
The Data Link Layer: Two Impossibility Results

Nancy Lynch, Yishay Mansour and Alan Fekete
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract: The data link layer in a layered commu-
nication network is designed to ensure reliable data
transfer over a noisy physical channel. Formal spec-
ifications are given for physical channels and data
links, in terms of I/O automata. Based on these
specifications, two impossibility results are proved.
First, no data link protocol can tolerate crashes of
the host processors on which the protocol runs. Sec-
ond, any data link protocol constructed to use an
arbitrary non-FIFO physical channel requires un-
bounded headers.

1 Introduction

Network protocols are decomposed into layers in or-
der to reduce the complexity of their design. Each
layer has a particular abstract behavior, describ-
able in terms of a particular collection of abstract,
actions. This abstract behavior is provided for the
use of the next higher layer, and is implemented
in terms of the abstract behavior of the next lower
layer. A thorough discussion of network layers can
be found in [T].

The physical layer is the lowest layer in the hier-
archy, and is implemented directly in terms of the

The first and third authors were supported in part by the
National Science Foundation under grant CCR-86-11442, by
the Office of Naval Research under contract NOO014-85-K-
0168 and by the Defense Advanced Research Projects Agency
under contract N00014-83-K-0125. The second author was
supported in part by a grant of ISEF and by the National
Science Foundation under grant CCR-8611442.
Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for dir& corn--
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is
by permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

0 1988 ACM O-89791-277-2/88/0007/0149 $1.50

physical transmission media. There are two classes
of transmission media that are commonly consid-
ered, one that ensures FIFO behavior for the corre-
sponding physical channel and the other that does
not. (A physical channel is said to exhibit FIFO be-
havior provided that messages are received on the
physical channel in the same order as they are sent.)
The transmission media are noisy; therefore, the
physical layer does not ensure that a message that
is sent will be received.

The data link layer is the next higher layer in the
network hierarchy. In contrast to the physical layer,
the data link layer ensures reliable data transfer,
though only across one hop in the network. This
means that every message that is sent on a data
link to a neighboring node is eventually received at
the other end (unless a link failure occurs) and also
that the data link exhibits FIFO behavior. (That is,
messages are received on the data link in the same
order as they are sent.)

We have taken the terminology “physical chan-
nel” and “data link” from the OS1 layered commu-
nication model [Z] used by the International Stan-
dards Organization. There are many different kinds
of layered networks, not all of which use the particu-
lar layers specified in the IS0 model. However, most
of the important layered networks have their two
lowest layers very similar to those described here,
although their terminology may be different. For
example, the ARPANET data link layer is called
the “IMP-IMP” [MW77] layer, while the SNA and
DECNET data link layers are called “data link con-
trol” layers [C78,W80].

Data links are implemented using protocols that
interact by communicating over physical channels.
Some examples of interesting data link protocols
are HDLC (proposed by ISO), SDLC (developed by

1

149

IBM) and LAPB (used by CCITT). These proto-
cols are very similar; they all require FIFO phys-
ical channels, and they are all based on a “slid-
ing window” automatic repeat request (ARQ) al-
gorithm, where messages are sent in packets whose
headers contain a sequence number for the message,
and where acknowledgements contain the sequence
number of the next message expected. Both se-
quence numbers are kept modulo a number that
is at least one more than the size of the window,
which is the maximum difference allowed between
the greatest sequence number sent by the transmit-
ter and the greatest sequence number of a message
for which the sender has received an acknowledge-
ment. The correctness of this algorithm has been
proved using many different formal methods, under
the assumption that the peer processes that carry
out the protocol are correctly initialized. However,
Baratz and Segall [BSSJ] show that the protocols
mentioned may not reach a satisfactory initializa-
tion after the underlying physical link fails and then
recovers. In [BS83] new link initialization strategies
are presented, each of which can be combined with
a sliding window algorithm to give a protocol that
uses a small amount of memory and can tolerate an
arbitrary number of link failures. The resulting pro-
tocols require access to one bit of non-volatile mem-
ory, that is, storage that retains its state across a
crash of the processor on which the protocol is run-
ning.

When the physical channel does not guarantee
FIFO behavior, an ARQ algorithm can still be used,
so long as each message is given a distinct sequence
number. The resulting algorithm (called Stenning’s
protocol) uses headers which may be arbitrarily
1ong.l .

In this paper, we give formal specifications for
both the physical and data link layer, in terms of
I/O automata]LT87]. Based on these specifica-
tions, we prove two impossibility results about im-
plementing data link protocols,

First, we study the ability of a data link protocol
to tolerate crashes of the host processors on which
the protocol runs, without access to non-volatile
storage. In the absence of non-volatile storage, a
host crash can be viewed ss resetting the memory

‘lf there is a known bound on the time a message may
remain on the link before being either lost or delivered, this
may be used in conjunction with reliable clocks to derive a
protocol with bounded headers.

of the part of the data link protocol running on that
host to its distinguished initial value. We prove that
it is impossible for any data link protocol to toler-
ate host crashes, even if the requirements of the
data link protocol are stated very weakly and even
if the underlying physical channel is assumed to be
FIFO. This impossibilty result was conjectured in
[BS83]. A very similar result has been obtained
independently and concurrently by J. Spinelli (per-
sonal communication).

Second, we consider the possibility of achieving
reliable data transfer with bounded headers, using
a physical layer that does not ensure FIFO behavior.
The headers contain information added to messages
by the data link protocol before sending them on
the physical channel. We prove that unbounded
headers are essential for achieving correct data link
behavior if the physical channels can reorder packets
arbitrarily; this is the case even if the requirements
on the data link are weak.

The data link protocol and the physical chan-
nel are modeled as I/O automata; thus, the for-
mal content of our results is the nonexistence of
I/O automata whose behavior has certain proper-
ties. We believe, however, that any reasonable data
link protocol can be described in terms of I/O au-
tomata, and that the properties chosen accurately
reflect the requirements described informally above,
so that the results really assert the nonexistence of
data link protocols satisfying the requirements.

The rest of the paper is organized as follows. Sec-
tion 2 contains a summary of the relevant definitions
from the I/O automaton model. Sections 3 and 4
contain formal specifications for the physical layer
and data link layer, respectively. Section 5 describes
constraints on data link protocols. Section 6 gives
some specific automata that we will use as physical
channels when giving the impossibility proofs. Sec-
tion 7 contains our proof that no data link protocol
can tolerate host crashes, and Section 8 contains
our proof that unbounded headers are essential for
implementing a data link layer using arbitrary non-
FIFO physical channels. Finally Section 9 contains
a discussion of ways in which we believe the def-
initions can be extended without invalidating the
proofs.

150

2 The I/O Automaton Model

The input/output automaton model was defined in
[LT87] as a tool for modeling concurrent and dis-
tributed systems, We refer the reader to [LT87]
and to the expository paper [L88] for a complete
development of the model, plus motivation and ex-
amples. Here, we provide a brief summary of those
aspects of the model that are needed for our results.

2.1 Actions and Action Signatures

We assume a universal set of actions, and we refer
to a particular occurrence of an action in a sequence
as an event.

An action signature S is an ordered triple con-
sisting of three pairwise-disjoint sets of actions. We
write in(S), out(S) and i&(S) for the three com-
ponents of S, and refer to the actions in the three
sets as the input actions, output actions and in-
ternal actions of S, respectively. We let e&(S) =
in(S) U out(S) and refer to the actions in e&(S) as
the external actions of S. Also, we let Zocol(S) =
out(S) u id(S), and refer to the actions in local(S)
as the Zocalfy-controlled actions of S. Finally, we let
acts(S) = in(S) U out(S) U int(S), and refer to the
actions in a&s(S) as the actions of S. An external
action signature iq an action signature consisting en-
tirely of external actions, that is, having no internal
actions.

2.2 Input/Output Automata

An input/output automaton A (also called an I/O
automaton or simply an automaton) consists of five
components:

1. an action signature Big(A),

2. a set states(A) of states,

3. a nonempty set start(A) & states(A) of stud
states,

4. a transition relation steps(A) C (states(A) x
acts(sig(A)) x states(A)), with the property
that for every state s’ and input action ?r there
is a transition (s’, r, s) in steps(A), and

5. an equivalence relation part(A) on
Zocal(sig(A)j, having at most countably many
equivalence classes.

We refer to an element (s’, A, s) of steps(A) as a
step of A. The step (s’, ?T, s) is called an input step
of A if r is an input action. Output steps, internal
steps, external steps and locally-controlled steps are
defined analogously. If (s’, ?r, s) is a step of A, then
r is said to be enabled in s’. Since every input
action is enabled in every state, automata are said
to be input-enabled The partition p&(A) is an
abstract description of the underlying components
of the automaton, and is used to define fairness.

An execution fragment of A is a finite se-
quence s~?T~s~?T~. . .ir,s, or an infinite sequence
SlJ7r1S17r2...7r,S~... of alternating states and ac-
tions of A such that (si, ?ri+r, si+r) is a step of A
for every i. An execution fragment beginning with
a start state is called an execution. We denote the
set of executions of A by e+ecs(A). A state is said
to be reachable in A if it is the final state of a finite
execution of A.

A fair execution of an automaton A is defined to
be an execution o! of A such that the following con-
dition holds for each class C of part(A): if cr is finite,
then no action of C is enabled in the final sta.te of a,
while if cr is infinite, then either cy contains infinitely
many events from C, or else Q contains infinitely
many occurrences of states in which no action of C
is enabled. Thus, a fair execution gives “fair turns”
to each class of part(A). We denote the set of fair
executions of A by fairexecs(A).

The schedule of an execution fragment CY of A is
the subsequence of cy consisting of actions, and is
denoted by sched(cr). We say that ,O is a schedule
of A if fl is the schedule of an execution of A. We
denote the set of schedules, of A by s&e&(A). We
say that /3 is a fair schedule of A if p is the schedule
of a fair execution of A and we denote the set of fair
schedules of A by fairscheds(A).

The behavior of an execution or schedule cy of A is
the subsequence of.a! consisting of external actions,
and is denoted by be/z(a)., We say that p is a behav-
ior of A if ,B is the behavior of an execution of A.
We denote the set of behaviors of A by belts(A). We
say that p is a fair behavior of A if p is the behavior
of a fair execution of A and we denote the set of fair
behaviors of A by fairbehs(A). When an algorithm
is modelled as an I/O automaton, it is the set of fair
behaviors of the automaton that reflect the activity
of the algorithm that is important to users.

-151

We say that a finite behavior or schedule p of A
can leave A in state s if there is a finite execution
Q with p as its behavior or schedule, such that the
final state in o is 8.

