
A Tradeoff Between Safety and Liveness for Randomized

Abstract

Attack Protocols

George Varghese* Nancy A. Lynch

Laboratory for Computer Science

Massachusetts Institute of Technology

Cambridge, MA 02139

t

We study randomized, synchronous protocols for co-

ordinated attack. Such protocols trade offthe number

of rounds (N), the worst case probability of disagree-

ment (U), and the probability that all generals attack

(Z). We prove a nearly tight bound on the tradeoff

between L and U (L/U ~ N) for a strong adversary

that destroys any subset of messages. Our techniques

may be useful for other problems that allow a non-

zero probability of disagreement.

1 Introduction

Suppose two computers are trying to perform a

database transaction over an unreliable telephone

line. If the line goes dead at some crucial point, stan-

dard database protocols mark the transaction status

as “uncertain” and wait until communication is re-

stored to update its status. The protocol will ensure

that the two computers eventually agree if communi-

cation is eventually restored.

On the other hand, suppose that the transaction

has a real time constraint (e.g., a decision to com-

mit or reject the transaction must be reached in 10

minutes) and the cost of disagreement is high. Then

standard commit protocols do not work. If commu-

nication can fail for up to ten minutes it is always

“Supported by DEC Graduate Education Program.
tsupported by NSF Grant 8915206-Cft, DARPA Grant

NO014-S9-J1988, and ONR Grant NOO14-91-J1O46.

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee
Cimd/vr specific permission.

PoI)C ‘92-S1921B.C.
@ 1992 ACM 0.s9791.496.1 /92/000 S/0241 . ..$l .50

Coordinated

possible for the two computers to disagree. Is there

a protocol that prevents disagreement in all cases?

The answer is no. The question was first formal-

ized in [G] aa the coordinated attack problem. In

this problem, there are two generals who communi-

cate only using unreliable messengers. The generals

are initially passive; however, at any instant either

general may get an input signal that instructs him

to try to attack a distant fort. The generals have a

common clock, The problem is to synchronize attack

attempts subject to the conditions:

● Validity: If no input signal arrives, neither gen-

eral attacks. 1

●

●

Agreement: Either both generals attack or

they both do not attack.

Nontriviality: There is at least one execution

of the protocol in which both generals attack.

It is shown in ([G], [HM]) that there is no deter-

ministic algorithm that meets all three conditions.

In this paper, we consider a generalization to an ar-

bitrary number of generals connected by a graph of

unreliable links. Clearly the impossibility result ap-

plies here as well.

Coordinated attack (CA) looks suspiciously like

Byzantine agreement (BA) [LPS]. The major differ-

ences are: first, in BA, generals exhibit arbitrary fail-

ures while in CA only /inks fail by destroying mes-

sages; second, in BA only some fraction of the gener-

als are assumed to be faulty while in CA all links can

be faulty, Thus there does not appear to be any way

to reduce CA to BA or vice versa.

There is a well-known history of randomization pro-

viding a cure for a deterministic impossibility result

1Another validity condition that is often used is that if
no messagesare delivered, then no general attacks. We pre-
fer our definition because it focuses on input-output behavior.
However, our results can be modified to fit the other validity
condition.

241

(e.g. [RL], [B]). Thus we we turn to randomized CA.

We hope to trade a small probability of disagreement

when links fail for a high probability of agreement (on

a positive outcome) when links do not fail.

We modify the correctness conditions for determin-

istic CA to fit randomized CA. We retain the validlty

condition. We modify the agreement condition by

requiring that the worst case probability of disagree-

ment (denoted by U) be smaller than ~, a parameter.

We replace the nontriviality condition by a measure

L(R) (for Iiveness) that measures the probability all

generals attack after an input signal, given that mes-

sages are delivered according to a given pattern R.2

We measure the goodness of a CA protocol by seeing

how high L(R) can be for a given R and e.

Coordinated attack captures the fundamental dif-

ficulty of real-time synchronization over unreliable

message channels. This paper investigates whether

randomization can help coordinated attack. Our an-

swer is basically no for nontrivial adversaries, and a

qualified yes for much weaker adversaries. Our paper

concentrates on a strong adversary that can deliver

messages according to any possible pattern R but has

no access to message bits,3

The rest of this paper is organized as follows. Sec-

tion 2 cent ains our model, Section 3 describes a sim-

ple but inefficient protocol, and Section 4 introduces

some useful concepts. Section 5 contains a basic

lower bound, Section 6 describes an optimal protocol

against a strong adversary, and Section 7 contains a

second, more refined, lower bound. Section 8 contains

our conclusions and the appendix contains a proof of

the second lower bound.

2 Model

The generals are represented by processes i that are

at the vertices of a undirected graph G(13, V) with

V={l,..., m}, m > 2. We consider synchronous

protocols that work–in N + 2 rounds, numbered

–1,0 ,..., N, N >1. We model the input ss ames-

sage sent at the end of a fictitious Round -1 and ar-

riving at the end of Round O from a fictitious “envi-

ronment” node V.. We assume V. $! V. Informallyl if
a process i receives a message in Rouncl O f=om ~0, it

21t may seem ~trmge that unsafety is measured M the Worst

case across W rnns while liveness is measured separately for

each run. However, the situation is similar to Data Link pro-

tocols in which the prefix property (safety) is always preserved

but liveness is guaranteed only if the channel is delivering

messages.
3 since Om lower bouds are pessimistic, there is no Point

in considering a stronger adversary that can read message bits.

