
Using Mappings to Prove Timing Properties*
(EXTENDED ABSTRACT)

Nancy A. Lynch and Hagit Attiya

Laboratory for Computer Science
MIT

Cambridge, MA 02139

’

Abstract

A new technique for proving timing properties for
timing-based algorithms is described; it is an exten-
sion of the mapping techniques previously used in
proofs of safety properties for asynchronous concur-
rent systems. The key to the method is a way of
representing a system with timing constraints as an
automaton whose state includes predictive timing in-
formation. Timing assumptions and timing require-
ments for the system are both represented in this way.
A multivalued mapping from the “assumptions au-
tomaton” to the “requirements automaton” is then
used to show that the given system satisfies the re-
quirements. The technique is illustrated with two
simple examples, a resource manager and a signal re-
lay system, and a third, more complex example of
a two-process race system. The technique is shown
to be complete, that is, if some automaton with cer-
tain timing assumptions has certain timing behavior,
than there exists a mapping from the “assumptions
automaton” to the “requirements automaton”.

1 Introduction

Assertional reasoning is a very useful technique for
proving safety properties of sequential and concur-
rent algorithms. This proof method involves describ-
ing the algorithm of interest as a state machine, and
defining a predicate known as an assertion on the
states of the machine. One proves inductively that

*This work was supported by ONR contract N00014-85-K-
0168, by NSF grants CCR-8611442 and CCR-8915206, and by
DARPA contracts N00014-83-K-0125 and N00014-89-J-1988.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

0 1990 ACM-0-89791-404-X/90/0008/0265 $1.50

the assertion is true of ail the states that are reach-
able in a computation of the machine, i.e., that it is an
invariant of the machine. The assertion is defined so
that it implies the safety property to be proved. As-
sertional reasoning is a rigorous, simple and general
proof technique. Furthermore, the assertions usually
provide an intuitively appealing explanation of why
the algorithm satisfies the property.

One kind of assertional reasoning uses a mapping
to describe a correspondence between the given aigo-
rithm and a higher-level algorithm used as a specifi-
cation of correctness. (See, for example, [ll, 13, 181.)
Such mappings may be single-valued or multivalued.

So far, assertional reasoning has been used pri-
marily to prove properties of sequential algorithms
and synchronous and asynchronous concurrent algo-
rithms. We would like to use this technique to prove
properties of concurrent algorithms whose operation
depends on time, e.g., ones that arise in real-time sys-
tems or ones that rely on clocks that tick at approx-
imately predictable rates. Also, the kinds of proper-
ties generally proved using assertional reasoning have
been “ordinary” safety properties; it would be nice to
use similar methods to prove timing properties (up-
per and lower bounds on time) for algorithms that
have timing assumptions. Predictable performance is
often a desirable characteristic of real-time systems
[26]; assertional techniques could be very helpful in
proving such performance properties.

In this paper, we describe one way in which asser-
tional reasoning can be used to prove timing prop-
erties for algorithms that have timing assumptions.
Our method involves constructing a multivalued map-
ping from an automaton representing the given algo-
rithm to another automaton representing the timing
requirements. The key to our method is a way of
representing a system with timing constraints as an
automaton whose state includes predictive timing in-
formation. Timing assumptions and timing require-
ments for the system are both represented in this

265

way, and the mappings we construct map from the
“assumptions automaton” to the “requirements au-
tomaton”.

The formal model we use to describe our method
is the timed automaton model, a slight variant of the
time constrained automaton model of [21]. We use
this model to state the requirements to be satisfied,
to define the basic architectural and timing assump-
tions, to describe the algorithms, and to prove their
correctness and timing properties. A timed automa-
ton is a pair (A, b), consisting of an I/O automaton
[18, 191, together with a boundmap, which is a formal
description of the timing assumptions for the com-
ponents of the system. We introduce the notion of
a timing condition to state upper and lower bounds
on the difference between the times at which certain
events or states appear in an execution; the condi-
tions imposed by a boundmap are timing conditions
of a particular kind. An automaton and a set of tim-
ing conditions, (in particular, a timed automaton)
generates a set of timed executions and a correspond-
ing set of timed behaviors.

While convenient for specifying timing assumptions
and requirements, timed automata are not directly
suited for carrying out assertional proofs about tim-
ing properties, because timing constraints are de-
scribed by specially-defined timing conditions rather
than being built into the automaton itself. We there-
fore introduce a way of incorporating timing condi-
tions into an automaton definition. For a given timed
automaton A, and a set U of timing conditions, we de-
fine the automaton time(A,U) to be an ordinary I/O
automaton (not a timed automaton) whose state in-
cludes predictive information describing the first and
last times at which various events can next occur; this
information is designed to enforce the timing condi-
tions in U.

In the special case that 2.4 represents the conditions
imposed by a boundmap b for A, time(A,U) is the
automaton time(A) defined in [2]; this is denoted by
time(A, 6) in this paper.

The timing requirements to be proved for an al-
gorithm described as a timed automaton, (A, b), are
described as a set of timing conditions, U, for A. We
define the requirements automaton to be time(A,U).
Thus, we build into the state of the requirements au-
tomaton predictive information about the first and
last times at which certain events of interest can next
occur.

The problem of showing that a given algorithm
(A, b) satisfies the timing requirements is then re-
duced to that of showing that any behavior of the au-
tomaton time(A, b) is also a behavior of time(A, U).
We do this by using invariant assertion techniques;

in particular, we demonstrate a multivalued mapping
from time(A,b) to time(A,U).

In order to demonstrate the use of our technique,
we apply it to three examples. The first example
is a timing-dependent resource granting system, con-
sisting of two concurrently-operating components, a
clock and a manager. The manager monitors the
clock ticks, which occur at an approximately known
rate, and whenever a certain number have occurred,
it grants the resource. We give careful proofs of upper
and lower bounds on the amount of time prior to the
first GRANT event and in between each successive
pair of GRANT events.

The second example is an asynchronous (not
timing-dependent) system consisting of a “line” of
processes. Each process relays a signal received from
the process at its left to the process at its right. We
give careful proofs of upper and lower bounds on the
time to propagate a signal the left end to the right
end of the line. Both of these examples are extremely
simple; however, the ideas they embody also appear
in many more realistic examples.

The third, more complicated example involves one
process incrementing a counter until another process
modifies a flag, and then decrementing this counter.
When the counter reaches 0, a DONE action occurs.
We show lower and upper bounds on the time until a
DONE occurs.

The mappings we provide for both of these exam-
ples have a particularly interesting and simple form-
a set, of inequalities relating the time bounds to be
proved to those that can be computed from the state.
These inequalities contain information about how the
bounds are to be satisfied.

Another interesting aspect of the second example
is that the proof is carried out using a hierarchy of
automata, rather than just a pair of automata; the
given system is the lowest level, and the requirements
automaton is the highest level in the hierarchy. We
define a mapping for each level in the hierarchy; the
composition of the entire collection of mappings is
the mapping needed to show correctness. The hi-
erarchical proof is especially interesting because its
assertional reasoning corresponds closely to the more
“operational” reasoning that might be used in an al-
ternative proof based on recurrences.

Technically, mapping techniques of the sort used in
this paper are only capable of proving safety proper-
ties, but not liveness properties. Timing properties
have aspects of both safety and liveness. A timing
lower bound asserts that an event cannot occur be-
fore a certain amount, of time has elapsed; a viola-
tion of this property is detectable after a finite prefix
of a timed execution, and so a timing lower bound

266

can be regarded as a safety property. A timing up-
per bound asserts that an event must occur before a
certain amount of time has elapsed. This can be re-
garded as making two separate claims: that the des-
ignated amount of time does in fact elapse (a liveness
property), and that that time cannot elapse without
the event having occurred (a safety property). In
this paper, we assume the liveness property that time
increases without bound, so that all the remaining
properties that need to be proved in order to prove
either upper or lower time bounds are safety prop-
erties. Thus, our mapping technique provides com-
plete proofs for timing properties without requiring
any special techniques (e.g., variant functions or tem-
poral logic methods) for arguing liveness.

We show that this method is complete: If every
behavior of (A,b) is also a behavior of time(A,U)
then is there necessarily a strong possibilities map-
ping (in the form of inequalities) from time(A,b) to
time(A,U). Related completeness results for the us-
age of refinement mappings to prove properties of non
timing-based algorithms were proved in [l] and [20].