The following lemma says that no matter what
has happened in any finite execution, and no mat-
ter what inputs continue to arrive from the environ-
ment, an automaton can continue to take steps to
give a fair execution.

Lemma 2.1 Let A be an I/O automaton and let y
be a sequence of input actions of A.

1.

2.

Suppose that a is a finite execution of A. Then
there exists a fair execution Q’ of A such that
a’ is an extension of (Y and beh(cr’)Jin(A) =

(be&)lin(A))y.

Suppose that fl is a finite schedule of A.
Then there etists a fair schedule p’ of A such
that ,B’ is an extension of p and P’lin(A) =

MWQY-

2.3 Schedule ModuIes

In line with our approach, where the facts about an
algorithm that are important to its users are mod-
elled by the set of fair behaviors of an automaton,
we also give a formal model for a problem specifica-
tion by a set of sequences of actions. More precisely,
a problem will be specified by a pair consisting of an
action signature and a set of sequences over the ac-
tions in that signature. (In most interesting cases,
the action signature will be an external action sig-
nature.) The mathematical object used to describe
a problem is called a “schedule module”.

A schedule module H consists of two components:

1. an action signature sig(H), and

2. a set scheds(H) of schedules.

Each schedule in scheds(H) is a finite or infinite
sequence of actions of H.

The behavior of a schedule p of H is the sub-
sequence of p consisting of external actions, and
is denoted by ‘beh(P). We say that p is a be-
havior of H if ,8 is the behavior of an execution
of H. We denote the set of behaviors of H by
behs(H). We extend the definitions of fair schedules
and fair behaviors to schedule modules in a triv-
ial way, letting fairscheds(H) = scheds(H) and
fairbehs(H) = behs(H).

We use the term module to designate either an
automaton or schedule module. If M is a mod-
ule, we sometimes write ads(M) as shorthand for ’
ads(sig(M)), and likewise for in(M), out(M), etc.
If ,8 is any sequence of actions and M is a module,
we write /3IM for @(acts(M).

2.4 Solving Problems

Now we are ready to define our notion of “solv-
ing” . This notion is intended for describing the
way in which particular algorithms (formalized as
automata) solve particular problems (formalized as
schedule modules). Let A be an automaton and H
a schedule module with the same external action
signature as A. Then we say that A soIves H if
faitbehs(A) C behs(H).

2.5 Composition

The most useful way of combining I/O automata is
by means of a composition operator, as defined in
this subsection. This models the way algorithms in-
teract, as for example when the pieces of a commu-
nication protocol at different nodes and a lower-level
protocol all work together to provide a higher-level
service.

2.5.1 Composition of Action Signatures

Let I be an index set that is at most countable. A
collection (Si)ier of action signatures is said to be
strongly compatible if for all i,j E I, we have

1. Out(&) fl OUt(Sj) = 0,

2. int(Si) n acts(Sj) = 0, and

3. no action is in aCtS(Si) for infinitely many i.

Thus, no action is an output of more than one
signature in the collection, and internal actions of
any signature do not appear in any other signature
in the collection.

The composition S = IIierSi of a collection of
strongly compatible action signatures (Si}ier is
defined to be the action signature with in(S) =
Uie=in(Si)\Uierout(Si), out(S) = Uielotit(Si), and
int(S) = Uie,itlt(Si). Thus, output actions are
those that are outputs of any of the component sig-.
natures, and similarly for internal actions. Input
actions are any actions that are inputs to any of

152

the component signatures, but outputs of no com-
ponent signature.

25.2 Composition of Automata

A collection {Ai}iEl of automata is said to be
strongly compatible if their action signatures are
strongly compatible. The composition A = IIiclAi
of a strongly compatible collection of automata
AiicI has the following components:

1.

2.

3.

4.

5.

sig(A) = IIiersig(Ai),

states(A) = IIj~~StUteS(Aj)2

start(A) = IIiErstart(Ai)

steps(A) is the set of triples
that for all i E I, if R E

(sl 1 T, 4 such
acts(Ai) then

(si[i], r, ss[i]) E steps(Ai), and if r @ ads(Ai)
then ~[i] = s2[i13, and

part(A) = Ui,lpart(Ai).

Since the automata Ai are input-enabled, so is their
composition, and hence their composition is an au-
tomaton. Each step of the composition automaton
consists of all the automata that have a particu-
lar action in their signatures performing that action
concurrently, while the automata that do not have
that action in their signatures do nothing. The par-
tition for the composition is formed by taking the
union of the partitions for the components. Thus,
a fair execution of the composition gives fair turns
to all of the classes within ail of the component au-
tomata. In other words, all component automata
in a composition continue to act autonomously. If
a = S()7rlSl... is an execution of A, let ajA; be the
sequence obtained by deleting njsj when rj is not
an action of A;, and replacing the remaining sj by
Sj [il.

The following basic results relate executions,
schedules and behaviors of a composition to those of
the automata being composed. The first result says
that the projections of executions of a composition
onto the components are executions of the compo-
nents, and similarly for schedules, etc. The parts of
this result dealing with fairness depend on the fact

*Note that the second and third components listed are
just ordinary Cartesian products, while the first component
uses a previous definition.

3 We use the notation s[i] to denote the i-th component of
the state vector s

that at most one component automaton can impose
preconditions on each action.

Lemma 2.2 Let {Ai)ieI be a strongly compatible
collection of auiomata, and let A = IIislAi. If
a E execs(A) then arIAi E execs(Ai) for all i E
I. Moreover, the same result holds for fairexecs,
scheds, fairscheds, behs and fairbehs in place of ex-
ecs.

Certain converses of the preceding lemma are also
true. The following lemma says that executions of
component automata can be patched together to
form an execution of the composition.

Lemma 2.3 Let (Ai)icl be a strongly compatible
collection of automata, and let A = HicIAj. For
all i E I, let ai be an execution of Ai. Suppose p
is a sequence of actions in e&(A) such that PjAi =
beh(cYj) for every i. Then there is an execution a
of A such that p = beh(cr) and ai = alAi for all i.
Moreover, if ai is a fair execution of Ai for all i,
then CY may be taken to be a fair execution of A.

Similarly, schedules or behaviors of component
automata can be patched together to form schedules
or behaviors of the composition.

Lemma 2.4 Let {Ai}iel be a strongly compatible
collection of automata, and let A = LljeIAi, Let
P be a sequence of actions in acts(A). If @lAi E
scheds(Ai) for alli E I, then p E s&e&(A). More-
over, the same result holds for fairscheds, behs and
fairbehs in place of scheds.

2.6 Hiding Output Actions

We now define an operator that hides a designated
set of output actions in a given automaton to pro-
duce a new automaton in which the given actions

are internal. Namely, suppose A is an I/O automa-
ton and @ G e&(A) is any subset of the output
actions of A. Then we define a new automaton,
hide*(A) to be exactly the same as A except for its
signature component. For the signature component,
we have in(hidea(A)) = in(A), out(hidea(A)) =
out(A) \ (3, and int(hidea(A)) = int(A) u a. I

153

3 The Physical Layer

The physical layer is the lowest layer in the OS1
Reference Model hierarchy, and is implemented di-
rectly in terms of the physical transmission media.

. A standard interface to the physical layer permits
implementation of the higher layers independently
of the transmission media.

In a typical setting, a physical layer interacts with
higher layers at two endpoints, a “transmitting sta-
tion” and a “receiving station”. The physical layer
receives messages called “packets” from the higher
layer at the transmitting station, and delivers some
of the packets to the higher layer at the receiving
station. The physical layer can lose packets. While
it is also possible for packets to be corrupted by the
transmission medium, we assume that the physi-
cal layer masks such corrupted packets using error-
detecting codes. Thus, the only faulty behavior we
consider is loss of packets.

In this section, we give specifications for physical
layer behavior. We will specify two different kinds of
physical layers, baaed on whether or not the channel
is required to ensure FIFO delivery of packets. It
is convenient to parameterize the specifications by
an ordered pair (t, r) of names for the transmitting
and receiving stations. The specifications will be
given as schedule modules, denoted by the names
PL-FIFOtt’ and PLts’ respectively.

Let P be a fixed alphabet of “packets”. Both
PL’J and PL-FIFO’l’ have the action signature il-
lustrated in Figure 1 and given formally as follows.

Input actions:
send-pkt’l’(p), p E P
wake’>’
f aiP
crash’p’

Output actions:
receive-pkt’l’(p), p E P

There are no internal actions. The send-pkt’“(p)
action represents the sending of packet p on the
physical channel by the transmitting station, and
the receive-pkC’(p) represents the receipt of packet
p by the receiving station. The waketIP and faiP*’
actions represent notification that the transmission
medium has become active or inactive, respectively.
Finally, the crashtJ action represents notification

I wake’*’

Figure 1: The Physical Layer

that the transmitting station has suffered a hard-
ware crash failure. We will often refer to the actions
in acts(PL’1’) as physical layer actions (for (t, r)).

In order to define the sets of schedules for
the two schedule modules, scheds(PLtl’) and
scheds(PL-FIFO1”), it is helpful to define a collec-
tion of auxiliary properties of sequences of physical
layer actions. These will be properties reflecting the
operation of a “good” physical channel in a “good”
environment. We will then specify the allowed be-
haviors of a physical channel by requiring some of
these properties to hold ifothers do. Let /3 = ?ri~...
be a (finite or infinite) sequence of physical layer ac-
tions. We define properties for ,B.

We define a crash interval in /3 to be a maximal
contiguous subsequence not containing a crash’J
event. We say that /? is well-formed provided that
in every crash interval in p, the fail’~’ and wake”’
events alternate strictly, starting with waketb’.
Thus, in a well-formed sequence, there are re-
peated alternating notifications that the transmis-
sion medium is active and inactive, with crashes
serving as delimiters between sequences of wake and
fail events. A crash event can be thought of as in-
cluding a failure, in cases where the crash follows a
wake with no intervening fail.

If 0 is a well-formed sequence of physical layer
actions, then a working interval in p is the subse-
quence of ,f3 from any waketl’ event until the next
fail’7’ or crashtJ event, or until the end of p if there
are no later crash’lr or faiP1’ events, not including
the given waketJ’, fail’~’ or crashti’ events. If /3
has a wake’*’ event with no later failtp’ or crasht-’
event, then the suffix of ,0 starting after the wake’>’
event is called an unbounded working interval. Note
that there is at most one unbounded working inter-
val in @.

154

Now we define the following properties, (PLl)-
(PL6), of well-formed sequences p of physical layer
actions. The first property is a restriction on the
use of the physical channel saying that a packet is
sent only when the channel is active.