Also, some form of encryption could be used to make this as-

sumption reasonable.

haa received a signal to try to attack. Each process

i also receives a sequence of J random bits called cq.

J is an upper bound on the total number of random

bits used by any general.

A protocol F consists of a number of local protocols

Fi. Each F~, i ~ V, is a state machine executed by

process i. Fi has two possible start states s! ands:, a

state transition function 6~, and a message generation

function Ui. Let S: be the set of messages received by

i from its neighbors in round r. Let qf be the state of

i at the end of round r. Then q[= ili(q~-l, r, $, ~i).

We assume without loss of generality that processes

send messages to each neighbor in rounds 1 . . . N since

we can always simulate algorithms in which this is not

true by sending null messages that are ignored by the

receiver. Let m~j be the message sent by i toneighbor

j in round r. Then rn~i == ai(~~-l, j). At the end of

N rounds, i outputs a bit 0~ based on q:. Oi = 1 iff

i decides to attack.

An execution of F is described in terms of a vector

of local executions. A local execution Ei consists of

~.) for 1< r < N, and Oi. To gener-Q;, (q; 7s; } %,

ate an execution of F we need to define a run that

represents the inputs as well as which messages get

through in rounds 1 ,.. N of the protocol. Formally,

a run R = I(R) Uikf(R). I(R), the input for run R, is

an arbitrary subset of {(vO, i, O) : i c V}. M(R), the

messages delivered in run R, is an arbitrary subset of

{(i, j,r) : (i, j) c ~, 1< r < N}. For example, in the
run {(vo, 3,0), (1,2,6), (3,2,7)} only F3 receives asig-

nal to attack. Also only the message sent in Round

6 from F1 to Fz and any message sent in Round 7

from F3 to F2 are delivered: all other sent messages

are lost.

We will use the notation (Ai) to denote a vector
A consisting of a component Ai for each i c V.

An execution for a fixed F is uniquely specified by

random input a = (cq), and a run R. We define

Es(R, ~) = (E~) as the execution generated by R and

a for a fixed protocol F. Each E~ is a local execution

such that:

0 – 0 If(vO, i,O) c Rc If (Vo, i,O) ~ R then qi — Si.

then q$ = s; (i.e., the initial state of the local

execution encodes the input).

● For all r, 1 ~ r ~ N: m~j = cri(q~-l, j).

● Forallr, l~r <N: m~i~S~iff(j,i,r)~R.

● For all ~,1 < r ~ N: q[= 6i(q~-l,~,S~,~i).

The output of execution E isJhe vector (Oi(#)).

We say two executions E and E are identical to j if
Ej=@j.

242

We consider sets of executions of a particular pro-

tocol. If X and Y are sets of executions, then XY

denotes X rl Y, and X + Y denotes X U Y. Q de-

notes the set of executions in which O;(q~) = 1, and

n the set of executions in which Oi(#) = O. Simi-

larly, (Di [R) denotes the set of executions that have

run R and in which Oi(q~) = 1.

TA (total attack) denotes the set of executions

D1 D2.. .Dm. NA (no attack) denotes the set of ex-——
ecutions D1 D2 . . . z. PA (partial attack) denotes

the complement of NA U TA. Thus, TA is the set of

executions in which all processes agree on an output

of 1, NA is the set of executions in which all pro-

cesses agree on an output of O, and PA is the set of

executions in which some pair of processes disagree.

Each ai is drawn from {O, l}J using the uniform

probability distribution. This probability distribu-

tion on inputs a induces a probability distribution

on executions for each possible run R, in the natural

way. For each set X of executions and each run R, we

use the notation I%[X IR] to denote the probability of

event X according to this distribution of executions.

Now consider two runs R = {(i, j, l)} and fi =

0. The only difference in the runs is that i sends a

message that is delivered in R. Thus, given the same

random input, i will decide the same regardless of

whether an execution follows run R or run R. This

leads to a key notion of indistinguishable runs. We

say that two runs R and R are indistinguishable to

i if for all a, Ez(R, a) and Ez(fi, a) are identical

to i. We use R & R to denote that R and R are

indistinguishable to i. A natural consequence is:

Lemma 2.1 If R ~ R then Pr[D~lR] = Pr[D~/&?].

An adversary A is a set of runs. We will only deal

in this paper with a strong adversary, da, where da

is the set of all possible runs.

Next, we describe the correctness conditions and

the Iiveness measure. Validity requires that no pro-

cess attacks if there is no input. Agreement requires

that the worst-case probability of partial attack be no

more than e, a parameter. Finally the Iiveness mea-

sure for a run R is the probability of total attack on

run

●

4

R.

Validity : A protocol satisfies validity if for all
vectors a, for all R such that I(R) = 0, and for

all i: 0~ = O in IZz(R, a),

Agreement: We define UA (F), the unsafety of
protocol F against adversary A, as: UA (F) =

Ma@~e&l%[PA\R]. Then F satisfies agreement

with parameter c if UA(F) ~ e.

● Liveness: We define liveness ,C(.F, R) of protocol

F on run R by: .L(F, R) = Pr[TAIR].

Our goal is to find an “optimal” algorithm F that

meets the validity and agreement conditions, and

such that ,C(F, It) is as large as possible for any run

R. We end this section with two elementary lem-

mas on which our lower bounds are bssed. The first

states that the unsafety is at least as large as the dif-

ference in attack probabilities of any two processes.

