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Abstract 

A new technique for proving timing properties for 
timing-based algorithms is described; it is an exten- 
sion of the mapping techniques previously used in 
proofs of safety properties for asynchronous concur- 
rent systems. The key to the method is a way of 
representing a system with timing constraints as an 
automaton whose state includes predictive timing in- 
formation. Timing assumptions and timing require- 
ments for the system are both represented in this way. 
A multivalued mapping from the “assumptions au- 
tomaton” to the “requirements automaton” is then 
used to show that the given system satisfies the re- 
quirements. The technique is illustrated with two 
simple examples, a resource manager and a signal re- 
lay system, and a third, more complex example of 
a two-process race system. The technique is shown 
to be complete, that is, if some automaton with cer- 
tain timing assumptions has certain timing behavior, 
than there exists a mapping from the “assumptions 
automaton” to the “requirements automaton”. 

1 Introduction 

Assertional reasoning is a very useful technique for 
proving safety properties of sequential and concur- 
rent algorithms. This proof method involves describ- 
ing the algorithm of interest as a state machine, and 
defining a predicate known as an assertion on the 
states of the machine. One proves inductively that 
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the assertion is true of ail the states that are reach- 
able in a computation of the machine, i.e., that it is an 
invariant of the machine. The assertion is defined so 
that it implies the safety property to be proved. As- 
sertional reasoning is a rigorous, simple and general 
proof technique. Furthermore, the assertions usually 
provide an intuitively appealing explanation of why 
the algorithm satisfies the property. 

One kind of assertional reasoning uses a mapping 
to describe a correspondence between the given aigo- 
rithm and a higher-level algorithm used as a specifi- 
cation of correctness. (See, for example, [ll, 13, 181.) 
Such mappings may be single-valued or multivalued. 

So far, assertional reasoning has been used pri- 
marily to prove properties of sequential algorithms 
and synchronous and asynchronous concurrent algo- 
rithms. We would like to use this technique to prove 
properties of concurrent algorithms whose operation 
depends on time, e.g., ones that arise in real-time sys- 
tems or ones that rely on clocks that tick at approx- 
imately predictable rates. Also, the kinds of proper- 
ties generally proved using assertional reasoning have 
been “ordinary” safety properties; it would be nice to 
use similar methods to prove timing properties (up- 
per and lower bounds on time) for algorithms that 
have timing assumptions. Predictable performance is 
often a desirable characteristic of real-time systems 
[26]; assertional techniques could be very helpful in 
proving such performance properties. 

In this paper, we describe one way in which asser- 
tional reasoning can be used to prove timing prop- 
erties for algorithms that have timing assumptions. 
Our method involves constructing a multivalued map- 
ping from an automaton representing the given algo- 
rithm to another automaton representing the timing 
requirements. The key to our method is a way of 
representing a system with timing constraints as an 
automaton whose state includes predictive timing in- 
formation. Timing assumptions and timing require- 
ments for the system are both represented in this 
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way, and the mappings we construct map from the 
“assumptions automaton” to the “requirements au- 
tomaton”. 

The formal model we use to describe our method 
is the timed automaton model, a slight variant of the 
time constrained automaton model of [21]. We use 
this model to state the requirements to be satisfied, 
to define the basic architectural and timing assump- 
tions, to describe the algorithms, and to prove their 
correctness and timing properties. A timed automa- 
ton is a pair (A, b), consisting of an I/O automaton 
[18, 191, together with a boundmap, which is a formal 
description of the timing assumptions for the com- 
ponents of the system. We introduce the notion of 
a timing condition to state upper and lower bounds 
on the difference between the times at which certain 
events or states appear in an execution; the condi- 
tions imposed by a boundmap are timing conditions 
of a particular kind. An automaton and a set of tim- 
ing conditions, (in particular, a timed automaton) 
generates a set of timed executions and a correspond- 
ing set of timed behaviors. 

While convenient for specifying timing assumptions 
and requirements, timed automata are not directly 
suited for carrying out assertional proofs about tim- 
ing properties, because timing constraints are de- 
scribed by specially-defined timing conditions rather 
than being built into the automaton itself. We there- 
fore introduce a way of incorporating timing condi- 
tions into an automaton definition. For a given timed 
automaton A, and a set U of timing conditions, we de- 
fine the automaton time(A,U) to be an ordinary I/O 
automaton (not a timed automaton) whose state in- 
cludes predictive information describing the first and 
last times at which various events can next occur; this 
information is designed to enforce the timing condi- 
tions in U. 

In the special case that 2.4 represents the conditions 
imposed by a boundmap b for A, time(A,U) is the 
automaton time(A) defined in [2]; this is denoted by 
time(A, 6) in this paper. 

The timing requirements to be proved for an al- 
gorithm described as a timed automaton, (A, b), are 
described as a set of timing conditions, U, for A. We 
define the requirements automaton to be time(A,U). 
Thus, we build into the state of the requirements au- 
tomaton predictive information about the first and 
last times at which certain events of interest can next 
occur. 

The problem of showing that a given algorithm 
(A, b) satisfies the timing requirements is then re- 
duced to that of showing that any behavior of the au- 
tomaton time(A, b) is also a behavior of time(A, U). 
We do this by using invariant assertion techniques; 

in particular, we demonstrate a multivalued mapping 
from time(A,b) to time(A,U). 

In order to demonstrate the use of our technique, 
we apply it to three examples. The first example 
is a timing-dependent resource granting system, con- 
sisting of two concurrently-operating components, a 
clock and a manager. The manager monitors the 
clock ticks, which occur at an approximately known 
rate, and whenever a certain number have occurred, 
it grants the resource. We give careful proofs of upper 
and lower bounds on the amount of time prior to the 
first GRANT event and in between each successive 
pair of GRANT events. 

The second example is an asynchronous (not 
timing-dependent) system consisting of a “line” of 
processes. Each process relays a signal received from 
the process at its left to the process at its right. We 
give careful proofs of upper and lower bounds on the 
time to propagate a signal the left end to the right 
end of the line. Both of these examples are extremely 
simple; however, the ideas they embody also appear 
in many more realistic examples. 

The third, more complicated example involves one 
process incrementing a counter until another process 
modifies a flag, and then decrementing this counter. 
When the counter reaches 0, a DONE action occurs. 
We show lower and upper bounds on the time until a 
DONE occurs. 

The mappings we provide for both of these exam- 
ples have a particularly interesting and simple form- 
a set, of inequalities relating the time bounds to be 
proved to those that can be computed from the state. 
These inequalities contain information about how the 
bounds are to be satisfied. 

Another interesting aspect of the second example 
is that the proof is carried out using a hierarchy of 
automata, rather than just a pair of automata; the 
given system is the lowest level, and the requirements 
automaton is the highest level in the hierarchy. We 
define a mapping for each level in the hierarchy; the 
composition of the entire collection of mappings is 
the mapping needed to show correctness. The hi- 
erarchical proof is especially interesting because its 
assertional reasoning corresponds closely to the more 
“operational” reasoning that might be used in an al- 
ternative proof based on recurrences. 

Technically, mapping techniques of the sort used in 
this paper are only capable of proving safety proper- 
ties, but not liveness properties. Timing properties 
have aspects of both safety and liveness. A timing 
lower bound asserts that an event cannot occur be- 
fore a certain amount, of time has elapsed; a viola- 
tion of this property is detectable after a finite prefix 
of a timed execution, and so a timing lower bound 
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can be regarded as a safety property. A timing up- 
per bound asserts that an event must occur before a 
certain amount of time has elapsed. This can be re- 
garded as making two separate claims: that the des- 
ignated amount of time does in fact elapse (a liveness 
property), and that that time cannot elapse without 
the event having occurred (a safety property). In 
this paper, we assume the liveness property that time 
increases without bound, so that all the remaining 
properties that need to be proved in order to prove 
either upper or lower time bounds are safety prop- 
erties. Thus, our mapping technique provides com- 
plete proofs for timing properties without requiring 
any special techniques (e.g., variant functions or tem- 
poral logic methods) for arguing liveness. 

