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Abstract: The data link layer in a layered commu- 
nication network is designed to ensure reliable data 
transfer over a noisy physical channel. Formal spec- 
ifications are given for physical channels and data 
links, in terms of I/O automata. Based on these 
specifications, two impossibility results are proved. 
First, no data link protocol can tolerate crashes of 
the host processors on which the protocol runs. Sec- 
ond, any data link protocol constructed to use an 
arbitrary non-FIFO physical channel requires un- 
bounded headers. 

1 Introduction 

Network protocols are decomposed into layers in or- 
der to reduce the complexity of their design. Each 
layer has a particular abstract behavior, describ- 
able in terms of a particular collection of abstract, 
actions. This abstract behavior is provided for the 
use of the next higher layer, and is implemented 
in terms of the abstract behavior of the next lower 
layer. A thorough discussion of network layers can 
be found in [T]. 

The physical layer is the lowest layer in the hier- 
archy, and is implemented directly in terms of the 
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physical transmission media. There are two classes 
of transmission media that are commonly consid- 
ered, one that ensures FIFO behavior for the corre- 
sponding physical channel and the other that does 
not. (A physical channel is said to exhibit FIFO be- 
havior provided that messages are received on the 
physical channel in the same order as they are sent.) 
The transmission media are noisy; therefore, the 
physical layer does not ensure that a message that 
is sent will be received. 

The data link layer is the next higher layer in the 
network hierarchy. In contrast to the physical layer, 
the data link layer ensures reliable data transfer, 
though only across one hop in the network. This 
means that every message that is sent on a data 
link to a neighboring node is eventually received at 
the other end (unless a link failure occurs) and also 
that the data link exhibits FIFO behavior. (That is, 
messages are received on the data link in the same 
order as they are sent.) 

We have taken the terminology “physical chan- 
nel” and “data link” from the OS1 layered commu- 
nication model [Z] used by the International Stan- 
dards Organization. There are many different kinds 
of layered networks, not all of which use the particu- 
lar layers specified in the IS0 model. However, most 
of the important layered networks have their two 
lowest layers very similar to those described here, 
although their terminology may be different. For 
example, the ARPANET data link layer is called 
the “IMP-IMP” [MW77] layer, while the SNA and 
DECNET data link layers are called “data link con- 
trol” layers [C78,W80]. 

Data links are implemented using protocols that 
interact by communicating over physical channels. 
Some examples of interesting data link protocols 
are HDLC (proposed by ISO), SDLC (developed by 
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IBM) and LAPB (used by CCITT). These proto- 
cols are very similar; they all require FIFO phys- 
ical channels, and they are all based on a “slid- 
ing window” automatic repeat request (ARQ) al- 
gorithm, where messages are sent in packets whose 
headers contain a sequence number for the message, 
and where acknowledgements contain the sequence 
number of the next message expected. Both se- 
quence numbers are kept modulo a number that 
is at least one more than the size of the window, 
which is the maximum difference allowed between 
the greatest sequence number sent by the transmit- 
ter and the greatest sequence number of a message 
for which the sender has received an acknowledge- 
ment. The correctness of this algorithm has been 
proved using many different formal methods, under 
the assumption that the peer processes that carry 
out the protocol are correctly initialized. However, 
Baratz and Segall [BSSJ] show that the protocols 
mentioned may not reach a satisfactory initializa- 
tion after the underlying physical link fails and then 
recovers. In [BS83] new link initialization strategies 
are presented, each of which can be combined with 
a sliding window algorithm to give a protocol that 
uses a small amount of memory and can tolerate an 
arbitrary number of link failures. The resulting pro- 
tocols require access to one bit of non-volatile mem- 
ory, that is, storage that retains its state across a 
crash of the processor on which the protocol is run- 
ning. 

When the physical channel does not guarantee 
FIFO behavior, an ARQ algorithm can still be used, 
so long as each message is given a distinct sequence 
number. The resulting algorithm (called Stenning’s 
protocol) uses headers which may be arbitrarily 
1ong.l . 