There has been some prior work on using asser-
tional reasoning to prove timing properties. In par-
ticular, Haase [6], Shankar and Lam [24], Tel 1271,
Schneider [23], Lewis [12] and Shaw [25] have all de-
veloped models for timing-based systems that incor-
porate time information into the state, and have used
invariant assertions to prove timing properties. In
[27] and [12], in fact, the information that is included
is similar to ours in that it is also predictive timing
information (but not exactly the same information as
ours). None of this work has been based on mappings,
however.

Several other, quite different formal approaches to
proving timing properties have also been developed.
Some representative papers describing these other
methods are [3], [lo], [8], [7], [28], [9], and [5].

Proofs are omitted in this version and can be found
in the full version of this paper [16].

2 Formal Model

In this section, we present the definitions for the un-
derlying formal model. In particular, we define I/O
automata, timed automata and timing conditions.
We also present some of their relevant properties.

2.1 I/O Automata

We begin by summarizing some of the key definitions
for the I/O automaton model. We refer the reader to
[18, 193 for a complete presentation of the model and
its properties.

An I/O automaton consists of the following com-
ponents: acts(A), a set of actions, classified as out-
put, input and internal (input and output actions are
called external); states(A), a set of states, includ-
ing a distinguished subset, start(A), of start states;
steps(A), a set of steps, where a step is defined to be
a (state, action, state) triple; and part(A), a partition
of the locally controlled (output and internal) actions
into equivalence classes; the partition groups together
actions that are to be thought of as under the control
of the same underlying process.

An action ?r is said to be enabled in a state s’
provided that there is a step of the form (s’, ?r, s).
An automaton is required to be input enabled, which
means that every input action must be enabled in ev-
ery state. For any set II c acts(A), we denote by
enabled(A,II) the set of states of A in which some
action in II is enabled, and by disabled(A, ll) be the
set of all states of A not in enabled(A,II), that is,
disabZed(A, II> = states(A) \ enabZed(A, II).

An ezecution fragment of an I/O automaton A is a
sequence (finite or infinite) of alternating states and
actions SO, 7~1, sr, . . . , si+r, ri, si, . . . where for every
i, (Q-I, ni, si) E steps(A). (If the sequence is finite,
then it is required to end with a state.) An execution
is an execution fragment with SO f start(A). The
schedule of an execution rw is the subsequence con-
sisting of the actions appearing in CY and is denoted
sched(a). The behavior-of an execution Q of A is the
subsequence of cy consisting of external actions ap-
pearing in (Y and is denoted beh(cu). The schedules
and behaviors of A are just those of the executions of
A.

2.2 Timed Automata

In this subsection, we augment the I/O automaton
model to allow discussion of timing assumptions. The
treatment here is similar to the one described in [2]
and is a special case of the definitions proposed earlier
in [21].

A boundmap for an I/O automaton A is a a map-
ping that associates a closed subinterval of [O, co] with
each class in part(A), where the lower bound of each
interval is not 00 and the upper bound is nonzero. In-
tuitively, the interval associated with a class C by the
boundmap represents the range of possible lengths
of time between successive times when C “gets a
chance” to perform an action. We sometimes use the
notation bl(C) to denote the lower bound assigned by
boundmap b to class C, and b,(C) for the correspond-
ing upper bound. A timed automaton is a pair (A, b),
where A is an I/O automaton and b is a boundmap
for A.

267

A timed sequence (for an I/O automaton A) is a
(finite or infinite) sequence of alternating states and
(action,time) pairs, SO, (~1, tl), ~1, (Q,&), . . ., ending
in a state if the sequence is finite, where the states
are from states(A) and the actions are from acts(A).]
Define to = 0. The times to, tl, . . . are required to
be nondecreasing, and if the sequence is infinite then
the times are also required to be unbounded. For
any finite timed sequence cr define tend(a) to be the
time of the last event in (Y, if a! contains any (ac-
tion,time) pairs, or 0, if CY contains no such pairs. We
denote by ord(cw) (the ‘ordinary” part of (.y> the se-
quence so, ?rl, s1, r2, . . ., i.e., LY with time components
removed.

Definition 2.1 Svppose (A,b) is a timed automa-
ton. Then a timed sequence (Y is a timed execution
of (A, b) provided that or is an execution of A
and (Y satisfies the following conditions, for each class
C E part(A) and every i.

I. Suppose b,(C) < co. If si E enabled(A,C) and
either i = 0 or ~-1 E disabled(A, C) or Ri E C,
then there exists j > i with tj 5 ti + b,,(C) such
that either nj E C or sj E disabled(A, C).

2. If si E enabZed(A,C) and either i = 0 or si-1 E
disabZed(A, C) or ri E C, then there does not
exist j > i with tj < t; + bl(C) and nj in C.

The first condition says that, starting from when an
action in C occurs or first gets enabled, within time
b,(C) either some action in C occurs or there is a
point at which no such action is enabled. Note that if
b,(C) = 00, no upper bound requirement is imposed.
The second condition says that, again starting from
when an action in C occurs or first gets enabled, no
action in C can occur before time bl(C) has elapsed.

The timed schedule of a timed execution of a timed
automaton (A, b) is the subsequence consisting of the
(action,time) pairs, and the timed behavior is the
subsequence consisting of the (action,time) pairs for
which the action is external. The timed schedules and
timed behaviors of (A, b) are just those of the timed
executions of (A, b).

We model each timing-dependent concurrent sys-
tem as a single timed automaton (A, b), where A is a
composition of ordinary I/O automata (possibly with
some output actions hidden).2

lWe usua.Uy omit reference to the automaton A, as it is
clear from the context.

‘An equivalent way of looking at each system is as a com-
position of timed automata. An appropriate definition for a
composition of timed automata is developed in [Zl], together
with theorems showing the equivalence of the two viewpoints.

268

2.3 Timing Conditions

The conditions imposed by a boundmap are appro-
priate for describing the timing assumptions of many
systems. However, in order to describe the timing re-
quirements that are to be proved for these systems,
it is convenient to generalize these conditions. For
example, a bound is often required on the time be-
tween two particular events, e.g., a request and a cor-
responding grant. It, is convenient to have a notation
that permits explicit description of such a condition,
without reference to the underlying partition classes.
Therefore, in this subsection, we generalize the condi-
tions expressed by boundmaps to more general “tim-
ing conditions”.
Let A be an I/O automaton. A timing condi-tion for
A is a tuple of the form (Tstart, Tstep, b, II, S), where:

T stnrd C start(A) and Tstep C steps(A), are the
triggers.

b is a closed interval of the form [bl, b,], where
bc # 00 and b, # 0,

II C acts(A), and

S E states(A) is the disabling set.

We require that a timing condition satisfy t,he follow-
ing technical conditions:

1. !&tart 17 S = 0, and

2. if (s’, T, s) E Tstep then s $ S.

A timing condition (Tatart, Tstep, b, II, S) is designed
to specify upper and lower bounds on the time until
the next occurrence of an event in the action set II,
measured from certain points during an execution;
the particular bounds are given by the interval b. The
trigger Tdto,-t specifies those start states from which
we wish to begin measuring the time, while the trigger
Tstep specifies those steps after which we wish to begin
measuring. In both cases, the numerical bounds are
the same.

Primarily because we wish this generalization to in-
clude conditions imposed by boundmaps as a special
case, we must include a way of disabling the bound
measurements. (In the case of boundmaps, when all
the actions in a partition class become disabled si-
multaneously, the bound measurement also becomes
disabled.) Thus, the disabling set S is defined to be
a set of states that cause the bound measurement to
become suspended. Conditions 1. and 2. simply say
that the disabling set does not include any states that
the triggers designate as states in which to start the
bound measurement,

We sometimes write the timing condition
@k-t, Step, b, n, S) in the form

@-‘start, Ztep) -t+ 0-h S).
Now we define what it means for a timed sequence

to satisfy a timing condition, The definition is closely
related to the definition we gave earlier of a timed
execution; we will show the precise connection in
Lemma 2.1.