We show that this method is complete: If every 
behavior of (A,b) is also a behavior of time(A,U) 
then is there necessarily a strong possibilities map- 
ping (in the form of inequalities) from time(A,b) to 
time(A,U). Related completeness results for the us- 
age of refinement mappings to prove properties of non 
timing-based algorithms were proved in [l] and [20]. 

There has been some prior work on using asser- 
tional reasoning to prove timing properties. In par- 
ticular, Haase [6], Shankar and Lam [24], Tel 1271, 
Schneider [23], Lewis [12] and Shaw [25] have all de- 
veloped models for timing-based systems that incor- 
porate time information into the state, and have used 
invariant assertions to prove timing properties. In 
[27] and [12], in fact, the information that is included 
is similar to ours in that it is also predictive timing 
information (but not exactly the same information as 
ours). None of this work has been based on mappings, 
however. 

Several other, quite different formal approaches to 
proving timing properties have also been developed. 
Some representative papers describing these other 
methods are [3], [lo], [8], [7], [28], [9], and [5]. 

Proofs are omitted in this version and can be found 
in the full version of this paper [16]. 

2 Formal Model 

In this section, we present the definitions for the un- 
derlying formal model. In particular, we define I/O 
automata, timed automata and timing conditions. 
We also present some of their relevant properties. 

2.1 I/O Automata 

We begin by summarizing some of the key definitions 
for the I/O automaton model. We refer the reader to 
[18, 193 for a complete presentation of the model and 
its properties. 

An I/O automaton consists of the following com- 
ponents: acts(A), a set of actions, classified as out- 
put, input and internal (input and output actions are 
called external); states(A), a set of states, includ- 
ing a distinguished subset, start(A), of start states; 
steps(A), a set of steps, where a step is defined to be 
a (state, action, state) triple; and part(A), a partition 
of the locally controlled (output and internal) actions 
into equivalence classes; the partition groups together 
actions that are to be thought of as under the control 
of the same underlying process. 

An action ?r is said to be enabled in a state s’ 
provided that there is a step of the form (s’, ?r, s). 
An automaton is required to be input enabled, which 
means that every input action must be enabled in ev- 
ery state. For any set II c acts(A), we denote by 
enabled(A,II) the set of states of A in which some 
action in II is enabled, and by disabled(A, ll) be the 
set of all states of A not in enabled(A,II), that is, 
disabZed(A, II> = states(A) \ enabZed(A, II). 

An ezecution fragment of an I/O automaton A is a 
sequence (finite or infinite) of alternating states and 
actions SO, 7~1, sr, . . . , si+r, ri, si, . . . where for every 
i, (Q-I, ni, si) E steps(A). (If the sequence is finite, 
then it is required to end with a state.) An execution 
is an execution fragment with SO f start(A). The 
schedule of an execution rw is the subsequence con- 
sisting of the actions appearing in CY and is denoted 
sched(a). The behavior-of an execution Q of A is the 
subsequence of cy consisting of external actions ap- 
pearing in (Y and is denoted beh(cu). The schedules 
and behaviors of A are just those of the executions of 
A. 

2.2 Timed Automata 

In this subsection, we augment the I/O automaton 
model to allow discussion of timing assumptions. The 
treatment here is similar to the one described in [2] 
and is a special case of the definitions proposed earlier 
in [21]. 

A boundmap for an I/O automaton A is a a map- 
ping that associates a closed subinterval of [O, co] with 
each class in part(A), where the lower bound of each 
interval is not 00 and the upper bound is nonzero. In- 
tuitively, the interval associated with a class C by the 
boundmap represents the range of possible lengths 
of time between successive times when C “gets a 
chance” to perform an action. We sometimes use the 
notation bl(C) to denote the lower bound assigned by 
boundmap b to class C, and b,(C) for the correspond- 
ing upper bound. A timed automaton is a pair (A, b), 
where A is an I/O automaton and b is a boundmap 
for A. 
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A timed sequence (for an I/O automaton A) is a 
(finite or infinite) sequence of alternating states and 
(action,time) pairs, SO, (~1, tl), ~1, (Q,&), . . ., ending 
in a state if the sequence is finite, where the states 
are from states(A) and the actions are from acts(A).] 
Define to = 0. The times to, tl, . . . are required to 
be nondecreasing, and if the sequence is infinite then 
the times are also required to be unbounded. For 
any finite timed sequence cr define tend(a) to be the 
time of the last event in (Y, if a! contains any (ac- 
tion,time) pairs, or 0, if CY contains no such pairs. We 
denote by ord(cw) (the ‘ordinary” part of (.y> the se- 
quence so, ?rl, s1, r2, . . ., i.e., LY with time components 
removed. 

Definition 2.1 Svppose (A,b) is a timed automa- 
ton. Then a timed sequence (Y is a timed execution 
of (A, b) provided that or is an execution of A 
and (Y satisfies the following conditions, for each class 
C E part(A) and every i. 

I. Suppose b,(C) < co. If si E enabled(A,C) and 
either i = 0 or ~-1 E disabled(A, C) or Ri E C, 
then there exists j > i with tj 5 ti + b,,(C) such 
that either nj E C or sj E disabled(A, C). 

2. If si E enabZed(A,C) and either i = 0 or si-1 E 
disabZed(A, C) or ri E C, then there does not 
exist j > i with tj < t; + bl(C) and nj in C. 

The first condition says that, starting from when an 
action in C occurs or first gets enabled, within time 
b,(C) either some action in C occurs or there is a 
point at which no such action is enabled. Note that if 
b,(C) = 00, no upper bound requirement is imposed. 
The second condition says that, again starting from 
when an action in C occurs or first gets enabled, no 
action in C can occur before time bl(C) has elapsed. 

The timed schedule of a timed execution of a timed 
automaton (A, b) is the subsequence consisting of the 
(action,time) pairs, and the timed behavior is the 
subsequence consisting of the (action,time) pairs for 
which the action is external. The timed schedules and 
timed behaviors of (A, b) are just those of the timed 
executions of (A, b). 

We model each timing-dependent concurrent sys- 
tem as a single timed automaton (A, b), where A is a 
composition of ordinary I/O automata (possibly with 
some output actions hidden).2 

lWe usua.Uy omit reference to the automaton A, as it is 
clear from the context. 

‘An equivalent way of looking at each system is as a com- 
position of timed automata. An appropriate definition for a 
composition of timed automata is developed in [Zl], together 
with theorems showing the equivalence of the two viewpoints. 
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2.3 Timing Conditions 

The conditions imposed by a boundmap are appro- 
priate for describing the timing assumptions of many 
systems. However, in order to describe the timing re- 
quirements that are to be proved for these systems, 
it is convenient to generalize these conditions. For 
example, a bound is often required on the time be- 
tween two particular events, e.g., a request and a cor- 
responding grant. It, is convenient to have a notation 
that permits explicit description of such a condition, 
without reference to the underlying partition classes. 
Therefore, in this subsection, we generalize the condi- 
tions expressed by boundmaps to more general “tim- 
ing conditions”. 
Let A be an I/O automaton. A timing condi-tion for 
A is a tuple of the form (Tstart, Tstep, b, II, S), where: 

T stnrd C start(A) and Tstep C steps(A), are the 
triggers. 

b is a closed interval of the form [bl, b,], where 
bc # 00 and b, # 0, 

II C acts(A), and 

S E states(A) is the disabling set. 

We require that a timing condition satisfy t,he follow- 
ing technical conditions: 

1. !&tart 17 S = 0, and 

2. if (s’, T, s) E Tstep then s $ S. 