In this paper, we give formal specifications for 
both the physical and data link layer, in terms of 
I/O automata ]LT87]. Based on these specifica- 
tions, we prove two impossibility results about im- 
plementing data link protocols, 

First, we study the ability of a data link protocol 
to tolerate crashes of the host processors on which 
the protocol runs, without access to non-volatile 
storage. In the absence of non-volatile storage, a 
host crash can be viewed ss resetting the memory 

‘lf there is a known bound on the time a message may 
remain on the link before being either lost or delivered, this 
may be used in conjunction with reliable clocks to derive a 
protocol with bounded headers. 

of the part of the data link protocol running on that 
host to its distinguished initial value. We prove that 
it is impossible for any data link protocol to toler- 
ate host crashes, even if the requirements of the 
data link protocol are stated very weakly and even 
if the underlying physical channel is assumed to be 
FIFO. This impossibilty result was conjectured in 
[BS83]. A very similar result has been obtained 
independently and concurrently by J. Spinelli (per- 
sonal communication). 

Second, we consider the possibility of achieving 
reliable data transfer with bounded headers, using 
a physical layer that does not ensure FIFO behavior. 
The headers contain information added to messages 
by the data link protocol before sending them on 
the physical channel. We prove that unbounded 
headers are essential for achieving correct data link 
behavior if the physical channels can reorder packets 
arbitrarily; this is the case even if the requirements 
on the data link are weak. 

The data link protocol and the physical chan- 
nel are modeled as I/O automata; thus, the for- 
mal content of our results is the nonexistence of 
I/O automata whose behavior has certain proper- 
ties. We believe, however, that any reasonable data 
link protocol can be described in terms of I/O au- 
tomata, and that the properties chosen accurately 
reflect the requirements described informally above, 
so that the results really assert the nonexistence of 
data link protocols satisfying the requirements. 

The rest of the paper is organized as follows. Sec- 
tion 2 contains a summary of the relevant definitions 
from the I/O automaton model. Sections 3 and 4 
contain formal specifications for the physical layer 
and data link layer, respectively. Section 5 describes 
constraints on data link protocols. Section 6 gives 
some specific automata that we will use as physical 
channels when giving the impossibility proofs. Sec- 
tion 7 contains our proof that no data link protocol 
can tolerate host crashes, and Section 8 contains 
our proof that unbounded headers are essential for 
implementing a data link layer using arbitrary non- 
FIFO physical channels. Finally Section 9 contains 
a discussion of ways in which we believe the def- 
initions can be extended without invalidating the 
proofs. 
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2 The I/O Automaton Model 

The input/output automaton model was defined in 
[LT87] as a tool for modeling concurrent and dis- 
tributed systems, We refer the reader to [LT87] 
and to the expository paper [L88] for a complete 
development of the model, plus motivation and ex- 
amples. Here, we provide a brief summary of those 
aspects of the model that are needed for our results. 

2.1 Actions and Action Signatures 

We assume a universal set of actions, and we refer 
to a particular occurrence of an action in a sequence 
as an event. 

An action signature S is an ordered triple con- 
sisting of three pairwise-disjoint sets of actions. We 
write in(S), out(S) and i&(S) for the three com- 
ponents of S, and refer to the actions in the three 
sets as the input actions, output actions and in- 
ternal actions of S, respectively. We let e&(S) = 
in(S) U out(S) and refer to the actions in e&(S) as 
the external actions of S. Also, we let Zocol(S) = 
out(S) u id(S), and refer to the actions in local(S) 
as the Zocalfy-controlled actions of S. Finally, we let 
acts(S) = in(S) U out(S) U int(S), and refer to the 
actions in a&s(S) as the actions of S. An external 
action signature iq an action signature consisting en- 
tirely of external actions, that is, having no internal 
actions. 

