
A Lattice-Structured Proof Technique
Applied to a Minimum Spanning Tree Algorithm

(Extended Abstract)

Jennifer Lundelius Welch
Laboratory for Computer Science, Massachusetts Institute of Technology

Leslie Lamport
Digital Equipment Corporation, Systems Research Center

Nancy Lynch
Laboratory for Computer Science, Massachusetts Institute of Technology

Abstract: Highly-optimized concurrent algo-
rithms are often hard to prove correct because
they have no natural decomposition into sepa-
rately provable parts. This paper presents a proof
technique for the modular verification of such
non-modular algorithms. It generalizes existing
verification techniques based on a totally-ordered
hierarchy of refinements to allow a partially-
ordered hierarchy-that is: a lattice of different
views of the algorithm. The technique is applied
to the well-known distributed minimum spanning
tree algorithm of Gallager, Humblet and Spira,
which has until recently lacked a rigorous proof.

1. Introduction
The proliferation of distributed computer sys-

tems gives increasing importance to correctness
proofs of distributed algorithms. Techniques
for verifying sequential algorithms have been
extended to handle concurrent and distributed
ones-for example, by Owicki and Gries [OG],
Manna and Pnueli [MP], Lamport and Schnei-
der [LSc], and Alpern and Schneider [AS]. Prac-
tical algorithms are usually optimized for effi-
ciency rather than simplicity, and proving them
correct mav be feasible onlv if the nroofs can be

The work of Lynch and Welch was supported in part by the
Office of Naval Research under Contract N00014-85-K-0168

by the National Science Foundation under Grant CCR-
8611442, and by the Defense Advanced Research Projects
Agency under Contract N00014-83-K-0125.

Permission to copy without fee all or part of this material is granted pro-
vided that the copies are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title of the publication and
its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish,
requires a fee and/or specific permission.

0 1988 ACM O-89791-277-2/88/0007/0028 $1.50

structured. For a sequential algorithm, the proof
is structured by developing a hierarchy of in-
creasingly detailed versions of the algorithm and
proving that each correctly implements the next
higher-level version. This approach has been ex-
tended to concurrent algorithms by Lamport [L].
Stark [S], Hare1 [HI, Kurshan [Ii], and Lynch and
Tuttle [LT], where a single action in a higher-
level representation can represent a sequence of
lower-level actions. The higher-level versions usu-
ally provide a global view of the algorithm, with
progress made in large atomic steps and a large
amount of nondeterminism allowed. At the low-
est level is the original algorithm, which takes a
purely local view, has more atomic steps, and usu-
ally has more constraints on the order of events.

With its totally ordered chain of versions, this
hierarchical approach usually does not allow one
to focus on a single task in the algorithm. The.
method described in this paper exbends the hier-
archical approach to a lattice of versions. At the
bottom of the lattice is the original algorithm,
which is a refinement of all other versions. How-
ever, two versions in the lattice may be incom-
measurable, neither one being a refinement of the
other.

Multiple higher-level versions of a communica-
tion protocol, each focusing on a different func-
tion, were considered by Lam and Shankar [LSh].
They called each higher-level version a “projec-
tion”. If the original protocol is sufficiently mod-
ular, then it can be represented as the composi-
tion of the projections, and the correctness of the
original algorithm follows immediately from the
correctness of the projections. This approach was
used by Fekete, Lynch, and Shrira [FLS] to prove
the correctness of Awerbuch’s synchronizer [Al].

28

Not all algorithms are modular. In practical
algorithms, modularity is often destroyed by op-
timizations. The correctness of a non-modular
algorithm is not an immediate consequence of
the correctness of its higher-level versions. The
method presented in this paper uses the correct-
ness of higher-level versions of an algorithm to
simplify its proof. The proofs of correctness of all
the versions in the lattice (in which the original
algorithm is the lowest-level version) constitute a
structured proof of the algorithm.

Any path through our lattice of representa-
tions ending at the original algorithm is a totally-
ordered hierarchy of versions that can be used
in a conventional hierarchical proof. Why do we
need the rest of the lattice? Each version in the
lattice allows us to formulate and prove invari-
ants about a separate task performed by the al-
gorithm. These invariants will appear somewhere
in any assertional proof of the original algorithm.
Our method permits us to prove them at as high
a level of abstraction as possible.

The method proceeds inductively, top-down
through the lattice. First, the highest-level ver-
sion is shown directly to have the original algo-
rithm’s desired property, which involves proving
that it satisfies some invariant. Next, let A be any
algorithm in the lattice, let B,, . . . , Bi (i 2 1) be
the algorithms immediately above A in the lat-
tice, and let Qr , . . . , Qi be their invariants. We
prove that A satisfies the same safety proper-
ties as each Bj, and that a particular predicate
P is invariant for A. The invariant P has the
form Q A Q1 A.. . A Qi for some predicate Q. In
this way, the invariants Qj are carried down to
the proof of lower-level algorithms, and Q intro-
duces information that cannot appear any higher
in the lattice-information about details of the al-
gorithm that do not appear at higher levels, and
relations between the Bj. We provide two sets
of sufficient conditions for verifying these safety
properties, one set for the case i = 1, and the
other for i > 1. We also provide three techniques
for verifying liveness properties; only one of them
makes use of the lattice structure.

The technique is used to prove Gallager, Hum-
blet and Spira’s distributed minimum spanning
tree algorithm [GHS]. This algorithm has been of
great interest for some time. There appears in
[GHSJ an intuitive description of why the algo-

29

rithm should work, but no rigorous proof. There
are several reasons for giving a formal proof.
First, the algorithm has important applications
in distributed systems, so its correctness is of con-
cern. Second, the algorithm often appears as part
of other algorithms [A2,AG], and the correctness
of these algorithms depends upon the correctness
of the minimum spanning tree algorithm. Finally,
many concepts and techniques have been taken
from the algorithm, out of context, and used in
other algorithms [A2,CT,G]. Yet the pieces of the
algorithm interact in subtle ways, some of which
are not explained in the original paper. A care-
ful proof of the entire algorithm can indicate the
dependencies between the pieces.

Our proof method helped us to find the correct
invariants; it allowed us to describe the algorithm
at a high level, yet precisely, and to use our intu-
ition about the algorithm to reason at an appro-
priate level of abstraction. A by-product of our
proof was a better understanding of the purpose
and importance of certain parts of the algorithm,
enabling us to discover a slight optimization.

The complete proof of the correctness of this
minimum spanning tree algorithm is very long
and can be found in [WI. One reason for its length
is the intricacy of the algorithm. Another reason
is the duplication inherent in the approach: the
code in all the versions is repetitive, because of
carry-over from a higher-level version to its refine-
ment, and because the original algorithm cannot
be presented as a true composition of its imme-
diate projections; the repetition in the code leads
to repetition in the proof. The full proof also
includes extremely detailed arguments-detailed
enough so we hope that, in the not too distant,
future, they will be machine-checkable. This level
of detail seems necessary to catch small bugs in
the program and the proof.

Two other proofs of this algorithm have re-
cently been developed. Stomp and de Roever
[SdR] used the notion of communication-closed
layers, introduced by Elrad and Francez [EF].
Chou and Gafni [CG] prove the correctness of a
simpler, more sequential version of the algorithm
and then prove that every execution of the origi-
nal algorithm is equivalent to an execution of the
more sequential version.

2. Lattice-Structured Proofs
This section contains the definitions and re-

sults that form the basis for our lattice-structured
proof method. Proofs of the results may be found
In [WI.

Our method can be used with any state-based,
assertional verification technique. In this paper,
we formulate it in terms of the I/O automaton
model of Lynch, Merritt, and Tuttle [LT,LM],
which provides a convenient, ready-made “lan-
guage” for our use. A summarry of the I/O au-
tomaton model appears in Appendix A.