A timing condition (Tatart, Tstep, b, II, S) is designed 
to specify upper and lower bounds on the time until 
the next occurrence of an event in the action set II, 
measured from certain points during an execution; 
the particular bounds are given by the interval b. The 
trigger Tdto,-t specifies those start states from which 
we wish to begin measuring the time, while the trigger 
Tstep specifies those steps after which we wish to begin 
measuring. In both cases, the numerical bounds are 
the same. 

Primarily because we wish this generalization to in- 
clude conditions imposed by boundmaps as a special 
case, we must include a way of disabling the bound 
measurements. (In the case of boundmaps, when all 
the actions in a partition class become disabled si- 
multaneously, the bound measurement also becomes 
disabled.) Thus, the disabling set S is defined to be 
a set of states that cause the bound measurement to 
become suspended. Conditions 1. and 2. simply say 
that the disabling set does not include any states that 
the triggers designate as states in which to start the 
bound measurement, 



We sometimes write the timing condition 
@k-t, Step, b, n, S) in the form 

@-‘start, Ztep) -t+ 0-h S). 
Now we define what it means for a timed sequence 

to satisfy a timing condition, The definition is closely 
related to the definition we gave earlier of a timed 
execution; we will show the precise connection in 
Lemma 2.1. 

Definition 2.2 Le2 Q = se, (rr,ti), ~1, ,,. be a timed 
sequence. Then cy satisfies a timing condition 

(Tstort, ZteJ -?l+ (II,S) if the following conditions 
hold: 

1. Suppose b,, < 00. 

If so E TStd,.t then there exists j > 0 with 
tj 5 b, such that either rj E II ~r sj E S. 

If (Si-1, xi, si) E Tstcp then there exists j > 
i with ti 5 ti + b, such that either rj E II 
Of Sj E S. 

If so E Tsto,-t and if there exists j > 0 with 
tj < bt such that rj E II, then there exists 
k,O < k < j, such that sb E 5’. 

If (s;-1, ri,si) E Tstep and if there exists 
j > i with tj < ti + bl such that rj E II, 
then there exists k, i < k < j, such that 
Sk E s. 

Let U be a set of timing conditions for an I/O au- 
tomaton A. We say that a timed sequence CY is a 
timed execution of (A,U) provided that ord(cr) is an 
execution of A and cr satisfies every timing condition 
u EU. 

To justify this new use of the term “timed ex- 
ecution”, and as an example of the use of timing 
conditions, we show how to express the notion of 
“timed execution” of (A, b) in terms of timing con- 
ditions. Given an arbitrary timed automaton (A, b), 
we define the set & of timing conditions that are 
associated with b. For each class C in the partition 
of A, & includes one timing condition, cond(C) = 

(T,t,,t(C), G.&C)) “g) (n(C), S(C)), defined as 
follows. 

l T,t,,t(C) = start(A)II enabZed(A, C), that is, the 
set of start states of A in which some action from 
C is enabled, 

l Tstep(C) is the set of steps (s’, r, s) of A such that 
s E enabled(A, C) and either s’ E disabled(A, C) 
or 7r E C, 

l II(C) = C, and 

l S(C) = disabZed(A,C). 

Note that this definition satisfies the two require- 
ments for timing conditions. 

Lemma 2.1 Suppose (A, b) is a timed automaton. 
Then a timed sequence (1: is a timed execution of (A, b) 
if and on/y if it is a timed execution of (A,&). 

3 Incorporating Timing Con- 
ditions into I/O Automata 

In order to use invariant assertion techniques to rea- 
son about timed automata, we define an ordinary I/O 
automaton time(A,U) corresponding to a given timed 
automaton A with timing conditions U. This new au- 
tomaton has the timing restrictions imposed by U on 
A built into its transition rules, based on predictions 
about when the next event from each set of actions 
will occur. In this section, we give the construction 
of time(A,U) and also give results relating the ex- 
ecutions and behaviors of time(A,U) to the timed 
executions and timed behaviors of (A, U). 

Given any I/O automaton A and set U of timing 
conditions for A, we define the ordinary I/O automa- 
ton time(A, U) as follows. We write each timing con- 
dition U E U as 

(T,t,,-t(U), TateP(U)) bg’ (n(U), S(U)) . 

The automaton time(A,U) has actions of the form 
(n, t), where ?r is an action of A and t is a nonnega- 
tive real number, with the classification of actions the 
same as for A. Each of its states consists of a state, 
As, of A (the “A-state”), augmented with a compo- 
nent Ct (the “current time”), and, for each timing 
condition U E 24, two components R(U) and Lt(U) 
(the “first time” and “last time” for each timing con- 
dition). Ct represents the time of the last preced- 
ing event. The Ft(U) and Lt(U) components repre- 
sent, respectively, the first and last times at which the 
timing condition U specifies that an action in II(U) 
should occur. 

We use record notation to denote the various com- 
ponents of the state of time(A,U); for instance, 
s.As denotes the state of A included in state s of 
time(A,U). Each initial state of time(A,U) consists 
of an initial state s of A, plus Ct = 0, plus val- 
ues of Ft(U) and W(U) with the following prop- 
erty: if s.As E Tst,,t(U) then s.Ft(U) = bl(U) 
and s.Lt(U) = b,(U); otherwise, s.Ft(U) = 0 and 
s.Lt(U) = 00. That is, if the start state of A is in 
the trigger set of U, then the predicted times are the 
ones specified in U; otherwise, they are set to default 
values. 
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If (?r,t) is an action of time(A,U), then (s’, (n,t),s) 
is a step of Zime(A,U) exactly if the following condi- 
tions hold. 

1. 

2. 

3. 

4. 

(s’.As, ?r, s.As) is a step of A. 

s’.Ct ,< t = s.ct. 

For all U E 24, if ?r E II(U), then 

(a) s’.Ft(U) 5 t 5 s’&(U). 

(b) if (s’.As, ?r, s.As) f Tstep(U) then 
s.Ft(U) = t + bL(U) and 
s.Lt(U) = t + b”(U), 

(c) if (s’.As, ?r, s.As) $ T&(U) then 
s.Ft(U) = 0 and s&(U) = 00. 

For all U E 24, if 7r $! II(U), then 

(a) t 5 s’.Lt(U), 

(b) if (s’.As, 1~~ s.As) E T,t,,(U) then 
s.Ft(U) = t + bt(U) and 
s.,%(U) = min(s’.Lt(U), t + b,(U), and 

(c) if (s’.As, ?r, s.As) 6 T&,(U) and 
s.As # S(U) then s.Ft(U) = s’.Ft(U) and 
s.Lt(U) = s’.Lt(U), and 

(d) if s.As E S(U) then s.Ft(U) = 0 and 
s&(U) = 00. 

Note that ifs is a reachable state of time(A, b) and if 
s.As E S(U) then s.Ft(U) = 0 and s&(U) = co. 

Intuitively, Condition 1. says that the automaton 
time(A,U) is correctly simulating the state transi- 
tions of A, and Condition 2. says that Ct Comp* 
nents are monotonically nondecreasing, i.e., the new 
time is at least as great aa the previous time. Con- 
dition 3. deals with properties involving timing con- 
ditions U that include I in their action sets: Con- 
dition 3(a) says that the time at which the event a 
occurs must be between the bounds specified for U; 
Condition 3(b) says that a triggering step involving 
7c imposes new time predictions for U, whereas Con- 
dition 3(c) says that a non-triggering step involving 
7~ does not impose any such predictions. Condition 4. 
deals with properties involving timing conditions U 
that do not include T in their action sets: Condition 
4(a) says that ?r can only occur if U does not require 
any other action to be scheduled first. Condition 4(b) 
says that a triggering step involving R imposes new 
time predictions for U. Note that in this case, there 
may already be old predictions in effect for this time 
condition; the effect of taking the min for the Lt(U) 
component is to require both the new predictions and 

any old predictions to be satisfied.3 Condition 4(c) 
says that a non-triggering (and non-disabling) step 
involving ?r does not impose any new time predic- 
tions for U. Condition 4(d) says that a disabling step 
involving z sets the time predictions for U back to 
their defaults. 