Definition 2.2 Le2 Q = se, (rr,ti), ~1, ,,. be a timed
sequence. Then cy satisfies a timing condition

(Tstort, ZteJ -?l+ (II,S) if the following conditions
hold:

1. Suppose b,, < 00.

If so E TStd,.t then there exists j > 0 with
tj 5 b, such that either rj E II ~r sj E S.

If (Si-1, xi, si) E Tstcp then there exists j >
i with ti 5 ti + b, such that either rj E II
Of Sj E S.

If so E Tsto,-t and if there exists j > 0 with
tj < bt such that rj E II, then there exists
k,O < k < j, such that sb E 5’.

If (s;-1, ri,si) E Tstep and if there exists
j > i with tj < ti + bl such that rj E II,
then there exists k, i < k < j, such that
Sk E s.

Let U be a set of timing conditions for an I/O au-
tomaton A. We say that a timed sequence CY is a
timed execution of (A,U) provided that ord(cr) is an
execution of A and cr satisfies every timing condition
u EU.

To justify this new use of the term “timed ex-
ecution”, and as an example of the use of timing
conditions, we show how to express the notion of
“timed execution” of (A, b) in terms of timing con-
ditions. Given an arbitrary timed automaton (A, b),
we define the set & of timing conditions that are
associated with b. For each class C in the partition
of A, & includes one timing condition, cond(C) =

(T,t,,t(C), G.&C)) “g) (n(C), S(C)), defined as
follows.

l T,t,,t(C) = start(A)II enabZed(A, C), that is, the
set of start states of A in which some action from
C is enabled,

l Tstep(C) is the set of steps (s’, r, s) of A such that
s E enabled(A, C) and either s’ E disabled(A, C)
or 7r E C,

l II(C) = C, and

l S(C) = disabZed(A,C).

Note that this definition satisfies the two require-
ments for timing conditions.

Lemma 2.1 Suppose (A, b) is a timed automaton.
Then a timed sequence (1: is a timed execution of (A, b)
if and on/y if it is a timed execution of (A,&).

3 Incorporating Timing Con-
ditions into I/O Automata

In order to use invariant assertion techniques to rea-
son about timed automata, we define an ordinary I/O
automaton time(A,U) corresponding to a given timed
automaton A with timing conditions U. This new au-
tomaton has the timing restrictions imposed by U on
A built into its transition rules, based on predictions
about when the next event from each set of actions
will occur. In this section, we give the construction
of time(A,U) and also give results relating the ex-
ecutions and behaviors of time(A,U) to the timed
executions and timed behaviors of (A, U).

Given any I/O automaton A and set U of timing
conditions for A, we define the ordinary I/O automa-
ton time(A, U) as follows. We write each timing con-
dition U E U as

(T,t,,-t(U), TateP(U)) bg’ (n(U), S(U)) .

The automaton time(A,U) has actions of the form
(n, t), where ?r is an action of A and t is a nonnega-
tive real number, with the classification of actions the
same as for A. Each of its states consists of a state,
As, of A (the “A-state”), augmented with a compo-
nent Ct (the “current time”), and, for each timing
condition U E 24, two components R(U) and Lt(U)
(the “first time” and “last time” for each timing con-
dition). Ct represents the time of the last preced-
ing event. The Ft(U) and Lt(U) components repre-
sent, respectively, the first and last times at which the
timing condition U specifies that an action in II(U)
should occur.

We use record notation to denote the various com-
ponents of the state of time(A,U); for instance,
s.As denotes the state of A included in state s of
time(A,U). Each initial state of time(A,U) consists
of an initial state s of A, plus Ct = 0, plus val-
ues of Ft(U) and W(U) with the following prop-
erty: if s.As E Tst,,t(U) then s.Ft(U) = bl(U)
and s.Lt(U) = b,(U); otherwise, s.Ft(U) = 0 and
s.Lt(U) = 00. That is, if the start state of A is in
the trigger set of U, then the predicted times are the
ones specified in U; otherwise, they are set to default
values.

269

If (?r,t) is an action of time(A,U), then (s’, (n,t),s)
is a step of Zime(A,U) exactly if the following condi-
tions hold.

1.

2.

3.

4.

(s’.As, ?r, s.As) is a step of A.

s’.Ct ,< t = s.ct.

For all U E 24, if ?r E II(U), then

(a) s’.Ft(U) 5 t 5 s’&(U).

(b) if (s’.As, ?r, s.As) f Tstep(U) then
s.Ft(U) = t + bL(U) and
s.Lt(U) = t + b”(U),

(c) if (s’.As, ?r, s.As) $ T&(U) then
s.Ft(U) = 0 and s&(U) = 00.

For all U E 24, if 7r $! II(U), then

(a) t 5 s’.Lt(U),

(b) if (s’.As, 1~~ s.As) E T,t,,(U) then
s.Ft(U) = t + bt(U) and
s.,%(U) = min(s’.Lt(U), t + b,(U), and

(c) if (s’.As, ?r, s.As) 6 T&,(U) and
s.As # S(U) then s.Ft(U) = s’.Ft(U) and
s.Lt(U) = s’.Lt(U), and

(d) if s.As E S(U) then s.Ft(U) = 0 and
s&(U) = 00.

Note that ifs is a reachable state of time(A, b) and if
s.As E S(U) then s.Ft(U) = 0 and s&(U) = co.

Intuitively, Condition 1. says that the automaton
time(A,U) is correctly simulating the state transi-
tions of A, and Condition 2. says that Ct Comp*
nents are monotonically nondecreasing, i.e., the new
time is at least as great aa the previous time. Con-
dition 3. deals with properties involving timing con-
ditions U that include I in their action sets: Con-
dition 3(a) says that the time at which the event a
occurs must be between the bounds specified for U;
Condition 3(b) says that a triggering step involving
7c imposes new time predictions for U, whereas Con-
dition 3(c) says that a non-triggering step involving
7~ does not impose any such predictions. Condition 4.
deals with properties involving timing conditions U
that do not include T in their action sets: Condition
4(a) says that ?r can only occur if U does not require
any other action to be scheduled first. Condition 4(b)
says that a triggering step involving R imposes new
time predictions for U. Note that in this case, there
may already be old predictions in effect for this time
condition; the effect of taking the min for the Lt(U)
component is to require both the new predictions and

any old predictions to be satisfied.3 Condition 4(c)
says that a non-triggering (and non-disabling) step
involving ?r does not impose any new time predic-
tions for U. Condition 4(d) says that a disabling step
involving z sets the time predictions for U back to
their defaults.

The partition classes for time(A,U) are derived
one-for-one from those of A.4

We now relate the timed executions of (A,l.f) to

the executions of the corresponding I/O automaton
time(A,U). In order to do so we introduce a techni-
cal definition and some lemmas. Notice that the def-
inition of a timed execution contains aspects of both
safety and liveness. Sometimes it it useful to focus on
the safety aspects alone. The next definition restrict
attention to the safety portions of Definition 2.2.

Definition 3.1 Let cy be the finite timed sequence
SO,(m,tl),Slr .-*,Send. Then a semi-satisfies a tim-

ing condition (Tstart, Tstep) 2 (II, S) if the following
conditions hold:

1. Suppose b, < co.

(a) If SO E Start then either tend(a) 5 bu or
there exists j > 0 with tj 5 b, such that
either rj E II or sj E S.

01 If (si-1, ni, si) E Tstep then either tend(a) <
ti + b, or there exists j > i with tj < ti + b,
such that either rj E II or sj E S.

2. (a) If so E T&,.t and if there exists j > 0 with
tj < bl such that rj E ll, then there exists
k,O<k<j, suchthatskES.

(b) If (Q-I, ?T;, si) E T&, and if there etists
j > i with tj < ti + bl such that rj E II,
then there ezists k,i < k < j, such that
Sk E s.

The only differences between this definition and Def-
inition 2.2 are the “either” clauses. These clauses
allow an action to fail to occur if insufficient time has
passed. Now suppose U is a set of timing conditions
for an I/O automaton A. A timed sequence cv is a

3The min is necessary because in case there is a prior pre-
diction, it will surely be no greater than the new prediction,
so the min will be the first term s’.Lt(U). However, if there
is no prior prediction then s’.Lt(U) = 60 so the min will be
the second term t + b,(U). We could have similarly written
s.Ft(U) = max(s’.Ft(U),t + b&J)), but that is unnecessary
because it is always the caSe that s’.Ft(U) 5 bl(U).