The first step is to design the lattice, using
one’s intuition about the algorithm. Each ele-
ment in the lattice is a version of the algorithm,
described as an I/O automaton, and has associ-
ated with it a predicate. The bottom element
of the lattice is the original algorithm. Next, we
must show that all the predicates in the lattice
are invariants. The invariant for the top element
of the lattice must be shown directly. Assum-
ing that Q1,. . . , Qi are invariants for the versions

-&, . - . , Bi directly above A in the lattice, we ver-
ify that predicate P = Q A Q1 A. . . A Qi is invari-
ant for A, by demonstrating mappings that pre-
serve Q and take executions of A to executions of

BI,.. . , Bi (thus preserve &I A * . * A&i). (Finding
’ these mappings requires insight about the algo-

rithm.) Finally, the lattice is used to show that
the original algorithm solves the problem of in-
terest by showing directly that the top element
in the lattice solves the problem, and showing a
path A,, . . . , Ak in the lattice from top to bot-
tom such that each version in the path satisfies
its predecessor. TO show that Ai satisfies A;-,,
we show that for every fair execution of Ai, there
is a fair execution of Ai- 1 with the same sequence
of external actions. The mapping used to verify
the invariants takes executions to executions; by
adding some additional constraints on the map-
ping, we can prove, using the invariants, that it
takes fair executions to fair executions with the
same sequence of external actions, i.e., that live-
ness properties are preserved.

Let A and B be automata, where B is offered
as a “more abstract” version of A. We only con-
sider automata such that each locally-controlled
action is in a separate class of the action partition.
(The results of this section can be generalized to
avoid this assumption.) Let aEt-seq(B) be the

set of all finite sequences of alternating actions
of B and states of B that begin iand end with
an action, including the empty sequence (and the
sequence of a single action). An abstraction mup-
ping M from A to B is a pair of functions, S and
A, where S maps states(A) to states(B) and A
maps pairs (s, r), of states s of A and actions 7r of
A enabled in s, to al-l-seq(B). S tells how to view
a low-level state at a higher level of abstraction;
A tells what high-level actions, if any, correspond
to the low-level action 7r executed in state s.

Given execution fragment e = sc17rl s1 . . . of A,
define M(e) as follows.
l If e = so, then M(e) = S(so).
l Let e = so. -*Si-lTiSi, i > 0. If d(Si-l,Ti)

is empty, then M(e) = M(so . . . Sip1). Other-
wise, M(e) = M(s~ . . . si-1) d(z:i-1, Ti) S(si).

l If e is infinite, then M(e) is the limit as i in-
creases without bound of M (so x1 S, . . . si >.

We first consider safety properties. We give
two sets of conditions on abstracti.on mappings,
both of which imply that executions map to ex-
ecutions, with the same sequence of external ac-
tions. The first set of conditions applies when
there is a single higher-level autom.aton immedi-
ately above. As formalized in Lemma 1, t,he first
condition ensures that the sequences of external
actions are the same, and the second and third
conditions ensure that executions rnap to execu-
tions, and that a certain predicate is an invariant
for the lower-level algorithm. A ke:y point about
this predicate is that it includes the higher-level
invariant. Condition (2) is the basis step. Condi-
tion (3) is the inductive step, in which the pred-
icate, including the high-level invariant, may be
used; part (a) shows the low-level predicate is in-
variant, while parts (b) and (c) show executions
map to executions, by ensuring th.at if. there is
no corresponding high-level action, then the high-
level state is unchanged, and if there is a corre-
sponding high-level action, then it is enabled in
the previous high-level state and i.ts effects are
mirrored in the subsequent high-level state. Since
executions map to executions, the high-level in-
variant, when composed with the st,ate mapping,
is also invariant for A.
Definition: Let A and B be automata with the
same external actions. Let M = (S,d) be an
abstraction mapping from A to B, P be a pred-
icate on states(A), and Q be a predicate true of

30

all reachable states of B. We say A simulates B
via M, P, an& Q if the following hold:
(1) Ifs is a state of A such that Q(S(s)) (and P(s)
are true, and x is any action of A enabled in s,
then A(s, n)lezt(B) = Ties-L(A).
(2) If s is in start(A), then P(s) is true, and S(s)
is in start(B).
(3) Let (s’, 7r, s) be a step of A such that Q(S(s’))
and P(s’) are true. Then

(a) P(s) is true,
(b) if d(s', n) is empty, then S(s) = S(s’), and
(c) if d(s’, r) is not empty, then S(s’) d(s’, IT>

S(s) is an execution fragment of B.
Lemma 1: If A simulates B via M = (S,d), F
and Q, then the following are true for any execu-
tion e of A.
(1) M(e) is an execution of B, and M(e)lezt(B) =
elest(A).
(2) (Q 0 S) A P is true in every state of e.

Next we suppose that there are several higher-
level versions, say B, and &, of automaton A,
each focusing on a different task. There are sit-
uations in which it is impossible to show that A
simulates B, without using invariants about B, ‘s
task, and it is impossible to show that A simu-
lates B2 without using invariants about B, ‘s task.
One could cast the invariants about B,‘s task as
predicates of A, and use the previous definition to
show A simulates B,, but this violates the spirit
of the lattice. Instead, we define a notion of si-
multaneously simulates, which allows invariants
about both tasks to be used in showing that A
simulates B1 and B2. The definition differs from
simply requiring A to simulate B, and A to sim-
ulate B, in one important way: steps of A only
need to be reflected properly in each higher-level
algorithm when all the higher-level invariants are
true (cf. condition (3)). Lemma 2 shows that
this definition preserves safety properties similar
to those in Lemma 1.
Definition: Let I be an index set. Let A and

B?, r E I, be automata with the same external
actions. For all r E 1, let M, = (S,, A,) be an
abstraction mapping from A to B,, and let Qr
be a predicate true of all reachable states of B,.
Let P be a predicate on states(A). We say A
simubtaneously simulates {B, : r E I} via {M, :

r E I}, P, and {Q r : r E I} if the following hold:
(1) If s is a state of A such that ArEI Qr(SP(3))
and P(s) are true, and 7r is any action of A en-

31

abled in s, then A,(s,~)lezt(B,) = n(ezt(A) for
all r E I.
(2) Ifs is in start(A), then P(s) is true, and S,.(s)
is in start(B,) for all T E I.
(3) Let (s’, 7r, s) be a step of A such that P(s’)

“4 fat TJ:(s’)) are true. Then
s is rue,

(i) if dr(s',r) is empty, then &(s) = &(s’),
for all T E 1, and

(c) if A, (s’ ,7r) is not empty, then
S, (s’)d, (s’ , K)& (s) is an execution fragment of
Br) for all T E I. 0
Lemma 2: Let I be an index set. If A simulta-
neously simulates (B, : r E I} via {M, : T E I},
P, and (Qr : T E I}, where M, = (5, A,) for all
r E I, then the following are true of any execu tion
e ofd.
(1) M.(e) is aa execution of B,, and elezt(A) =
M.(e)Jezt(B,), for all T E I.
(2) A,,,(&, o ST) A P is true in every state of e.

We now consider liveness properties. Given au-
tomata A and B, and a locally-controlled action
cp of B, a definition of A being equitable for cp is
given. Lemmas 3 and 4 show that this definition
implies that in the execution of B obtained from
a fair execution of A by either of the simulation
mappings, once cp becomes enabled, it either oc-
curs or becomes disabled. If A is equitable for all
locally-controlled actions of B, then the induced
execution of B is fair. Thus, fair executions map
to fair executions.
Definition: Suppose M = (S,d) is an abstrac-
tion mapping from A to B. Let cp be a locally-
controlled action of B. A is equitabIe for 9 via
M if in every fair execution of A, whenever a
state s occurs with cp enabled in S(s), then sub-
sequently either a state s’ occurs with cp disabled
in S(s), or a state-action pair (s’, 7r) occurs with
cp in d(s’, 7r). If A is equitable for cp via M for
every locally-controlled action cp of B, then A is
equitable for B. cl

Given locally-controlled action cp of automa-
ton B, define an execution of B to be fair for v
if whenever cp becomes enabled, subsequently cp
either occurs or becomes disabled.
Lemma 3: Suppose A simulates B via M. Let
cp be a locally-controlled action of B. If A is eq-
uitable for cp via M, then M(e) is fair for p, for
every fair execution e of .4.

Lemma 4: Suppose A simultaneously simulates

{Br : r E I} via {M, : r E I}. Let ‘p be a
locally-controlled action of B, for some r. If A is
equitable for cp via M,, then M r (e) is fair for cp,
for every fair execution e of A.