The partition classes for time(A,U) are derived 
one-for-one from those of A.4 

We now relate the timed executions of (A,l.f) to 

the executions of the corresponding I/O automaton 
time(A,U). In order to do so we introduce a techni- 
cal definition and some lemmas. Notice that the def- 
inition of a timed execution contains aspects of both 
safety and liveness. Sometimes it it useful to focus on 
the safety aspects alone. The next definition restrict 
attention to the safety portions of Definition 2.2. 

Definition 3.1 Let cy be the finite timed sequence 
SO,(m,tl),Slr .-*,Send. Then a semi-satisfies a tim- 

ing condition (Tstart, Tstep) 2 (II, S) if the following 
conditions hold: 

1. Suppose b, < co. 

(a) If SO E Start then either tend(a) 5 bu or 
there exists j > 0 with tj 5 b, such that 
either rj E II or sj E S. 

01 If ( si-1, ni, si) E Tstep then either tend(a) < 
ti + b, or there exists j > i with tj < ti + b, 
such that either rj E II or sj E S. 

2. (a) If so E T&,.t and if there exists j > 0 with 
tj < bl such that rj E ll, then there exists 
k,O<k<j, suchthatskES. 

(b) If (Q-I, ?T;, si) E T&, and if there etists 
j > i with tj < ti + bl such that rj E II, 
then there ezists k,i < k < j, such that 
Sk E s. 

The only differences between this definition and Def- 
inition 2.2 are the “either” clauses. These clauses 
allow an action to fail to occur if insufficient time has 
passed. Now suppose U is a set of timing conditions 
for an I/O automaton A. A timed sequence cv is a 

3The min is necessary because in case there is a prior pre- 
diction, it will surely be no greater than the new prediction, 
so the min will be the first term s’.Lt(U). However, if there 
is no prior prediction then s’.Lt(U) = 60 so the min will be 
the second term t + b,(U). We could have similarly written 
s.Ft(U) = max(s’.Ft(U),t + b&J)), but that is unnecessary 
because it is always the caSe that s’.Ft(U) 5 bl(U). 

4 It seems that we never need them, however, since the par- 
tition dasses are used to enforce fairness to the components of 
the system; in time(A,U) the timing conditions guarantee that 
each component gets a fair chance to operate. 
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timed semi-execution of (A,U) if ord(cw) is an exe- 
cution of A and for any timing condition U E U, cy 
semi-satisfies U. 

An observation we use later is the following, saying 
that the limit, of a sequence of timed semi-executions 
in which the time components are unbounded must 
be a timed execution. 

Lemma 3.1 Let (cY~}~~ be a sequence of timed 
semi-executions of (A,U) such that 

1. for any i >_ 1, IY~ is a prefix of ai+l, and 

2. limi,, tmd(%) = 00. 

Then there exists a unique infinite timed exe&ion Q! 
of (A,U) such that for any i 2 1, ai is a prefix of Q. 

If Q is an execution of time(A,U), we define 
project(a) to be the timed sequence obtained from 
(Y by mapping each occurrence of a state s in (Y to 
s.As (while keeping the (action,time) pairs intact). 
We first, show the following simple correspondence be- 
tween semi-executions of (A,U) and finite executions 
of time(A,U). 

Lemma 3.2 1. If (Y’ is a timed semi-execution 
of (A,U), then there exists an execution o of 
time(A, 24) such that Q’ = project(a). 

2. If a is a finite execution of time(A,U), then 
project(o) is a timed semi-execution of (A,U). 

We can use these lemmas to prove the following 
result for infinite sequences: 

Lemma 3.3 1. If a’ is an infinite timed ezecution 
of (A,U), then there erists an injnite execu- 
tion a of time(A,U) in which the lime compo- 
nents of the actions are unbounded, such ihat 
a’ = project(a). 

2. If (Y is an infinite execution of time(A,U) in 
which the time components of the actions are un- 
bounded, then project(a) is a timed execution of 

(AJO 

A very important special case of this construction 
is the case of time(A,&); this automaton is the result 
of incorporating the boundmap timing conditions of 
a timed automaton (A,b) into the automaton tran- 
sitions. As shorthand, we will sometimes refer to 
this automaton as time(A, b) instead of time(A,&), 
suppressing explicit mention of the timing conditions 
ub. We will also sometimes write Ft(c) instead of 
Ft(cond(C)) for partition class C, and similarly for 
the other state components. 

Other special cases of the general construction will 
be the requirements automata for the examples we 
consider in Sections 4 and 6. 

We want to have a sufficient condition for satisfying 
a set of timing conditions. We define a new kind 
of mapping, a strong possibilities mapping. Such a 
mapping is only defined from automata of the form 
time(A,U) to time(A, Vj, where U and V are sets of 
timing conditions for A. 

Definition 3.2 Let A be a timed automaton and let 
U and V be sets of timing conditions for A. Le-t f be a 
mapping from states of time(A,U) to sets of states of 
time(A, V). The mapping f is a strong possibilities 
mapping from time(A,U) to time(A, V) provided that 
the following conditions hold: 

For every start state so of time(A,U), there is a 
start state ug of time(A, V) such that uo E f(so). 

If s’ is a reachable state of time(A,U), u’ E 
KS’) is a reachable state of time(A,V) and 
(s’, (a,t), s) is a step of time(A,U), then there 
is a step (u’, (?r, t), u) of time(A,V), such that 

u E f(s). 

If u E f(s), then u.As = s.As; that is, the map- 
ping is constrained to be the identity on A’s state 
components. 

Theorem 3.4 Suppose that there is a strong possi- 
bilities mapping from time(A,U) to time(A, V). Then 
any infinite timed execution of (A,U) is a timed exe- 
cution of (A, V). 

Thus the existence of a strong possibilities map- 
ping yields in this case, all the timing properties we 
require, including both safety and liveness properties. 
The mapping immediately yields the safety proper- 
ties. (Recall that the safety properties are the lower 
bounds, as well as the upper bounds that assert that 
time cannot elapse without a certain event having 
occurred.) But when these safety properties are com- 
bined with the property that a timed execution is 
infinite and our assumption that the time in infinite 
timed executions is unbounded (so that time increases 
without bound), they also imply that the events in 
question must eventually occur. 
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4 Example: 
Resource Manager 

Now we present our first example, a simple resource- 
granting system adapted from an algorithm in [2]. 
The system consists of two components, a clock and 
a manager. The clock ticks at an approximateIy- 
predictable rate, and the manager counts ticks in or- 
der to decide when to grant a resource. We wish to 
analyze the time until the first grant, and the time be- 
tween each successive pair of grants. The bounds we 
prove for this system are tight since there are timed 
executions of the system in which these bounds are 
achieved. The same is true for the examples presented 
in Section 6. 

We describe the algorithm and its timing assump- 
tions as a timed automaton (A, b). The required tim- 
ing behavior is presented as a set of timing conditions 
U; we prove that the algorithm satisfies the require- 
ments by demonstrating a strong possibilities map- 
ping from time(A, b) to time(A,U). 

4.1 The Algorithm 

The algorithm consists of two components, a clock 
and a manager. The clock has only one action, the 
output TICK, which is always enabled, and has no 
effect on the clock’s state. It can be described as 
the particular one-state automaton with the following 
steps.5 

TICK 
Precondition: 

true 
Effect: 

none 

The boundmap associates the interval [cl, ca], 
where 0 < cl 5 c2 < 00, with the single class, 
(TICK}, of the partition. For convenience, we over- 
load the notation and designate this singleton class as 
TICK also. This means that successive TICK events 
occur with intervening times in the given interval. 