4 It seems that we never need them, however, since the par-
tition dasses are used to enforce fairness to the components of
the system; in time(A,U) the timing conditions guarantee that
each component gets a fair chance to operate.

270

timed semi-execution of (A,U) if ord(cw) is an exe-
cution of A and for any timing condition U E U, cy
semi-satisfies U.

An observation we use later is the following, saying
that the limit, of a sequence of timed semi-executions
in which the time components are unbounded must
be a timed execution.

Lemma 3.1 Let (cY~}~~ be a sequence of timed
semi-executions of (A,U) such that

1. for any i >_ 1, IY~ is a prefix of ai+l, and

2. limi,, tmd(%) = 00.

Then there exists a unique infinite timed exe&ion Q!
of (A,U) such that for any i 2 1, ai is a prefix of Q.

If Q is an execution of time(A,U), we define
project(a) to be the timed sequence obtained from
(Y by mapping each occurrence of a state s in (Y to
s.As (while keeping the (action,time) pairs intact).
We first, show the following simple correspondence be-
tween semi-executions of (A,U) and finite executions
of time(A,U).

Lemma 3.2 1. If (Y’ is a timed semi-execution
of (A,U), then there exists an execution o of
time(A, 24) such that Q’ = project(a).

2. If a is a finite execution of time(A,U), then
project(o) is a timed semi-execution of (A,U).

We can use these lemmas to prove the following
result for infinite sequences:

Lemma 3.3 1. If a’ is an infinite timed ezecution
of (A,U), then there erists an injnite execu-
tion a of time(A,U) in which the lime compo-
nents of the actions are unbounded, such ihat
a’ = project(a).

2. If (Y is an infinite execution of time(A,U) in
which the time components of the actions are un-
bounded, then project(a) is a timed execution of

(AJO

A very important special case of this construction
is the case of time(A,&); this automaton is the result
of incorporating the boundmap timing conditions of
a timed automaton (A,b) into the automaton tran-
sitions. As shorthand, we will sometimes refer to
this automaton as time(A, b) instead of time(A,&),
suppressing explicit mention of the timing conditions
ub. We will also sometimes write Ft(c) instead of
Ft(cond(C)) for partition class C, and similarly for
the other state components.

Other special cases of the general construction will
be the requirements automata for the examples we
consider in Sections 4 and 6.

We want to have a sufficient condition for satisfying
a set of timing conditions. We define a new kind
of mapping, a strong possibilities mapping. Such a
mapping is only defined from automata of the form
time(A,U) to time(A, Vj, where U and V are sets of
timing conditions for A.

Definition 3.2 Let A be a timed automaton and let
U and V be sets of timing conditions for A. Le-t f be a
mapping from states of time(A,U) to sets of states of
time(A, V). The mapping f is a strong possibilities
mapping from time(A,U) to time(A, V) provided that
the following conditions hold:

For every start state so of time(A,U), there is a
start state ug of time(A, V) such that uo E f(so).

If s’ is a reachable state of time(A,U), u’ E
KS’) is a reachable state of time(A,V) and
(s’, (a,t), s) is a step of time(A,U), then there
is a step (u’, (?r, t), u) of time(A,V), such that

u E f(s).

If u E f(s), then u.As = s.As; that is, the map-
ping is constrained to be the identity on A’s state
components.

Theorem 3.4 Suppose that there is a strong possi-
bilities mapping from time(A,U) to time(A, V). Then
any infinite timed execution of (A,U) is a timed exe-
cution of (A, V).

Thus the existence of a strong possibilities map-
ping yields in this case, all the timing properties we
require, including both safety and liveness properties.
The mapping immediately yields the safety proper-
ties. (Recall that the safety properties are the lower
bounds, as well as the upper bounds that assert that
time cannot elapse without a certain event having
occurred.) But when these safety properties are com-
bined with the property that a timed execution is
infinite and our assumption that the time in infinite
timed executions is unbounded (so that time increases
without bound), they also imply that the events in
question must eventually occur.

271

4 Example:
Resource Manager

Now we present our first example, a simple resource-
granting system adapted from an algorithm in [2].
The system consists of two components, a clock and
a manager. The clock ticks at an approximateIy-
predictable rate, and the manager counts ticks in or-
der to decide when to grant a resource. We wish to
analyze the time until the first grant, and the time be-
tween each successive pair of grants. The bounds we
prove for this system are tight since there are timed
executions of the system in which these bounds are
achieved. The same is true for the examples presented
in Section 6.

We describe the algorithm and its timing assump-
tions as a timed automaton (A, b). The required tim-
ing behavior is presented as a set of timing conditions
U; we prove that the algorithm satisfies the require-
ments by demonstrating a strong possibilities map-
ping from time(A, b) to time(A,U).

4.1 The Algorithm

The algorithm consists of two components, a clock
and a manager. The clock has only one action, the
output TICK, which is always enabled, and has no
effect on the clock’s state. It can be described as
the particular one-state automaton with the following
steps.5

TICK
Precondition:

true
Effect:

none

The boundmap associates the interval [cl, ca],
where 0 < cl 5 c2 < 00, with the single class,
(TICK}, of the partition. For convenience, we over-
load the notation and designate this singleton class as
TICK also. This means that successive TICK events
occur with intervening times in the given interval.

The manager has one input action, TICK, one out-
put action, GRANT and one internal action, ELSE.
The manager waits a particular number ,4 > 0 of clock
ticks before issuing each GRANT, counting from the
beginning or from the last preceding GRANT. The

51.n the notation we use for automata, a separate description
is given for the steps involving each action. Instead of listing
the steps, we provide a “precondition” which describes the set
of states in which the action is enabled, and an “effect” which
describes the changes caused by the action. Input actions do
not have a precondition, because they are always enabled.

manager’s state has one component: TIMER,, holding
an integer, initially Ic.

The manager’s algorithm is as follows:

TICK
Effect:

TIMER := TIMER -1

GRANT
Precondition:

TIMER < 0
Effect:

TIMER := f

ELSE

Precondition:

TIMER > 0

Effect:

none

Notice that ELSE is enabled exactly when GRANT
is not enabled. The effect of including the ELSE ac-
tion is to ensure that the automaton continues taking
steps at its “own pace”, at approximately regular in-
tervals.

Thus, in the situation we are modeling, when the
GRANT action’s precondition becomes satisfied, the
action does not occur instantly - the action waits
until the automaton’s next local step occurs.6

The partition groups the GRANT and ELSE ac-
tions into a single equivalence class LOCAL, with
which the boundmap associates the interval [0,1],
where 0 5 1 < 00. We assume that cl > 1.7 Fix A
to be the I/O automaton which is the composition of
the clock and manager, with the TICK output action
converted to an internal action; thus, the only exter-
nal action of A is the output action GRANT. Also,
let b be the boundmap described above. We wish to
show that all the timed behaviors of (A, b) satisfy cer-
tain upper and lower bounds on the time up to the
first GRANT and the time between consecutive pairs
of GRANT events.

We begin our analysis by stating some invariant
properties of the algorithm. In order to do this, we
need timing information to be included in the state,
so we consider the automaton bime(A, IJ), constructed
as described in Section 3. Notice that in this case,
the automaton he(A, b) has the following compo-
nents, As, Ct, Ft(TICK), Lt(TICK), Ft(LOCAL),
and Ft(LOCAL).

6An alternative situation is one in which the manager
is interruptdriven, that is, whenever the precondition of a
GRANT becomes true, the GRANT occurs shortly there-
after. This situation could be modeled by omitting the ELSE
action. The two automata have slightly different timing prop-
erties. ln this paper, we only consider the first assumption.

7Again, a different assumption would change the timing
analysis.

272

The next lemma states invariant properties of the
automaton time(A, b). Notice that the second prop-
erty involves the time components of the state.

Lemma 4.1 The foilowing are frzle about any reach-
able state s of time(A, b).

1. s.TIMER 2 0.

2. If s. TIMER = 0 then s.Ft(TXK) 2
s.Lt(LOCAL) + cl - 1.

We close this subsection with a basic property of
time(A, b) (for this fixed (A, b)).

Lemma 4.2 AU timed executions of (A, b) are in&
nite.

4.2 The Requirements Automaton

We wish to show the following, for any timed behavior
p of (A, 6):

1.