Three methods of showing that A is equitable
for locally-controlled action q of B are described.
The first method, presented in Lemma 5, is to
show that there is an action p of A that is enabled
whenever cp is, and whose occurrence implies ‘p’s
occurrence. This method is useful when p and cp
are in some sense the same action, described at
the same level of abstraction.
Lemma 5: Suppose M = (S,d) is an ab-
straction mapping from A to B, cp is a locally-
con trolled action of B, and p is a locally-
controlled action of A such that, for all reachable
states s of A,
(1) p is enabled in s if and only if cp is enabled in
state S(s) of B, and
(2) if p is enabled in s, then ‘p is in d(s, p).
Then A is equitable for cp via M.

The second method uses a definition of A be-
ing progressive for cp, meaning there is a set of
“helping” actions of A that are guaranteed to oc-
cur, and which make progress, measured with a
variant function, toward an occurrence of cp in the
induced execution of B. Lemma 6 shows that pro-
gressive implies equitable. This method is useful
when cp is modeled in A at a lower level of abstrac-
tion as a series of actions. (A very similar tech-
nique can be used [LPS,F] to show that progress
is made toward t,ermination of a program, consid-
ered at a single level of abstraction.) For techni-
cal reasons, we actually need helping state-action
pairs - there are situations in our proof of the
[GHSJ alg or1 ‘th m when a particular helping action
only makes progress if it occurs in certain states.
Definition: Suppose M = (S, d) is an abstrac-
tion mapping from A to B. If cp is a locally-
controlled action of B, then we say A is progres-
sive for cp via M if there is a set !l? of pairs (a, $)
of states s of A and locally-controlled actions $
of A, and a function v from states(A) to a well-
founded set such that the following are true.

(1) For any reachable state s with cp enabled in
S(s), some action $ is enabled in s such that
(s,$) is in *.
(2) For any step (s’, 7r, s) of A, where s’ is reach-
able, ‘9 is enabled in S(s’) and S(s), and cp is not

in d(s’, r),
(a) 4s) 2 W>,
(b) if (s’,~) E \k, then V(S) < ZI(S’), and
(c) if (s’, 7r) &I !I?, $ is enabled in :;‘, and (s’, $)

E !O, then + is enabled in s and (s,:$) E Xl?. 0
Lemma 6: If A is progressive for 9 via M, then
A is equitable for cp via M.

The third method for checking lthe equitable
condition can oe useful when various automata
are arranged in a lattice, as in Figure 1. (Cf.
Lemma 7.) The main idea is to show that there
is some action p of D that is essentially the same
action as cp, described at the same level of ab-
straction, such that C is progressive for p using
certain helping actions, and A is equitable for all
the helping actions for p. In essence, the argu-
ment that cp either occurs or becomes disabled.
once it is enabled, is made at a hig:h level of ab-
straction, and then is pulled down to where it is
needed. (For convenience, we define abstraction
function M applied to the empty sequence to be
the empty sequence.)
Lemma 7: Let A, B, C and D be automata
such that MAB = (SAB,dAB) is an abstradtion
function from A to B, and similarly ;for M A c and
M CD* Let cp be a locally-controlled action of B.
Suppose the following conditions are true.
(1) MAC (e) is an execution of C for every execu-
tion e of A.
(2) There is a locally-con trolled action p of D such
that for any reachable state s of A, ifcp is enabled

in &&), h P t en is enabled in &n(sAc(s)).

(3) If (s’ ,7r, s) is a step of A, s’ is reachable, and p
is in Men (dAC (s’, n)), then cp is in dAB (s’, r).
(41 C is progressive for p via M c n , using the set
XPP and the function v,.
(5) A is equitable for $ via MAC, for all actions
4 of C such that (t,$) E Q, for state t of C.
Then A is equitable for cp via MA a.

D P

\
Y B c *

\/
A

Figure 1

32

Theorems 8 and 9 show that, our definitions of
simulate, simultaneously simulate and equitable
are sufficient for showing that A satisfies B.
Theorem 8: If A simulates B via M, P and &
and if A is equitable for B via M, then A satisfies
B.
Theorem 9: Let I be an index set. If A simulta-
neously simulates (B, : T E I} via (M, : r E I},

P and (St : r E I}, and if A is equitable for B,
via M r for some r E I, then A satisfies B, .

3. Minimum Spanning Trees
For the rest of this paper, let G be a connected

undirected graph, with at least two nodes and a
unique weight, chosen from a totally ordered set,
associated with each edge. Nodes are V(G) and

edges are E(G). For each edge (p,q) in E(G),
there are two links (i.e., directed edges), (p, Q) and
(q, p). The set of all links of G is denoted L/(G).
It can be shown that the minimum spanning tree
of G is unique; we denote it T(G). Another im-
portant fact is:
Lemma 10: If S is a subgraph of T(G) and e is
the minimum-weight external edge of S, then e is
in Z’(G).

The MST(G) problem is the following exter-
nal schedule module (i.e., actions used to inter-
act with the environment, and set of allowable
behaviors; see Appendix A). Input actions are
{Start(p) : p f V(G)]. Output actions are
{InTree(NotInTree(Z) : I E L(G)}. Sched-
ules are all sequences of actions such that

no output action occurs unless an input action
occurs;
if an input action occurs, then exactly one out-
put action occurs for each Z E 1;(G);

if Innee((n (I>> occurs, then (p,q) is in T(G);
and

occurs, then (p, 4) is not in

4. Proof of GHS Algorithm
In this section, we describe informally the

structure of the lattice used to prove the correct-
ness of Gallager, Humblet and Spira’s minimum-
spanning tree algorithm [GHS], by discussing
each algorithm in the lattice and stating what re-
lationships must be proven. The lattice is shown
in Figure 2. The full proof may be found in [WI.
Due to lack of space, in this paper we only present
three of the automata in the lattice (see Appendix

COM

/
/Gc\ \\

TAR DC NOT CON

GHS

Figure 2: The Lattice

B), and only show satisfaction for one link in the
chosen path (see Appendix C).

HZ is a very high-level description of the algo-
rithm, and is easily shown to solve the MST(G)
problem. GHS is the detailed algorithm from
[GHS]. We show a path in the lattice from GHS
to HI, where each automaton in the path satis-
fies the automaton above it. By transitivity of
satisfaction, then GHS will have been shown to
solve MST(G).

Obviously, GHS must be shown to satisfy one
of TAR, DC, NOT and CON. Showing that
executions of GHS map to executions of the cho-
sen automaton requires invariants about all four;
thus, we show that GHS simultaneously simu-
lates those four automata. To verify the invari-
ants for the four, we show that TAR and DC
(independently) simulate GC, and that NOT and
CON (independently) simulate COM. Likewise,
in order to show these facts, we need the in-
variants of GC and COM, which are obtained
by showing that GC simulates COM, and th,at
COM simulates HI. Thus, it is necessary to
show safety relationships along every edge in the
lattice.

The liveness relationships only need be shown
along one path from GHS to HI. We decided
on pragmatic grounds that it would be easiest
to show that GHS is equitable for TAR. One
consideration was that the output actions have
exactly the same preconditions in GHS and in
TAR, and thus showing GHS is equitable for
those actions is trivial. Once TAR was chosen,
the rest of the path was fixed.

33

HI: (“High”) This automaton takes a totally
global view of the graph. The essential feature
of the state of HI is a set of subgraphs of G,
initially the set of singleton nodes of G. The
idea is that the subgraphs of G are connected
subgraphs of the minimum spanning tree T(G).
Two subgraphs F and F’ can combine along
edge e, via the Combine(F, F’, e) action, if the
minimum-weight external edge e of F’ leads to

F. InTree&, q)) can only occur if (p,f~) is al-
ready in a subgraph, or is the minimum-weight
external edge of a subgraph (i.e., is destined to
be in a subgraph). By Lemma 10, these edges
really are in Z’(G). NotInTree((p, q)) can only oc-
cur if p and q are in the same subgraph but the
edge between them is not.