The manager has one input action, TICK, one out- 
put action, GRANT and one internal action, ELSE. 
The manager waits a particular number ,4 > 0 of clock 
ticks before issuing each GRANT, counting from the 
beginning or from the last preceding GRANT. The 

51.n the notation we use for automata, a separate description 
is given for the steps involving each action. Instead of listing 
the steps, we provide a “precondition” which describes the set 
of states in which the action is enabled, and an “effect” which 
describes the changes caused by the action. Input actions do 
not have a precondition, because they are always enabled. 

manager’s state has one component: TIMER,, holding 
an integer, initially Ic. 

The manager’s algorithm is as follows: 

TICK 
Effect: 

TIMER := TIMER -1 

GRANT 
Precondition: 

TIMER < 0 
Effect: 

TIMER := f 

ELSE 

Precondition: 

TIMER > 0 

Effect: 

none 

Notice that ELSE is enabled exactly when GRANT 
is not enabled. The effect of including the ELSE ac- 
tion is to ensure that the automaton continues taking 
steps at its “own pace”, at approximately regular in- 
tervals. 

Thus, in the situation we are modeling, when the 
GRANT action’s precondition becomes satisfied, the 
action does not occur instantly - the action waits 
until the automaton’s next local step occurs.6 

The partition groups the GRANT and ELSE ac- 
tions into a single equivalence class LOCAL, with 
which the boundmap associates the interval [0,1], 
where 0 5 1 < 00. We assume that cl > 1.7 Fix A 
to be the I/O automaton which is the composition of 
the clock and manager, with the TICK output action 
converted to an internal action; thus, the only exter- 
nal action of A is the output action GRANT. Also, 
let b be the boundmap described above. We wish to 
show that all the timed behaviors of (A, b) satisfy cer- 
tain upper and lower bounds on the time up to the 
first GRANT and the time between consecutive pairs 
of GRANT events. 

We begin our analysis by stating some invariant 
properties of the algorithm. In order to do this, we 
need timing information to be included in the state, 
so we consider the automaton bime(A, IJ), constructed 
as described in Section 3. Notice that in this case, 
the automaton he(A, b) has the following compo- 
nents, As, Ct, Ft(TICK), Lt(TICK), Ft(LOCAL), 
and Ft(LOCAL). 

6An alternative situation is one in which the manager 
is interruptdriven, that is, whenever the precondition of a 
GRANT becomes true, the GRANT occurs shortly there- 
after. This situation could be modeled by omitting the ELSE 
action. The two automata have slightly different timing prop- 
erties. ln this paper, we only consider the first assumption. 

7Again, a different assumption would change the timing 
analysis. 
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The next lemma states invariant properties of the 
automaton time(A, b). Notice that the second prop- 
erty involves the time components of the state. 

Lemma 4.1 The foilowing are frzle about any reach- 
able state s of time(A, b). 

1. s.TIMER 2 0. 

2. If s. TIMER = 0 then s.Ft(TXK) 2 
s.Lt(LOCAL) + cl - 1. 

We close this subsection with a basic property of 
time(A, b) (for this fixed (A, b)). 

Lemma 4.2 AU timed executions of (A, b) are in& 
nite. 

4.2 The Requirements Automaton 

We wish to show the following, for any timed behavior 
p of (A, 6): 

1. 

2. 

3. 

There are infinitely many GRANT events in 0. 

If t is the time of the first GRANT event in /?, 
thenk.clLt<k.ca+Z. 

If ti and t2 are the times of any two consecutive 
GRANT events in p, then 

k . cl - 15 t2 - tl 5 k . c2 + 1. 

We let P denote the set of sequences of (action, time) 
pairs satisfying the above three conditions. 

We will specify P in terms of another I/O automa- 
ton, called the requirements automaton. We define 
two timing conditions, G1 for the time until the initial 
GRANT event and G2 for the time between succes- 
sive GRANT events. The requirements automaton B 
is defined to be time(A, {Gl, Gz}). 

We now define the conditions. The first condition, 

GI, is (T,t,,t(Gl), 0) “(2) (n(G), 01, where 

l Z&,.t(Gr) is the (singleton) set of start states of 

A, 

l bt(G1) = k . cl and b,(Gl) = k. cz + 1, and 

. II = {GRANT}. 

The second condition, Gz, is (0,T,,,,(G2)) “‘3’ 

(fl(G), 0), where 

l gwfh\ = u s’,?T,s) E steps(A) : 7r = 

, 

l be(G2) = k . cr - 1 and b, (G2) = k . cz + 1, and 

l II = {GRANT}. 

Note that the behaviors of B and the sequences in 
P both consist of elements that are pairs, an action of 
A together with a time. Furthermore, if Q is a timed 
execution of (A, (Gl, Gz}) then beh(a) is in P. 

By Lemma 4.2 all the timed executions of (A, b) are 
infinite. Thus, by Theorem 3.4, all we need to do is to 
show a strong possibilities mapping from time(A, 6) 
to time(A, {Gl, G2)) = B. This is done in the next 
section. 

4.3 The Mapping 

In this section, we present a strong possibilities map- 
ping from time(A,b) to B, thereby showing that all 
schedules of time(A, b) are also schedules of B. This 
fact is then used to prove Theorem 4.4, which says 
that all timed behaviors of (A, b) are in P. 

We define a mapping f so that a state u of B is in 
the image set f(s) exactly if the following conditions 
hold. 

1. If s.TIMER > 0 then 

(a) nain(u.Lt(G1), u.Lt(Gz)) 2 s.Lt(TICK) + 
(s.TIMER - 1)~ + I, and 

(b) ma+Ft(G& u.Ft(Gz)) 5 s.Ft(TICK) + 
(s.TIMER - 1)~~. 

2. If s.TIMER = 0 then 

(a) min(u.Lt(Gl), u.Lt(G2)) 2 s.Lt(LOCAL), 
and 

(b) maz(u.Ft(G& u.Ft(Gz)) < s.Ct. 

The inequalities should be interpreted as giving ex- 
plicit upper and lower bounds for the time of the next 
GRANT event, in terms of the values of the variables 
in the state of time(A, b). Intuitively, the right-hand 
side of the inequality describes how the bounds will be 
satisfied; for example, in the case of inequality l(a), 
a TICK event must happen within time Lt(TKX), 
and then after TIMER- 1 additional ticks, each hap- 
pening after at most c2 time, TIMER will become 0, 
thus enabling the GRANT, which will happen within 
at most time 1. 

If we think of the value of min(Lt(G1), Lt(G2)) 
as indicating an upper bound on the time when a 
GRANT will next occur, then it should not be sur- 
prising that any sufficiently large number (with re- 
spect to the values of the variables in the state of 
time(A)) could be used as the value of this mini- 
mum. This just indicates that any such value could 
be proved to be an upper bound. Similarly, any suf- 
ficiently small number could be used as the value 
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for maz(Ft(G1), Ft(Gz)), a lower bound on the time 
when a GRANT event will next occur. 

Thus, the inequalities comprising the strong possi- 
bilities mapping express the fact that any sufficiently 
large number (with respect to the values of the vari- 
ables in the state of time(A, b)) should be provable as 
an upper bound for the time for the next GRANT, 
and any sufficiently small number should be provable 
ECZ a lower bound.s 

The given mapping is obviously multivalued, be- 
cause it is described in terms of inequalities. It seems 
possible to use a single-valued mapping for this exam- 
ple by complicating the definition of the requirements 
automaton. More discussion of the issue of multival- 
ued vs. single-valued mappings appears in [15]. 

Although (we think that) the correspondence be- 
tween time(A, b) and B described by f is easy to un- 
derstand, verifying formally that f is indeed a strong 
possibilities mapping is a fairly long and mechanical 
process. 

Lemma 4.3 The mapping f is a strong possibilities 
mapping. 

Theorem 4.4 All timed behaviors of (A, b) are in P. 