2.

3.

There are infinitely many GRANT events in 0.

If t is the time of the first GRANT event in /?,
thenk.clLt<k.ca+Z.

If ti and t2 are the times of any two consecutive
GRANT events in p, then

k . cl - 15 t2 - tl 5 k . c2 + 1.

We let P denote the set of sequences of (action, time)
pairs satisfying the above three conditions.

We will specify P in terms of another I/O automa-
ton, called the requirements automaton. We define
two timing conditions, G1 for the time until the initial
GRANT event and G2 for the time between succes-
sive GRANT events. The requirements automaton B
is defined to be time(A, {Gl, Gz}).

We now define the conditions. The first condition,

GI, is (T,t,,t(Gl), 0) “(2) (n(G), 01, where

l Z&,.t(Gr) is the (singleton) set of start states of

A,

l bt(G1) = k . cl and b,(Gl) = k. cz + 1, and

. II = {GRANT}.

The second condition, Gz, is (0,T,,,,(G2)) “‘3’

(fl(G), 0), where

l gwfh\ = u s’,?T,s) E steps(A) : 7r =

,

l be(G2) = k . cr - 1 and b, (G2) = k . cz + 1, and

l II = {GRANT}.

Note that the behaviors of B and the sequences in
P both consist of elements that are pairs, an action of
A together with a time. Furthermore, if Q is a timed
execution of (A, (Gl, Gz}) then beh(a) is in P.

By Lemma 4.2 all the timed executions of (A, b) are
infinite. Thus, by Theorem 3.4, all we need to do is to
show a strong possibilities mapping from time(A, 6)
to time(A, {Gl, G2)) = B. This is done in the next
section.

4.3 The Mapping

In this section, we present a strong possibilities map-
ping from time(A,b) to B, thereby showing that all
schedules of time(A, b) are also schedules of B. This
fact is then used to prove Theorem 4.4, which says
that all timed behaviors of (A, b) are in P.

We define a mapping f so that a state u of B is in
the image set f(s) exactly if the following conditions
hold.

1. If s.TIMER > 0 then

(a) nain(u.Lt(G1), u.Lt(Gz)) 2 s.Lt(TICK) +
(s.TIMER - 1)~ + I, and

(b) ma+Ft(G& u.Ft(Gz)) 5 s.Ft(TICK) +
(s.TIMER - 1)~~.

2. If s.TIMER = 0 then

(a) min(u.Lt(Gl), u.Lt(G2)) 2 s.Lt(LOCAL),
and

(b) maz(u.Ft(G& u.Ft(Gz)) < s.Ct.

The inequalities should be interpreted as giving ex-
plicit upper and lower bounds for the time of the next
GRANT event, in terms of the values of the variables
in the state of time(A, b). Intuitively, the right-hand
side of the inequality describes how the bounds will be
satisfied; for example, in the case of inequality l(a),
a TICK event must happen within time Lt(TKX),
and then after TIMER- 1 additional ticks, each hap-
pening after at most c2 time, TIMER will become 0,
thus enabling the GRANT, which will happen within
at most time 1.

If we think of the value of min(Lt(G1), Lt(G2))
as indicating an upper bound on the time when a
GRANT will next occur, then it should not be sur-
prising that any sufficiently large number (with re-
spect to the values of the variables in the state of
time(A)) could be used as the value of this mini-
mum. This just indicates that any such value could
be proved to be an upper bound. Similarly, any suf-
ficiently small number could be used as the value

273

for maz(Ft(G1), Ft(Gz)), a lower bound on the time
when a GRANT event will next occur.

Thus, the inequalities comprising the strong possi-
bilities mapping express the fact that any sufficiently
large number (with respect to the values of the vari-
ables in the state of time(A, b)) should be provable as
an upper bound for the time for the next GRANT,
and any sufficiently small number should be provable
ECZ a lower bound.s

The given mapping is obviously multivalued, be-
cause it is described in terms of inequalities. It seems
possible to use a single-valued mapping for this exam-
ple by complicating the definition of the requirements
automaton. More discussion of the issue of multival-
ued vs. single-valued mappings appears in [15].

Although (we think that) the correspondence be-
tween time(A, b) and B described by f is easy to un-
derstand, verifying formally that f is indeed a strong
possibilities mapping is a fairly long and mechanical
process.

Lemma 4.3 The mapping f is a strong possibilities
mapping.

Theorem 4.4 All timed behaviors of (A, b) are in P.

5 Dummification

When all the timed executions of a timed automaton
are infinite as in the previous example, then Theo-
rem 3.4 suffices to prove all the timing conditions,
including the liveness parts. Unfortunately, there
are many examples where the timed automaton has
timed executions that are finite. Since it is much
more straightforward to use our proof method when
all complete executions are infinite, we augment such
timed automata to have only infinite timed execu-
tions. For a timed automaton (A, b) we define a
variant (Al,%), which augments A with a “dummy”
component that always has locally-controlled actions
enabled. All of the timed executions of (2,;) will
be infinite, and the executions of (A, b) and (A,;) are
very closely related (see Lemma 5.3 below). Thus, we
will be able to reason about (2,;) and obtain cons&
quences for the original timed automaton (A, b).

For any timed automaton (A, b), define (x,x), the
dvmmific&ion of (A, b), as follows. We augment the

8Note that if we simply replaced the inequalities with equa-
tions, the resulting mapping would not be a strong possibilities
mapping. For example, suppose that a clock tick occurs within
less than the maximum ~2. Then the right-hand side expression
in l(a) would evduate after the step to an earlier time than
before the step. On the other hand, the corresponding step
in the requirements automaton would not change the value of
Lt(GRANT); the correspondence thus would not be preserved.

automaton A with a single new component called the
dummy. Assume, w.l.o.g., that NULL $! actions(A).
The dummy has a single action, an output NULL
(which is not shared by any of the other components).
It has only one state, in which NULL is enabled. The
boundmap associates any interval [nl, nz] such that
0 < nl < n2 < oo_with the new singleton partition
class, NULL. Let A be the automaton composed of
A and the dummy. Also, let b be the boundmap that
is identical to b except for the addition of the new
interval [nl, 1121 for the new partition class, NULL.

Lemma 5.1 Let (A, 6) 6 e a timed automaton, and let

(x,$) be the dvmmification of (A, b). Then all timed

executions of (X,X) are infinite.

If Z is a timed sequence for 2, define u&urn(Z) to
be the result of removing the following from 6: the
dummystate component and the NULL steps. We
have the following lemma.

Lemma 5.2 Let (A,b) be a timed automaton.

1. If G is a timed etecution of (X,Z) then undum(Z)
is a timed execution of (A, b).

8. Let cr be a timed execution of iA2b). Then there
exists a timed execution 6 of (A, b) such that cr =
24ndum(Ci).

Suppose that U = (T&t, Step, b, I& S) is
a timing condition for an I/O automaton A.
Then -we definLa zreyo,nd;ng timing condi-
tion U = (TJtort,Tstep, b,II, S) for A, as fol-
lows. Tzrt = Tstort x (dummystate}, T;;kPJ =
(((s’, du_mmysta_te), 7r, (s, dumnystote)) 1 (s’, x, s) E
Tsteps}, b = 6, II = II, and S = S x {dummystate}.
If U is a set of timing conditions for A, then define
iL(~~UvEU}.

Lemma 5.3 Let 24 be a set of timing conditions fez
A and let c be the set of timing conditions for A
defined above.

I. If ii is a timed execution of (x,u) then
w&m(E) is a timed execution of (A,U).

2. If (Y is a timed execution of (A,U) then any
timed sequence Z such that CY = undum(Z) and
ora(q is an execution of A is a timed execution

of (&G).

Theorem 5.4 Let (A,b) be a timed automaton, and

let (.&z) be the dvmmification of (A, b). Let U be
a set of timing conditions for A. Assume that there
is a strong possibilities mapping from time(A,$) to

time(z,@. Th en every timed execution of (A, b) sat-
isfies U.

274

6 More Examples The algorithm for Pi is:

6.1 Signal Relay

Now we present our second example, a simple sig-
nal relay. The system is a composition of a collec-
tion of n + 1 processes, PO,. . . , P,,, organized as a
line. PO generates SIGNAL0 (once), and the interme-
diate processes relay it, so that P,, eventually gener-
ates SIGNAL,. We wish to analyze the total delay a
signal incurs, as a function of its delay at each of the
relaying processes.