(PLl) Every sendgkt’~f event occurs in a working
interval in p.

The next property is a technical restriction on the
use of the physical channel saying that the packets
sent are always unique. Thus the reader may think
of each packet as labeled with a unique identifier;
however, a practical data Iink layer protocol should
not use this label, which is included in the model
for ease of analysis, but does not correspond to any
bits sent on the transmission medium.* The main
reason we use this restriction is so that we can easily
establish a correspondence between the packets sent
and the packets received on the channel.

(PL2) For every packet p, there is at most one
sendqkW(p) event in p.

The next property asserts that no single packet
is received more than once.

(PL3) For every packet p, there is at most one
receive-pkt’l’(p) event in p,

The next property says that the physical layer
only delivers packets that were previously sent.

(PL4) For every receive,pkt’r’(p) event in p, there
is a preceding sendqkt’~‘(p) event in ,f3.

The next is the FIFO property. It says that those
packet.s that are delivered have their receivegkt
events occurring in the same order as their send-pkt
events. Note that (PL5) may be true even if a
packet is delivered and some packet sent earlier is
not delivered; there can be gaps in the sequence of
delivered packets representing lost packets.

(PL5) (FIFO) Suppose that p and p’ are
two packets such that the events xi1 =
send-pkttJ (p), ?ri2 = receive-pkW(p), ri3 =
receive-pktt*‘(p’) and ni, = receive-pkt’l+(p’)
appear in p. Then il < ia if and only if iz < id.

‘In Section 5, we model formally the “header”, the infor-
mation in a packet that is used by a data link layer protocol,
as an equivalence class to which the packet belongs.

So far, all of the properties listed have been safety
properties. The final property is a liveness property.
It says that if a channel remains active and repeated
send events occur, then eventually some packet is
delivered.

(PL6) Starting after any point in an unbounded
working interval, if infinitely many send-pkt’l’
events occur after that point, then some
receive,pktt*’ event occurs after that point.

Notice that well-formedness, (PLl) and (PL2) are
properties that can be guaranteed by the environ-
ment that supplies inputs to the physical channel,
while (PL3)-(PL6) are properties that the channel
itself can enforce. However, we only ask the physi-
cal channel to enforce them when the environment
plays its part, by providing inputs that ensure well-
formedness, (PLl) and (PL2). If the environment
violates the input conditions, e.g., if send events
happen outside of working intervals, then the speci-
fication does not constrain the behavior of the phys-
ical channel. Formally, we define the two sched-
ule modules PLtl’ and PL-FIFOtl’. We have al-
ready defined sig(PL’>‘) and sig(PL-FIFdl’). Let
scheds(PL’j’) be the set of sequences ,LY of phys-
ical layer actions satisfying the condition “if /? is
well-formed and satisfies (PLl) and (PL2) then ,f3
satisfies (PL3), (PL4) and (PL6)“. Similarly, let
scheds(PL-FIFO’*‘) be the set of sequences p of
physical layer actions satisfying the condition “if /3
is well-formed and satisfies (PLl) and (PL2) then /3
satisfies (PL3), (PL4), the FIFO condition (PL5),
and (PL6)“.

A physical channel from t to P is any I/O au-
tomaton that solves PL ‘1’. A FIFO physical chan-
nel from t to r is any I/O automaton that solves
PL- FIFO’*‘.

In a “real-world” implementation of a physi-
cal channel using a physical transmission medium,
(PL6) would not be guaranteed with absolutely cer-
tainty, but rather with extremely high probability.
It seems that the probability could be sufficiently
high, however, to justify our decision to ignore in
the formal model the small likelihood that no pack-
ets ever get delivered on an active channel.

155

4 The Data Link Layer

The data link layer is the second lowest layer in the
hierarchy, and is implemented using the services of
the physical layer. Generally, it is implemented in
terms of two physical channels, one in each direc-
tion. It provides a reliable one-hop message delivery
service, which can in turn be used by the next higher
layer.

We again assume that there are two endpoints,
a “transmitting station” and a “receiving station”.
The data link layer receives messages from the
higher layer at the transmitting station, and deliv-
ers them at the receiving station. The data link
layer guarantees that every message that is sent is
eventually received, assuming that the underlying
transmission medium remains active. Furthermore,
the order of the messages is preserved.

In this section, we give a specification for data
link layer behavior, as a parameterized schedule
module DL’l’. Let M be a fixed infinite alphabet
of “messages”. The action signature sig(DL’J) is
illustrated in Figure 2, and is given formally as fol-
lows.

Input actions:
send~msgt~r(m), m E M
waket~’
fail’*’
crashtJ
wake’J
f ail’#’
crashfIt

Output actions:
receive-msg’l’(m), m E A4

There are no
internal actions. The send-msg’J(m) action repre-
sents the sending of message m on the data link by
the transmitting station, and the receive,msg’I’(m)
represents the receipt of message m by the receiving
station. The wake’J and fa#*’ actions represent
notification that the transmission medium in the di-
rection from t to r has become active or inactive,
respectively, while the wake”’ and failr~t actions
represent similar notification for the transmission
medium in the direction from r to t. The crashf~’
and crashr*t actions represent notification that the
transmitting or receiving station, respectively, has

waketIc
f aiF’
crashfpr

wakerIt
fail”’
crash’l*

receivemsg’~’
c

Figure 2: The Data Link Layer

suffered a hardware crash failure. We will often re-
fer to the actions in acts(DL’2’) as data link layer
actions.

In order to define the set scheds(DL’P’), we define
a collection of auxiliary properties of sequences of
data link layer actions. Let p = ?T~xz... be a (finite
or infinite) sequence of data link layer actions. We
define properties for 8.

We define a transmitter crash interval in 0 to be
a maximal contiguous subsequence not containing a
crashtar event, and similarly a receiver crash inter-
val in p to be a maximal contiguous subsequence not
containing a crash’!’ event. We say that /3 is well-
formed provided that the following two conditions
hold. First, in any transmitter crash interval in
,O, the failt*’ and waketl’ events alternate strictly,
starting with wake t,r. Second, in any receiver crash
interval in @ the fail’J and wake’*’ events alter-
nate strictly, starting with wake’*‘. Thus, for each
direction of the underlying transmission medium,
there are repeated alternating notifications that the
transmission medium is active and inactive, with
crashes serving as delimiters between sequences of
wake and fail events.

If p is a well-formed sequence of data link layer
actions, then a transmitter working interval in p is
the subsequence of p from any waketlr event until
the next fail’J or crash’*’ event, or until the end
of 0 if there are no later failtar or crashtlf events,
not including the given waket*‘, failtlr or crash’J
events, If p has a wakell’ event with no later failt~’
or crashtzr event, then the suffix of p starting after
the wakettP event is called an unbounded transmit-
ter working interval. We give analogous definitions
for receiver working intervaland unbounded receiver

156

working interval.
Now we define the following properties, (DLl)-

(DL7), of well-formed sequences ,L? of data link layer
actions. The first property says that there is even-
tual consistency in the notifications that occur at
both ends of the link, about the status of the un-
derlying transmission medium. That this property
holds is a reasonable assumption, for example, in
the usual case where the same hardware is used for
the transmission medium in both directions.

(DLl) There is an unbounded transmitter work-
ing interval in /3 if and only if there is an un-
bounded receiver working interval in p.

The next five properties are analogous to proper-
ties already defined for the physical layer.

(DL2) Every send,msgtJ event occurs in a trans-
mitter working interval in ,0.

(DL3) For every message m, there is an most one
send-msgtp’(m) event in p.

(DL4) For every message m, there is an most one
receive-msg*l’(m) event in p.

(DL5) For every receive,msg’J(m) event in /?,
there is a preceding send-msgtJ(m) event in
P.

(DL6) (FIFO)
Suppose that m and m’ are two messages such
that the events 7ri1 = send-msg’J(m), rii3 =
receive-msgtJ(m), ?~i= = send-msg*~‘(m’) and
rid = receive-msgtJ(m’) appear in p, Then
il < is if and only if iz < id.

The remaining two properties describe ways in
which the data link layer makes stronger guaran-
tees than does the physical layer. The first of these
says that the data link layer does not lose some
messages but deliver later messages, within a single
transmitter working interval.

(DL7) Suppose that ?~i = send-msg’*‘(m) and

“i = send-msg’p’(m’) appear in the same
transmitter working interval in /3 and i < j. If
a receive-msg*l’(m’) event appears in p, then
a receive-msgtlr(m) also appears in /3.

Finally, we have the data link layer liveness prop-
erty. It says that all messages that are sent are

delivered eventually, provided the link remains ac-
tive. This property expresses the reliability of the
message delivery guaranteed by the data link layer.

(DL8) If a send-msg’J(m) event occurs in an
unbounded transmitter working interval in ,8,
then there is a receive-msg’~‘(m) event in ,B.

Now we can define the schedule module DL’J.
We have already defined sig(DL*l’). Let
scheds(DL’J) be the set of sequences /3 of data link
layer actions satisfying the condition “if /3 is well-
formed and satisfies (DLl)-(DL3) then p satisfies
(DL4)-(DL8)“.

Although the schedule module DLtJ represents
the behavior one would require from an inter-
esting data link layer, it is useful for us to de-
fine another schedule module WDL”’ represent-
ing weaker requirements on data link behavior.
Thus, let sig(WDL’T’) = sig(DL’l’), and let
scheds(WDL’I’) be the set of sequences p of data
link layer actions satisfying the condition “if ,B is
well-formed and satisfies (DLl)-(DLS) then fi satis-
fies (DL4), (DL5) and (DL8)“.

Although this weaker specification is less inter-
esting than DL ‘1’ for describing properties of a
useful data link layer, it is adequate for prov-
ing our impossibility results. It is easy to
see that WDL”’ is a weaker specification than
DL*l’, i.e., that scheds(DL*J) E scheds(WDL’J).
Thus, any automaton that solves DL”’ also solves
scheds(WDLIt’), so that the impossibility results
we obtain for solving WDL’1’ immediately im-
ply corresponding impossibility results for solving
DL*J.

We next prove a simple lemma which will be use-
ful later. In the proof of this lemma we illustrate
the way properties such as (DLl)-(DL8) and the
basic facts about the I/O automaton model can be
used to show the existence of fair behaviors of an
automaton that solves the specification for a data
link layer.

Lemma 4.1 Let A be any automaton that solves
WDL’J-, and let m f hr. Then there is a fair
schedule /3 = 7r17r2. . . of A such that beh(,O) =
wakef~rwaker~*send~msgt~r(m)receive,msg*~r(m),
RI = wake’~’ and 12 = wakeret.