5 Dummification 

When all the timed executions of a timed automaton 
are infinite as in the previous example, then Theo- 
rem 3.4 suffices to prove all the timing conditions, 
including the liveness parts. Unfortunately, there 
are many examples where the timed automaton has 
timed executions that are finite. Since it is much 
more straightforward to use our proof method when 
all complete executions are infinite, we augment such 
timed automata to have only infinite timed execu- 
tions. For a timed automaton (A, b) we define a 
variant (Al,%), which augments A with a “dummy” 
component that always has locally-controlled actions 
enabled. All of the timed executions of (2,;) will 
be infinite, and the executions of (A, b) and (A,;) are 
very closely related (see Lemma 5.3 below). Thus, we 
will be able to reason about (2,;) and obtain cons& 
quences for the original timed automaton (A, b). 

For any timed automaton (A, b), define (x,x), the 
dvmmific&ion of (A, b), as follows. We augment the 

8Note that if we simply replaced the inequalities with equa- 
tions, the resulting mapping would not be a strong possibilities 
mapping. For example, suppose that a clock tick occurs within 
less than the maximum ~2. Then the right-hand side expression 
in l(a) would evduate after the step to an earlier time than 
before the step. On the other hand, the corresponding step 
in the requirements automaton would not change the value of 
Lt( GRANT); the correspondence thus would not be preserved. 

automaton A with a single new component called the 
dummy. Assume, w.l.o.g., that NULL $! actions(A). 
The dummy has a single action, an output NULL 
(which is not shared by any of the other components). 
It has only one state, in which NULL is enabled. The 
boundmap associates any interval [nl, nz] such that 
0 < nl < n2 < oo_with the new singleton partition 
class, NULL. Let A be the automaton composed of 
A and the dummy. Also, let b be the boundmap that 
is identical to b except for the addition of the new 
interval [nl, 1121 for the new partition class, NULL. 

Lemma 5.1 Let (A, 6) 6 e a timed automaton, and let 

(x,$) be the dvmmification of (A, b). Then all timed 

executions of (X,X) are infinite. 

If Z is a timed sequence for 2, define u&urn(Z) to 
be the result of removing the following from 6: the 
dummystate component and the NULL steps. We 
have the following lemma. 

Lemma 5.2 Let (A,b) be a timed automaton. 

1. If G is a timed etecution of (X,Z) then undum(Z) 
is a timed execution of (A, b). 

8. Let cr be a timed execution of iA2b). Then there 
exists a timed execution 6 of (A, b) such that cr = 
24ndum(Ci). 

Suppose that U = (T&t, Step, b, I& S) is 
a timing condition for an I/O automaton A. 
Then -we definLa zreyo,nd;ng timing condi- 
tion U = (TJtort,Tstep, b,II, S) for A, as fol- 
lows. Tzrt = Tstort x (dummystate}, T;;kPJ = 
(((s’, du_mmysta_te), 7r, (s, dumnystote)) 1 (s’, x, s) E 
Tsteps}, b = 6, II = II, and S = S x {dummystate}. 
If U is a set of timing conditions for A, then define 
iL(~~UvEU}. 

Lemma 5.3 Let 24 be a set of timing conditions fez 
A and let c be the set of timing conditions for A 
defined above. 

I. If ii is a timed execution of (x,u) then 
w&m(E) is a timed execution of (A,U). 

2. If (Y is a timed execution of (A,U) then any 
timed sequence Z such that CY = undum(Z) and 
ora(q is an execution of A is a timed execution 

of (&G). 

Theorem 5.4 Let (A,b) be a timed automaton, and 

let (.&z) be the dvmmification of (A, b). Let U be 
a set of timing conditions for A. Assume that there 
is a strong possibilities mapping from time(A,$) to 

time(z,@. Th en every timed execution of (A, b) sat- 
isfies U. 
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6 More Examples The algorithm for Pi is: 

6.1 Signal Relay 

Now we present our second example, a simple sig- 
nal relay. The system is a composition of a collec- 
tion of n + 1 processes, PO,. . . , P,,, organized as a 
line. PO generates SIGNAL0 (once), and the interme- 
diate processes relay it, so that P,, eventually gener- 
ates SIGNAL,. We wish to analyze the total delay a 
signal incurs, as a function of its delay at each of the 
relaying processes. 

SIGNAJ& 
Effect: 

FLAG := true 

SIGNA Li 
Precondition: 

FLAG = true 
Effect: 

FLAG := false 

. 

Again, we describe the algorithm and its timing as- 
sumptions as a timed automaton (A,b), and the re- 
quired timing behavior as a set of timing conditions 
U. This time, however, we do not simply present 
a direct mapping from time(A, b) to time(A,U) (al- 
though we could have). Rather, we use a sequence of 
intermediate automata, exhibiting strong possibilities 
mappings between each consecutive pair of automata 
in the sequence. The style of the reasoning involved 
corresponds closely to that of a proof based on recur- 
rence inequalities. (In fact, this example was inspired 
by the recurrence-inequality proof sketch in [Ii’] for 
the tournament mutual exclusion algorithm of [22]). 

The boundmap associates the interval [dr, dz], 
where 0 5 dr 5 ds < 00, with the single class, 
SIGNALi, of the partition for Pi. 

Now we fix A to be the timed automaton which is 
the composition of all the Pi’s, with all actions except 
SIGNAL0 and SIGNAL, made internal, and b to be 
the boundmap described above. We will prove that if 
a SIGNAL0 occurs, then the difference between the 
time it occurs and the time at which a later SIGNAL, 
occurs is at least n . dr and at most n. d2. 

Note that all the timed executions of (A, b) are fi- 
nite, thus we will apply dummification (as described 
in the previous section) to make all the timed execu- 
tions be infinite. 

6.1.1 The Algorithm We first state the following simple invariant about 
A. The proof is by a simple induction. 

The algorithm consists of n + 1 automata, PO, . . . , P,, 
where n 1 1. PO has one action, the output 
SIGNALo. The state of PO consists of one compo- 
nent, FLAG, a Boolean value, initially true. 

PO’s algorithm is as follows: 

Lemma 6.1 In any reachable state s of A, if 
SIGNALi is enabled in s, then for all j # i, 0 5 
j 2 n, SIGNALi is not enabled in s. 

SIGNAh 
Precondition: 

FLAG = true 
Effect: 

FLAG := false 

6.1.2 The Requirements Automaton 

We wish to show the following, for any timed behavior 
,O of (A,b): 

1. If SIGNAL0 event occurs in /3, then a single later 
SIGNAL, event occurs in p. 

The boundmap associates the interval [O, JX] with 
the single class, {SIGNALo}, of the partition. As 
before, we also designate this class as SIGNALo; we 
use similar notational conventions for the remaining 
singleton classes in the paper. 

2. If tl is the time of a SIGNAL0 event and t2 is the 
time of the corresponding SIGNAL, event then: 

Each automaton Pi, 1 5 i 5 n, has an input 
action SIGNAL;-1 and an output action SIGNALi. 
Each automaton state contains the single component 
FLAG, holding a Boolean value, initially false. 

We let & denote the set of sequences of (action, time) 

pairs satisfying the above two conditions. 
We will specify Q in terms of a requirements au- 

tomaton. Towards this end, we define the following 

timing condition, UO,~ = ($,To,,) ‘3 (II,,,, 0), where 

l To+ = {(s’, ?r, s) E steps(A) : ?r = SIGNALo}, 

l 60,~ = [TJ - dl, n . d2] and 

l IL,,n = (SIGNALn}. 
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Notice that if cx is a timed execution of (A, {UQ.,}) 
then beh(a) is in Q. The requirements automaton B 

is -time@ {Uyn}). 
By Theorem 5.4 all we need to do is to show a 

strong possibilities mapping from time(X,i) to B. 
The complete formal proof appears in the next sec- 
tion. 