SIGNAJ&
Effect:

FLAG := true

SIGNA Li
Precondition:

FLAG = true
Effect:

FLAG := false

.

Again, we describe the algorithm and its timing as-
sumptions as a timed automaton (A,b), and the re-
quired timing behavior as a set of timing conditions
U. This time, however, we do not simply present
a direct mapping from time(A, b) to time(A,U) (al-
though we could have). Rather, we use a sequence of
intermediate automata, exhibiting strong possibilities
mappings between each consecutive pair of automata
in the sequence. The style of the reasoning involved
corresponds closely to that of a proof based on recur-
rence inequalities. (In fact, this example was inspired
by the recurrence-inequality proof sketch in [Ii’] for
the tournament mutual exclusion algorithm of [22]).

The boundmap associates the interval [dr, dz],
where 0 5 dr 5 ds < 00, with the single class,
SIGNALi, of the partition for Pi.

Now we fix A to be the timed automaton which is
the composition of all the Pi’s, with all actions except
SIGNAL0 and SIGNAL, made internal, and b to be
the boundmap described above. We will prove that if
a SIGNAL0 occurs, then the difference between the
time it occurs and the time at which a later SIGNAL,
occurs is at least n . dr and at most n. d2.

Note that all the timed executions of (A, b) are fi-
nite, thus we will apply dummification (as described
in the previous section) to make all the timed execu-
tions be infinite.

6.1.1 The Algorithm We first state the following simple invariant about
A. The proof is by a simple induction.

The algorithm consists of n + 1 automata, PO, . . . , P,,
where n 1 1. PO has one action, the output
SIGNALo. The state of PO consists of one compo-
nent, FLAG, a Boolean value, initially true.

PO’s algorithm is as follows:

Lemma 6.1 In any reachable state s of A, if
SIGNALi is enabled in s, then for all j # i, 0 5
j 2 n, SIGNALi is not enabled in s.

SIGNAh
Precondition:

FLAG = true
Effect:

FLAG := false

6.1.2 The Requirements Automaton

We wish to show the following, for any timed behavior
,O of (A,b):

1. If SIGNAL0 event occurs in /3, then a single later
SIGNAL, event occurs in p.

The boundmap associates the interval [O, JX] with
the single class, {SIGNALo}, of the partition. As
before, we also designate this class as SIGNALo; we
use similar notational conventions for the remaining
singleton classes in the paper.

2. If tl is the time of a SIGNAL0 event and t2 is the
time of the corresponding SIGNAL, event then:

Each automaton Pi, 1 5 i 5 n, has an input
action SIGNAL;-1 and an output action SIGNALi.
Each automaton state contains the single component
FLAG, holding a Boolean value, initially false.

We let & denote the set of sequences of (action, time)

pairs satisfying the above two conditions.
We will specify Q in terms of a requirements au-

tomaton. Towards this end, we define the following

timing condition, UO,~ = ($,To,,) ‘3 (II,,,, 0), where

l To+ = {(s’, ?r, s) E steps(A) : ?r = SIGNALo},

l 60,~ = [TJ - dl, n . d2] and

l IL,,n = (SIGNALn}.

275

Notice that if cx is a timed execution of (A, {UQ.,})
then beh(a) is in Q. The requirements automaton B

is -time@ {Uyn}).
By Theorem 5.4 all we need to do is to show a

strong possibilities mapping from time(X,i) to B.
The complete formal proof appears in the next sec-
tion.

6.1.3 The Intermediate Requirements
Automata

One way of proceeding would be to exhibiJ ,a strong
possibilities mapping directly from time(A,b) to I?,
following the pattern of the first example. However,
an alternative and attractive strategy might be based
on the recursive structure of the line of processes.
For instance, one might give a recursive analysis of
the time between any SIGNALk, 0 < k; 5 n - 2 and
SIGNAL, in terms of the time between SIGNALe+
and SIGNAL,. Thus, the analysis would be based on
recurrence inequalities. Several examples of such re-
currence inequality analyses (for upper bounds only)
appear in [17]; the analysis of the Peterson-Fischer
([22]) tournament algorithm in [17, p. 26-301 is a
particularly good example of this proof style.

Recurrence inequality proofs, however, have an
“operational” style that is very different from the as-
sertional style we are describing here. We would like
to be able to utilize the power of the recurrence anal-
ysis within our assertional framework. In order to do
this, instead of proceeding to show directly that every
schedule of time@,%) is a schedule of B by a strong
possibilities mapping, we proceed using a hierarchy of
intermediate requirements automata, Each interme-
diate requirements automaton, Bk, includes the same
timing conditions as are given by the boundmap b, for
partition classes SIGNALo, SIGNALk, plus a new
timing condition that provides bounds on the time
between SIGNALk and a subsequent SIGNAL,. The
recursive argument described above, expressing the
time between SIGNALk and SIGNAL, in terms of
the time between SIGNALk+r and SIGNAL,, is then
captured formally by a strong possibilities mapping
from Bk to Bk+i.

In this subsection, we define the intermediate au-
tomata.

First, for every k, 0 5 k 5 n- 1, we define a timing
condition stating that the time between SIGNALk
and SIGNAL, (if SIGNALb occurs) is in the interval

b - k)dl, (n - k)&l. (In particular, the condition
will imply that each SIGNALk is actually followed
by a corresponding SIGNAL,). When k = n - 1, this
condition will be the same as the timing condition
assigned by the boundmap b to the class containing

SIGNAL,, . On the other hand, when k = 0, this
condition is the same as the condition Ue,,., previously
defined, i.e., the timing condition we wish to prove.

Formally, for any 0 5 k _< n - l,g we define

the following timing condition, Uk,n = (@,rS;,,) ‘3
(Qn, S), where

l Tk,,, = {(s’, ?r, s) E steps(A) : ?r = SIGNALS},

l bk,n = [(n - k) . di, (n - k) . ds], and

For any k, 0 5 k 2 n - 1, let Z./k be the set of
timing conditions that includes Uk,n and the condi-
tions assigned by boundmap b to the partition classes
SIGNALo, SIGNALk. Let Bk denote the I/O au-
tomaton t;me(&G).

In the next subsection, we will show the existence
of a strong possibilities mapping from B1: to &-I, for
every k, 1 5 k 5 n - 1. This implies that there is a
strong possibilities mapping from B,-I to B,. More-
over, there is a trivial strong possibilities mapping
from Bo to the requirements automaton B (which just
ignores the timing conditions associated by b with the
partition class SIGNALO). Similarly, the:ejs a trivial
strong possibilities mapping from time(A, b) to EL-1
(which simply renames the state components associ-
ated with SIGNAL,). Therefore, this mapping proof
will imply the existence of a strong possibilities map-
ping from dime(&z) to B.

6.1.4 The Mapping

In this subsection, we fix a particular value of k, 1 5
k 5 n - 1, and show the existence of a strong possi-
bilities mapping, fk, from Bk to &.:_I.

Recall that the timing conditions included in
Bk are those for uk,,, SIGNALO, SIGNALk and
NULL, while those included in Bk-1 are those for
Uk-l,n, SIGNALo, SIGNALk-1 and NULL, For
the sake of convenience we denote by Ft(k, n) (respec-
tively, Lt(k,n)) the Ft (respectively, Lt) component
of the state of Bk that is associated with Uk,n. Also,
as we did in our construction of time(A, b), we denote
by Ft(C) (respectively, Lt(C)) the Ft (respectively,
Lt) components that are associated by the boundmap
z with each partition class C. We also use the nota-
tion FLAG;, 0 5 i 2 n, to denote the FLAG com-
ponent Of Pi.

Now we define fh so that a state u E states(Bk-1)
is in the image set fk(s), for s E states(Bk), exactly
if the following hold.

gThe redefinition of Uo,, is consistent with the prior
definition.

276

1, If s.FLAG; = true, for some i, k: + 1 2 i 5 n,
then u.Lt(k - 1, n) > s.Lt(h, n) and
u.FY(k - 1, n) 5 s.iqk, n).