2.2 Input/Output Automata 

An input/output automaton A (also called an I/O 
automaton or simply an automaton) consists of five 
components: 

1. an action signature Big(A), 

2. a set states(A) of states, 

3. a nonempty set start(A) & states(A) of stud 
states, 

4. a transition relation steps(A) C (states(A) x 
acts(sig(A)) x states(A)), with the property 
that for every state s’ and input action ?r there 
is a transition (s’, r, s) in steps(A), and 

5. an equivalence relation part(A) on 
Zocal(sig(A)j, having at most countably many 
equivalence classes. 

We refer to an element (s’, A, s) of steps(A) as a 
step of A. The step (s’, ?T, s) is called an input step 
of A if r is an input action. Output steps, internal 
steps, external steps and locally-controlled steps are 
defined analogously. If (s’, ?r, s) is a step of A, then 
r is said to be enabled in s’. Since every input 
action is enabled in every state, automata are said 
to be input-enabled The partition p&(A) is an 
abstract description of the underlying components 
of the automaton, and is used to define fairness. 

An execution fragment of A is a finite se- 
quence s~?T~s~?T~. . .ir,s, or an infinite sequence 
SlJ7r1S17r2...7r,S~... of alternating states and ac- 
tions of A such that (si, ?ri+r, si+r) is a step of A 
for every i. An execution fragment beginning with 
a start state is called an execution. We denote the 
set of executions of A by e+ecs(A). A state is said 
to be reachable in A if it is the final state of a finite 
execution of A. 

A fair execution of an automaton A is defined to 
be an execution o! of A such that the following con- 
dition holds for each class C of part(A): if cr is finite, 
then no action of C is enabled in the final sta.te of a, 
while if cr is infinite, then either cy contains infinitely 
many events from C, or else Q contains infinitely 
many occurrences of states in which no action of C 
is enabled. Thus, a fair execution gives “fair turns” 
to each class of part(A). We denote the set of fair 
executions of A by fairexecs(A). 

The schedule of an execution fragment CY of A is 
the subsequence of cy consisting of actions, and is 
denoted by sched(cr). We say that ,O is a schedule 
of A if fl is the schedule of an execution of A. We 
denote the set of schedules, of A by s&e&(A). We 
say that /3 is a fair schedule of A if p is the schedule 
of a fair execution of A and we denote the set of fair 
schedules of A by fairscheds(A). 

The behavior of an execution or schedule cy of A is 
the subsequence of.a! consisting of external actions, 
and is denoted by be/z(a)., We say that p is a behav- 
ior of A if ,B is the behavior of an execution of A. 
We denote the set of behaviors of A by belts(A). We 
say that p is a fair behavior of A if p is the behavior 
of a fair execution of A and we denote the set of fair 
behaviors of A by fairbehs(A). When an algorithm 
is modelled as an I/O automaton, it is the set of fair 
behaviors of the automaton that reflect the activity 
of the algorithm that is important to users. 
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We say that a finite behavior or schedule p of A 
can leave A in state s if there is a finite execution 
Q with p as its behavior or schedule, such that the 
final state in o is 8. 

The following lemma says that no matter what 
has happened in any finite execution, and no mat- 
ter what inputs continue to arrive from the environ- 
ment, an automaton can continue to take steps to 
give a fair execution. 

Lemma 2.1 Let A be an I/O automaton and let y 
be a sequence of input actions of A. 

1. 

2. 

Suppose that a is a finite execution of A. Then 
there exists a fair execution Q’ of A such that 
a’ is an extension of (Y and beh(cr’)Jin(A) = 

(be&)lin(A))y. 

