing the edges,

%)[4 ,&l ~ using timed automata composition.

5.3 Transformation

Consider a clock automaton A~,, modeling node v, in the
clock automata model. We transform A~,6 into an MMT

automaton for node v, with the transformation M. The
simulation in this section requires that the clock automaton
Af,e to which the transformation is applied satisfy the follow-
ing restrictions. A~,c must be feasible, satisfy clock predicate

Cc, and be c-time independent. Furthermore, for some con-
st ant k, any a G execs (A~,c), and c c R+ there are at most

k output actions a~ (a) such that Cj (a) 6 (c, c + k.t] and at
most k output actions a~ (a) such that Cj (a) c [c, c + kf!),

where c, (cr) = s,- (cr). clock. Since the clock automata gen-

erat ed by the transformation in Section 4.2, satisfy these

restrictions, as long as the original timed automaton A, sat-
isfies the appropriate restrictions, the simulation to the clock

model can be composed with the simulation to the MMT
model. See Theorem 5.2.

Definition 5.1 (M(A~.,, t)) Let Af.e be a clock automa-
ton. Then M(A~~,, t’) is’ the following” ‘MMT automaton:

s

●

b

states(M(A~,C, t’)) = states(Aj,c) x R+ x Q(out(A~,,)),

where Q(out(A~,c)) is the set of all queues whose ele-

ments are in out(Aj,e). If s c states(it4(A~,c, t’)), i.e.
s = (s,, c, q), then s. simstate = s,, .s. mmtclock = c,

and s. pending = q. Each state s also has the follow-
ing derived state components: s. ~rag, an arbitrary ex-
ecution fragmentgof A~,e containing no input actions,
with initial stdte s. simstate and some final state u such
that u. clock = s. mmtclock, s. fragstate, the final state
of s. frag, and s. fragoutputs, the projection of s. frag
onto ovt(A~,e).

s c start(M(A~,C, 1)) iff s. simstate c start(A~,c),
s. mmtclock = O, and s. pending is empty.

sig(A4(A~,e, l)) = (in(A~,,) U {TICK(C)}, out(A~,,), {r}).

128

●

●

part(M(A~,C, l)) = {out(A~,c) U {T}}, with boundmap
value [0, 4 for the single class.

(s, a, s’) c trans(M(A~,C, /?)) iff one of the following
holds:

– a = TICK(c),
s. simstate = s’. simstate, s’. mmtclock = c, and
s. pending = s’. pending.

— a c in(A~,6),

(s.jragstate, a, s’. simstate) c trans(A~,C),

s’. mmtclock = s. mmtclock, and s’. pending =
s. pending plus s. fragoutputs.

— a e out(A~,C),

a is first on s. pending, s’. simstate = s. fragstate,
s’. mmtclock = s. mmtclock, and s’. pending =
s. pending minus first action, plus s. fragoutputs.

—a=r,

s. pending is empty, s’. simstate = s. fmgstate,

s’. mmtclock = s. mmtclock, and St. pending =
s. pending plus s. fragoutputs.

In the transformed automaton the state component simstate

constitutes the simulated state of the clock automaton. The
mmtciock component is the clock value of the MMT au-

tomaton, and the pending component is the buffer of output
actions that must still be executed. The derived state com-
ponents frag, jragstate, and ~ragoutputs are used to calculate
pending and simstate at the transitions of the transformed
automaton.

5.4 Simulation Proof

The main result about this simulation states that any al-
gorithm that solves a problem P in the clock automaton

distributed s stem model can be transformed to solve the
!problem Pke 2C+3t in the MMT automaton distributed sys-

tem model where the clock error is bounded by c, the step
times are bounded by 1, and k characterizes the speed at
which the algorithm in the clock automaton model generates
output actions. Recall from Definition 2.12 that Pke+2C+3~
is the same as P except that the output actions at each node
can be shifted by at most M + 2C + 3/ into the future. The-
orem 5.1 is stated wit bout the proof since its proof is very

similar to the one given for Theorem 4.7.