2. If s.FLAGk = true, then u.Lt(k - l,n) 2
s.Lt(SIGNALk) + (n - Ic)& and
u.Ft(k - 1, n) < s.Ft(SIGNALk) + (n - E)dl.

3. Otherwise, u.Lt(lc - 1, n) = oo and
u.Ft(k - 1, n) = 0.

Every other component of state u of&-r is equal to
the corresponding component of the state s. Notice
that by Lemma 6.1 if FLAGb = true then FLAGi =
false for all i # Ic, 0 5 i # n; thus the mapping is
well defined.

Intuitively, the inequalities give upper and lower
bounds for the time of the next SIGNAL, event,
in terms of the values of the variables in the state
of time@,@. For example, in the case of the up-
per bound, if the signal has already propagated past
process Pk, then within the time that is stored in
s.Lt(k,n), a SIGNAL,, event must occur (because
the component s.Lt(k,n) keeps track of the latest
time at which a SIGNAL, event must occur, once a
SIGNALk event has occurred). If the signal has only
gotten as far as process Pk, however, then s.Lt(k,n)
will not contain any useful information, so an al-
ternative bound is used. In this case, within time
s.Lt(SIGNALk), a SIGNALk event must occur, and
then after (n - L) additional signal propagation steps,
each taking at most time da, a SIGNAL, event must
occur. The lower bound has a similar meaning.

Lemma 6.2 If 1 < k < n - 1 then the mapping fk
is a strong possibilities mapping from Bk to Bk-1.

By considering the composition fr o . . . o f,,-l
and th_e-trivial mappings from Bc to B and from
time(A, b) to .&-I, we obtain the following corollary.

Corollary 6.3 They -exists a strong possibilities
mapping from time(A, b) to B.

Theorem 6.4 All timed behaviors of(A, 6) are in Q.

6.2 Two-Process Race System

We consider a system composed of two processes.
One process increments a counter until the other pro-
cess modifies a flag, and then decrements this counter.
When the counter reaches 0, a DONE action occurs.
We are interested in lower and upper bounds on the
time until a DONE occurs.

The system is described as a timed automaton.
The underlying I/O automaton A has state variables

t, y and done, where z and y are integers, initially 0,
and done is a Boolean, initially false. There are four
output actions: SET, INC, DEC and DONE, and
no inputs or internal actions. The partition classes
are Y = {SET} and X = (INC, DEC, DONE}. In-
tuitively, there are two sequential processes (using
shared memory), one of which performs the SET ac-
tion and one of which performs the other three. The
transitions are as follows.

SET
Precondition:

y=O
Effect:

y := 1

rive
Precondition:

Y =o
Effect:

2:=2+1

DEC
Precondition:

y=landz>O
Effect:

x:=z--1

DONE
Precondition:

y=landz = 0 and done = false
Effect:

done := true

The boundmap b for A assigns the interval [/I, 121 to
each of the two partition classes. We are interested in
determining the maximum and minimum times taken
by the timed automaton (A,b) from the beginning
until the DONE action occurs.

We will show that Ir is the optimum lower bound
and (2 + [%j)l 2 is the optimum upper bound, for the
time until DONE occurs, We note that there are
timed executions that attain these bounds.

The timing condition U that expresses the bounds
given above is triggered by the unique start state (and
no steps), has DONE as its target action, and has no
disabling states. Let U = (V}.

Next, define the I/O automata time@,;) and
time(x,fi). By definition, the components of the
state of time(&x) are the states of A, plus Ct, R(X),
U(X), Ft(Y), Lt(Y), Ft(NULL), and Lt(NULL).

Similarly, the components of the state of time(x,@
are the states of A, plus Ct, R(U) and U(U).
Throughtout the proof we write s.x and s.y when
we refer to the z and y components, respectively, of
s-As.

277

Define a strong possibilities mcpling from the
states of the I/O automaton iime(A, b) to the states
of the I/O automaton time(z,@, as follows. If s
and u are states of time(d,@ and time(,&%), respec-
tively, then we say that state u E f(s) provided that
s.As = u.As and s.Ct = u.Ct and the following holds.

1. If s.y = 0 and s.Ft(X) < s.J%(Y),
then u&(U) 2 s.Lt(Y) + Z2(s.z + 2 +
[~.Lt(Y)-s.Ft(X)]);

h
otherwise, u&(U) 2 s.Lt(X) + s.2 . Z2.

2. If s.y = 0 and s.Ft(Y) > s&(X), then
d%(U) _< s.Ft(X) + (S.I + 2)21;

otherwise, u.Ft(U) 5 s.Ft(X) + s.z . II.

In general, each of the expressions written on the
right-hand side of an inequality for u.Ft(U) should
evaluate to a real number P such that no computation
starting from the given state s can produce DONE
at any time that is strictly less than T. Analogously,
each of the expressions written on the right-hand side
of an inequality for u.Lt(U) should evaluate to a real
number P such that no computation starting from the
given state s can produce DONE at any time that is
strictly greater than P.

We can give some intuition for the first, more com-
plicated csse of each inequality. For the lower bound,
this is the case where another step of X mvsi occur
before the next (and first) step of Y occurs. In this
case, z will be increased at time at least s-R(X)
and it will take at least z + 1 DEC operations (each
consuming at least II time) until 2 gets set to 0 and
another 21 until DONE occurs. For the upper bound,
this is the csse where another step of X calz occur
before the next (and first) step of Y occurs. In this

c=% 1 s’L’(Y)-s.F*(X~ j measures how many additional
steps of X c& fit before Y must take a step, and
Zz(s.z + 2 + [sSL’(Y)~a.F*(X~J) is the longest time it
can take till DONE occurs from the time SET occurs
(which is at most s&(Y)). The second cases of both
inequalities are similar, but simpler, and are left to
the reader.

Lemma 6.5 The mapping f is a strong possibiZiGes
mapping from time(X,ti) to time(X,X).

Theorem 6.6 AZZ timed behaviors of (A, 6) satisfy
U.

7 Completeness

Theorem 7.1 Let (A, b) be a timed automaton, and

let (A”,;) be the dummification of(A, 6). Let 2.4 be a set
of timing conditions for A. Suppose that every limed
execution of (A, b) satisfies U. Then there is a strong

possibilities mapping from time(X,z) to time(X,fi).

The proof of this theorem contains a construction
of a strong possibilities mapping. However, it does
not give any clue about how to come up with an
explicit expression (e.g., one that is based on state
variables) of a mapping to prove a specific algorithm.

8 Conclusions and Further
Work

In this paper we have described a way to carry out
assertional proofs for timing properties. We have
shown how to specify an algorithm and its timing as-
sumptions, as well as its performance requirements,
in terms of timed automata and timing conditions.
We have shown how to convert such specifications
into ordinary (not timed) I/O automata by build-
ing predictive timing information into the automaton
states. Then the goal of proving timing conditions
can often be met by demonstrating the existence of
a strong possibilities mapping from the automaton
corresponding to the algorithm (with its timing as-
sumptions) to the automaton corresponding to the
performance requirements.

We have presented three examples of this method.
The first is the analysis of the rate at which a simple
resource manager system issues grants; the second is
the analysis of the propagation delay of a signal along
a line of relay processes the third is a race-system be-
tween two processes. The second example also illus-
trates how our method can be applied hierarchically,
in a way that corresponds to proofs using recurrences.
We have shown that this method is complete, i.e., if
a timed I/O automaton satisfies a set of timing con-
ditions then a strong possibilities mappings can be
exhibited between the appropiate automata.

A good technique for proving timing properties of
timing-dependent or asynchronous systems should be
rigorous, simple and general. Our technique is cer-
tainly rigorous, and we think it is also quite simple.
Prior work on proving timing properties has usually
had an operational style much like that of liveness
proofs, where time bounds are obtained by bound-
ing how long it takes for intermediate milestones to
occur. (See [17] f or sever&l examples.) In contrast,
the method presented in this paper has an assertional

278

style. Such a style seems to lead to proofs that are
somewhat simpler; they are straightforward to gen-
erate (although they may involve analyzing a large
number of cases), and are easier to check - in fact,
proofs of the sort we have given in this paper ought to
be machine-checkable with current proof technology.