Suppose that fl is a finite schedule of A. 
Then there etists a fair schedule p’ of A such 
that ,B’ is an extension of p and P’lin(A) = 

MWQY- 

2.3 Schedule ModuIes 

In line with our approach, where the facts about an 
algorithm that are important to its users are mod- 
elled by the set of fair behaviors of an automaton, 
we also give a formal model for a problem specifica- 
tion by a set of sequences of actions. More precisely, 
a problem will be specified by a pair consisting of an 
action signature and a set of sequences over the ac- 
tions in that signature. (In most interesting cases, 
the action signature will be an external action sig- 
nature.) The mathematical object used to describe 
a problem is called a “schedule module”. 

A schedule module H consists of two components: 

1. an action signature sig(H), and 

2. a set scheds(H) of schedules. 

Each schedule in scheds(H) is a finite or infinite 
sequence of actions of H. 

The behavior of a schedule p of H is the sub- 
sequence of p consisting of external actions, and 
is denoted by ‘beh(P). We say that p is a be- 
havior of H if ,8 is the behavior of an execution 
of H. We denote the set of behaviors of H by 
behs( H). We extend the definitions of fair schedules 
and fair behaviors to schedule modules in a triv- 
ial way, letting fairscheds(H) = scheds(H) and 
fairbehs(H) = behs(H). 

We use the term module to designate either an 
automaton or schedule module. If M is a mod- 
ule, we sometimes write ads(M) as shorthand for ’ 
ads(sig(M)), and likewise for in(M), out(M), etc. 
If ,8 is any sequence of actions and M is a module, 
we write /3IM for @(acts(M). 

2.4 Solving Problems 

Now we are ready to define our notion of “solv- 
ing” . This notion is intended for describing the 
way in which particular algorithms (formalized as 
automata) solve particular problems (formalized as 
schedule modules). Let A be an automaton and H 
a schedule module with the same external action 
signature as A. Then we say that A soIves H if 
faitbehs(A) C behs(H). 

2.5 Composition 

The most useful way of combining I/O automata is 
by means of a composition operator, as defined in 
this subsection. This models the way algorithms in- 
teract, as for example when the pieces of a commu- 
nication protocol at different nodes and a lower-level 
protocol all work together to provide a higher-level 
service. 

2.5.1 Composition of Action Signatures 

Let I be an index set that is at most countable. A 
collection (Si)ier of action signatures is said to be 
strongly compatible if for all i,j E I, we have 

1. Out(&) fl OUt(Sj) = 0, 

2. int(Si) n acts(Sj) = 0, and 

3. no action is in aCtS(Si) for infinitely many i. 

Thus, no action is an output of more than one 
signature in the collection, and internal actions of 
any signature do not appear in any other signature 
in the collection. 

The composition S = IIierSi of a collection of 
strongly compatible action signatures (Si}ier is 
defined to be the action signature with in(S) = 
Uie=in(Si)\Uierout(Si), out(S) = Uielotit(Si), and 
int(S) = Uie,itlt(Si). Thus, output actions are 
those that are outputs of any of the component sig-. 
natures, and similarly for internal actions. Input 
actions are any actions that are inputs to any of 
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the component signatures, but outputs of no com- 
ponent signature. 

25.2 Composition of Automata 

A collection {Ai}iEl of automata is said to be 
strongly compatible if their action signatures are 
strongly compatible. The composition A = IIiclAi 
of a strongly compatible collection of automata 
AiicI has the following components: 

1. 

2. 

3. 

4. 

5. 

sig(A) = IIiersig(Ai), 

states(A) = IIj~~StUteS(Aj)2 

start(A) = IIiErstart(Ai) 

steps(A) is the set of triples 
that for all i E I, if R E 

(sl 1 T, 4 such 
acts(Ai) then 

(si[i], r, ss[i]) E steps(Ai), and if r @ ads(Ai) 
then ~[i] = s2[i13, and 

part(A) = Ui,lpart(Ai). 