The obvious distributed implementation of
this high-level algorithm, in which messages bear-
ing the new subgraph identity must be broadcast
throughout the new subgraph each time one is
formed, has poor worst-case message complexity.
GHS uses levels to reduce the number of mes-
sages; levels are introduced next.
COM: (“Common”) This algorithm gives a good
way to explain the main ideas of the [GHS] al-
gorithm intuitively, yet precisely. The COM al-
gorithm still takes a completely global view of
the algorithm, but some intermediate steps lead-
ing to combining are identified, and the state
is expanded to include extra information about
the subgraphs. The COM state consists of a
set of fragments, a data structure used through-
out the rest of the lattice. Each fragment f has
associated with it a subgraph of G, as well as
other information: level(f), core(f), minZink(f),
and rootchanged(Two milestones must be
reached before a fragment can combine. First,
the ComputeMin(f) action causes the minimum-
weight external link of fragment f to be identified
as minZink(f) , and second, the ChangeRoot(f)
action indicates that fragment f is ready to
combine, by setting the variable rootchanged(
There are two ways that fragments (and hence,
their associated subgraphs) can combine. The
Merge(f,g) action causes two fragments, f and g,
at the same level with the same minimum-weight
external edge, to combine; the new fragment has
level one higher than the level of f, and a new
core (i.e., unique identifier), the combining edge.
The -Absorb(f, g) action causes a fragment g to

be engulfed by the fragment f at the other end of
minZink(g), provided f is at a higher level than g.
GC: (“Global ComputeMin”) This version of the
algorithm is still totally global in approach. The
GC automaton expands on the process of find-
ing the minimum-weight external link of a frag-
ment. Each fragment f has a set testset of
nodes that are participating in the search. A new
action, TestNode(is added, by -which a node p
in the testset atomically finds its minimum-weight
external link and is removed from. the testset, as
long as the link does not lead to a lower-level frag-
ment. ComputeMin(f) can occur once testaet(f)
is empty. After a merge, all the nodes in the new
fragment are in the testset. When an Absorb(f, g)
action occurs, all the nodes forrnerly in g are
added to testset if and only i:f the target of
minZink(g) is in testset(
TAR: (“Test-Accept-Reject”) TIER, as well as
DC, NOT and CON, are partially global and
partially local in approach. TAR expands on the
method by which a node finds its local minimum-
weight external link, using local variables and
messages. TAR is unconcerned with how all
this local information is collated to identify the
fragment’s global minimum-weight external link.
(This problem is addressed by DC, which ignores
the local protocol.)

Each link I is classified by the variable Zstatzls(1)
as branch, rejected, or unknown. Branch means
the link will definitely be in the minimum span-
ning tree; rejected means it definitely will not be;
and unknown means that the 1ink”s status is cur-
rently unknown. Initially, all the links are un-
known.

The search for node p’s minimum-weight es-
ternal link is initiated by the action SendTest(
which causes p to identify its minimum-weight un-
known link as test&d(p), and to send a T E s T mes-
sage over its testlink together with information
about the level and core (identit,y) of p’s frag-
ment. If the level of the recipient q’s fragment
is less than p’s, the message is requeued at q, to
be dealt with later (when q’s level has increased
sufficiently). Otherwise, a response is sent back.
If the fragments are different, the response is an
ACCEPT message, otherwise, it is a REJECT mes-
sage. An optimization is that if q has already sent
a TEST message over the same edge and is wait,-
ing for a response, and if p and q arc in the samc~

34

fragrnent, then q does not respond - the TEST

message that q already sent will inform p that
the edge (p,q) is not external. When a REJECT

message, or a TEST with the same fragment id,
is received, the recipient marks that link as re-
jected, if it is unknown. (It is possible that the
link is already marked as branch, in which case it
should not be changed to rejected.)

When a ChangeRoot(f) occurs, minZink(f) is
marked as branch; when an Absorb(f,g) occurs,
the reverse link of minZink(g) is marked as branch.
As soon as a link 1 is classified as branch, the
InTree output action can occur; as soon as a
link 1 is classified as rejected, the ZVotlizZ’ree(Z)
output action can occur.
DC: (“Distributed ComputeMin”) This automa-
ton focuses on how the nodes of a fragment coop-
erate to find the minimum-weight external link of
the fragment in a distributed fashion, using local
variables and messages. It describes the flow of
messages throughout the fragments: first a broad-
cast informs nodes that they should find their lo-
cal minimum-weight external links, and then a
convergecast reports the results back. However,
the actual means by which a node finds its local
minimum-weight external link are not. of concern.
The variable minZink(f) is now a derived variable,
depending on variables local to each node, and
the contents of message queues. There is no ac-
tion CompzLteMin(f).

The two nodes adjacent to the core send
out FIND messages over the core. These mes-
sages are propagated throughout the fragment.
When a node p receives a FIND message, it’
changes the variable &status(p) from “unfind”
to “find”, relays FIND messages, and records the
link from which the FIND was received as its
inbranch(Then the node atomically fmds
its local minimum-weight external link using ac-
tion TestNode as in GC, and waits to receive
REPORT(W) messages from all its “children” (the
nodes to which it sent FIND). Then p takes the
minimum over all the weights w reported by its
children and the weight of its own local minimum-
weight external link, and sends that weight to its
‘Lparent” in a REPORT message, along inbrunch(
the weight and the link associated with this min-
imum are recorded as be&z&(p) and bestlink(
and dcstatzs(p) is changed back to “unfind”.
A node p adjacent to the core waits until all

its children have reported before processing any
REP o RT (w) message received over the core; when
p processes such message with w > bestwt(p),
then the derived variable minZink(f) becomes de-
fined, and is the link found by following bestlinks
from p.
NOT: (“Notify”) This automaton refines on
COM by implementing the level and core of
a fragment with local variables nZeveZ(p) and
nfrag(p) for each node p in the fragment, and with
N 0 T IF Y messages. When two fragments merge,
NOTIFY messages are sent over the new core, car-
rying the level and core of the newly created frag-
ment, When a node p receives a NOT IF Y message,
it updates nZeveZ(p) and @ag(p) using the infor-
mation in the message. The level of a fragment is
defined to be the maximum value, over all nodes
p and links 1 in the fragment, of nZeveZ(p) and the
level in a message in 2. The core of a fragment is
defined to be the value of nfrug(p), if nZeveZ(p) de-
fines the level, otherwise it is the core information
in the message defining the level.
CON: (“Connect”) This automaton concentrates
on what happens after minZink(f) is identified,
until fragment f merges or is absorbed, i.e., the
ChungeRoot(f, g), Merge(f, g) and Absorb(g, f)
actions are broken down into a series of ac-
tions, involving message-passing. The variable
rootchanged is now derived. As soon as
ComputeMin(f) occurs, the node adjacent to the
core closest to minZink(f) sends a CHANGEROOT

message on its outgoing link that leads to min-
link(f). A h c ain of such messages makes its way
to the source of minZink(f), which then sends a
CONNECT(kZJet(f)) message over minZink(f) . The
presence of a CONNECT message in minZink(f)
means that rootchanged is true. Thus, the
CltungeRoot(f) action is only needed for frag-
ments f consisting of a single node.
GHS: This automaton is essentially the fully dis-
tributed, original algorithm of [GHS]. (We have
made some slight changes, which are discussed
below.) The functions of TAR, DC, NOT and
CON are united into one. All variables from
those algorithms that are global (fragments, min-
link, testset, etc.) are now derived variables, i.e.,
they are defined as functions of the explicit lo-
cal variables and message queue contents. The
messages sent in this automaton are all those
sent in TAR, DC, NOT and CON, except that

35

NOTIFY messages are replaced by INITIATE me+

sages, which have a parameter that is either
“find” or “found”, and FIN D messages are re-
placed by INITIATE messages with the parameter
equal to “find”.

The bulk of the arguing done at this stage
is showing that the derived variables have the
proper values in the state mappings. In addition,
a substantial argument is needed to show that the
implementation of level and coTe by local variables
interacts correctly with the test-accept-reject pro-
tocol. It would be ideal to do this argument in
NOT, where the rest of the argument that core
and level are implemented correctly is done, but
reorganizing the lattice to allow this consolidation
caused graver violations of modularity.