6.1.3 The Intermediate Requirements 
Automata 

One way of proceeding would be to exhibiJ ,a strong 
possibilities mapping directly from time(A,b) to I?, 
following the pattern of the first example. However, 
an alternative and attractive strategy might be based 
on the recursive structure of the line of processes. 
For instance, one might give a recursive analysis of 
the time between any SIGNALk, 0 < k; 5 n - 2 and 
SIGNAL, in terms of the time between SIGNALe+ 
and SIGNAL,. Thus, the analysis would be based on 
recurrence inequalities. Several examples of such re- 
currence inequality analyses (for upper bounds only) 
appear in [17]; the analysis of the Peterson-Fischer 
([22]) tournament algorithm in [17, p. 26-301 is a 
particularly good example of this proof style. 

Recurrence inequality proofs, however, have an 
“operational” style that is very different from the as- 
sertional style we are describing here. We would like 
to be able to utilize the power of the recurrence anal- 
ysis within our assertional framework. In order to do 
this, instead of proceeding to show directly that every 
schedule of time@,%) is a schedule of B by a strong 
possibilities mapping, we proceed using a hierarchy of 
intermediate requirements automata, Each interme- 
diate requirements automaton, Bk, includes the same 
timing conditions as are given by the boundmap b, for 
partition classes SIGNALo, . . . . SIGNALk, plus a new 
timing condition that provides bounds on the time 
between SIGNALk and a subsequent SIGNAL,. The 
recursive argument described above, expressing the 
time between SIGNALk and SIGNAL, in terms of 
the time between SIGNALk+r and SIGNAL,, is then 
captured formally by a strong possibilities mapping 
from Bk to Bk+i. 

In this subsection, we define the intermediate au- 
tomata. 

First, for every k, 0 5 k 5 n- 1, we define a timing 
condition stating that the time between SIGNALk 
and SIGNAL, (if SIGNALb occurs) is in the interval 

b - k)dl, (n - k)&l. (In particular, the condition 
will imply that each SIGNALk is actually followed 
by a corresponding SIGNAL,). When k = n - 1, this 
condition will be the same as the timing condition 
assigned by the boundmap b to the class containing 

SIGNAL,, . On the other hand, when k = 0, this 
condition is the same as the condition Ue,,., previously 
defined, i.e., the timing condition we wish to prove. 

Formally, for any 0 5 k _< n - l,g we define 

the following timing condition, Uk,n = (@,rS;,,) ‘3 
(Qn, S), where 

l Tk,,, = {(s’, ?r, s) E steps(A) : ?r = SIGNALS}, 

l bk,n = [(n - k) . di, (n - k) . ds], and 

For any k, 0 5 k 2 n - 1, let Z./k be the set of 
timing conditions that includes Uk,n and the condi- 
tions assigned by boundmap b to the partition classes 
SIGNALo, . . . . SIGNALk. Let Bk denote the I/O au- 
tomaton t;me(&G). 

In the next subsection, we will show the existence 
of a strong possibilities mapping from B1: to &-I, for 
every k, 1 5 k 5 n - 1. This implies that there is a 
strong possibilities mapping from B,-I to B,. More- 
over, there is a trivial strong possibilities mapping 
from Bo to the requirements automaton B (which just 
ignores the timing conditions associated by b with the 
partition class SIGNALO). Similarly, the:ejs a trivial 
strong possibilities mapping from time(A, b) to EL-1 
(which simply renames the state components associ- 
ated with SIGNAL,). Therefore, this mapping proof 
will imply the existence of a strong possibilities map- 
ping from dime(&z) to B. 

6.1.4 The Mapping 

In this subsection, we fix a particular value of k, 1 5 
k 5 n - 1, and show the existence of a strong possi- 
bilities mapping, fk, from Bk to &.:_I. 

Recall that the timing conditions included in 
Bk are those for uk,,, SIGNALO, . . . . SIGNALk and 
NULL, while those included in Bk-1 are those for 
Uk-l,n, SIGNALo, . . . . SIGNALk-1 and NULL, For 
the sake of convenience we denote by Ft(k, n) (respec- 
tively, Lt(k,n)) the Ft (respectively, Lt) component 
of the state of Bk that is associated with Uk,n. Also, 
as we did in our construction of time(A, b), we denote 
by Ft(C) (respectively, Lt(C)) the Ft (respectively, 
Lt) components that are associated by the boundmap 
z with each partition class C. We also use the nota- 
tion FLAG;, 0 5 i 2 n, to denote the FLAG com- 
ponent Of Pi. 

Now we define fh so that a state u E states(Bk-1) 
is in the image set fk(s), for s E states(Bk), exactly 
if the following hold. 

gThe redefinition of Uo,, is consistent with the prior 
definition. 
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1, If s.FLAG; = true, for some i, k: + 1 2 i 5 n, 
then u.Lt(k - 1, n) > s.Lt(h, n) and 
u.FY(k - 1, n) 5 s.iqk, n). 

2. If s.FLAGk = true, then u.Lt(k - l,n) 2 
s.Lt(SIGNALk) + (n - Ic)& and 
u.Ft(k - 1, n) < s.Ft(SIGNALk) + (n - E)dl. 

3. Otherwise, u.Lt(lc - 1, n) = oo and 
u.Ft(k - 1, n) = 0. 

Every other component of state u of&-r is equal to 
the corresponding component of the state s. Notice 
that by Lemma 6.1 if FLAGb = true then FLAGi = 
false for all i # Ic, 0 5 i # n; thus the mapping is 
well defined. 

Intuitively, the inequalities give upper and lower 
bounds for the time of the next SIGNAL, event, 
in terms of the values of the variables in the state 
of time@,@. For example, in the case of the up- 
per bound, if the signal has already propagated past 
process Pk, then within the time that is stored in 
s.Lt(k,n), a SIGNAL,, event must occur (because 
the component s.Lt(k,n) keeps track of the latest 
time at which a SIGNAL, event must occur, once a 
SIGNALk event has occurred). If the signal has only 
gotten as far as process Pk, however, then s.Lt(k,n) 
will not contain any useful information, so an al- 
ternative bound is used. In this case, within time 
s.Lt(SIGNALk), a SIGNALk event must occur, and 
then after (n - L) additional signal propagation steps, 
each taking at most time da, a SIGNAL, event must 
occur. The lower bound has a similar meaning. 

Lemma 6.2 If 1 < k < n - 1 then the mapping fk 
is a strong possibilities mapping from Bk to Bk-1. 

By considering the composition fr o . . . o f,,-l 
and th_e-trivial mappings from Bc to B and from 
time(A, b) to .&-I, we obtain the following corollary. 

Corollary 6.3 They -exists a strong possibilities 
mapping from time(A, b) to B. 

Theorem 6.4 All timed behaviors of(A, 6) are in Q. 

6.2 Two-Process Race System 

We consider a system composed of two processes. 
One process increments a counter until the other pro- 
cess modifies a flag, and then decrements this counter. 
When the counter reaches 0, a DONE action occurs. 
We are interested in lower and upper bounds on the 
time until a DONE occurs. 

The system is described as a timed automaton. 
The underlying I/O automaton A has state variables 

t, y and done, where z and y are integers, initially 0, 
and done is a Boolean, initially false. There are four 
output actions: SET, INC, DEC and DONE, and 
no inputs or internal actions. The partition classes 
are Y = {SET} and X = (INC, DEC, DONE}. In- 
tuitively, there are two sequential processes (using 
shared memory), one of which performs the SET ac- 
tion and one of which performs the other three. The 
transitions are as follows. 

SET 
Precondition: 

y=O 
Effect: 

y := 1 

rive 
Precondition: 

Y =o 
Effect: 

2:=2+1 

DEC 
Precondition: 

y=landz>O 
Effect: 

x:=z--1 

DONE 
Precondition: 

y=landz = 0 and done = false 
Effect: 

done := true 

The boundmap b for A assigns the interval [/I, 121 to 
each of the two partition classes. We are interested in 
determining the maximum and minimum times taken 
by the timed automaton (A,b) from the beginning 
until the DONE action occurs. 