Since the automata Ai are input-enabled, so is their 
composition, and hence their composition is an au- 
tomaton. Each step of the composition automaton 
consists of all the automata that have a particu- 
lar action in their signatures performing that action 
concurrently, while the automata that do not have 
that action in their signatures do nothing. The par- 
tition for the composition is formed by taking the 
union of the partitions for the components. Thus, 
a fair execution of the composition gives fair turns 
to all of the classes within ail of the component au- 
tomata. In other words, all component automata 
in a composition continue to act autonomously. If 
a = S()7rlSl... is an execution of A, let ajA; be the 
sequence obtained by deleting njsj when rj is not 
an action of A;, and replacing the remaining sj by 
Sj [il. 

The following basic results relate executions, 
schedules and behaviors of a composition to those of 
the automata being composed. The first result says 
that the projections of executions of a composition 
onto the components are executions of the compo- 
nents, and similarly for schedules, etc. The parts of 
this result dealing with fairness depend on the fact 

*Note that the second and third components listed are 
just ordinary Cartesian products, while the first component 
uses a previous definition. 

3 We use the notation s[i] to denote the i-th component of 
the state vector s 

that at most one component automaton can impose 
preconditions on each action. 

Lemma 2.2 Let {Ai)ieI be a strongly compatible 
collection of auiomata, and let A = IIislAi. If 
a E execs(A) then arIAi E execs(Ai) for all i E 
I. Moreover, the same result holds for fairexecs, 
scheds, fairscheds, behs and fairbehs in place of ex- 
ecs. 

Certain converses of the preceding lemma are also 
true. The following lemma says that executions of 
component automata can be patched together to 
form an execution of the composition. 

Lemma 2.3 Let (Ai)icl be a strongly compatible 
collection of automata, and let A = HicIAj. For 
all i E I, let ai be an execution of Ai. Suppose p 
is a sequence of actions in e&(A) such that PjAi = 
beh(cYj) for every i. Then there is an execution a 
of A such that p = beh(cr) and ai = alAi for all i. 
Moreover, if ai is a fair execution of Ai for all i, 
then CY may be taken to be a fair execution of A. 

Similarly, schedules or behaviors of component 
automata can be patched together to form schedules 
or behaviors of the composition. 

Lemma 2.4 Let {Ai}iel be a strongly compatible 
collection of automata, and let A = LljeIAi, Let 
P be a sequence of actions in acts(A). If @lAi E 
scheds(Ai) for alli E I, then p E s&e&(A). More- 
over, the same result holds for fairscheds, behs and 
fairbehs in place of scheds. 

2.6 Hiding Output Actions 

We now define an operator that hides a designated 
set of output actions in a given automaton to pro- 
duce a new automaton in which the given actions 

are internal. Namely, suppose A is an I/O automa- 
ton and @ G e&(A) is any subset of the output 
actions of A. Then we define a new automaton, 
hide*(A) to be exactly the same as A except for its 
signature component. For the signature component, 
we have in(hidea(A)) = in(A), out(hidea(A)) = 
out(A) \ (3, and int(hidea(A)) = int(A) u a. I 
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3 The Physical Layer 

The physical layer is the lowest layer in the OS1 
Reference Model hierarchy, and is implemented di- 
rectly in terms of the physical transmission media. 

. A standard interface to the physical layer permits 
implementation of the higher layers independently 
of the transmission media. 

In a typical setting, a physical layer interacts with 
higher layers at two endpoints, a “transmitting sta- 
tion” and a “receiving station”. The physical layer 
receives messages called “packets” from the higher 
layer at the transmitting station, and delivers some 
of the packets to the higher layer at the receiving 
station. The physical layer can lose packets. While 
it is also possible for packets to be corrupted by the 
transmission medium, we assume that the physi- 
cal layer masks such corrupted packets using error- 
detecting codes. Thus, the only faulty behavior we 
consider is loss of packets. 

In this section, we give specifications for physical 
layer behavior. We will specify two different kinds of 
physical layers, baaed on whether or not the channel 
is required to ensure FIFO delivery of packets. It 
is convenient to parameterize the specifications by 
an ordered pair (t, r) of names for the transmitting 
and receiving stations. The specifications will be 
given as schedule modules, denoted by the names 
PL-FIFOtt’ and PLts’ respectively. 