Theorem 5.1 Suppose DC(G, A:, E[dl,djl) solves P. Con-

sider D~(G, A~l, E[&,~21) where each Afi,l is generatedjrom

A~,. based on the transformation defined in Section ,5,3. As.

sume d; = dl and d; = dz + k[. Then DM(IG, .&’j, E&,d2])

solves Pke~2’~3i.

Using Lemma 4.1 and Lemma 4.3, the result of Theorem 5.1
can be composed with the result of Theorem 4.7.

Theorem 5.2 Suppose DT(G, A,, E[d; ,djl) solves P, where

A, conforms to the timing restrictions o Lemma 4.3. Con-
L.

sider DM(G, A:’, Efll,dzl) where each A,,c,l IS generated from

A;,, based on the transformation defined in Section 5..s, and

each A~, e is in turn generated from A, based on the transfor-

mation defined in Section 4.??. Assume that d{ = MAX(dl –
2c, O) and d; = dz + 2C + kl. Then DM(G, A~f, E[’$,d,l)

solves (Pc)kz+2’+34.

‘The feasibdity requirement and the clock predicate Cc of As ~,

together with the invariant that s. mmtclock > (s. stmstate). c?ock

for all states s, imply that such a fragment always exists when e is

fimte.

6 Linearizable Read-Write Objects

We consider a network implementation of concurrent, d~

tributed shared memory objects satisfying linearizability.
Each READ or WRITE operation does not take place in-

stantaneously, but has invocation and response events, which
may be separated by other intervening events and might

even occur at different times. In a concurrent execution,
operations may therefore overlap. Linearizability requires
that a concurrent execution have the same behavior zs a

sequential execution where each operation takes place in-
stantaneously at some point in time between its invocation
and response.

We present an algorithm for linearizable read-write ob-
jects in the clock automaton distributed system model. We

consider the simple algorithm for this problem in the timed
automaton distributed system model given by Mavronico-
las in [10] (the algorithm is a generalization of an algo-
rit hm in [2].) We then transform the algorithm using our

simulation techniques to arrive at a simple algorithm in

the clock automaton svstem. We moceed bv defininir c-
superlinearizability (a ~roperty stro;ger than” lineariz;bil-

ity), and modifying the algorithm for linearizability in the
timed automaton model, to one that solves superlineariz-
ability in the same model. We then use our first simulation

to show that the algorithm solves linearizability in the clock
automaton model.

Our algorithm is much simpler and improves on the com-
plexity bounds of the algorithm for the clock automaton
model presented in [1 O]. We present our algorithm and com-
plexity results in the clock automaton model rather than the
more realistic MMT model. so as to be consistent with me-.
vious results. It is easy to transform this algorithm to run

in the realistic model using Theorem 5.2. We generalize our

results to other shared memory objects in the full paper.

6.1 An Algorithm for Linearizability in the Timed Automa-

ton Model

We define Linearizability formally below. Given a timed
schedule a, each operation op is defined by a pair of actions,
the invocation Inv(op) and the response Res(op). A timed
schedule a is linearizable if it is possible to create a timed

sequence /3 by inserting an operation-time pair (op, t) into
a for each operation op such that, (op, t) is ordered between

lnv(op) and Res(op), and a READ operation returns the

value written by the last WRITE operation that precedes

it in the projection of ~ onto the operation-time pairs. We
call this projection T1(a). We say that operation op occurs
at time t in r-l(a) provided that the pair (op, t) appears in
the sequence T1(a).

We now give an informal description of the algorithm
presented in [10]. The algorithm is presented in a model
similar to the timed automaton model with message delay
[d;, d;]. The model in [10] assumes that at any particular
time, all inputs at a node arrive before any outputs are ex-
ecut ed. We modify the algorithm in [1 O] slightly to work in
the timed automaton model, which does not have this prop-

erty, by waiting an arbitrarily small amount of extra time 6

before executing an output action that depends on all the
inputs at a particular time. We define c to be any value

between O and d; – 2t, where c is the clock inaccuracy in the
clock model. By varying the value of c, the user can achieve
a tradeoff between the time complexity of a read and write.