Proof: Since the wake actions are inputs of A,
the sequence 7 = wakeitr wakerJtsend-msg*J (m)

is a finite schedule of A. By Lemma 2.1, there
is a fair schedule p of A that extends -y and
that includes no input events of A except those
in y. We claim that beh(,!3) must be the sequence
waket~rwaker12send~msgt~*(m)receive-msg’~’(m).

First, note that beh(p) is well-formed and sat-
isfies (DLl), (DL2) and (DL3), since beh(y) has
these properties and they are only depend on the
sequence of inputs to A. Since A solves WRLtpP,
beh(P) also satisfies (DL4), (DL5) and (DL8). Since
beh(P) only extends beh(7) with output actions,
only receive,pkt’ rr actions appear in the s&ix.

Since the action send,msg’l’(m) occurs in
an unbounded transmitter working interval in
A property (DW implies that the action
receive,msg’*’ (m) appears in p. Then (DL4)
and (DL5) imply that receive-msg'J(tn) can only
appear once, and that no other receive_msg’J
event can appear. It follows that beh(P) is
waket~twakef’*send-msg~~r(m)receive-msgc~r(m).

3 Data Link Implementation

In this section, we define a “data link protocol”,
which is intended to be used to implement the data
link layer using the services provided by the phys-
ical layer. A data link protocol consists of two au-
tomata, one at the transmitting station and one at
the receiving station. These automata communi-
cate with each other using two physical channels,
one in each direction. They also communicate with
the outside world, through the data link layer ac-
tions we defined in the previous section.

Figure 3 shows how two protocol automata and
two physical channels should be connected, in a
data link implementation.

5.1 Data Link Protocols

Let t and r again be names (for the transmitting and
receiving station respectively). Then a transmitting
automaton for (t,r) is any I/O automaton having
the following external action signature.

Input actions:
send-msg’l’ (m), m E M
receive-pkt’l’(p), p E P
wake’s’

senLmsg’*’

wake”’
fail”’
crash”’

I-

Figure 3: A Data Link Implementation

f aiP
crashtJ

Output actions:
send,pkt’a’(p), p E P

In addition, there can be any number of internal
actions. That is, a transmitting automaton receives
requests from the environment of the data link layer
to send messages to the receiving station r. It also
receives packets over the physical channel from r.
Moreover, it receives notification of the status of
the physical channel from t to r, and notification of
crashes at the transmitting station. It sends packets
to r over the physical channel to r.

Similarly, a receiving automaton for (t, r) is any
I/O automaton having the following external signa-
ture.

Input actions:
receive-pkt*J(p), p E P
wake’*’
f ail’l’
crashrat

Output actions:
send-pktrpt(p), p E P

158

receiwe,msgt’f(m), m E h4

Again, there can also be any number of internal
actions. That is, a receiving automaton receives
packets over the physical channel from t. Moreover,
it receives notification of the status of the physical
channel from r to t, and notification of crashes at
the receiving station. It sends packets to t over the
physical channel to t, and it delivers messages to
the environment of the data link layer.

A data linli protocol is a pair (At,A’), where Af
is a transmitting automaton and A’ is a receiving
automaton.

5.2 Correctness of Data Link Proto-
cols

Now we are ready to define correctness of data link
protocols. Informally, we say that a data link proto-
col is “correct” provided that when it is composed
with any “correct physical layer” (i.e. a pair of
physical channels from t to T and from r to t, respec-
tively), the resulting system yields correct data link
layer behavior. This reflects the fundamental idea
of layering, that the implementation of one layer
should not depend on the details of the implementa-
tion of other layers, so that each layer can be imple-
mented and maintained independently. Formally,
we say that a data link protocol (A’, A’) is correct
provided that the following is true. For all C’J and
01’ that are physical channels from t to P and from
r to t, respectively, hide*(D) solves DLt*‘, where D
is the composition of At, A’, C’lf and C+J, and @
is the subset of acts(D) consisting of send-pkt and
receive-pkt actions.

As mentioned earlier, our impossibility results
can be proved for weaker data link requirements,
Thus we also define we& correclness for data link
protocols. This is defined exactly as for correctness,
except that hide@(D) is required to solve WDL’lp
instead of DL”J. Obviously, any correct data link
protocol is also weakly correct.

We also define what it means for a data link pro-
tocol to be correct with respect to FIFO physical
channels; again, this is defined exactly as for cor-
rectness except that CtJ and Crf’ are restricted to
range over only FIFO physical channels from t to r
and from r to t, respectively, rather than over arbi-
trary physical channels. Finally, we define a notion

of weak correctness with respect to FIFO physical
channels, for data link protocols. This is defined ex-
actly as for correctness with respect to FIFO phys-
ical channels, except that hide*(D) is required to
solve WDLt*’ instead of DLclr.

Obviously, any data link protocol that is cor-
rect with respect to FIFO physical channels is also
weakly correct with respect to FIFO physical chan-
nels. Also, any data link protocol that is correct
(resp. weakly correct) is also correct (resp. weakly
correct) with respect to FIFO physical channels.

5.3 Constraints on Data Link Proto-
cols

In this subsection, we define several constraints we
wish to consider for data link protocols.

5.3.1 Message-Independence

Most data link protocols in the literature are
“message-independent” in the sense that the pro-
cessing done by the protocols does not depend on
the contents of messages submitted by the environ-
ment. The data link protocol might break up a
message into packets, and might construct header
information to add to packets, but does not typi-
cally carry out drastically different processing based
on the specific contents of messages. This is often
expressed by saying that the data link layer treats
messages (which in fact are usually structured, in-
cluding, for example, headers from higher layer pro-
tocols) as uninterpreted data.

We model message-independence as follows. Let
A = (A’,A’) be a data link protocol. Let z be
an equivalence relation on the domain M U P U

states(At)Ustates(AP)Uacts(At)Uacts(Ar). Then
A is said to be message-independent with respect to
the equivalence relation s provided that the follow-
ing conditions hold.

1 . 3 only relates elements of the same kind, i.e.,
elements of M, or P, or states(At), etc. Also,
a start state cannot be related to a non-start
state. Moreover, if a S a’ for two actions a
and a’, then a and a’ are identical except pos-
sibly for a difference in their message or packet
parameter.

2. For each pair m, m’ of messages, m E
m’, send-msg’l’(m) E send,msg’l’(m’), and

159

3.

4.

5.

receive-msgtlr(m) 52 receive-msg’l’(m’).

For each pair p,p’ of packets, sendqkttB’(p) E
send-pkt’e’(p’) if I and only if p 5 p’,
receive,pkt’t’(p) E receive-pkttJ(p’) if and
only if p z p’, send,pkt’~t(p) z send-pkt’I’(p’)
if and only if p s p’, and receive-pktrl’(p) E
receive-pkt’J(p’) if and only if p E p’.

For every two states q and q’ with q E q’, if
action a is enabled in q then there is an action
a’ with a E a’, such that a’ is enabled in q’.

Suppose that q E q’ and a s a’, where action
Q is enabled in state q and action t? is enabled
in state q’. If r is a state such that (q, a, r) is
a step, then there exists a state t’ such that
P z r’ and (q’, a’, r’) is a step.

We say that
data link protocol A is message-independent pro-
vided that it is message-independent with respect
to some equivalence relation.

For a data link protocol, A, that is message-
independent with respect to an equivalence relation
E, we define the set headers(A,r) to be the set of
equivalence classes of packets. Since all the packets
in a given equivalence class are treated in equiva-
lent ways by the protocol, we can think of them as
modelling the set of packets that contain a particu-
lar pattern of bits in the data link layer header. We
say that A has bounded hepders if heuders(A, z) is
a finite set.

Two sequences, GC = 2122 . . . and y = ~1~2 . . ., are
said to be equivalent with respect to z if 1~1 = Iyl
and for every i, zi 3 UC.

5.3.2 Crashing

Here, we describe a “crashing” property, which says
that a crash at either the transmitting or receiving
station is able to cause the corresponding protocol
automaton to revert back to its start state (thereby
losing all processing information in its memory).

We say that a transmitting automaton A is crash-
ing provided that there is a unique start state
go and (q, crashl*‘, go) is a step of A, for every
q E states(A). Similarly, we say that a receiving
automaton A is crashing provided that there is a
unique start state go and (q, crashrlt, go) is a step
of A, for every q E states(A). A data link protocol
(A’, A’) is said to be crashing provided that A’ and
A’ are both crashing.

6 Specific Physical Channels

Since the correctness of a data link protocol requires
that it work when composed with any physical chan-
nels, we are able to prove the impossibility of a
correct protocol satisfying certain requirements by
merely demonstrating that no such protocol works
when combined ulith a specific pair of physical chan-
nels. En this section we introduce the channels we
will use. First we introduce a very bermissive phys-
ical channel, which we will use in Section 8. Then
we will introduce a closely related FIFO physical
channel, which we will use in Section 7.

6.1 A Permissive Physical Channel

We begin by defining a particular “very permis-
sive” physical channel. This channel can even be .
considered to be a “universal physical channel”, in
the sense of Lemma 6.2 below. This channel is not
FIFO, and in Section 8 we will use it to prove that
unbounded headers are needed in a protocol that
uses this channel.

First, we define a set S of ordered pairs (i, j) of
positive integers to be a delivery set provided that
it satisfies the following two conditions: for each
positive integer j, S includes a unique element (i, j),
and for each positive integer i, it includes at most
one element (i, j).

The state of the physical channel ctlr has two
counters, counter1 and counters, an infinite deliv-
ery set S of pairs of non-negative integers, and a
partial mapping packet from the set of positive in-
tegers to P. The counter counter1 represents the
number of send-pktttr actions, and counter2 repre-
sents the number of receive,pkt’e’ actions, that have’
occurred so far. The set S determines which packets
are delivered, and in what order - it contains pairs
(i, j) that correlate the j-th receive,pkf’J event
with the i-th sendpkt’l’ event. Thus the restric-
tions in the definition of a delivery set correspond
to the requirements that a packet should not be
delivered unless it was sent, and that each packet
should not be delivered more than once. The map
ping packet associates with an integer i the packet
that was sent in the i-th send,pkttl’ event. Initially
counter1 and counter2 are zero and packet is un-
defined everywhere. The set S is initialized to an
arbitrary delivery set (and remains fixed).