The second states that the liveness is no more than

the attack probability of any process. The two in-

equalities given below do not seem very tight, and so

it is perhaps surprising that the lower bounds based

on these inequalities are as tight as they are.

Lemma 2.2 For all i, j E V, Pr[DilR] – Pr[Djl.R] ~

Us(F).

Lemma 2.3 For all i G V, ,C(F, R) < Pr[Di]R].

3 Example Protocol

We informally describe a simple protocol A for two

processes 1 and 2 against a strong adversary. The lim-

itations of this protocol will motivate both the lower

bound in Section 5 and the optimal protocol of Sec-

tion 6.

In order to conform to the model, we require that

each process must send some message (at least a null

message) in every round. For convenience, let us call

a non-null message (i.e., a message that carries in-

formation) a packet. We assume implicitly that on

every round a process sends either a packet or a null

message.

Initially, at the start of round O, process 1 chooses

a random integer rfire that is uniformly distributed

between 2 and N. Process 1 includes the value of

rjire in any packet it sends. If process 2 receives any

packet from process 1, process 2 will store the value

of rjire.

In rounds 1 through N, the two processes send

packets to each other in alternate rounds. Process

2 is allowed to send packets in odd rounds starting

from round 1, while process 1 is allowed to send pack-

ets in even rounds. The protocol begins with process

2 sending a packet in round 1. However, in all later

rounds, a process sends a packet in a round only if

it has received a packet in the previous round, and

it is allowed to send a packet in the round. Thus if

the adversary destroys a packet sent in round r, all
packet sending stops in rounds greater than r.

The main idea is that if all packets sent strictly

before round number rjire, have been delivered, then

243

the process that received the last packet (say i) will

decide to attack. Ifthe next packet sent by processi

isdelivered then the other process (sayj) will alsode-

cide to attack. On the other hand, if any packet sent

before round rjire is destroyed, then both processes

stop sending packets and do not attack. Since the ad-

versary that controls message delivery does not know

the value of rjire, the adversary has only a chance of

approximately l/.iV of causing partial attack. This is

because the adversary can cause partial attack only

if the first packet destroyed in the run is the packet

sent in round rjire. Thus U,(A) = I/N.

In addition, process 2 includes a bit that encodes its

input in the packets it sends. Suppose at the end of

Round 1, process 1 has not received a signal to attack

and hss not received a packet from process 2 saying

that process 2 haa received a signal to attack. Then

process 1 does not send a packet in Round 2, and

the protocol stops, Thus protocol A satisfies validity.

Finally, let Rg be a “good” run in which all messages

are delivered and the input is valid. Then on run Rg,

both processes will always decide to attack. Hence

Z(A, Rg), the liveness of A on run Rj, is 1. However,

this simple protocol raises two questions:

●

●

4

U,(A) .w l/N and ,C(A, Rg) = 1. Can we de-

crease U,(A) further while keeping L(A, Rg) un-

changed? In other words, can we find a protocol

a) whose probability of making a mistake is bet-

ter than l/N, and b) whose probability of attack-

ing on a good run is 1. It might seem that this

can be done by running A several times. How-

ever, the answer is no, as we show in Section 5.

Consider a run R in which the input is valid

and all messages are delivered except the mes-

sage sent by process 1 in Round 2. It is easy to

see that ,C(A, R) = O. Intuitively, this is not sat-

isfactory because in run R, all but one message

is delivered, and yet the probability of attacking

on run R is O. Can we design a protocol whose

liveness grows in some fsshlon with the number

of messages delivered in a run? We will describe

an “optimal” protocol S in Section 6.

Information Flow, Clipping,

and Information Level

In this section, we describe three concepts that un-

derlie both the lower bounds of Section 5 and the

protocol in Section 6, We begin with a definition

that captures the usual idea of information flow or

possible causality [L] between process-round pairs in

a run,

Consider any i, k E V U {vo} and any r,s E

{-1,0,..., N}. We say that (i, r) directly flows to

(k, s) in run Riff s = r+l and either i = kor

(i, k,s) E R. We define the flows to relation between

process-round pairs as the reflexive transitive closure

of the directly flows-to relation. Thus:

Lemma 4.1 If (i, r) flows to (j,s) and (j,s) flows to

(kjt) in run R, then (i, r) flows to (k, t) k run R.

We introduce a measure of the “knowledge” [HM]
a process has in a run. We first define information

“height” and use it to define the more useful idea

of information “level”. Intuitively, a process reaches

height 1 when it hears the input. A process reaches

height h > 1 when it hss heard that all other pro-

cesses have reached height h – 1. More formally, we

say that j can reach height h by round r in run R

iff h is a nonnegative integer subject to the following

conditions:

● If h = O, there are no conditions.

● If h = 1, (VO, –1) flows to (j, r) in R.

● If h > 1, then for all i # j E V, there is some

ri such that (i, ri) flows to (j, r) in R and i can

reach height h – 1 by round ri in R.

Next, we define L;(R), the level j reaches by round

r of run R, to be the maximum height j can reach by

round r. We use Lj (R) to denote4 L~(R) and L(R)

to denote Minj6V(Lj (R)).