Let P be a fixed alphabet of “packets”. Both 
PL’J and PL-FIFO’l’ have the action signature il- 
lustrated in Figure 1 and given formally as follows. 

Input actions: 
send-pkt’l’(p), p E P 
wake’>’ 
f aiP 
crash’p’ 

Output actions: 
receive-pkt’l’(p), p E P 

There are no internal actions. The send-pkt’“(p) 
action represents the sending of packet p on the 
physical channel by the transmitting station, and 
the receive-pkC’(p) represents the receipt of packet 
p by the receiving station. The waketIP and faiP*’ 
actions represent notification that the transmission 
medium has become active or inactive, respectively. 
Finally, the crashtJ action represents notification 

I wake’*’ 

Figure 1: The Physical Layer 

that the transmitting station has suffered a hard- 
ware crash failure. We will often refer to the actions 
in acts(PL’1’) as physical layer actions (for (t, r)). 

In order to define the sets of schedules for 
the two schedule modules, scheds(PLtl’) and 
scheds(PL-FIFO1”), it is helpful to define a collec- 
tion of auxiliary properties of sequences of physical 
layer actions. These will be properties reflecting the 
operation of a “good” physical channel in a “good” 
environment. We will then specify the allowed be- 
haviors of a physical channel by requiring some of 
these properties to hold ifothers do. Let /3 = ?ri~... 
be a (finite or infinite) sequence of physical layer ac- 
tions. We define properties for ,B. 

We define a crash interval in /3 to be a maximal 
contiguous subsequence not containing a crash’J 
event. We say that /? is well-formed provided that 
in every crash interval in p, the fail’~’ and wake”’ 
events alternate strictly, starting with waketb’. 
Thus, in a well-formed sequence, there are re- 
peated alternating notifications that the transmis- 
sion medium is active and inactive, with crashes 
serving as delimiters between sequences of wake and 
fail events. A crash event can be thought of as in- 
cluding a failure, in cases where the crash follows a 
wake with no intervening fail. 

If 0 is a well-formed sequence of physical layer 
actions, then a working interval in p is the subse- 
quence of ,f3 from any waketl’ event until the next 
fail’7’ or crashtJ event, or until the end of p if there 
are no later crash’lr or faiP1’ events, not including 
the given waketJ’, fail’~’ or crashti’ events. If /3 
has a wake’*’ event with no later failtp’ or crasht-’ 
event, then the suffix of ,0 starting after the wake’>’ 
event is called an unbounded working interval. Note 
that there is at most one unbounded working inter- 
val in @. 
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Now we define the following properties, (PLl)- 
(PL6), of well-formed sequences p of physical layer 
actions. The first property is a restriction on the 
use of the physical channel saying that a packet is 
sent only when the channel is active. 

(PLl) Every sendgkt’~f event occurs in a working 
interval in p. 

The next property is a technical restriction on the 
use of the physical channel saying that the packets 
sent are always unique. Thus the reader may think 
of each packet as labeled with a unique identifier; 
however, a practical data Iink layer protocol should 
not use this label, which is included in the model 
for ease of analysis, but does not correspond to any 
bits sent on the transmission medium.* The main 
reason we use this restriction is so that we can easily 
establish a correspondence between the packets sent 
and the packets received on the channel. 

(PL2) For every packet p, there is at most one 
sendqkW(p) event in p. 

The next property asserts that no single packet 
is received more than once. 

(PL3) For every packet p, there is at most one 
receive-pkt’l’(p) event in p, 

The next property says that the physical layer 
only delivers packets that were previously sent. 

(PL4) For every receive,pkt’r’(p) event in p, there 
is a preceding sendqkt’~‘(p) event in ,f3. 