When a send-pkt’l’(p) action occurs, the counter

160

counteq is incremented by one and pa&et(i) is set
to p, where i is the new value of counterr. The
precondition of receive-pkt’*‘(p) is that there exists
i such that pa&et(i) = p and (i, counter2 + 1) E S.
The effect is to increment counter2 by one. The
fail, wake and crash actions have no effect. The
partition puts all the output actions in a single class.
We define the physical channel elt analogously.

For x E {t, r) we define Z so that i E {t, r} and
x # 5.

Lemma 6.1 The automaton CD** is a physical
channel.

Proof: We must show that fairbehs((?“J) C
scheds(PL”J). Let /3 be a fair behavior of @n’. If
p is either not well-formed or does not satisfy (PLl)
or (PL2) then it is a schedule of PL”ls, since there
are no constraints on such schedules. So suppose /3
is well-formed and satisfies (PLl) and (PL2).

Suppose that (PL3) does not hold, i.e. there is
a packet p for which two receive-pkt”l”(p) events
occur in p. Let jr and j2 denote the number of
receive-pkt”l* events up to and including the first
and second receive,pktx*“(p) respectively. The pre-
condition of receive,pkt”l”(p) implies that there
are ir and i2 such that (il, jr), (iz, js) E S and
the ir-th and i2-th send,pkt”~” events are both
send,pkt2j”(p). Since S is a delivery set, ir # i2,
This contradicts the assumption that /3 satisfies
(PL2). Therefore, (PL3) is satisfied.

One
of the preconditions of the j-th receive-pkt”>*(p)
is that there exists i such that packet(i) = p. Thus
the i-th sendgkt”s” event in p is send_pkt2J(p).
Also, the receive-pkt”+(p) occurs after packet(i) is
defined, i.e. after the sendqkt”J(p) event, This
implies that (PL4) is satisfied.

Suppose that p has an unbounded working inter-
val, and fix a point in that interval just after, say,
the k-th event in /3. Suppose that infinitely many
send,pkt2J events occur after the given point. Let
j be the number of receive-pkt=I” events in p up
to the given point. Since S is a delivery set, there
exists i such that (i, j + 1) E S. Let p be the packet
appearing in the ith send-pkt”J! event in p. Then
the precondition of receive,pkt’l”(p) eventually be-
comes true, and stays true until the action occurs.
Thus, receivelpktx+r(p) appears in /3, sometime af-
ter the k-th event. Therefore, /3 satisfies (PL6). CI

The following lemma shows that c?*’ has among
its behaviors all of the “sensible” failure-free sched-
ules of the specification PL”l”.

Lemma 6.2 Suppose p is in scheds(PL’n”), and
/3 is well-formed, satisfies (PLl) and (PL2), and
contains no fail”*” or crash”?* events. Then p E
fairbehs(@l”).

We can combine the permissive physical chan-
nels with an arbitrary data link protocol, as fol-
lows. If A is a data link protocol, then let d(A)
be the composition of A’, A’, ctpr and (?I:. Also
let D’(A) = hide@(D)(A)), where Cp is the subset of
a&(&A)) consisting of send-pkt and receive-pkt
actions.

6.2 A Permissive FIFO Physical
Channel

We also define a particular permissive FIFO phys-
ical channel, which we will use in the argument of
Section 7. We define @J to be identical to c*J ex-
cept that the start states are restricted to be those
in which the delivery set S is monotone, that is,
there are no pairs (ii, jr) and (is, j2) in S with
il < i2 and jr 2 j,. Similarly, we define @J.

Since every finite (resp. fair) execution of etst
is also a finite (resp. fair) execution of D* we see
that @rr is a physical channel. The restriction on
the delivery set ensures that it is a FIFO physical
channel.

If A = (A’, A’) is a data link protocol, let b(A)
be the composition of At, A’, @er and <. Also
let B’(A) = hide@(B)(A)) where @ is the subset of
ads(&A)) consisting of send-pkt and receiveqkt
actions.

6.3 Properties of the Permissive
Physical Channels

We collect here some simple properties of the chan-
nels just defined, for use in Sections 7 and 8.

We begin this subsection with a useful definition.
Namely, we define a partial function del(S, (i, j))
that takes a delivery set S and a pair (i, j) E S,
and returns a new delivery set S’. The new set S’
represents the result of deleting the given pair from
the set, and is defined as follows. (1) For every
j’ < j. (i’,j’) E S’ iff (i’, j’) E S. (2) (i,j) # S’.

161

(3) For every j’ > j, (i’, j’) E S’ iff (i’, j’ + 1) E
S. We extend the function de/ so that its second
argument is any finite subset of S rather than just a
single pair, in the natural way: del(S, XU{ (i, j)}) =
del(del(S, X), (i, j)). Notice that if S is a monotone
delivery set, so is deZ(S, X).

We say a state of Cxpe or CxlE is clean if (i) S
does not contain any pair (i, j) with i 5 counter1
and j > counterz, and (ii) S contains (counter1 +
Ic, counter2 + k) for ail k > 0. The intuition is that
the channel is empty, and from now on will act FIFO
with no losses. The next lemma is proved by alter-
ing the delivery set without changing those pairs
(i, j) with j 2 counter2.

Lemma 6.3 If p is a schedule of t?B* (resp. @*s)
then there is a state s of cx** (resp. 6’=1*) such that
p can leave CxJ (resp. t?xjs) in s and s is clean.

If s is a state of cZv* or cxla, we say that a
sequence of packets Q = qlq2 . . .qk is waiting in
a state s if for all 1 such that 1 5 I 5 k there
is an integer ir such that packet(&) = ql and
(il, counter2 + I) E S in s.

We have the fundamental property that a channel
can deliver a sequence of packets that are waiting
in its state.

Lemma 6.4 Let s be a state of C?J* (resp. cxpt)
and Q = qlq2 . . .qk a sequence of packets such
that Q is waiting in s. Then there is an execu-
tion fragment starting with state s with schedule ’
receive-pEPa” . . . receive-pkt”l*(qk).

We now give a lemma that shows that certain
schedules can leave a channel in a state where pack-
ets are waiting.

Lemma 6.5 If /3 is a schedule oft?** (resp. c?~B*)
and y is a sequence of input actions of cx,l! (resp.
exjrn) such that Q = Ql!zZ~~ * qn is the sequence of
packets sent in 7, then P7 is a schedule of cxjr
(resp. @I*) that can leave czJ (resp. exJ!) in a
state in which Q i$ waiting.

By surgery on S (using the de1 function) we obtain
the following lemma which expresses the ability of
the channels to lose any packets that have not been
delivered.

Lemma 6.6 If /3 is a schedule of cx*” (resp. ~?~~a)
that can leave CxJ (resp. ex,*) in a state s in

which Q is waiting, and Q’ is a subsequence of Q,
then there is a state s’ such that /3 can leave @*s
(resp. &I*) in s’ and Q’ is waiting in s’.

We have an extra result for the non-FIFO chan-
nels. We say that a packet p is in transit from
x to f in a sequence ,f3 of actions provided that
send-pkt”l*(p) Jccurs in p and receive-pkFl”(p)
does not occur in /3. We have the result that any
sequence of packets in transit can be waiting in the
channel.

Lemma 6.7 Let p be a schedule of c,Z+r, and Q a
sequence of distinct packets. If each packet in the
sequence is in transit from x to 3 in /3, then $ can
leave CzJ in a state s such that Q is waiting in s.

7 Tolerating Host Crashes

In a data link protocol a useful property would be
the ability of the protocol to tolerate a host crash.
A host crash causes all the memory at the host to
be lost. (In our model this is reflected by setting
the state of the automaton in that host to its distin-
guished initial state.) Baratz and Segall [BS83] con-
jectured that no such protocol is possible. The link
initialization protocol of [BS83] cannot tolerate host
crashes as we have defined them. However if there is
a single non-volatile bit (a bit that is not reset dur-
ing the host crash) the [BS83] protocol is correct.
We prove that no messageindependent data link
protocol can tolerate arbitrary host crashes (with-
out access to non-volatile memory).

The essense of our proof is to take a data link
protocol that is alleged to be crashing, message-
independent and weakly correct, and to find two
executions of the system that leave the transmit-
ting and receiving automata in equivalent states, al-
though in one every message has been delivered and
in the other there is an undelivered message. The
protocol must eventually deliver the missing mes-
sage in any fair extension of the second execution,
even if no more inputs arrive from the environment.
An equivalent extension of the first execution will
cause some message to be delivered, although ev-
ery message sent had already been delivered. This
contradicts the claimed correctness of the protocol.

Recall that for z E {t, r) we define 55 so that
z E {t,r} and x # F, and we define @(A) to be
the result of composing data link protocol A with

162

the permissive FIFO physical channels 6’*lr and &#*
and then hiding the sending and receiving of pack-
ets. For cr = so~lsl . . . ~r,s, a finite execution of
B’(A) and k an integer with 0 5 Iz 5 tz let US de-
fine the following: ilt~(o~,z, k) is the sequence of
packets received by A” during the first L steps of cu;
outA(cr, z, k) is the sequence of packets sent by AZ
during the first Ic steps of rr; stateA(o, t, !c) is the
state of Ax in sk; acts~(cr, 2, k) is the sequence of
actions of A” during the first k steps of CY.

We now state the main lemmas we will use to
prove the result of this section.

The first lemma shows that one can modify the
suffix of an extension of one execution to give an
extension of another, if the two executions end
with the data link protocol automata in equivalent
states. This modification may alter states and ac-
tions, but only into equivalent states and actions.
This lemma can be proved by an easy induction on
j, using the definition of message-independence.

Lemma 7.1 Let A = (At,Ar) be a message-
independent data link protocol. Let or =
SfJ?rlSl . . . lF,,S,, and & = OOilCl . . .li& be finite
executions of B)(A) with the following properiies:
stateA(a, 2, n) 5 stateA(b,x,k) forx E {f,r}, and
in both s, and 4, both physical channels are clean.

Suppose
&I = i&l& . . .%kik+)+lik+l . . .+k+&+j is a f;-
nite execution of &(A) that is an extension of
&. Then there exists a finite execution crl =
8OWSl . . .7r,s~x,+~s”+l . . . nu+isu+i that is an ex-
2ension of LY such that for all j with 1 5
j < i, 'kk+j s nn+j and stateA(a,x,n + j) E
stateA(&, 2, k + j) for x 6 {t, r}.