Finally, we introduce a construction to “clip” a run

with respect to a process i such that the constructed

run preserves all information flow to i. This construc-

tion is the key to the lower bound proof. We define

ClipJR) = {(j, k, r) G R : (k, r) flows to (i, N)} in

run R. It is not hard to see that clipping with respect

to i preserves any information that i can gather in the

run. Hence we have:

Lemma 4.2 Let C/ipi(R) = fi. Then Lj(R) = L~(R)

and R & R.

5 Lower Bound for Strong Ad-

versary

The first lemma captures the intuitive idea that a

change in level can only come about by receiving a

message.

4Rec~ that N is the maximum round number

244

Lemma 5.1 For any run R and any k E V, if L~(R) =

/ >0 then there must be some tuple (j, k, T) E R such

that L~(R) = 1.

Proof From the definition of level, we see that if

there is no j,s such that (j, k,s) E R then L~-l(R) =

L~ (R). Thus if L&(R) = 1 we can work backwards

from round number N until we find the r required for

the lemma. If we fail then there is no (*, k, *) tuple

in R, which would imply that 1 = O, a contradiction.

Thus we cannot fail. ❑

The next lemma describes the key property of

clipped runs and information levels that we use to

prove our lower bound, It says that if i reaches infor-

mation level 1 at the end of run R then at the end of

Clipi (R) there must be some process k whose infor-
mation level is no more than 1— 1. In essence, this is

why i cannot go to a higher information level than 1

by the end of R.

Lemma 5.2 Cons~der a run R such that L~(R) = 1>

0 and CL@~(R) = R. Then there is some k E V such

that Lk(R) < 1– 1.

Proof By contradiction. Thus for all k G V, we

assume that Lk (~) ~ 1.

Consider any k # i. By Lemma 5.1 and th~ fact

that I >$ there must be some tuple (j, k, r) E R such

that L;(R) ~ 1, Since (j, k, r) c R then (by definition

of clipping), (k, r) flows to (i, N) in R. Hence, we can

show that (k, r) flows to (i, N) in fi. We also know

that L;(~) ~ 1, Since this is true for all k # i we

must have (see the definition of level) Li(&!) ~ 1 + 1.

But by Lemma 4.2, this implies that Li(R) ~ 1 +1,

a contradiction. •1

Lemma 5.3 For all protocols F, all runs R, and any

process index i G V, Pr[DilR] ~ U8(F)Li(R).

Proof: By induction on 1 in the following inductive

hypothesis.

Inductive hypothesis: For all i and all runs R

with Li(R) = 1, Pr[DilR] s U, (F)l.

Base case, 1 = O: Thus L~(l?) = O. Let fi’=

C@i(R). We first claim that I(R) = {}. Suppose

not for contradiction. Then there is some j such that

(vO, j, O) c fi; hence, since R G R, (vo, j, O) 6 R.

Also by the definition of clipping, (j, O) flows to (i, N)

in R. But in that case, Li(R) ~ 1, a contradic-

tion. Thus we must have I(R) = {}. Also by

Lemma 4,2, 1? & fi. Hence l%[ll~llt] = F~[D~l~] =

0, by Lemma 2.1 and the
Pr[lli IR] = U, (F) L~(R).

validity requirement. “Thus

Inductive Step, 1 > 0: Cqnsider any 1 and R

such that Li(R) = 1. Let R = CIZpj(R), By

Lemma 5.2, there exists some k such that L&(fi) <

L~(R) ~ 1. Hence, by the inductive hypothesis,

Pr[Dk]R] < U,(F)(i – 1). But by our bound on un-

safety, Lemm~2.2, .%[llilk] – Pr[Dkl@ < U,(F).

Henc~ Pr[DilR] < U$ (F)/. But by the fact that R

and R are indistinguishable to i and by Lemma 2.1,

it follows that Pr[DilR] s U,(F)/. •l

Theorem 5.4 For any F, Z(F, R) s U$(F)L(R) <

cL(R).

From Lemma 5.3, for any i c V, J+[QIRJ <

Us(F) L~(R). Thus from Lemma 2.3, ,C(F, R) <

Us (F)Li (R) for any i 6 V. Thus from the defini-
tion

now

6

of L(R), .4(F, R) s US(F).L(R). The theorem

follows from the agreement condition. •l

Optimal Protocol Against a

Strong Adversary

In Protocol S which we describe below, we will arbi-

trarily designate process 1 to choose a random num-

ber rjire. In order to attack, we will require that any

other process i hear the value of rjire from process

1 in addition to hearing the input. This motivates a

second measure on a run R that we call the modified

level measure. It is defined in a parallel fashion to

the original level measure by first defining a modified

height or m-height. Formally, we say that process j

can reach m-heighi h by round r in run R iff h is

a nonnegative integer subject to the following condi-

tions:

. If h = O, there are no conditions.

● Ifh= 1, (VO, –1) and (1, O) flow to (j, r) in R.

● If h > 1, then for all i # j G V, there is some

ri such that (i, ri) flows to (j, r) in R and i can

reach m-height h – 1 by round ri in R.

Thus the only difference between the m-height and

height definitions is in the condition required to reach

m-height 1. In the case of m-height we not only

require that j has heard the input but also that j

has heard from process 1. We also define ML:(R),

MLi (R), ML(R) analogously to the previous defini-

tions for L~.

Because of the small difference in the definitions,

it is easy to show that the modified level measure
differs by at most one from the level measure. Also

the modified level measured by any two processes can

differ by at most one.

245

Lemma 6.1 For all R and i c V, Li(R) – 1 <

MLi(R) < Li(R).