As for generality, it is not yet clear to us how gen-
erally applicable this method will be. It is quite likely
that the specific iime(A,U) construction we use will
not be general enough to express all interesting ex-
amples of performance requirements. For example,
one might want to consider performance requirements
that specify that a resource manager is supposed to
respond to requests as long as they do not arrive too
far apart in time (see the “cement mixer” example
in [4]). For another example, one might want to
consider a specification that says that one event IF
triggers two later events, Q and $, with 4 occurring
within a certain interval of time after a and + occur-
ring within a certain interval of time after q5. Both of
these examples illustrate more complicated require
ments than can be expressed directly as timing con-
ditions. It may be possible to modify such examples
to fit into our definitions by adding auxiliary vari-
ables or actions; alternatively, it may be necessary or
desirable to generalize the time(A,U) construction to
allow more general kinds of timing conditions. If the
time(A, U) construction is generalized, then we would
hope that many of the same ideas, e.g., the incorpo-
ration of predictive timing information into the state
and the use of mappings that take the form of in-
equalities, will still be useful. Even if the time(A,U)
construction is generalized, we wonder whether there
is a single generalization that will cover all interesting
examples. We leave all of this as a subject for future
work.

It remains to apply this technique to other, more
complex examples than the ones in this paper. One
particularly good example to try is the full tourna-
ment mutual exclusion algorithm from [22]. Its prior
analysis using recurrences suggests that it may be a
good candidate for hierarchical proof as in our sec-
ond example. This is an example of an asynchronous
algorithm; good sources for timing-dependent algo-
rithms to analyze are the areas of real-time comput-
ing and communication. In particular, we are cur-
rently studying timer-based transport-layer protocols
for communication networks.

We have already seen how our method can express
ideas previously expressed using recurrences. It re-
mains to see how our technique combines with other
methods for time analysis such as methods based on
bounded temporal logic (e.g., [3]). Also, it remains
to see how proofs using our techniques can be applied

279

in a modular way for the verification of timing prop-
erties of large and complex timing-based systems.

Acknowledgements.

We would like to thank Amir Pnueli for suggesting
the race-system example of Section 6.2 as a test case
for our proof technique. We would also like to thank
Steve Ponzio for his helpful comments on earlier ver-
sions of this paper.

References

PI

PI

PI

PI

[51

bl

PI

PI

M. Abadi and L. Lamport, “The Existence of
Refinement Mappings,” DEC SRC Research Re-
port 29, August 1988.

H. Attiya and N. Lynch, “Time Bounds for Real-
Time Process Control in the Presence of Tim-
ing Uncertainty,n in Proc. 10th Real-Time Sys-
tems Symposium, pp. 268-284, December 1989.
Expanded version available as Technical Report
MIT/LCS/TR-403, Laboratory for Computer
Science, MIT, July 1989.

A. Bernstein and P. Harter, Jr. “Proving Real-
Time Properties of Programs with Temporal
Logic,” in Proc. 8th Symp. on Operating Sys-
tem Principles, Operating Systems Review, Vol.
15, No. 5 (December 1981), pp. l-11.

M. W. Franklin and A. Gabrielian, “A Trans-
formational Method for Verifying Safety Proper-
ties in Real-Time Systems,” in Proc. 10th IEEE
Real-Time Systems Symp., pp. 112-123, Decem-
ber 1989. Also available as Technical Report 89-
12, Tomson-CSF, Inc., July 1989.

A. Gabrielian and M. W. Franklin, “State-Based
Specification of Complex Real-Time Systems,”
in Proc. 9th IEEE Real-Time Systems Symp.,
1988, pp. 2-11.

V. H. Hasse, “Real-time behavior of programs,”
IEEE Transactions on Soft ware Engineering,
Vol. SE7, No. 5 (September 1981), pp. 494-501.

J. Hooman, A Compositional Proof Theory for
Real-Time Distributed Message Passing, TR. P
l-I(l), Department of Mathematics and Com-
puter Science, Eindhoven University of technol-
ogy, March 1987.

F. Jahanian and A. Mok, “A Graph-Theoretic
Approach for Timing Analysis and Its Imple-
ment ation ,” IEEE Transactions on Computers,
Vol. C-36, No. 8 (August 1987), pp. 961-975.

PI

PO1

P11

P21

P31

P4

P51

1161

P71

WI

Pgl

F. Jahanian and D. A. Stuart, “A Method
for Verifying Properties of Modechart Specifica-
tions,” in Proc. 9th I%EE Real-Time Systems
Symp., 1988, pp. 12-21.

R. Koymans, J. Vytopil and W. P. deRoever,
“Real-Time Programming and Asynchronous
Message Passing,” in Proc. 2nd ACM Symp. on
Principles of Distributed Computing, 1983, pp.
187-197.

L. Lamport, “Specifying Concurrent Program
Modules,” ACM Trans. on Programming Lan-
guages and Systems, Vol. 5, No. 2 (April 1983),
pp. 190-222.

H. R. Lewis, “Finite-State Analysis of Asyn-
chronous Circuits with Bounded Temporal Un-
certainty,” Technical Report TR-15-89, Aiken
Computation Laboratory, Harvard University.

N. Lynch, “Concurrency Control for Resilient
Nested transactions,” Advances in Computing
Research, Vol. 3, 1986, pp. 335-373.

N. Lynch, “Modelling Real-Time Systems,” in
Foundations of Real-Time Computing Research
Initiative, ONR Kickoff Workshop, November
1988, pp. l-16.

N. Lynch, “Multivalued Possibilities Mappings,”
in Proc. of REX workshop, Lecture Notes in
Computer Science 430, Springer-Verlag, pp. 519-
543.

N. Lynch and H. Attiya, “Using Mappings
to Prove Timing Properties,,, Technical Memo
MIT/LCS/TM-412.b, Laboratory for Computer
Science, MIT, December 1989.

N. Lynch and K. Goldman, Lecture notes for
6.852. MIT/LCS/RSS-5, Laboratory for Com-
puter Science, MIT, 1989.

N. Lynch and M. Tuttle, “Hierarchical Cor-
rectness Proofs for Distributed Algorithms,” in
Proc. 7th ACM symp. on Principles of Dis-
tributed Computing, 1987, pp, 137-151. Ex-
panded version available as Technical Report
MIT/LCS/TR-387, Laboratory for Computer
Science, MIT, April 1987.

N. Lynch and M. ’ Tuttle, “An Introduction
to Input/Output Automata,” CWI-Quarterly,
Vol. 2, No. 3, 1989. Also: Technical Memo,
MIT/LCS/TM-373, Laboratory for Computer
Science Massachusetts Institute of Technology,
November 1988.

PO1

WI

P21

P31

WI

WI

P71

PI

M. Merritt, “Completeness Theorems for Au-
tomata,” in Proc. of REX workshop, Lecture
Notes in Computer Science 430, Springer-Verlag,
pp. 544-560.

M. Merritt, F. Modugno and M. Tuttle “Time
Constrained Automata,,, manuscript, November
1988.

G. Peterson and M. Fischer, “Economical Solu-
tions for the Critical Section Problem in a Dis-
tributed System,” in Proc. 9th ACM symp. on
Theory of Computing, May 1977, pp. 91-97.

F. B. Schneider, “Real-Time Reliable Systems
Project,” in Foundations of Real-Time Comput-
ing Research Initiative, ONR Kickoff Workshop,
November 1988, pp. 28-32.

A. U. Shankar and S. Lam, “Time-Dependent
Distributed Systems: Proving Safety, Liveness
and Timing Properties,” Distributed Compu t-
ing, 2 (1987)) pp. 61-79.

A. C. Shaw, “Reasoning About Time in Higher-
Level Language Software,” IEEE Transactions
on Software Engineering, Vol. SE15, No. 7 (July
1989)) pp. 875-889.

J. Stankovic and K. Ramamritham, “The
SPRING Kernel: A New Paradigm for Real-
Time Operating Systems,” ACM Operating Sys-
tems Reviews, Vol23, No. 3 (July 1989), pp. 54-
71.

G. Tel, “Assertional Verification of a Timer
Based Protocol,” in Proc. SCALP ‘88, Lecture
Notes in Computer Science 317, Springer-Verlag,
pp. 600-614.

A. Zwarico, Timed Acceptance: an Algebra
of Time Dependent Computing, Ph.D. thesis,
Dept. of Computer and Information Science,
University of Pennsylvania, 1988.

280