The next lemma will be crucial in the inductive
proof of Lemma 7.3. Speaking informally, we use
it to “pump up” the sequence of packets waiting in
the channels, as illustrated in Figure 4. If a schedule
can leave the system so that waiting in one phys-
ical channel is a sequence of packets equivalent to
the packets’ delivered across that channel in a ref-
erence execution, then we can extend the schedule
by crashing the destination host and replaying that
host’s part of the reference execution, and this can
leave the system so that a sequence of packets is
waiting in the other physical channel, equivalent to
the packets sent by the host in the reference execu-
tion.

r---
l
I 0 A” :?
I

I

L--

r--

l

I 0 A= : s’
I I

8’ z

f+-=-

------ ---
ceil (fw>
\aaaaJ

ptateA(cr, 2, k) -----II-

--
1

I

-- -I

--
1

1

I 01 A* : s

I

-- -l

Lemma 7.2 Let A = (A’, At) be a message-
independent, cmshing data link protocol. Let (Y =
SO?rlSl . . . ?r,s, be an execution of B’(A) such that
?rl = waketl’, 7r2 = wakerIt and no wake, fail or
crash events occur in ~3. . , A,. Suppose x E (t, r},
A is an integer with 2 < k 5 n and p is a finite
schedule of D’(A) with the following properties:

1.

2.

beh(P) is well-formed, satisfies (DLl)-(DLCS),
and contains unbounded transmitter and re-
ceiver working intervals, and

@ can leave B’(A) in a state where the state of
A’ is s, and a seqvence Q of distinct packets
is waiting in the state of @lx such that Q E
in&, 2, k).

Figure 4: Illustration for Lemma 7.2

Then there is a sequence y of actions of A” with the
following properties:

1. By is a finite schedule of B’(A),

2. beh(@y) is well-formed, satisfies (DLl)-(DL3)
and contains unbounded transmitter and re-
ceiver working intervals,

3. y z crashx~*actsA(Q, x, k), and

4. fly can leave &(A) in a state where the state
of A” is s, the state of A” is s’ such that s’ E

163

stoteA(cr,x, k), and a sequence Q’ of disiinct
packets is waiting in the state of &I* such that
Q’ s o&&,x, 12).

Proof: As notation, let (ss?~rsr . . .?rksh)lAf =
to&t1 . . .q&tl, so that 4142.. .& = actsA(cx,z, k),
$1 = st&cA (cu, 2, k), the sequence of packets sent in
41 f . .41 is o&A(o, x, k) and the sequence of pack-
ets received in 41.. .di is inA(&, z, k). Also let
Q = qlqz . . . w.

First we construct inductively an execution &r
of A”. To begin, let s~$s~, . .n!-rs~-r be some
execution of A” with schedule p A”; 1’ such an ex-
ecution exists because PIA” is a schedule of A”
by Lemma 2.2. Put ?ri = crash”** and put s[i =
to, the initial state of A”. Since A” is crashing,
b;-l, $, s:) is a step of A”. Put n$+r = wake2** =

41 and s;+~ = tl. Then (s~,n~+,,s~+,) is a step of
A” since (to, 91, tl) is.

So suppose that we have so far constructed
S~7l(S{ v * * j+cS[i+i d for i such that 1 < i < I, so
that s~+i G ti. We show how to define $+$+I and
then how to define si+i+r.

1. If $i+r = receive-pkt*l=(p) then put $+i+l =
receive-pkt”l”(qh) where h is chosen so that
d++r is the h-th receive,pkt”l” event in cr. By
the assumption that Q = in~(cu, x, k), we have
d J+i+l E #i+l- Since the automaton is input-
enabled, xj+i+r is enabled in sj+i.

2. If di+l = send-msgr~f(m) (which can only
happen if t = t) then put $+i+r =
send-msgt~r(m’) where m‘ is any message
such that send-msg’*‘(m’) does not occur in
+... ,+F’ 7r! This is possible by the as-
sumption that there is an infinite alphabet
of messages. By the assumption of message-
independence, n:+i+l ~ 4 i+le Since the au-
tomaton is input-enabled, rj+i+r is enabled in
Sj+i-

3. If &+r is a locally controlled action of A” then
let ~~rj-+i+l be a locally controlled action that
is enabled in S(i+i such that ?rs.+i+l z &+I.
This is possible by the assumption of message-
independence, since s~+i E ti and &+I is en-
abled in ti.

By the assumption that +$;+I is not a wake, fail or
crash event, these exhaust the possibilities. Now
choose $~+i+l SO that (s~+~,T~+~+~,s~.+~+~) is a

step of A” and sli+i+l E ti+l, which is possible
by the assumption of message-independence, since
(ti, &+I, ti+l) is a step of A” and $+i+r was cho
sen in every case to ensure that it was equivalent to
9 i+r and enabled in s$+~.

Completing the construction above gives a fi-
nite execution &r = &xi.. . ni+,s[i+, of At. Let

Y = r’. r’.
J J-+1 * * *$+I- By the construction we see

G crash*l*& . . .dJ = crash”~factsA(a, 2, k).
&nce beh(/?) is well-formed, and 7 begins with
crashz*ewake”~* and contains no subsequent crash,
wake or fail events, we see that beh(&) is well-
formed. Similarly beh(,&) satisfies (DLl)-(DL3)
and contains unbounded transmitter and receiver
working intervals.

Now P7lA” is just 7riri.. .?ritl, so ,07 is a fi-
nite schedule of AZ that can leave AZ in a St-l+*’
s’.+ z tl
di

= stdeA(a,x, k). Also /?7lA* is JUSL

A” which is a finite schedule of Ae that can
leave AZ in state s. Now 7l@9” is by construction
receive,pktt12(ql). . . receive,pkt’+(ql,) and since 0
can leave A” in a state where Q is waiting in @J
we see by Lemma 6.4 that @7$‘*~” is a finite sched-
ule of @*=. Finally 7l&*” consists of crashz~* fol-
lowed by a sequence of send-pkt”?* actions which is
equivalent to to the sequence of send-pkt21Z actions
in &da.. -41. By Lemma 6.5, /J71&** is a finite
schedule of &tt that can leave et** in a state in
which a sequence Q’ of packets is waiting, where Q’
is equivalent to outA(a, 2, k).

Now we apply Lemma 2.3 to deduce that /37 is a
finite schedule of a(A) that can leave @(A) in a
state where the state of A* is s, the state of AZ is
equivalent to StateA(o, 2, k) and a sequence equiva-
lent to outA(a, z, k) is waiting in the state of &‘.

0

The next lemma shows that we can find an execu-
tion that ends with the data link protocol in states
equivalent to those in any suitable given execution,
but with a sequence of packets equivalent to those
sent in the original execution waiting in the chan-
nels.

Lemma 7.3 Let A be a nzessage-independent,
crashing data link protocol. Let a = so?rlsl . . . n,,sn
be un execution of &(A) such that u1 = waketp+,
3r2 = wakerpt and no wake, fail or crash events
occur in 7r3...7rn. Suppose k is an integer with
2 5 k 5 n. Let x denote the station such that

164

zk E acts(A”). Then there is a finite schedule ,8 of
L?)‘(A) with the folIowing properties:

1. beh(P) is well-formed, satisfies (DLl)-(D&3),
and contains unbounded transmitter and re-
ceiver working intervals, and

2. p can leave i?(A) in a state where the state of
AS is equivalent to &&?A(&, 2, k), the State of
A” is equivalent to .stateA(cr,Z, k), and a se-
quence Q of distinct packets is waiting in the
state of exa* such that Q z oUtA(a, x, k).

Proof: Assume inductively that we have proved
the lemma for ail smaller values of k.

If all the actions ~3,. . . , rk are in acts(A”), then
o&A((Y,z, k) must be the empty sequence, and
therefore we deduce that inA(o, z:, k) is also empty.
Also stateA(a, f, k) must be equal to stotcA(CY, f, 2)
Thus the sequence wake”~“wakeCJ is a finite sched-
ule of &(A) with well-formed behavior satisfying
(DLl)-(DLS) d an containing unbounded tranmitter
and receiver working intervals, that can leave AZ
in state stateA(o, 5, k) with a sequence equivalent
to inl(cr, t, 6) waiting in &t. We can therefore
apply Lemma 7.2 to obtain p.

Otherwise let j be the greatest integer such that
2 < j < k and Xj E octs(A’). Then inA(o, 2, k) is
a subsequence of outA(o, E, j), and st&cA(o, 5, k)
must equal st&!eA(o, f, j). By using the assumed
truth of the lemma for the smaller value j we get
a schedule /31 with well-formed behavior satisfying
(DLl)-(DL3) d an containing unbounded transmit-
ter and receiver working intervals that can leave
A” in state equivalent to &teA(o, 5,j) with a se-
quence equivalent to outA(a, i, j) waiting in @‘z.
By Lemma 6.6, pr can also leave 6’(A) in a state
with A’ in a state equivalent to stateA(a, jz, j), and
with a sequence equivalent to z’nA(o, 2, k) waiting in
^ ‘A.

:

We can therefore apply Lemma 7.2 to obtain
0

We can now use the previous lemma to find a
schedule of a crashing message-independent data
link protocol that can lead to states equivalent to
those at the end of a given execution, but in which
a message has .been sent but not received.

Lemma 7.4 Let A = (At, A’) be a message-
independent, crashing data link protocol. Let cy =
SORlSl . . .R,Sn 6e an erecution of $(A), such
that XI = wake’s’, 7r;, = wake’J and beh(rr) =

wake*~Fwake’~tsendmsgt~‘(m)receive~msgt~r(m)~
Then there is a finite schedule p of @(A) with the
following proper-dies:

1. beh(,B) is well-formed and satisfies (DLl)-

(DL J),

2. beh(P) ends in send,msg’~‘(ml) for some ml,

9. /3 can leave D(A) in a state where the state
of A’ is equivalent to stateA(a,t,n), the state
of A’ is equivalent to stoteA(Q,f,n), and the
state of each physical channel is clean.

Proof: Let n’ denote the greatest integer less than
or equal to n such that x,# E acts(A’). Lemma 7.3
yields a finite schedule p’ of @(A) with the fol-
lowing properties: beh(/3’) is well-formed, satisfies
(DLl)-(DL3), and contains unbounded transmitter
and receiver working intervals, and 0’ can leave
&(A) in a state where the state of A’ is equiv-
alent to stateA (CY, r, n’), and a sequence Q of dis-
tinct packets is waiting in the state of < such
that Q s outA(a, r, n’).

Since the sequence inA(a, t, n) is a subsequence
Of outA(a, r, n’), we can use Lemma 6.6 t0 see that
p’ can also leave &(A) in a state where the state of
A’ is equivalent to stateA(f.2, r, n’), and a sequence
Q’ is waiting in the state of C?st such that Q’ G
inA(a, t, n).