Lemma 6.2 For all R and i,j c V, MJ5j(R) z

ML~(R) – 1.

We will design a protocol based closely on the lower

bound arguments of the previous section. Recall that

we had shown that for any F, Z(F, R) ~ cL(R). We

have also seen that the modified level messure differs
by at most one from the level measure. Thus in order

to come close to meeting the lower bound, we will

design a protocol in which:

● Each process i will calculate AfLi (R), the value

of the modified level at the end of the current

run R.

● Each process will decide to attack with a prob-

ability proportional to Mli (R). This causes the

liveness of the protocol to grow with MJZi(R).

To do so each process i in protocol 3 has a vari-

able co~ntithat counts the value of ML:(R). We say

that i has begun counting if cotinti >0. We will see

how i begins counting below. However, once i has

begun counting, process i increases cotin4 to s (for

s > 1) when it has heard that all other processes

have reached a count ofs – 1. It is easy to implement

this if each message sent by a node i carries counfi.

and a variable called see%, the set of nodes that i

knows hss reached Counti.

Protocol S must satisfy agreement with parameter

c. Let t = l/e. Process 1 chooses a random num-

ber rjire uniformly distributed in the range (O, t] and

passes it on all messages. After N rounds, i decides

to attack if i has heard the value of rjire from process

1 and coun~ ~ rjire.

Process i starts counting (i.e., sets counz to 1) in

round r as soon it finds out that (VO, –1) and (1, O)

flows to (i, r). We have discussed the reason for the

second condition. The first condition, of course, is

imposed to ensure validity. To implement the first

condition, we use a variable valid at each process

i that is set to true in the first round r such that
(vO, -1) flmvs to (i, r). To implement the second con-

dition, all processes other than process 1 initially set

the value of r$rei to a special value undefined which

is updated when a message is received with the value

of rjire.

6.1 Protocol Code

Protocol S consists

which has a set of

of local state machines, each of

states, an initial state, a state

transition function, a message generation function,

and an output decision function. We describe each

component in turn:

Each process i has the following state variables:

countf: integer between 1 and N (counts the

value of M.Lj(R) in the current run R.).

rfirei: either a default value of undejined or a real

number in the range (O, l/c]. We assume that the

value of undejined is not in (O, l/c].

see%: a subset of V (represents the processes

that have reached Countithat i knows about).

valid: a boolean (that is true if i has heard from

?@.)

We also use three temporary variables at each pro-

cess: highcounti (an integer), highseeni (a subset of

V), and highseti (a set of messages, whose format we

describe later.)

The initial states are as follows. Process 1 ini-

tially sets rjirel to a a random number uniformly dis-

tributed in the range (O, l/c]. All processes i other

than 1, set rjlrei = undejined. The vali~ bit is only

set if process i has received an input message from

V. in Round O. Finally process 1 sets Counil = 1

iff validl = 1. All other processes i initially set

COU?ltj = O.

A message is denoted by m and has fields m(rjire),

rn(count), m(seen), and m(valid). The message gen-

eration function for i in every round sends a mes-

sage m(rjire, count, seen, valid) to all neighbors with

rn(rjire) = rfirej, m(count) = count~, m(seen) =

seen~, rn(valid) = valid. Thus i sends a message

with its current state to all neighbors in every round.

At the end of a round r, for 1 ~ r < N, process i ex-

ecutes the procedure PRO CESS-MESSAGE(Sj, i) where

S~ is the set of messages process i has received in

round r. PRO CESS-MESSAGE(Sj, i) is shown in Fig-

ure 1. The first four lines are used to decide when

a process starts counting; the remainder of the code

does the actual counting.

Finally at the end of N rounds, Oi = 1 iff Tfirei #

undefined and coun$ ~ rjirei.

6.2 Proof of Properties of Protocol S

Notation: Consider any execution Ec(R, CY). Let v’

denote the value of a variable at the end of round r.

For example, count; denotes the value of count at

the end of r rounds. Define rjire to be the value of

rjirel in the initial state.

Our first major step will be to establish that

count; = ML;(R). To allow a careful inductive proof,

246

PROCESS-MESSAGE(S;, i)

“f (rfirei = undefined) and (h c Si :

nz(r~ire) # urdefine~ then rfirei := m(rfh-e)
f (uali~ = ~aise) and (% ~ Si : rn(vaiid) = true)

then vcdi& := true
f (uali~ = true) and (rfirei # undefined)

and (coun~ = O) then counti := 1

f (coun& ~ 1) and (Si # O) then
highcount:= Maz~~sim(count)
highset:= {m e S~ : m(count) = highcOunt}
highseen:= umehigh~ep(~een)

If highcount = counk then

see% := $eeni U highseenu {i}
Else

If highcount > counti then
seeni := highseen U {i};

coun+ := highcoun$
If seen; = V then

counh := counti + 1;
seerz.i:= {i};

Figure 1: Procedure executed by process i at the end of a round

in Protocol S

we will introduce invariants. The invariants should be

intuitively clear from the previous discussion. The

proofs of these invariants are deferred to the final pa-

per.

Lemma 6.3 For any execution Ez(R, cr) of Protocol

S, the following assertions are true for O < r < IV and

for all i,j E V:

1. rjirej is either equal to rjlre or undefined.

2. coun~ ~ 1 iff rjire~ = rjire and vali~ = true.