Some minor changes were made to the al-
gorithm as presented in [GHS]. First, our ver-
sion initializes all variables to convenient val-
ues. This change makes it easier to state the
predicates. Second, the output actions InTree
and NotlnTree(2) are added, to conform to the
I/O automaton model. Third, when node p re-
ceives an INITIATE message, variables inhnch(p),
bestZink(p) and bestwt(p) are only changed if the
parameter of the INITIATE message is “find”. This
change does not affect the performance or cor-
rectness of the algorithm. The values of these
variables are not used until p subsequently re-
ceives an INITIA-rs-find message, at which time
these variables are reset, in both the original and
our version. The advantage of the change is that
it greatly simplifies the state mapping from GHS
to DC.

Our version of the algorithm is slightly more
general than that in [GHS]. There, each node p
has a single queue for incoming messages, whereas
in our description, p has a separate queue of in-
coming messages for each of its neighbors. A node
p in our algorithm could happen to process mes-
sages in the order, taken over all the neighbors, in
which they arrive (modulo the requeueing) , which
would be consistent with the original algorithm.
But p could also handle the messages in some
other order (although, of course, still in order for
each individual link). Thus, the set of executions
of our version is a proper superset of the set of
executions of the,original.

A small optimization to the original algorithm
was also found. (It does not affect the worst-

case performance.) When a c ON N ECT message
is received by p under circumstances that cause
fragment g to be absorbed into frahgment f, an
INITIATE message with parameter ‘%nd” is only
sent if testZink(p) # nil in our version, instead of
whenever nstatus(p) = “find” as in the original.
As a result of this change, if nstatus(p) = “find”
and testZink(p) = nil, p need not wadt for the en-
tire (former) fragment g to find its new minimum-
weight external link before p can report to its par-
ent, since this link can only have a larger weight
than the minimum-weight external link of p al-
ready found.

Acknowledgments
We thank Yehuda Afek, Steve Garland, Michael

Merritt, Liuba Shrira and members of the Theory
of Distributed Systems research group at hlIT for
valuable discussions.

References
[Al] B. Awerbuch, “Complexity of Network Syn-

chronization,” JACM vol. 32, no. 4, pp. 804-
823, 1985.

[A21 B. Awerbuch, “Optimal Distributed Algo-
rithms for Minimum Weight Spanning Tree,
Counting, Leader Election and Ftelated Prob-
lems,” Proc. lgth Ann. ACM Symp. on Theory
of Computing, pp. 230-240, 1987.

[AG] B. Awerbuch and R. Gallager, “Distributed
BFS Algorithms,” Proc. 2Vh Ann. IEEE Symp.
on Foun.dations of Computer Science, pp. 250-
256, 1985.

[AS] B. Alpern and F. Schneider, “Proving Bool-
ean Combinations of Determin:istic Proper-
ties,” Proc. 2”d Ann. Symp. on Logic in Com-
puter Science, pp. 131-137, 1987.

[CT] F. Chin and H. F. Ting, “An Almost Lin-
ear Time and O(n log n + e) Messages Dis-
tributed Algorithm for Minimum-‘Weight Span-
ning Trees,” Proc. 26th Ann. IEEE Symp. on
Foundations of Computer Science, pp. 257-
266, 1985.

[EF] T. Elrad and N. Francez, “Decomposition
of Distributed Programs into Communication-
Closed Layers,” Science of Computer Program-
ming, vol. 2, no. 3, pp. 155-173, December
1982.

[F] N. Francez, Fairness, Springer-Verlag, New
York, 1986, Chapter 2.

[FLS] A. Felete, N. Lynch, L. Shrira, “A Mod-
ular Proof of Correctness for a Network Syn-

36

chronizer,‘i Proc. 2” d International Workshop
on Distributed Algorithms, 1987.

[G] E. Gafni, “Improvements in the Time Com-
plexity of Two Message-Optimal Election Algo-
rithms,” Proc. 4 th Ann. ACM Symp. on Prin-
ciples of Distributed Computing, pp. 175-185,
1985.

[GHS] R. Gallager, P. Humblet and P. Spira, “A
Distributed Algorithm for Minimum-Weight
Spanning Trees,” A CM Trans. on Program-
ming Languages and Systems, vol. 5, no. 1, pp.
66-77, 1983.

[H] D. Harel, “Statecharts: A Visual Formalism
for Complex Systems,” Science of Computer
Programming, vol. 8, no. 3, pp. 231-274, June
1987.

[K] R. Kurshan, “Reducibility in Analysis of Co-
ordination,” Proc. IlASA Workshop on Dis-
crete Event Systems, 1987.

[L] L. Lamport, “Specifying Concurrent Program
Modules,” ACM Trans. on Programming Lan-
guages and Systems, vol. 5, no. 2, pp. 190-222,
April 1983.

[LM] N. Lynch and M. Merritt, “Introduction
to the Theory of Nested Transactions,” to ap-
pear in Theoretical Computer Science. (Also
available as technical report MIT/LCS/TR-
367, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, 1986.)

[LPS] D. Lehmann, A. Pnueli, and J. Stavi, “Im-
partiality, Justice and Fairness: The Ethics
of Concurrent Termination,” Proc. Sth Inter-
national Colloquium on Automata, Languages
and Programming, pp. 264-277, July 1981.

[LSc] L. Lamport and F. Schneider, “The ‘Hoare
Logic’ and All That,” ACM Trans. on Pro-
gramming Languages and Systems, vol. 6, no.
2, pp. 281-296, April 1984.

[LSh] S. Lam and U. Shankar, “Protocol Verifi-
cation via Projections,” IEEE nuns. on Soft-
ware Engineering, vol. SE-lo, no. 4, pp. 325-
342, July 1984.

[LT] N. Lynch and M. Tuttle, “Hierarchical Cor-
rectness Proofs for Distributed Algorithms,”
Proc. 6”’ Ann. ACM Symp. on Principles
of Distributed Computing, pp. 137-151, 1987.
(Also available as technical report MIT/LCS/
TR-387, Laboratory for Computer Science,
Massachusetts Institute of Technology, 1987.)

[MP] Z. Manna and A. Pnueli, “Verification of
Concurrent Programs: Temporal Proof Princi-
ples,” in D. Kozen, editor, Logic of Programs,
Lecture Notes in Computer Science 131, pp.
200-252, Springer-Verlag, Berlin, 1981.

[OG] S. Owicki and D. Gries, “An Axiomatic
Proof Technique for Parallel Programs I,” Acta
Informatica, vol. 6, no. 4, pp. 319-340, August
1976.

[S] E. Stark, “Foundations of a Theory of Speci-
fication for Distributed Systems,” Ph.D. the-
sis, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, August 1984.
(Available as technical report MIT/LCS/TR-

* 342.)
[SRI F. Stomp and W. de Roever, “A Correctness

Proof of a Distributed Minimum-Weight Span-
ning Tree Algorithm,” Proc. 7th International
Conference on Distributed Computing Systems,
pp. 440-447, 1987.

[W] J. Welch, “T o p its in Distributed Computing:
The Impact of Partial Synchrony, and Modu-
lar Decomposition of Algorithms,” Ph.D. the-
sis, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, March 1988.
(To appear as MIT/LCS technical report.)

Appendix A: I/O Automata
This Appendix is a review of the aspects of the

model from [LT] that are relevant to this paper.
An input-output automaton A is defined by the

following four components. (1) There is a (pos-
sibly infinite) set of states with a subset of start
states. (2) There is a set of actions, associated
with the state transitions. The actions are di-
vided into three classes, input, output, and inter-
nal. Input actions are presumed to originate in
the automaton’s environment; consequently the
automaton must be able to react to them no mat-
ter what state it is in. Output and internal ac-
tions (or, locally-controlled actions) are under the
local control of the automaton; internal actions
model events not observable by the environment.
The input and output actions are the externalac-
tions of A, denoted e&(A). (3) The transition re-
lation is a set of (state, action, state) triples, such
that for any state s’ and input action 7r, there is a
transition (s’, 7~, s) for some state s. (4) There is
an equivalence relation part(A) partitioning the
output and internal actions of A. The partition
is meant to reflect separate pieces of the system

37

being modeled by the automaton. Action 7r is
enabled in state s’ if there is a transition (s’, 7r, s)
for some state s; otherwise n is disabled.