The next is the FIFO property. It says that those 
packet.s that are delivered have their receivegkt 
events occurring in the same order as their send-pkt 
events. Note that (PL5) may be true even if a 
packet is delivered and some packet sent earlier is 
not delivered; there can be gaps in the sequence of 
delivered packets representing lost packets. 

(PL5) (FIFO) Suppose that p and p’ are 
two packets such that the events xi1 = 
send-pkttJ (p), ?ri2 = receive-pkW(p), ri3 = 
receive-pktt*‘(p’) and ni, = receive-pkt’l+(p’) 
appear in p. Then il < ia if and only if iz < id. 

‘In Section 5, we model formally the “header”, the infor- 
mation in a packet that is used by a data link layer protocol, 
as an equivalence class to which the packet belongs. 

So far, all of the properties listed have been safety 
properties. The final property is a liveness property. 
It says that if a channel remains active and repeated 
send events occur, then eventually some packet is 
delivered. 

(PL6) Starting after any point in an unbounded 
working interval, if infinitely many send-pkt’l’ 
events occur after that point, then some 
receive,pktt*’ event occurs after that point. 

Notice that well-formedness, (PLl) and (PL2) are 
properties that can be guaranteed by the environ- 
ment that supplies inputs to the physical channel, 
while (PL3)-(PL6) are properties that the channel 
itself can enforce. However, we only ask the physi- 
cal channel to enforce them when the environment 
plays its part, by providing inputs that ensure well- 
formedness, (PLl) and (PL2). If the environment 
violates the input conditions, e.g., if send events 
happen outside of working intervals, then the speci- 
fication does not constrain the behavior of the phys- 
ical channel. Formally, we define the two sched- 
ule modules PLtl’ and PL-FIFOtl’. We have al- 
ready defined sig(PL’>‘) and sig(PL-FIFdl’). Let 
scheds(PL’j’) be the set of sequences ,LY of phys- 
ical layer actions satisfying the condition “if /? is 
well-formed and satisfies (PLl) and (PL2) then ,f3 
satisfies (PL3), (PL4) and (PL6)“. Similarly, let 
scheds(PL-FIFO’*‘) be the set of sequences p of 
physical layer actions satisfying the condition “if /3 
is well-formed and satisfies (PLl) and (PL2) then /3 
satisfies (PL3), (PL4), the FIFO condition (PL5), 
and (PL6)“. 

A physical channel from t to P is any I/O au- 
tomaton that solves PL ‘1’. A FIFO physical chan- 
nel from t to r is any I/O automaton that solves 
PL- FIFO’*‘. 

In a “real-world” implementation of a physi- 
cal channel using a physical transmission medium, 
(PL6) would not be guaranteed with absolutely cer- 
tainty, but rather with extremely high probability. 
It seems that the probability could be sufficiently 
high, however, to justify our decision to ignore in 
the formal model the small likelihood that no pack- 
ets ever get delivered on an active channel. 
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4 The Data Link Layer 

The data link layer is the second lowest layer in the 
hierarchy, and is implemented using the services of 
the physical layer. Generally, it is implemented in 
terms of two physical channels, one in each direc- 
tion. It provides a reliable one-hop message delivery 
service, which can in turn be used by the next higher 
layer. 

We again assume that there are two endpoints, 
a “transmitting station” and a “receiving station”. 
The data link layer receives messages from the 
higher layer at the transmitting station, and deliv- 
ers them at the receiving station. The data link 
layer guarantees that every message that is sent is 
eventually received, assuming that the underlying 
transmission medium remains active. Furthermore, 
the order of the messages is preserved. 

In this section, we give a specification for data 
link layer behavior, as a parameterized schedule 
module DL’l’. Let M be a fixed infinite alphabet 
of “messages”. The action signature sig(DL’J ) is 
illustrated in Figure 2, and is given formally as fol- 
lows. 