3. (1, O) flows to (i, r) iff rjire~ = r-fire.

4. (vo, –1) flows to (i, r) iff vali~ = true.

5. If (j,s) flows to (i, r) in R then either (count; >

count;) or (j ~ seenf and counf = COUW?$)or

(counf = count; = O).

6. If (j G seen;) then there is some s such that

(countj = count;) and (j,s) flows to (i, r) in R.

7. seen: # V and seen; # V- {i}. Also, if count; z

1 then i G see+’,

8. ML; ~ count;.

These invariant can now be used to establish that

each process counts a value equal to its modified level

measure. This should not be hard to believe since the

code follows the definition of modified level.

Lemma 6.4 For all i G V, any r such that O ~ r < N,

and any execution Ex(R, CV)of Protocol S cozm~ =

ML: (R).

Proof: From the last invariant in Lemma 6.3, we see

that coun~ ~ ML;(R). So we show that coun~ ~

ML:(R). We do so by induction on the value of

ML:(R).

First if ML;(R) = O we are done trivially since

countj is always nonnegative. We use ML;(R) = 1 as

the base case. Then from the definition of ML;(R),

we know that (vo, –1) and (1, O) flow to (i, r) in

run R. Hence by the third and fourth invariants in

Lemma 6.3, rfire~ = rjire and vali~ = true. Hence

by the second invariant in Lemma 6.3, count ~ 1.

Next, suppose ML;(R) = 1> 1. Then from the

definition of ML:(R), we know that for all j # i there

exists ri < r such that (j, rj) flows to (i, r) in run

R and ML? = 1 – 1. Hence by the fifth invariant

in Lemma 6.3 and the inductive hypothesis, either

count; >1 – 1 (in which case we are done) or for all

j#i, j~seen~. But the second case contradicts the

seventh invariant in Lemma 6.3, and so we are done.

•1

Next we sketch proofs of the validity, unsafety, and

Iiveness properties of S.

Theorem 6.5 Protocol S satisfies validity,

Proof: Informally, in any execution in which no pro-

cess receives an input signal, no process hears from

vo, and so count? = O for all i. Thus by the output

decision function, Oi = O for all i in this execution.

More formally, fix a run R such that I(R) = {},

a random vector a, and any process i. Consider the

execution Ex(R, ~). Thus (v., – 1) does not flow to

(i, N) for any i c V. Thus by Invariant 4 in Lemma

6.3, valid~ = false. Hence by Lemma 6.3, Invariant

2, coun$’ < 1. Hence couni~ = O. However, rjire~

by Invariant 1, Lemma 6.3, is either equal to rjire

(which is strictly greater than O) or undejined. In

either case, by the output decision function, Oi = O

in Ez(R, cr). •l

To prove the unsafety and liveness properties of S

we characterize when the total attack and no attack
events occur. Let Mincount be the minimum across

all processes i of the value of counti at the end of an

execution. The next lemma states that all processes

247

will attack if Mincouni is no less than rjire, and no

process will attack if Mincouni is strictly less than

rjire – 1;

Lemma 6.6 Fix an execution E of Protocol S. If

Mincouni z rjire then E E TA; but if Mincount <

rfire – 1 then E 6 iVA.

Proof If Mincount ~ rfire then for all processes

i, count? ~ rjire, But rfire > 0, hence for all i,

cotint~ ~ 1. Hence (by Lemma 6.3, invariant 2), for

all i, rjire~ = rjire. Hence for all i, count? ~ rjire~
dand rjirei # undefined. Hence for all i, (by the deci-

sion function), Oi = 1. Hence, E G TA.

If Mincount < rjire – 1, then using Lemma 6.4 and

using the fact that the modified level measured at any

two processes differs by at most 1 (Lemma 6.2), for

all i, count$’ < rfire. Now (by Lemma 6.3, Invari-

ant 1), either rjire~ = rjire or rjire~ = undefined.

Hence, for all i G V, either coun~ < rfire~ or

rjire~ = undefined. Thus by the definition of the out-

put decision function Oi = Ofor all i. Hence E G NA.

❑

Theorem 6.7 S satisfies agreement with parameter c.

Proof By definition U8(S) is the maximum across all

runs R of Pr[PAIR]. Consider any execution E =

Ez(R, cr). Now partial attack PA is the complement

of the no attack and total attack events, NA and TA.

From Lemma 6.6, we know that either TA or NA will

occur unless Mincouni < rjire ~ Mincount + 1. Hence

PTIPAIR] s Pr[Mincouni < rjires Mincomzi+ lIR].

Now for a given R, Mincotmt is fixed while rjire is a

uniformly distributed random number in the range

(O, l/c]. Thus U,(S) ~ c. •l

Theorem 6.8 .C(S, R) ~ A4in(l, eML(R)).

Proof Recall the definition of L(S, R) as the prob-

ability y of total attack, Pr[TA IR]. We find a lower
bound on Pr[TAIR]. Consider any execution E.

From Lemma 6.6, E E TA if Mincouni z rjire.

But by Lemma 6.4 and the definition of Mincouni,

Mincount = ML(R). Hence, E G TA if ML(R) z

rfire. Thus for any run R, Pr[TAIR] is no less than
Pr[ML(R) z rjire]R]. Now for a given R, ML(R)

is fixed while rjire is a uniformly distributed random

number in the range (O, l/e]. Thus Pr[TAIR] is no

less than illin(l, eML(R). U

7 Closing the Gap: A Second

Lower Bound

Theorem 5.4 states that for every run R and every

protocol F, the liveness L(J’, R) of any protocol 1’ is

at most Min(1, cL(R)). We described a protocol S

whose liveness is lfin(l, cML(R)). From Lemma 6,1,

we know that ML(R) differs from L(R) by at most

one. Thus we have a small but irritating gap of c.