We will show that Ir is the optimum lower bound 
and (2 + [%j)l 2 is the optimum upper bound, for the 
time until DONE occurs, We note that there are 
timed executions that attain these bounds. 

The timing condition U that expresses the bounds 
given above is triggered by the unique start state (and 
no steps), has DONE as its target action, and has no 
disabling states. Let U = (V}. 

Next, define the I/O automata time@,;) and 
time(x,fi). By definition, the components of the 
state of time(&x) are the states of A, plus Ct, R(X), 
U(X), Ft(Y), Lt(Y), Ft(NULL), and Lt(NULL). 

Similarly, the components of the state of time(x,@ 
are the states of A, plus Ct, R(U) and U(U). 
Throughtout the proof we write s.x and s.y when 
we refer to the z and y components, respectively, of 
s-As. 
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Define a strong possibilities mcpling from the 
states of the I/O automaton iime(A, b) to the states 
of the I/O automaton time(z,@, as follows. If s 
and u are states of time(d,@ and time(,&%), respec- 
tively, then we say that state u E f(s) provided that 
s.As = u.As and s.Ct = u.Ct and the following holds. 

1. If s.y = 0 and s.Ft(X) < s.J%(Y), 
then u&(U) 2 s.Lt(Y) + Z2(s.z + 2 + 
[~.Lt(Y)-s.Ft(X)]); 

h 
otherwise, u&(U) 2 s.Lt(X) + s.2 . Z2. 

2. If s.y = 0 and s.Ft(Y) > s&(X), then 
d%(U) _< s.Ft(X) + (S.I + 2)21; 

otherwise, u.Ft(U) 5 s.Ft(X) + s.z . II. 

In general, each of the expressions written on the 
right-hand side of an inequality for u.Ft(U) should 
evaluate to a real number P such that no computation 
starting from the given state s can produce DONE 
at any time that is strictly less than T. Analogously, 
each of the expressions written on the right-hand side 
of an inequality for u.Lt(U) should evaluate to a real 
number P such that no computation starting from the 
given state s can produce DONE at any time that is 
strictly greater than P. 

We can give some intuition for the first, more com- 
plicated csse of each inequality. For the lower bound, 
this is the case where another step of X mvsi occur 
before the next (and first) step of Y occurs. In this 
case, z will be increased at time at least s-R(X) 
and it will take at least z + 1 DEC operations (each 
consuming at least II time) until 2 gets set to 0 and 
another 21 until DONE occurs. For the upper bound, 
this is the csse where another step of X calz occur 
before the next (and first) step of Y occurs. In this 

c=% 1 s’L’(Y)-s.F*(X~ j measures how many additional 
steps of X c& fit before Y must take a step, and 
Zz(s.z + 2 + [sSL’(Y)~a.F*(X~J) is the longest time it 
can take till DONE occurs from the time SET occurs 
(which is at most s&(Y)). The second cases of both 
inequalities are similar, but simpler, and are left to 
the reader. 

Lemma 6.5 The mapping f is a strong possibiZiGes 
mapping from time(X,ti) to time(X,X). 

Theorem 6.6 AZZ timed behaviors of (A, 6) satisfy 
U. 

7 Completeness 

Theorem 7.1 Let (A, b) be a timed automaton, and 

let (A”,;) be the dummification of(A, 6). Let 2.4 be a set 
of timing conditions for A. Suppose that every limed 
execution of (A, b) satisfies U. Then there is a strong 

possibilities mapping from time(X,z) to time(X,fi). 

The proof of this theorem contains a construction 
of a strong possibilities mapping. However, it does 
not give any clue about how to come up with an 
explicit expression (e.g., one that is based on state 
variables) of a mapping to prove a specific algorithm. 

8 Conclusions and Further 
Work 

In this paper we have described a way to carry out 
assertional proofs for timing properties. We have 
shown how to specify an algorithm and its timing as- 
sumptions, as well as its performance requirements, 
in terms of timed automata and timing conditions. 
We have shown how to convert such specifications 
into ordinary (not timed) I/O automata by build- 
ing predictive timing information into the automaton 
states. Then the goal of proving timing conditions 
can often be met by demonstrating the existence of 
a strong possibilities mapping from the automaton 
corresponding to the algorithm (with its timing as- 
sumptions) to the automaton corresponding to the 
performance requirements. 

We have presented three examples of this method. 
The first is the analysis of the rate at which a simple 
resource manager system issues grants; the second is 
the analysis of the propagation delay of a signal along 
a line of relay processes the third is a race-system be- 
tween two processes. The second example also illus- 
trates how our method can be applied hierarchically, 
in a way that corresponds to proofs using recurrences. 
We have shown that this method is complete, i.e., if 
a timed I/O automaton satisfies a set of timing con- 
ditions then a strong possibilities mappings can be 
exhibited between the appropiate automata. 

A good technique for proving timing properties of 
timing-dependent or asynchronous systems should be 
rigorous, simple and general. Our technique is cer- 
tainly rigorous, and we think it is also quite simple. 
Prior work on proving timing properties has usually 
had an operational style much like that of liveness 
proofs, where time bounds are obtained by bound- 
ing how long it takes for intermediate milestones to 
occur. (See [17] f or sever&l examples.) In contrast, 
the method presented in this paper has an assertional 
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style. Such a style seems to lead to proofs that are 
somewhat simpler; they are straightforward to gen- 
erate (although they may involve analyzing a large 
number of cases), and are easier to check - in fact, 
proofs of the sort we have given in this paper ought to 
be machine-checkable with current proof technology. 

As for generality, it is not yet clear to us how gen- 
erally applicable this method will be. It is quite likely 
that the specific iime(A,U) construction we use will 
not be general enough to express all interesting ex- 
amples of performance requirements. For example, 
one might want to consider performance requirements 
that specify that a resource manager is supposed to 
respond to requests as long as they do not arrive too 
far apart in time (see the “cement mixer” example 
in [4]). For another example, one might want to 
consider a specification that says that one event IF 
triggers two later events, Q and $, with 4 occurring 
within a certain interval of time after a and + occur- 
ring within a certain interval of time after q5. Both of 
these examples illustrate more complicated require 
ments than can be expressed directly as timing con- 
ditions. It may be possible to modify such examples 
to fit into our definitions by adding auxiliary vari- 
ables or actions; alternatively, it may be necessary or 
desirable to generalize the time(A,U) construction to 
allow more general kinds of timing conditions. If the 
time(A, U) construction is generalized, then we would 
hope that many of the same ideas, e.g., the incorpo- 
ration of predictive timing information into the state 
and the use of mappings that take the form of in- 
equalities, will still be useful. Even if the time(A,U) 
construction is generalized, we wonder whether there 
is a single generalization that will cover all interesting 
examples. We leave all of this as a subject for future 
work. 

It remains to apply this technique to other, more 
complex examples than the ones in this paper. One 
particularly good example to try is the full tourna- 
ment mutual exclusion algorithm from [22]. Its prior 
analysis using recurrences suggests that it may be a 
good candidate for hierarchical proof as in our sec- 
ond example. This is an example of an asynchronous 
algorithm; good sources for timing-dependent algo- 
rithms to analyze are the areas of real-time comput- 
ing and communication. In particular, we are cur- 
rently studying timer-based transport-layer protocols 
for communication networks. 

We have already seen how our method can express 
ideas previously expressed using recurrences. It re- 
mains to see how our technique combines with other 
methods for time analysis such as methods based on 
bounded temporal logic (e.g., [3]). Also, it remains 
to see how proofs using our techniques can be applied 
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in a modular way for the verification of timing prop- 
erties of large and complex timing-based systems. 
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