129

Algorithm L The inputs to node i are the invocation actions
READi and WRITEi (w) from the external environment and

messages of the form UPDATEj (v, t) from node j. The out-
puts are RETtEINa (v) (the response to READ:) and ACKi (the

response to WRITE;(v)) to the external environment, and
messages of the form UPDATE, (v, $) to other nodes. When a
READ, occurs, the processor (node) waits c+6 time, reads the
value w in its local memory, and does a RETURN:(v). When
a WRITE:(0) occurs, i sends an UPDATEi (v, t) message to all
processors (including itself), where t is the sending time. It
then waits d~ - c time and does an ACKi. @ receiving an
update message UPDATEj (u, t), the processor waits until the
time component now equals t+ d:+ 6 and then changes
the value in its local memory to v. If it receives more than

one update message at the same time, it picks the one with

largest the index j, and ignores the others.
In any execution of the algorithm L, every read can be

linearized just after its invocation and every write can be
linearized just before its response. To prove this, we notice
that updates to each processor’s local memory happen at
exactly the same time. Thus, all local memories are always
consistent after each real time. Note that, intuitively, a read

actually occurs at the time of response (that is when the
local copy is read), while a write occurs at the time of the

local update. However, the update is not necessarily within
the range of the write, but exactly dj + 6 after its invocation.
We therefore shift the linearization points of both reads and
writes c + 6 earlier, causing the reads to be linearized at the

time of invocation (duration of a read is c+6), and the writes
at the time of response (duration of a write is d; – c). This
satisfies the requirement that reads and writes be linearized
between their invocation and response.

We note that the algorithm only guarantees linearizabil-

ity when an execution has the property that the actions at
each node alternate between an invoke action and the corre-
sponding response action. An execution with this property
is said to satisfy the alternation condition. We say that the

environment is the first to violate the alternation condition
for an execution if the smallest prefix of the execution not

satisfying the alternation condition contains two consecutive
invoke operations at some node. We define the problem, P,
of a linearizable read-write object aa follows. The timed
traces of P are the union of the set of traces in which the
environment is the first to violate the alternation condition,
and the set of traces that satisfy the alternation condition
and are linearizable.

&(G, L, E[dj ,dil) is the timed automaton system with

message delay bounds [d{, d:] running the algorithm L. We
define the time complexity of an operation to be the max-

imum time between the invocation and response of any in-
st ante of the operation in any execution of the system. A

variation of the following lemma is proven in [10]. We have

the added time complexity of 6 on the read.

Lernrna 6.1 DT(G, L, E[d: ,d:l) solves P with the time com-

plexity of c + 8 jor a read operation and the time complexity

of d; — c for a write operation.

6.2 An Algorithm for Superlinearizability in the Timed Au-
tomaton Model

We describe our c-superlinearizability property. A timed

schedule a is c—superlinearizable if it is possible to create a

timed sequence /? by inserting a pair (op, t)into a for each

operation op such that, (op, t) is ordered between Inv(op)

and Res(op), the time of Inv(op) is less than or equal to

t - 2c, and a READ operation returns the value written by
the last WRITE operation that precedes it in the projection

of /3 onto the operation-time pairs. We call this projection
r.(a).

We define the problem, Q, of an e-superlineariz able read-
write object as follows. The timed traces of Q are the union
of the set of traces in which the environment is the first to
violate the alternation condition, and the set of traces that
satisfy the alternation condition and are c-superlinearizable.

We remark informally that many linearizable algorithms

can be transformed into c-superlinearizable algorithms, by
allowing each operation to delay an extra 2C before starting

the normal processing of the operation, So, if an operation
takes time t in the original algorithm, it would take time

t+ % in the new algorithm.
We modify the algorithm L described above to solve c-

superlinearizability. While adding a delay of 2C before every
operation as suggested by the above transformation is suf-
ficient for correctness, we can improve on the performance
of the algorithm by adding delays more judiciously. Specif-
ically, it is sufficient to add a delay at the beginning of a
READ operation, but it is not necessary to modify a WRITE
operation. It is easy to see, intuitively, that each operation
is now linearized at least 2C after its invocation, and no later
than its response.