An execution e of A is a finite or infinite se-
quence soTI s1 . . . of alternating states and actions
such that so is a start state, (si- 1 , or;, Si) is a tran-
sition of A for all i, and if e is finite then e ends
with a state. The schedule of an execution e is
the subsequence of actions appearing in e.

We often want to specify a desired behavior
using a set of schedules. Thus we define an ez-
ternal schedule module S to consist of input and
output actions, and a set of schedules scheds(S).
Each schedule of S is a finite or infinite sequence
of the actions of S. Internal actions are excluded
in order to focus on the behavior visible to the
outside world. External schedule module S’ is
a sub-schedule module of external schedule mod-
ule S if S and S’ have the same actions and
scheds(S’) c scheds(S).

An execution of a system is fair if each compo-
nent is given a chance to make progress infinitely
often. Of course, a process might not be able to
take a step every time it is given a chance. For-
mally stated, execution e of automaton A is fair
if for each class C of part(A), the following two
conditions hold. (1) If e is finite, then no action
of C is enabled in the final state of e. (2) If e
is infinite, then either actions from C appear in-
finitely often in e, or states in which no action of
C is enabled appear infinitely often in e. Note
that any finite execution of A is a prefix of some
fair execution of A.

The fair behavior of automaton A, denoted
Fairbehs(A), is the external schedule module
with the input and output actions of A, and with
set of schedules (cxfeot(A) : cy is the schedule of a
fair execution of A}. (crlext(A) is the subsequence
of (Y consisting of exactly the external actions of
A.) A problem is (specified by) an external sched-
ule module. Automaton A solves the problem P if
Fairbehs(A) is a sub-schedule module of P, i.e.,
the behavior of A visible to the outside world is
consistent with the behavior required in the prob-
lem specification. Automaton A satisfies automa-
ton B if Fairbehs(A) is a sub-schedule module of
Fairbehs(B).

Appendix B: Code for Automata
This Appendix contains the code for the au-

tomata HI, COM, and GHS. Each action is

38

listed, together with its pre- and post-conditions.
The preconditions specify the states in which the
action is enabled. The postcondit.ions describe
the changes made to the state by the transition
function.

HI: The state consists of a set FST of subgraphs
of G, a Boolean variable answered(Z) for each 1 E
L(G), and a Bdolean variable awake. In the start
state of HI, FST is the set of single-node graphs,
one for each p E V(G), every answered(1) is false,
and awake is false.

INPUT ACTIONS

Start(p), P E V(G)
Post: awake := true

OUTPUT ACTIONS

InTr4(p, @I, (P, Q) E L(G)
Pre: awake = true

(p, r~) E F or (p, q) is the minimum-weight
external edge of F, for sonne F E FST

answered((p, q)) = false
Post: answered((p, q)) := true

NotInTree({p, q)), (p, q) E L(G)
Pre: awake = true

p, q E F and (p, q) $ F, for some F E FST
answered((p, q)) = false

Post: answered((p, q)) := true
INTERNAL ACTIONS’

Combine(F, F’, e), F, F’ E FST, e E E(G)
Pre: awake = true

F # F’
e is an external edge of F
e is the minimum-weight external edge of F’

Post: FST := FST- {F, F’} U {IF U F’ U e}

COM: The state consists of a set fragments.
Each element f of the set is called a fragment,
and has the following components:
l subtree(a subgraph of G;
l core(f), an edge of G or nil;
0 level(f), a nonnegative integer;
l m&link(f), a link of G or nil;
l rootchanged(f), a Boolean.
The state also contains Boolean variables, ans-
wered(Z) one for each 1 E L(G), and I3oolean vari-
able awake. In the start state of COM, fragments
has one element for each node in V(G); for frag-
ment f corresponding to node p, s&tree(f) =

{PI, core(f) = niZ, level(f) = O., m&link(f)
is the minimum-weight link adjacent to p, and
rootchanged(f) is false. Each answered(l) is false

and uwal;e is false. Two fragments will be consid-
ered the same if either they have the same single-
node subtree, or they have the same nonnil core.

We define the following derived variables.
l For node p, fragment(p) is the element f of

fragments such that p is in s&tree(f).
l A link (p,q) is an external link of p and of

fragment(p) if fragment(p) # fragment(q); oth-
erwise the link is internal.

l If minZink(f) = (p, q), then mineu!ge(f) is the

edge (P, ~1.
INPUT ACTIONS

. Start(p), p E V(G)
Post: awake := true

OUTPUT ACTIONS

l ~~~~(PA)), kw) E V)

Pre: awake = true
(p, q) E subtree(frugment(p)) or

(p, q) = minZink(frugment(p))
unswered((p, q)> = false

Post: answered((p, q>) := true

l ~~t~~~T4(z.w)), (WI) E L(G)

Pre: awake = true
fragment(P) = fragment(q) and

(P, 9) 4 subtTee(fragment(p))
unswered((p, q)) = false

Post: answered((p, q)) := true
INTERNAL ACTIONS

0 ComputeMin(f), f f fragments
Pre: minEink(f) = nil

2 is the minimum-weight external link of f
level(f) 5 ZeveZ(fmgment(taTget(I)))

Post: minIink := 1
0 ChangeRoot(f E fragments

Pre: awake = true
rootchunged(f) = false
m&link(f) # nil

Post: Tootchanged := true

l Mwe(f,s), f, 9 E fragments
Pre: f # g

rootchanged = rootchanged = true
minedge(f) = minedge(g)

Post: add a new element h to fyugments
subtree := s&tree(f) U su6tree(g)

u minedge(f)
core(h) := minedge(f)
Zevel(h) := ZeveZ(f) + 1
minZink(h) := nil
rootchanged := false
delete f and g from fragments

l Absorb(f,g), f,g E fvments
Pre: rootchanged = true

EeveZ(g) < level(f)
fmgment(target(minZink(g))) = f

Post: s&tree(f) := suI)tree(f) U subtree

u minedge(g)
delete g from fragments

GHS: This is the automaton modeling the fully
distributed algorithm. The state has the follow-
ing components for all p E V(G):
l nstutvs(p), either sleeping, find, or found;
l nfTug(p) , an edge of G or nil; I

l nZeveZ(p), a nonnegative integer;
l bestlink(a link of G or nil;
l bestwt(p), a weight or co;
l testZink(p), a link of G or nil;
l i&ranch(p), a link of G or nil; and:
l findcount(a nonnegative integer.
The state has the following components for all

(P, 4 E L(G):
l ZstuWlo, 4)), either unknown, branch or re-

jected;
l queue, ((p, q)), a FIFO queue of messages from

p to q waiting at p to be sent;
l queue,, ((p, q)), a FIFO queue of messages from

p to 4 that are in the communication channel;
l queue, ((p, q)), a FIFO queue of messages from

p to q waiting at Q to be processed;‘and
l answered((p, q}}, a Boolean.

The set of possible messages A4 is (CONNECT(I) :

'I 1 0) U (INITIATE(~,C,S~) : Z 2 0,c E E(G),st

is find or found} U {TEST(Z,C) : E 3 0, c E

E(G)) U {REPORT(W) : w is a weight or CQ) U
(ACCEPT,RE~ECT,CHANGEROOT}.

In the start state, for all p: nstutzts(p) = sleep-

ing, nfTag(p) = nil, nZeveZ(p) = 0, begtZink(p) is
arbitrary, bestwt(p) is arbitrary, test&&(p) = niZ,
inbrunch is arbitrary, findcount = 0; for all
I: Zstatus(Z) = unknown, answered(Z) = false, and
the three queues are empty.