Our second lower bound shows, under a reasonable

set of conditions that we call the usual case assump-

tion, that no protocol F can do better than eML(R)

on all runs R. More precisely, if any protocol F has

a run R such that .C(F, R) > cML(R) then there is

some other run R such that L(F,.@ < eML(fi). Thus

together the two bounds show that Protocol S is in-

deed “optimal”.

A precise description of the second lower bound is

in the appendix. We note that the proof of the first

lower bound is similar to the chain arguments used of-
ten in deterministic impossibility results (e.g., [FL]).

However, in proving the second lower bound, we are

led to some connections between causality, probabilis-

tic independence, and probabilistic agreement that

may be interesting in their own right.

8 Conclusions

A strong adversary can be used to model a situa-

tion where links can crash and restart at an arbitrary

frequency. A solution to coordinated attack is impor-

tant in situations where consensus must be reached

across unreliable links and within a specified time

constraint. For coordinated attack against a strong

adversary, we have seen that no protocol can achieve

a tradeoff between liveneas and safety (Z/U) that is

better than linear in the number of rounds. This is

bad news. For example if we want to achieve live-

ness with probability 1 on some run, and yet limit

the probability of error to be less than 0.001, then

the protocol must run for at least 1000 rounds. Pro-

tocol S demonstrates that the lower bounds are tight,

but its performance is far from adequate. While our

results are stated in a synchronous model, it seems
clear that they can be extended to an asynchronous

model.

In practice, there are two approaches that may help

us to overcome these limitations. One approach is

to add redundant links and assume that failures can
only affect some fraction of the links in the network;

then solutions similar to Byzantine Agreement can
be used. However, this approach is expensive. The

other approach is to assume a weaker failure model

248

than a strong adversary. One such adversary, which

we call a weak adversay, is a probabilistic adversary

which can destroy messages with a probability p that

is not known in advance, We have preliminary results

that show vastly improved performance against such

an adversary.

9 Acknowledgements

We are grateful to Hagit Attiya, Baruch Awerbuch,

Mihir Bellare, Cynthia Dwork, Ken Goldman, Steve

Ponzio and Larry Stockmeyer for their help and sug-

gestions.

References

[1]

[2]

[3]

[4]

[5]

[6]

M. Ben-Or. Another advantage of free choice.

Proceedings 2nd ACM Symposium on Principles

of Distributed Computing, pages 27-30. August

1983

J. Gray. Notes on Data Base Operating Systems.

Technical Report, IBM Report RJ2183(30001),

IBM, February 1978, pp. 291-302, 1989. (Also

in Operating Systems: An advanced course,

Springer-Verlag Lecture Notes in Computer Sci-

ence No. 60.)

J. Halpern and Y. Moses. Knowledge and com-

mon knowledge in a distributed environment.

Proceedings of the 3rd Annual Symposium on

Principles of Distributed Computing, pages 50-

61, 1984.

L. Lamport. Time Clocks and the ordering of

events in a distributed System. Communications

of the ACM, 21(7): 558-565, 1977.

L. Lamport, R. Shostak, and M, Pease. The

Byzantine Generals Problem, ACM fiansactions

on Programming Languages and Systems, 4(3):

382-401, July 1981.

M. Rabin and D. Lehmann. On the advantages

of free choice: a symmetric and fully distributed

solution to the dining philosophers problem. Pro-
ceedings of 8th ACM Symposium on Princi-

ples of Programming Languages, pages 133-138,

1981.

A Lower Bound Based on Inde-

pendence

Our second lower bound needs the following assump-

tion. We say that the usual case assumption holds

The graph G is connected and the diameter of G

is no more than the number of rounds N.

c <0.5.

It is easy to see that these two conditions capture

the usual and interesting cases. If the first condition

does not hold then it can be shown that L~(R) ~ 1

for all i, R, F and so by Lemma 5.4, ,C(F, R) ~ 6.

Similarly if the second condition does not hold, the

protocol is allowed to fail more than half the time.

Thus the conditions preclude parameter settings that

force absurdly small values of liveness and allow ab-

surdly large values of unsafety.

Theorem A.1 Under the usual case assumption, if

any protocol F has a run R such that ~.C(F, R) >

~ML(R) then there is some other run R such that

L(F, &) < d’qk).

The proof exploits a simple connection between

probabilistic independence and what we call causal

independence, Intuitively, two processes are causally

independent if there is no causal flow, possibly

through another process, that can link the two pro-

cesses. For any i, j E V, we say that i and j are

causally independent in run R if there is no k E V such

that (k, O) flows to (i, N) and (k, O) flows to (j, N)

in R. The connection is expressed by the intuitive

lemma:

Lemma A.2 If i and j are causally independent in run

R then the events (D~ II?) and (Dj IR) are independent

events.

If i and j are causally independent in run R, then

there must be some restrictions on their decision

probabilities in R in order to preserve the agreement

property. There are several ways in which these re-

striction can be phrased; we select one that is suffi-

cient for the later development.