Our modified algorithm S (for e-superlinearizability) is

described formally below, where each processor (or node) i

is represented by a timed automaton, S,. The state com-

ponents of the automaton are: the now component; value,
a value in V, initially vo; and the records read, write and
updates, as described below.

●

●

●

The components of the read are
status, in { inactiuq active}, initially inactivq and
time, a nonnegative real or nil, initially nil.

The components of the write are

status, in { inactivq send, ack}, initially inactioq

send-valuq in V U {nil}, initially nit

send-procs, ~ P, initially 0;
send-time, a nonnegative real or nil, initially nil; and
ack- time, a nonnegative real or nil, initially nil.

updates is a set of records r, each with component Q.-
p;oc, in P U { nil}, initially nit
value, in V U {nil}, initially nit and
update- time, a nonnegative real or nil, initially nil.

In addition, there is a derived variable mintime, defined as
the minimum of the components read. time, write. send-time,

write. ack-time, and r. update-time (r in updates). The input

actions are READi, WRITE,(v), and RECVMSG, (j, (v, ~)); the

output actions are RETURN, (o), ACK,, and SENDMSG, (j, (v, t));

and the internal action is UPDATE. The transition relation

is given in Figure 3.
The following lemma shows that our new algorithm S

linearizes each operation at leaat 2C after the invocation.

DT (G, S, E[d; ,&J) represents the timed automaton system

with message delay bounds [d;, dj] running algorithm S.

Lemma 6.2 DT(G, S, E[d: ,&J) solves Q, with time com-

plexity 2e + c + 6 for a read and time complexity dj – c

for a write.

130

WRITE, (V)

Effect:

SENDMSG, (j, (u , t))

Precondition:

wr:te := (send, u, P, now, now+ d; - c) wrtte. status = send

wr; te. send-value G v

ACK , j E wrate. send.procs

Precondition: wrate.send-tsme z now

wr$te. status E ack t=now+d;

write. ack-t;me a now Effect:

Effect: wr;te. send-procs := write .send-procs - {j}

write .status := macttve if write .send-procs G O

wrtte. ack-ttme = nil then wr:te. status := ack

write. send. t;me := nil

READ,

Effect: REC:W&Q::, (v, t))
read := (active, now+ c + 26 + 6)

if ~r E update8 s.t. r.update-time z t + 6

RETURN, (u) then updates := updatesu {(j, u, t + 6)}

Precondition: elseif r E updates s.t. r.update-tsme z t + 6 and r.proc < j

reads (acttve, now) then updates := updatesu {(j, v, t + 6)} - r

value z v

~. g updates s t.r.update.tsme z now I/(At)
Effect: Precondition:

read := (tnact:ve, ntl) now + At < mtnttme

Effect

UPDATE, now := now+ At

Precondition:

r E updates s t.r.update-tzrne a now

Effect:

value := r.value

updates := updates - r

Figure 3: The Transition Relation for Read- Write

6.3 An Algorithm for Linearizability in the Clock Automaton
Model

As claimed above, algorithm S solves c-superlinearizabllity
in the timed automaton model. We use our first simulation

to transform the algorithm to run in the clock automaton
model with delay [dl, dz]. Assume that d; = maz-(dl – 2c, O)

and d; = d2 + 2e.

Lemma 6.3 DC (G, S:, E~dl ,dal) solves Q,, with read time

complexity 2C + b + c and write time complexity dz + 2C — c.

To show that our algorithm actually solves linearizability in
the clock model, it remains to prove that Q. ~ P.

Lemma 6.4 Q. ~ P.

Proof: Let /3 be a timed trace in Q,. Then /3 is obtained
by modifying some /3’ c Q by moving actions by at most e

wit bout changing local node order.

Suppose that ~’ is a trace in which the environment is
first to violate the alternation condition. Then there is a
prefix of @ in which there are two more invocations than

responses at some node i; let 7’ be the shortest such pre-
fix. Consider the subsequence of invocations and responses

for node i in y’. The same subsequence must appear in a
prefix of ,B since @ and & satisfy the same local node order.
Therefore, the environment is first to violate the alternation
condition in /3 as well.