INPUT ACTiONS
. Start(p), p E V(G)

Post: if nstutns(p) = sleeping then
execute procedure Wake Up(p)

OUTPUT ACTIONS
l InTree(Z E L(G)

Pre: answered(Z) = false
Istutus(Z) = branch

Post: answered(Z) := true

39

NotM!‘ree(Z), Z E L(G)
Pre: anszuered(t) = false

Estatus(2) = rejected
Post: ansulered(2) := true

INTERNAL ACTIONS

C~anneZSend((q,d, 4, (Q, P) E -WY, m E ~4
Pre: m at head of queue, ((p, q))
Post: dequeue(queue, ((p, 4)))

enweue(queue,,(h 4)))
ChanneZRecv((q,p),m), (w) E JW’), m E M
Pre: m at head of queue,, ((q, p))
Post: dequeue(queue,, ((q, p)))

enqueue(m wue,((q, x-4))
ReceiveConnect((q,p),Z), (q,p) E L(G)
Pre: CONNECT(Z) at head of queue,,((q,p))
Post: dequeue(queue, ((q, p)))

if nstaks(p) = sleeping then
execute procedure Wake Z@(p)

if Z < nZeveZ(p) then [
Zstatus((p, q)) := branch
if testlink # nil, then [

enqueue(INrTrATn(nZevel(p), nfiog(p),

find), queue, ((P, d))
findcount := findcount + 1]

else enqueue(IluITIATE(nZeveZ(p), nfrag(p),

found), queue, UP, 4)) 1
else

if Zstatus((p, q)) = unknown then
enqueue(coNNscT(Z), que@e,((q,p)))

dSe eUqUeUe(INITIATE(nZeveZ(p)+l,(p,q),

find), queue, ((P, d))
ReceiveInitiate((q,p), 1, c, st), (q,p) E L(G)
Pre: INITIATE(~,C, st) at head of queue,,((q,p))
Post: dequeue(queue, ((q, p)))

nZeveZ(p) := 2
nfrag(p) := c
nstaks(p) := st
let S = {(p, T) : Zstatus((p, r>) = branch,

I- # d
IXqUeUe(INITIATE(Z,C,S~),queUep(k))

for all k E S
if st = find then [

inbranch := (p, q)
bestZink(p) := nil
bestwt(p) := 00
execute procedure Test(p)
findcount := ISI]

l ReceiveTest(44 (w) E L(G)

Pre: TEST(Z,C) at head of queueP((q,p))

Post: dequeue(queue, ((q,p)))
if ns tutus(p) = sleeping then

execute procedure Wuke Up(p)
if Z > nZeueZ(p) then

enqueu+~4,4, weue,((q,d))
else

if c # nfrag (p) then
enqueue(a cc~~~,queue,((p,q)))

else [
if Zstatz~s((p, q)) = unknow:n then

Zstutus((p, q)) := rejected
if testZink(p) # (p,q) then

enqueue(RsJscT, queue,((p,q)))
else execute procedure Test(p)]

ReceiveAccept((q,p)), (q,p> E L(G)
Pre: ACCEPT at head of pueue,((q,p))
Post: dequeue(queue, ((q, p)))

testZink(p) := niZ
if wt(p,q) < bestwt(p) then [

bestlink := (p, q)
bestwt(p) := wt(p, q)]

execute procedure Report(p)
ReceiveReject((q,p}), (q, p} E L(G)
Pre: REJECT at head of queue,((q,p))
Post: dequeue(queue, ((q, p)))

if Zstatus((p, q)) = unknown thlen
Zstatus((p, q)) := rejected

execute procedure Test(p)

ReceiveRepo4(q, p>, w), (4, p) E L(G)
Pre: REPORT(W) at head of queue,((q:p))
Post: dequeue(queue, ((q, p)))

if (p,q) # inbranch then [
findcount := findcount - 1
if w < bestwt(p) then [

bestwt(p) := w
bestlink := (p, q)]

execute procedure Report(p)]
else

if nstutus(p) = find then
enqueue(REPoRT(W), queue,((q,p)))

else if w > bestwt(p) then
execute procedure Ch&ngeRoob(p)

ReceiveChangeRoot((q,p)), (q,p) E L(G)
Pre: CHANGEROOT at head of queue,((q,p))
Post: dequeue(queuep ((q,p)))

execute procedure ChangeRoot
PROCEDURES

abbe UP(P)
let (p, q) be the minimum-weight link of p
Zstatus((p, q)) := branch

40

nstatus(p) := found .
ell(lUelle(co~~~:C~(o), queue,((p,q)))

b Test(p)
if I, the minimum-weight link of p with

Istatus = unknown, exists then [
testZink(p) := 2
enqueue(rnsT(nZeveZ(p), nfiug(p)),

wym 3
else [

testlink := nil
execute procedure Report(p)]

l Report(p)
if findcount = 0 and testZink(p) = nil then [

n&ah(p) := found
enqueue(aaPo~~(best&(p)), Qzlezle,

l ChungeR~$;;ycNP))) I

if lstatus(be&link(p)) = branch then
eIlqUf3Ue(CHANGEROOT, queue,(beStEink(p)))

else [
enqueue(coNNEcT(nZeueZ(p)),

queue, (bedink(p
Zstatus(bestlink(:= branch]

Appendix C: COM Satisfies HI
In Lemma 11, we show that COM simulates

HI via M, P, and Q, and in Lemma 12 we show
that COM is equitable for HI via M, where M,
Q and P are defined below. Then Theorem 8
implies that COM satisfies HI.

Define Q to be the conjunction of the following
predicates on states(HI).
l HI-A: Each F in FST is connected.
l HI-B: FST is a minimum spanning forest of

G (i.e., a set of disjoint subgraphs of G that
span V(G) and form a subgraph of a minimum
spanning tree of G.)

l HI-C: If awake = false, then each F in FST is
a singleton.
Define P to be the conjunction of the following

predicates on states of COM. (f and g range over
all fragments.)

COM-A: If minZink(f) = I, then I is the mini-
mum-weight external link of f, and ZeveZ(f) <
ZeveZ (frugment(target(l))).
COM-B: If rootchanged = true, then min-
link(f) # nil.
COM-C: If f # g, then subtree # subtree(
COM-D: If Inodes(= 1, then ZeueZ(f) = 0,
core(f) = nil, minlink(f) # nil, and rootchuw
ged(f) = false.

l COM-E: If Inodes > 1, then revel(f) > 0
and core(f) E &tree(f).
Next we define the abstraction mapping M =

(S, d) from COM to HI. Define the function S
from states(COM) to states(HI) as follows. For
any s in stutes(COM), the values of awake and
answered(Z) (for all t) in S(s) are the same as in
s, and the value of FST in S(s) is the multiset
(subtree : f E frugments}.

Define the function A as follows. Let s be a
state of COM and 71 an action of COM enabled
in s.
0 If 7r = Start(p), InTree(or NotInTree(Z),

then d(s, x) = x.
l If T = CompzlteMin(f) or ChangeRoot(f),

then d(s, r) is empty.
l If r = Uerge(f, g) or Absorb(f, g), then d(s, n)

= Combine(F, F’, e), where F = subtree(
F’ = s&tree(g), and e = minedge(g) in s.
The following predicates are true in every state

of COM satisfying (Q o S) A P, i.e., they are de-
ducible from P and Q. (See [W] for proofs.)
l COM-F: If awake = false, then Inodes = 1,

minlink(f) # nil, and rootchunged(f) = false.
l COM-G: The multiset {subtree : f E frug-

ments } forms a partition of V(G), and fray-
ment(p) is well-defined.

Lemma 11: COM simulates HI via M, P, Q.
Proof: By inspection, the types of COM, HI,
M and P are correct. In the full paper it is shown
that Q is a predicate true in every reachable state
of HI. We must check the three conditions in the
definition of “simulates”.

(1) Let s be in start(COM). Obviously, P is
true in s, and S(s) is in start(HI).

(2) Obviously, d(s, x)lezt(HI) = rlezt(COM)
for any state s of A.

(3) Let (s’, ?r, s) be a step of COM such that
Q is true of S(s’) and P is true of s’. We consider
each possible value of r.

i) T is Start(p), Inl%ee(l), or NotIn-
Tree(l). d(s’,r) = 7r. Obviously, P is true in s,
and S(s’)rS() s is an execution fragment of HI.

ii) ?r is ComputeMin(f) or ChangeRoot (f).
d(s’,x) is empty. Obviously, S(s’) = S(s). It is
straightforward to show that P is true in s.

iii) T is Merge(f,g).
(3a) It is straightforward to show P(s) is true.
(SC) d(s’,r) = ComZ&e(F,F’,e), where F =

subtree in s’, F’ = szLbtree(g) in s’, and e =

41

minedge(g) in s’.
Claims about s’ :
1. f # g, by precondition.
2. rootchanged = rootchanged = true, by
precondition.
3. minedge(f) = minedge(g), by precondition.
4. awake = true, by Claim 2 and COM-F.
5. minedge(f) # nil and minedge(g) # nil, by
Claim 2 and COM-B
6. minlink(f) is an external link of f, by COM-A

, and Claim 5.
7. minZink(g) is the minimum-weight external
link of g, by COM-A and Claim 5.
Claims about S(s’): (All depend on the definition
of S.)
8. awake = true, by Claim 4.
9. F # F’, by Claim 1 and COM-C.
10. e is an external edge of F, by Claims 3, 6.
11. e is the minimum-weight external edge of F’,
by Claim 7.