Lemma A.3 Consider a run R in which i and j are

causally independent and such that Pr[.DilR] = c.

Then if c <.5, Pr[.DjlR] = O.

ProoR Let FT’[Dj Ift] =6. We know that Pr[PAIR] ~

Pr[Di~\R] + Pr[Dj~\R]. But since i and j are

causally independent in R we have by Lemma A.2

249

that the events (Dill?) and (DjlR) are indepen-

dent. Hence, Pr[PA]R] ~ c(l-6)+6(1–c) and

so Pr[PA]R] z c+ 6(1 – 26). But since c < 0.5,

l–2e>0. Hence byagreement, c$=O. •l

For the next lemma, recall the definition of

M-L~(R), the modified level of process i in run R.

This lemma serves to setup the proof of the following

lemma, Lemma A,5.

Lemma A.4 Suppose that for all runs R and for all

i E V, Pr[DilR] = O if ML~(R) = O. Then for all R

and i c V, Pr[.Di[R] s MLJ(R)e.

Proof By induction on the value of MLi(R). Let

MLi(R) = 1.

Base Case, / = O: This is the assumption of the

lemma.

Inductive Step, 1>0: Using ? lemma similar to

Lemma 5.2, we can show that i~R = Cli~i(R)T then

there is some k such that MLk~R) = 1 – 1.Hence by

inductive assumptio~, F’r[Dk IR] < c(1 – 1).Hence by

Lemma 2.2, P~[Di [R] s cl. Bu~ by Lemma 4.2 and

Lemma 2.1, Pr[DilR] = .Pr[DilR] s d. •l

Now consider a run RI in which only process 1 re-

ceives an input message and no other message is de-

livered in the run. The next lemma states that if the

probability of process 1 attacking in this run is exactly

c, then we can prove a tighter lower bound on the

decision probabilities than the bound of Lemma 5.3.

Recall that the bound in Lemma 5.3 waa stated in
terms of .Li(R).

Lemma A.5 Suppose that RI

Pr[DllR1] = c and c <0.5. Then

all i c V, Pr[DilR] ~ MLi(R)e,

= {(V,,l, O)},

for all runs R and

Proof Consider any i and any R such that MLi(R) =

O. Then we will claim that Pr[Di IR] = O. To do this

we consider two cases, one of which must be true if

MLj(R) = O.

● (vo, –1) does not flow to (i, N) in R. Then

L~(R) = Oand hence by Lemma 5.3, Pr[D~lR] =

o.

● (1, O) does not flow to (i, N) in R. Thus i # 1 as

(1, O) flows to (1, N). Consider the run Cli~i(R).

By the definition of clipping, there is no tuple

(*, 1,*) in Cli~i(R), because if there WS.S,“(12 O)

would flow to (i, N) in R. Consider the run R =

Clipi(R) U {(vo, 1, O)}. By construction, the only

tuple of the form (*,1,*) in ~ is (VO, }, O). Hence

1 and i are causally independent in R.

Also, RI = ~ Clipl (~) and hence RI & R.

Thus ~@llR] = c. Hen~e by Lemma A.3,

Pr[DilR] = O. But Cii~i(R) = Clipi(R) and

so by Lemma 4.2 and Lemma 2.1, l’~[lli IR] =

P7’[D,lfi] = O.

Thus in either case, we have shown that for any i

and R, Pr[Di IR] = O if MLi(R) = O. The lemma now

follows from Lemma A.4. ❑

Lemma A.6 Suppose the graph G is connected and

has diameter no more than N. Then there is a run R

such that MJ1(R) = ML(R) = 1, and the only tuple

of the form (*, 1,*) is (vo, 1,0).

Proofi Let T be a spanning tree of G with 1 as the

root. Such a tree exists because G is connected, Next

we define R as follows.

● I(R) = {(vo, 1, O)} (i.e., only process 1 receives

input).

●Foralli, j~Vandl ~r~jV, (i, j,r)~Riffi

is the parent of j in the tree. (i.e., information

only flows down the tree.)

It is not hard to see that since the height of the tree

is no more than N, ML1(R) = 1 and MLi(R) ~ 1 for

all i G V. Thus ML(R) = 1. ❑

We now return to the proof of Theorem Al.

Proof Suppose there is some protocol F such that

for all R, L(F, R) ~ cML(R).

By Lemma A.6, there is a run RI such that
ML1 (Rl) = ML(R1) = 1 and the only tuple of the

form (*, 1,*) in R1 is (vo, 1, O). It is easy to verify

that LI(RI) = 1.

Thus by assumption, Z(S, Rl) ~ eML(Rl) = e.

Thus by Lemma 2.3, Pr[Dl IRl] z c. Also, by

Lemma 5.3, since LI(RI) = 1, PTIDIIRI] s e.

Hence, Pr[DllRl] = c.

Now consider the run R2 = Clipl(Rl) =

{(vo, 1, O)}. Then by Lemma 4.2 ~z & R1. Thus by

Lemma 2.1, F’r[Dl]R2] = e. Hence by Lemma A.5,

for all i, R, P~[DilR] ~ ~MLi(R). Thus for all

R, MiniPr[D~lR] ~ Mini~MLi(R). Thus from
Lemma 2.3 and the definition of ML(R), L(F, R) ~

eML(R).

Thus we have shown that for any protocol F, if for

all R, .C(F, R) z cML(R), then ,C(F, R) = EML(R).
This implies the theorem. •l

250