We can now apply Lemma 7.2 to obtain a se-
quence 7 such that /?‘r is a finite schedule of @(A),
beh(P’y) is well-formed and satisfies (DLl)-(DL3),
y 5 C?Y&Sh”‘odSA(Q,t,n), and /?‘y can leave b(A)
in a state where the state of A’ is equivalent to
stateA(o, r, n’) and the state of A’ is equivalent to
statcA(CV, t, n). By using Lemma 6.3 to modify the
states of the channels, we see /?‘y can also leave
Ij’(A) in a state with all the properties listed al-
ready, and also both physical channels clean. We
put p = P’y.

We now note, using the definition of n’,
that statcA(o, r, n’) = stateA(o, r, n). Since
y is equivalent to crashtJfactsA(cr, t,n) and
beh(actsA(a,t,n)) = beh(cY)IA’, we have that
beh(P) ends in crash*~rwaket~‘send~msgt~‘(m~) for
some ml. Since beh(,B) is well;formed and satisfies
(DLl)-(DL3), we are done. cl

Finally we can use the results above to prove our
impossibility theorem.

165

Theorem 7.5 There is no data link protocol that is
weakly correct with respect to FIFO physical chan-
nels, and is message-independent and crashing.

Proof: Assume that A = (A’, A’) is such a pro-
tocol.

First we observe that there is a finite execution
a = SOT1 81 . ..?r.Sn

of b(A) with the following properties: beh(a) =
wake’*‘wake”“send-msg**‘(m)receive-msg’*’(m)
for some m, ?rl = waketIP, ~2 = wakePIt, and in sn
each physical channel is clean. The existence of such
an Q is proved by using Lemma 4.1 to get an execu-
tion with the required behavior, truncating it after
the state following the receive-msg’l’(m) event (to
make it finite), and finally using Lemma 6.3 to alter
the component of each state of each physical chan-
nel, without altering the schedule, so as to leave the
physical channels clean.

Next we appeal to Lemma 7.4 to obtain a finite
execution & = iciilii . . . ii&k of B’(A) with the
following properties: beh(&) is well-formed, satis-
fies (DLl)-(DL3), ends in send-msgt~r(ml) for some
ml, stateA(&, z, k) E stateA(a, z,n) for CE E (t,r},
and each physical channel is clean in %,,.

By Lemma 2.1, there is a fair execution of @(A)
that extends h and contains no additional inputs
to B’(A). The behavior of this extension is well-
formed and satisfies (DLl)-(DL3) since beh(&) has
these properties, and they are not affected by out-
put actions. Thus the behavior of this exten-
sion must satisfy (DL8). Since send-msg’I’(mr)
is followed in the extension by no input action
of 3(A), it occurs in an unbounded transmit-
ter working interval. The extension therefore con-
tains receive-msg’j’(ml) by (DL8). Thus the suf-
fix of the extension after & contains at least one
receive-msgt~f event, and it contains no input ac-
tions of &(A). Let m2 be the message parameter
in the first receive,msgtlT event in the suffix of the
extension. By truncating the extension after this
receive,msg’J(m2) event, we obtain a finite execu-
tion &I of a(A) with the following properties: it ex-
tends &, and beh(Br) = beh(&)receive_ms#*‘(m2).

Applying Lemma 7.1 to the executions a, h and
&I, we deduce the existence of a finite execution
(~1 of &(A) such that (~1 extends a and the ac-
tions in the suffix of cyl after Q are equivalent to
those in the suffix of &1 after h. Thus crl has the
following properties: it extends cr, and beh(al) =

beh(a)receive-msg’*‘(ms) for some ms. Note that
beh(al) is well-formed and satisfies (DLl)-(DL3).

Now we use Lemma 2.1 to get a fair extension of
al with no additional inputs. This extension (whose
behavior is well-formed and satisfies (DLl)-(DL3))
contains no additional outputs by (DL4) and (DL5).
Thus this fair extension has behavior equal to
beh(al). Thus we have shown that the sequence
waket*‘wake’~‘send-msg’~‘(m)receive~msg’~’(m)
receive,msg’I’(ms) is a fair behavior of a’(A).

If ms # m this fair behavior does not satisfy
(DL5), since it contains receive-msg’J(m3) but no
sencLmsg’~‘(m3). If ma = m this fair .behavior
does not satisfy (DL4) since it contain two events
send,msgt~‘(m). In either case, since the fair be-
havior is well-formed and does satisfy (DLl)-(DL3),
we have found a contradiction with the assumption
that b’(A) solves WDL’>’ . 0

8 Using Bounded Headers
With Non-FIFO Channels

In this section, we consider the case where the phys-
ical channel need not be FIFO; non-FIFO physi-
cal channels make the design of data link protocols
more difficult than FIFO physical channels. We
show that it is impossible to have a weakly cor-
rect, message-independent data link protocol that
has bounded headers.

8.1 k-bounded Protocols

Our impossibility proof requires a technical restric-
tion, that the protocol be “k-bounded”. This re-
striction means that for any message, there is some
execution in which at most k packets are used to
transmit the message. Most practical protocols
are in fact l-bounded. The formal definition of
k-boundedness is made in terms of the permissive
physical channel C’jr defined earlier.

We require a preliminary definition. Namely, a
sequence of data link layer actions /3 is valid if (1)
p is well-formed, (2) p satisfies (DLl) to (DL5) and
(DW, an! (3) a wake event, but no fail or crash
events, occur in p.

The following lemmas give basic properties of
valid sequences.

166

Lemma 8.1 Let p be a valid sequence of data
link layer actions. Let m be a message. If
send-msgtJ (m) occurs in p then receive-msgtB’(m)
occurs in 0.

Proof: Suppose a send-msg’~‘(m) occurs in p.
By (DLl) the send-msgtl’(m) event occurs in a
transmitter working interval in p. Since there are
no fail or crash events in /3, this working in-
terval is unbounded. Since (DL8) is satisfied, a
receive,msgt*’ (m) also occurs in /?. 0

Lemma 8.2 Let p be a valid sequence of data
link layer actions and let m be a message such
that send-msg*J(m) does not occur in p. Then
@end-msg’j’(m)receive-msgtp’(m) is a valid se-
quence.

Recall that D’(A) = hideo(D(A)), where D(A)
is the composition of A’, A’, ctlr and cl’, and Q
is the subset of acts(b(A)) consisting of send&t
and receiveqkt actions.

We say that A is k-bounded if the following condi-
tion holds for every finite schedule /? of d’(A) such
that beh(P) is valid, and for every message m such
that send-msg’I’(m) does not occur in p: there is
a schedule Pr of D’(A) such that

1. beh(y) = send_msg’J (m)receive-msg’l’(m),

2. y does not include any receive-pkt’p’(p) actions
such that sendpkt’“(p) occurs in fl, and

3. the number of receive_pkW events in y is at
most k.

Suppose that A is a k-bounded data link pro-
tocol. Let ,8 be a finite schedule of B’(A)
such that beh(P) is valid and let m be a mes-
sage such that send-msgtJ(m) does not occur in
fl. Then define packet-setA(m, 0) to be the set
of packets received from t by r in some par-
ticular 7 such that Py is a schedule of b’(A),
beh(r) = send-msgtl’(m) receive-msgtlr(m), y
does not include any receive-pkt’J(p) actions such
that send-pkt’l’(p) occurs in p, and such that the
number of receive-pkt’s’ events in y is at most k.
Such a 7 exists by the definition of k-boundedness.

8.2 The Proof

The essence of this section is to take a sup-
posed message-independent, k-bounded weakly cor-
rect data link protocol with bounded headers, and

to produce a schedule in which every message sent
has been delivered, but a large collection of packets
is in transit, in fact, a collection equivalent to the set
of packets which can be used to transmit a new mes-
sage. If those packets in transit are now delivered,
the receiving automaton will announce delivery of a
message although none was sent that has not been
delivered already, contradicting the assumed weak
correctness of the protocol.

We begin by defining a partial order between sets
of packets, with a parameter k, with respect to an
equivalence relation z, in the following way: T ck,w
T’ if: (1) T C T’, and (2) there exists a packet p,
such that p E T’, p 4 T and the number of packets
p’ E T such that p E p’ is less than k.

When the equivalence relation, s:, is clear from
the context we use the notation <k for <k,w,

We now prove the crucial inductive step that we
will use to “pump up” the collection of packets in
transit.

Lemma 8.3 Let k be an integer. Let A be a weakly
correct k-bounded data link protocol that is message-
independent with respect to z. Let /? be a finite

schedule of D(A) such that beh(/3) is valid, and let
T be a set of packets that are in transit in PI@.
Then at least one of the ;following holds.

1.

8.

There exists a
message m such that send-msg’g’(m) does not
occur in /3 and there is a one-to-one mapping,
f, from the packets in packetSetA (m, p) to the
packets in T, such that p E f(p) for all p.

There is a finite schedule & of B’(A) such
that:

(a) beh(py) is valid,

(b) y does not include any receive-pkt’lr(p)
action such that send_pkt’~‘(p) occurs in
p, and

(c) there exists a set T’ of packets in transit
in /37lC’~‘, where T <k T’.

Proof: Fix k, A, 0 and T as in the hypotheses. Let
m be any message such that send-msg’~‘(m) does
not occur in p. Since A is k-bounded, there exists
a sequence yl such that ,Oyr is a schedule of d’(A),

beh(yl) = send-msg’~‘(m)receive-msgQ(m), y1
does not include any receive,pkt*p’(p) events such
that sendqktttr(p) occurs in p, and the packets de-
livered from t to r in yr are packet_setA(m, ,f3) and

167

therefore are at most k in number. It follows from
Lemma 8.2 that beh(/?71) is valid.

If for every packet p in pactetsetA(m,P) there
are at least k packets p’ in T such that p’ E p, then
by standard results in combinatorics there is a one-
to-one function f from packets in packet_setA(m, p)
to packets in ‘I’, such that f(p) E p for all p. In such
a case (1) holds.

Otherwise, we can find some packet po in
pocket-setA(m, /3) such that there are fewer than
k packets p’ in T such that po z p’. Since 71 con-
tains receive-pkt’*‘(po) and no message sent in /3
is delivered in 71, 71 also contains send-pkt**‘(po).
Let p denote the prefix of 71 up to and including
send-pkttp’(pc). We claim that there exists a se-
quence fi such that using y = p@, py satisfies (2).

In case either receive-msg’I’(m) is in p or
send-msgtl’(m) is not in p, ,? can be taken to be the
empty sequence. (In the former case, Lemma 8.2
implies that beh(pp) is valid.) So suppose that
send-msg’l’() m is in p and receive-msg’*“(m) is not
in p.