Now suppose that ~’ satisfies the alternation condition

and is c-superlinearizable. Since local node orders are the
same in /3 and /?, there is correct alternation in fl aa well.
From a timed sequence r. (~’) that is used to satisfy su-

perlinearizability in /?, we construct the timed sequence r,
where the time for each operation is shifted earlier by e.

Since the order of the operations in r and ~s(/3’) are the
same, it is now straightforward to show that there exists
some rl (~) such that r = r~(/3), i.e. T satisfies linearizabllity

in /3. Therefore, /3 satisfies the alternation condition and is
linearizable. It follows that ~ is a timed trace in P.

■

Theorem 6.5 follows from Lemma 6.3 and Lemma 6.4.

Theorem 6.5 Dc(G, S:, E&, ,d,l) solves P, with read time

complexity 2E + b + c and write time complexity d2 + 2C — c.

The complexity bounds of our algorithm represent a signif-
icant improvement over the algorithm for linearizable read-
write objects in the clock automaton model presented in [10].
It is important to note here that the clock automaton model
in [1 O] is a slight variant of ours. W bile our model allows
clocks to be at most e away from real time, the clock au-
tomaton model in [10] allows clocks to be at most a constant
u from each other, while proceeding at a constant real time

rate. We claim informaUy that the clock model in [10] is
similar to ours if u = 2c, and at leaat one of the nodes in the

system are attached to a real time source such aa an atomic
clock. In particular, our results apply to this model w well.

Translated into the model in [10], our algorithm would have
a read time complexity of c + u, and a write time complexity
of d2 — c + u, giving a combined read and write complexity
bound of dz + 2u. The algorithm presented in [10], which in-
volves some complicated time-slicing, achieves the read time
complexity 4U and the write time complexity dz + 3U.

We can extend our result to the MMT model. All we
kl+2~+3~ c P. This is a strtightfor-need to show is that (Q~) _

ward argument based on the observation that the response

actions in an execution in (Q,)k~+2’+3f are just shifted into

the future with respect to a corresponding execution in Q,.

7 Discussion

7.1 Design Techniques

We discuss two approaches for using our results in practice.
To simplify the discussion, we focus our attention on the

131

first simulation between the timed automaton model and
the clock automaton model.

The basic observation of the first approach is that it is

often sufficient to solve P. instead of P. This is especially

true in practice when c is small and the system interacts
with humans. In situations where it is sufficient to solve
P, instead of P, an algorithm designer proceeds as follows.
Assume that you have a physicrd distributed system with
topology G = (V, E) where the clocks have an accuracy of
c and the communication has delay [all, dz]. Construct an
algorithm, in other words design an Ai for each node u,,

such that &(G,A,~I~j,d~l), where d~ = maz(dl — 2~,0)

and d~ = d2 + 2C solves problem P. Then Theorem 4.7
shows that DT(G, A~, E~d1,d21) solves problem P. when A:

is constructed based on the transformation in Section 4.2.

Using this approach simplifies both the algorithm’s design
and correctness proof since both are carried out in a model
with access to real time.

The second approach deals with situations where it is

not sufficient to solve Pc. In this situation one should de-
sign a problem Q such that Qc ~ P. Once the problem

Q is defined the algorithm designer proceeds as in the first

approach to find an algorithm for Q and hence for P. The
application in Section 6 uses this technique. The degree of
difficulty associated with finding a specification Qsuch that
Q, G P varies with the type of property that the specifica-

tion requires the environment and the system to maintain.

For ordering properties such a.s the well-formed property of

Section 6 it is generally easy to find the appropriate Q. For

real time properties, finding the appropriate Q is often com-
plicated or impossible.