By Claims 8 through 11, Combine(F, F’ , e) is
enabled in S(s’). Obviously, its effects are mir-
rored in S(S).

iv) T is Absorb(f,g).

(3a) We verify that COM-A is true in s (the
rest of P is straightforward). If minZink(f) = nil
in s’, then the same is true in s, and COM-A is
vacuously true for f. Let f’ = fragment(target

$;~;y/-j-j,, .

1. level(g) < ZeveZ(f), by precondition,
2. fragment(target(minZink(g))) = f, by precon-
dition.
3. level(f) 5 ZeveZ(f’), by COM-A.
4. f’ # g, by Claims 1 and 3.
3. minedge(f) # minedge(g), by Claims 2 and 4.
6. urt(minedge(f)) < wt(minedge(g)), by Claims
2 and 5 and COM-A.
7. minZink(g) is the minimum-weight external
link of g, by COM-A.
8. wt(minedge(f)) < w!(e’), where e’ is any ex-
ternal edge of g, by Claims 6 and 7.

In going from s’ to s, minZink(f) is unchanged
and subtree changes by incorporating the old
subtree(Thus, Claim 8 implies that in s,
minZink(f) is the minimum-weight external link
of f. The only fragment whose level changes in
going from S’ to s is g (since g disappears). Thus,
Claim 3 implies that in s, level(f) 5 ZeveZ(f’).

(3~) A(d) r) = Combine(F, F’, e), where F =
subtree in s’, F’ = subtree in .s’, and e =
minedge(g) in s’. It is straightforward to show
that Combine(F, F’, e) is enabled in S(s’) and
that its effects are mirrored in S(s). cl

We now show that COM is equitable for HI
via M. A significant argument is required to
show that once the HI action Com.bine(F,F’, e)
becomes enabled, it eventually OCCUIX or becomes
disabled. The main idea is to show that as long as
there exist two distinct subgraphs in HI, progress
is made in COM; the heart of the argument is
showing that some fragment at the lowest level
can always take a step in COM. This requires a
global argument that considers all the fragments.
A similar argument is required to show that once
the HI action InTree becomes ena.bled, it even-
tually occurs, i.e., if 1 is the minimu.m-weight ex-
ternal link of a subgraph in HI, thlen eventually
1 becomes the minlink of some fragment CO&f.
Lemma 12: COM is equitable for HI via M.
Proof: By Lemmas 1 and 11, (Q o S) A P is true
in every reachable state of P. Thus, in the sequel
we will use the HI and COM predicates.

For each locally-controlled action. ‘p of HI, we
must show that COM is equitable for ‘p via Jbt.

i) cp is Start(p) or NotInTree(1). Lemma
5 gives the result.

ii) cp is Combine(F,F’,e). We show CO&f is
progressive for cp via M; Lemma 6 implies COhf
is equitable for ‘p via M.

Let !PP be the set of all pairs (s, $J) of reach-
able states s of COM and internal actions 1c, of
COM enabled in s. For reachablle state S, let
V+,(S) = (5, y, z), where 2 is the number of frag-
ments in s, y is the number of fragments f with
rootchanged(f) = false in s, and z is the number
of fragments f with minZink(f) = nil in s. (Two
triples are compared lexicographically.)

(1) Let s be a reachable state of COM such
that cp is enabled in S(S). We now show that
some action T,!J is enabled in s with (s, $J) E a+,,
Claims:
1. awake = true in S(s), by precondition of cp.
2. F # F’ in S(s), by precondition of p.
3. awake = true in s, by Claim 1 and definition
of S.

4. There exist f and g in fragments such- that
subtree = F and subtree = F’ in s, by
Claim 2 and definition of S.

42

5. f # .(I in s, by Claims 2 and 4.
Let 1 = min{ZeveZ(f’) : f’ E fragmerlts} in s.

(By Cladm 4, frqments is not empty, so 1 is de-
fined.) Let L = {f’ E fragments : ZeveZ(f’) = I).

Case 1: There exists f’ E L with minZink(f’)
= nil. Let 1c, = ComputeMin(f’). We now show $J
is enabled in s. By Claim 5, the minimum-weight
external link (p, y) of f’ exists. By choice of 1,
ZeveZ(f’) < ZeveZ(fragment(q)). Obviously (s, T/J,> E
Q

(Phase 2: For all f’ E L, minZink(f’) # nil.
Case 2.1: There exists f’ E L with root-

changed(f’) = false. Let $ = ChangeRoot(
$ is enabled in s by Claim 3 and the assumption
for Case 2. Obviously (s,+) E 8,.

Case 2.2: For all f’ E L, rootchanged =
true.

Case 2.2.1: There exists fragment g’ E L
with ZeveZ(f’) > 1, where f’ = fragment(tar-
get(minZink(g’))). (By COM-G, f’ is uniquely
defined.) Let ‘tl, = A bso~b(f’, 9’). Obviously 1c,
is enabled in s, and (s, +) E Q,+,.

Case 22.2: There is no fragment g’ E L such
that ZeveZ(f’) > I, where f’ = fragment(taTget
(minZink(g’))). Pick any fragment fi such that
leveZ(fl) = 1. For i > 1, define fi to be fragment
(tUTget(minZink(fi_,))).
More claims about s:
6. fi is uniquely defined, for all i 2 1. Proof:
If i = 1, by definition. Suppose it is true for
i - 1 1 1. Then it is true for i by COM-G, since
minZink(fi) is well-defined and non-nil.
7. minZink(fi) is the minimum-weight external
link of fi, for all i 2 1, by COM-A.
8. fi#fi-,,foralli>l,byClaims6and7and
definition of fi.
9. If minedge(f,) # VZintYZge(f;-1) for some i > 1,
then fi+ I is not among fi , . . . , fi, by Claims 7 and
8, and since the edge-weights are totally ordered.
10. There are only a finite number of fragments,
by COM-C and the fact that V(G) is finite.

By Claims 9 and 10, there is an i > 1 such
that mine&e(fi) = minedge(fi-r). Let + =
Merge(fi, fi-r). Obviously + is enabled in S, and

(vb) E Q,.
(2) Consider a step (s’, A, s) of COM, where s’

is reachable, cp is enabled in both S(s’) and S(s),
and cp is not in d(s’,rr).

(a) 0, (4 I I, b ecause there is no action
of COM that increases the number of fragments;

only a Merge action increases the number of frag-
ments with m&link equal to nil or rootchanged
equal to false, and it simultaneously causes the
number of fragments to decrease.

(b) Suppose (a’, 7r) E QV. Then V, (s) <
2ry (s’) , since Absorb and Merge decrease the num-
ber of fragments, ComputeMin maintains the
number of fragments and the number of frag-
ments with Tootchanged = false and decreases
the number with m&ink = nil, and ChangeRoot
maintains the number of fragments and decreases
the number with rootchanged = false.

(c) Suppose (.~‘,a) 6 Q,, $J is enabled in s’,
and (g’,+) E 9,. Then $ is still enabled in s,
since the only possible values of rr are Start(p),
InTree and NotIn Tree(Z), none of which dis-
ables +. By definition, (s, $J) E X0+, .

iii) cp is InTree((p,q)). We show COM is
progressive for (o via M; Lemma 6 implies that
COM is equitable for cp via M.

Let qEr, be the set of all pairs (s, $) of reach-
able states s of COM and actions T/J of COM
enabled in s such that $ is either an internal ac-
tion or is cp. For reachable state s, let vV(s) =
ucombinc(F,F’,e)(S)* The argument is very similar
to that for the case ‘p = Combine(F, F’, e). o

43