By Lemma 6.3, there is an execution Q’ of D’(A)
such that sched(a) = ,L?P and ctlf is clean in the
final state of (Y. By Lemma 2.1, there is a fair
execution Q” of d’(A) such that cr” extends cu’ and
contains no input events of D’(A) except those in
a’. Let beh(a”) = ppp’ . Thus @pp’ is a fair schedule
of d’(A).

Since A is weakly correct and beh(@pp’) is well-
formed and satisfies (DLl)-(DL3), beh(/?pp’) also
satisfies (DL8). S ince send-msg’l’(m) occurs in
beh@pp’), (DL8) implies that receive-msg*p’(m)
also occurs in be!@&). Let i be the prefix of
p’ ending with receive-msg’l’(m). We claim that b
has the needed properties,

First, since every message sent in fl is received in
p, and the onIy message sent in p is m, 6 contains
no receive-msgtsr events except receive-msgtlP (m)
by (DL4) and (DL5). Thus beh(pp@) =
beh(/?)send~msg’~P(m)receiue-msgt~r(m) which is
valid by Lemma 8.2. Second, since @ is the schedule
of an execution fragment that begins with ctzr in a
clean state pb does not include any receive-pkt’l’(p)
such that send-pkttl’(p) occurs in p. Finally, the
choice of T’ = T U {ps} satisfies the third claim. q

Using the above we can find a schedule in which
every message sent has been delivered, but where a
large collection of packets are in transit.

Lemma 8.4 Let k be an integer. Let A = (At,A’)
be a weak/y correct k-bounded data link protocol that
is message-independent with respect to 5, and has
bounded headers. Then there exist a finite sched-
ule P of b’(A), a set T of packets, and a message
m such that the following conditions are true. (1)
beh(P) is valid, (2) every packet in T is in transit
in PI@, (3) sznd,msg’~‘(m) does not occur in p,
and (4) there is a one-to-one mapping, f, from the
packets in packetsetA(m,P) to the packets in T,
such that p G f(p) for all p.

Proof: Let H be the finite set headers(A, E). By
the definition of the partial order <L,=, the maxi-
mum length of a chain of sets in the <k,% order is
at most k. IHI.

Starting with pi as the schedule waket~‘wake’lt,
and TI as the empty set, we apply Lemma 8.3 re-
peatedly, obtaining pi and Ti, i = 2, as long as
case (2) of the lemma holds. Since the construction
insures that Ti <k,z Ti+l for all i 2 1, eventually
case (1) of Lemma 8.3 must hold. That is, for
some fixed i, fli is a schedule of D’(A), all pack-
ets in the set Ti are in transit in ,&, and beh(@i)
is valid; moreover, there exists a message m such
that send-msgt>‘(m) does not occur in pi and there
is a one-to-one mapping, f, from the packets in
paCket>etA(m, pi) to the packets in Ti, such that
p G f(p) for all p. Taking B = & yields the result.

0

Now we use the schedule given by the previous
lemma to prove the impossibility result of this sec-
tion.

Theorem 8.5 There is no weakly correct data link
protocol that is message-independent, has bounded
headers, and is k-bounded for some k.

Proof: Assume the contrary, and let A =
(At, A’) be a data link protocol that satis-
fies all these conditions. Let H be the fi-
nite set headers(A, E). The proof is done
by creating a schedule of B’(A) in which, for
some message m, either receive-msg’~‘(m) appears
twice, or a receive-msg’lr(m) occurs although a
send,msgtJ(m) event does not occur.

Choose m, ,f3 and T satisfying Lemma 8.4.
By the conclusions of that lemma and the defi-
nition of paCket_SetA, there exists a sequence 71
of actions such that /3yi is a schedule of D’(A),

168

beh(n > = send-msg*n’(m)receive-msg’~‘(m), yl
does not include any receive-pkt*J(p) actions such
that send-pkt*t’(p) occurs in p, all the packets in T
are in transit in p, and there is a one-to-one map-
ping, f, from the set of packets delivered at r in yi
to the set T such that p s f(p) for all p. We modify
the schedule p-yr to reach the contradiction.

We will now construct a sequence ys such
that: (1) Py2 is a schedule of B’(A), (2) every
receive-pkt*J(p) action in ys has a send,pktQ(p)
in p, and (3) y2 is equivalent to yl(A’.

Let (Y be an execution of A’ such that shed(a) =

(Pn)lA’. W e rs construct a new execution o’ of fi t
A’ and then define y2 so that sched(a’) = (PIA’)y2.

The construction of cr’ is done by induction
on the lengths of prefixes of (Y. Suppose cy =
SO7rlSl f. . sj and let cr’ be expressed in the form

I CY =s$r’ls’l*.*s~. For each i, the construction will
ensure that si z S: and r* s ni ’

As the basis, define cr and (Y’ to be identical up to
and including the state just after the portion having
schedule PIA’. Now suppose that sb7risi . . s s: has
already been defined and consider 7r:+rs:+r.

If =i+1 is a receive,pkt*J(p) action, then de-
fine 7r:+r to be receive-pkt*l’(f(p)). By assump-
tion on f, p S f(p), so that receiveqkt*“(p) z
receive-pkt*l’(f(p)), i.e., ri+l E T(!+~.

If Ri+r is a locally-controlled action of A’, then
since Si E .s: the message-independence assumption
implies that there is an action equivalent to ri+r
that is enabled in s{; let 7ci+r be this action.

Note that these exhaust the possibilities because
beh(yl IA’) = receive-msg*J(m), so %*+I cannot be
wake’l’, fail’~’ or crash’**. Having defined ri+r,
we now define ++I. Since si z s: and rri+r z ni+l,

the message-independence assumption implies that
there is a state s such that s G si+r and (s:, T:+~, s)
is a step of A’. Let si+r = s. This completes the
construction of Q’.

NOW fix 72 so that sched(a’) = (PIA+)y2. Then
we claim that y2 has the required properties. Prop-
erties (2) and (3) are immediate from the construc-
tion, as is the fact that (@72)(A’ is a schedule of
A’. By construction, no action in 72 is in acts(A*),
so (Py2)(At = PIA’ which is a schedule of A*.
Since p(Cl*
tion y2 It?,*

is a schedule of CC,*, and by construc-
is just a sequence of sendqkt’p’ actions

which are inputs to CJ*, we deduce that (&,)]C,*
is a schedule of (?I*. Finally notice that PJC*J

is a schedule of I!?‘*,~, and ^/zJ~*J is a sequence of
receive-pkt*l’ actions for packets that are in transit
from t to r in ,0. By Lemmas 6.7 and 6.4 (PY~)@*,~
is a schedule of (?*I~. Then Lemma 2.4 yields Prop-
erty (1)) completing the proof of our claim.

Since the action receive-msg*~‘(m) occurs in
YIP’ and ~2 3 711Ar, there is some message m’
such that the action receive-msgtJ (m’) occurs in
~2. Fix m’ for the remainder of the proof.

By Lemma 2.1 there is a fair schedule py2y3 of
@(A) such that y3 contains no inputs to D(A).
This has behavior that is well-formed and satis-
fies (DLl)-(DL3). Since beh(P) is valid, for every
message mi such that send-msg*~‘(mi) occurs in
p, the event receive-msg*~r(mi) also occur in /3.
The action receive,msg*~‘(m’) appears in py2 ya.
If the action send-msg*~‘(m’) appears in /3, then
a receive,msg*~‘(m’) event also occurs in /?, so
beh(P727s) does not satisfy (DL4). On the other
hand, if the action send,msg*~‘(m’) does not appear
in p, then since no send,msg’J events occur in 72~3,

we see that beh(py& does not satisfy (DLS). Ei-
ther case yields a contradiction with the assumption
that D’(A) solves WDL*“. 0

Note that the execution constructed in the pre-
ceding impossibility proof did not include any fail
or crash actions. In fact, we could just as well have
proved the result for a simpler sort of data link layer
specification, not including fail or crash actions at
all.

9 Discussion

The formal definitions we have given such as
“message-independence” and “having bounded
headers” seem to us to capture the essential features
of the corresponding intuitive concepts as they ap-
pear in real network protocols, while also making
the proofs easy. Alternative definitions could be
given in some cases. We here mention a few points
about these.

First, one might consider protocols where some
simple information about the message content was
used, for example the length might determine the
number of packets needed to contain the message.
This could be modelled by allowing different mes-
sages to be in different equivalence classes. All that
seems needed for the proofs we have given to re-

169

main valid is the existence of some class that con-
tains enough different messages. In the final version
of this paper we expect to extend all the proofs to
this case.

Second, one might consider protocols where the
number of different headers used in the packets
that transmit the first n messages is a function of
n, rather than a constant as in a protocol with
bounded headers. Stenning’s protocol uses a new
header for each new message, that is, the number
of headers used grows linearly with n. We expect
to model this in the final version of this paper, and
repeat the proof given in Section 8 to show that us-
ing a sublinear number of headers is impossible if
the physical channels might not be FIFO.

Acknowledgements
We would like to thank Baruch Awerbuch for

many discussions. We also would like to thank Jen-
nifer Welch for her helpful comments on several ver-
sions of the paper.

REFERENCES

[BSSS] Baratz A. and Segall A., “Reliable Link Ini-
tialization Procedures,” Proceedings of the 3rd
IFIP Workshop on Protocol Specification, Test-
ing and Verification, May 1983. To appear in
IEEE Bansaction on Communication, Febru-
ary 1988.

[C78] Cyper, R. J., Communications Architecture
for Distributed Systems, Addison-Wesley, 1978.

[L88] Lynch N., “I/O Automata: A Model for
Discrete Event Systems,” Proceedings of the
22nd Annual Conference on Information Sci-
ences and Systems, March 1988.

[LT87] Lynch N. A. and Tuttle M, R., “Hierar-
chical Correctness Proofs for Distributed Algo
rithms,” Proceedings of the 6th Annual ACM
Symposium on Principles of Distributed Com-
puting pp. 137-151, August 1987.

[MW77] McQuillan, J. M., and Walden, D. C.
“The ARPA Network Design decisions” Com-
put. Networks, vol. 1, pp. 243-289, August
1977.

[T] Tanenbaum A., Computer Networks, Prentice
Hall, 1981.

fW80] Wecker, S., “DNA: the Digital Network Ar-
chitecture”, IEEE l%ansactions on Communi-
cation, vol. COM-28, pp. 510-526, April 1980.

[Z80] Zimmermann, H. “0% Reference Model -
The IS0 Model of Architecture for Open Sys-
tems Interconnection”, IEEE Transactions on
Communication, vol. COM-28, pp. 425-432,
April 1980.

170