7.2 Practical Issues

Many algorithms designed assuming access to real time are
run, without implementing the buffering added by our trans-
formation, in systems where there is only access to inaccu-
rate clocks. Recall that the buffering is designed to prevent
the arrival of messages at clock times that are less than the
clock times at which the messages are sent. There are sit ua-

tions where the buffering is not required. For example, when
the minimum message delay is greater than 2C no message

can ever arrive at a clock time that is greater than the clock
time at which it was sent. Thus, when the minimum mes-

sage delay in greater than 2C, the buffering is not needed.
However, even when it is required, the buffering is not

too expensive. In [12], Mills indicates that clock accuracies
of a few milliseconds are possible, even under adverse condi-
tions. Thus, even if the clocks of two communicating nodes

differ by the maximum possible amount, the largest amount
of time that messages would have to be buffered is a few

milliseconds. For all but the most exotic applications, such
10 the twk of delaying the messages canas real time video ,

be handled with little overhead in the device drivers.

7.3 Future Work

While MMT automaton model captures many of the com-
plications of real systems, we believe that additional work is
needed in this area. For example, permitting inputs to occur
without timing constraints while at the same time permit-
ting the MMT automaton to perform local calculations on
each input seems unrealistic. We also hope to apply the tech-

niques developed in this paper to additional applications.

10 one would ~xpect that real time video would fall under One Of

the situations where buffering is not necessary.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

Y. Afek, H. Attiya, A. Fekete, M. Fischer, N. Lynch, Y.

Mansour, D. Wang, and L. Zuck, Reliable Communica-
tion over an Unreliable Channel, LCS TM-447, October,
1992. Also submitted to JACM.

H. Attiya and J. Welch, Sequential Consistency Versus
Linearizability, Proceedings of 3rd A CM Symposium on

Parallel Algorithms and Architectures, July 1991.

Digital Time Service Functional Specification Version
T.1.o.s, Digital Equipment Corporation, 1989.

R. Gawlick, N. Lynch, R. Segala, and J. S@gaard-

Andersen, Liveness Properties for Timed and Untimed
Systems, work in progress.

L. Lamport, Time, Clocks, and the Ordering of Events

in a Distributed System, Communications of the ACM,
Vol. 21, Number 7, July 1978.

B. Lampson, N. Lynch, and J. S@gaard-Andersen, Re-
liable At-Most-Once Message Delivery Protocols, work
in progress.

N. Lynch and H. Attiya, Using mappings to prove tim-

ing properties, Distributed computing, 6:121-139, 1992.

N. Lynch and F. Vaandrager, Forward and Backward
Simulations for Timing-Based Systems, Proceedings of

REX Workshop “Real- Time: Theory in Practice”, 1992.

N. Lynch and F. Vaandrager, Forward and Backward
Simulations Part II: Timing-Based systems, submitted
for publication.

[1O] M. Mavronicolas, Timing-Based, Distributed Compu-
tation: Algorithms and Impossibility Results, Ph.D.
Thesis, Harvard University, 1992.

[11] M. Merritt, F. Modugno, and M. Tuttle, Time Con-

strained Automata, CONCUR ’91 Proceedings Work-
shop on Theories of Concurrency: Unification and Ex-

tension, August, 1991.

[12] D. Mills, Network Time Protocol(Version 3) Specifi-
cation, Implementation, analysis, DARPA NetworIdng
Group Report, July 1990.

[13] G. Neiger and S. Toueg, Simulating Synchronized
Clocks and Common Knowledge in Distributed Systems.
Proceedings of the Sixth A CM Symposium on Principles
of Distributed Computing, to appear in the Journal of

the ACM.

[14] R. Perlman, An Algorithm for Distributed Computa-
tion of a Spanning Tree in an Extended LAN, Journal

of the A CM, 1985.

[15] M. Tuttle and N. Lynch, Hierarchical Correctness

Proofs for Distributed Algorithms, Technical Report

MIT/LCS/TR-387, MIT, 1987.

[16] F. Vaandrager and N. Lynch, Action Transducers and
Timed Automata, Proceedings of CONCUR ‘9?2, 3rd In-
ternational Conference on Concurrency Theory, August
1992.

[17] J. Welch, Simulating Synchronous Processors, Infor-
mation and Computation, 74(2):159-171, August 1987.

132