Input actions: 
send~msgt~r(m), m E M 
waket~’ 
fail’*’ 
crashtJ 
wake’J 
f ail’#’ 
crashfIt 

Output actions: 
receive-msg’l’(m), m E A4 

There are no 
internal actions. The send-msg’J(m) action repre- 
sents the sending of message m on the data link by 
the transmitting station, and the receive,msg’I’(m) 
represents the receipt of message m by the receiving 
station. The wake’J and fa#*’ actions represent 
notification that the transmission medium in the di- 
rection from t to r has become active or inactive, 
respectively, while the wake”’ and failr~t actions 
represent similar notification for the transmission 
medium in the direction from r to t. The crashf~’ 
and crashr*t actions represent notification that the 
transmitting or receiving station, respectively, has 

waketIc 
f aiF’ 
crashfpr 

wakerIt 
fail”’ 
crash’l* 

receivemsg’~’ 
c 

Figure 2: The Data Link Layer 

suffered a hardware crash failure. We will often re- 
fer to the actions in acts(DL’2’) as data link layer 
actions. 

In order to define the set scheds( DL’P’), we define 
a collection of auxiliary properties of sequences of 
data link layer actions. Let p = ?T~xz... be a (finite 
or infinite) sequence of data link layer actions. We 
define properties for 8. 

We define a transmitter crash interval in 0 to be 
a maximal contiguous subsequence not containing a 
crashtar event, and similarly a receiver crash inter- 
val in p to be a maximal contiguous subsequence not 
containing a crash’!’ event. We say that /3 is well- 
formed provided that the following two conditions 
hold. First, in any transmitter crash interval in 
,O, the failt*’ and waketl’ events alternate strictly, 
starting with wake t,r. Second, in any receiver crash 
interval in @ the fail’J and wake’*’ events alter- 
nate strictly, starting with wake’*‘. Thus, for each 
direction of the underlying transmission medium, 
there are repeated alternating notifications that the 
transmission medium is active and inactive, with 
crashes serving as delimiters between sequences of 
wake and fail events. 

If p is a well-formed sequence of data link layer 
actions, then a transmitter working interval in p is 
the subsequence of p from any waketlr event until 
the next fail’J or crash’*’ event, or until the end 
of 0 if there are no later failtar or crashtlf events, 
not including the given waket*‘, failtlr or crash’J 
events, If p has a wakell’ event with no later failt~’ 
or crashtzr event, then the suffix of p starting after 
the wakettP event is called an unbounded transmit- 
ter working interval. We give analogous definitions 
for receiver working intervaland unbounded receiver 
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working interval. 
Now we define the following properties, (DLl)- 

(DL7), of well-formed sequences ,L? of data link layer 
actions. The first property says that there is even- 
tual consistency in the notifications that occur at 
both ends of the link, about the status of the un- 
derlying transmission medium. That this property 
holds is a reasonable assumption, for example, in 
the usual case where the same hardware is used for 
the transmission medium in both directions. 

(DLl) There is an unbounded transmitter work- 
ing interval in /3 if and only if there is an un- 
bounded receiver working interval in p. 

The next five properties are analogous to proper- 
ties already defined for the physical layer. 

(DL2) Every send,msgtJ event occurs in a trans- 
mitter working interval in ,0. 

(DL3) For every message m, there is an most one 
send-msgtp’(m) event in p. 

(DL4) For every message m, there is an most one 
receive-msg*l’(m) event in p. 

(DL5) For every receive,msg’J(m) event in /?, 
there is a preceding send-msgtJ(m) event in 
P. 

(DL6) (FIFO) 
Suppose that m and m’ are two messages such 
that the events 7ri1 = send-msg’J(m), rii3 = 
receive-msgtJ(m), ?~i= = send-msg*~‘(m’) and 
rid = receive-msgtJ(m’) appear in p, Then 
il < is if and only if iz < id. 

The remaining two properties describe ways in 
which the data link layer makes stronger guaran- 
tees than does the physical layer. The first of these 
says that the data link layer does not lose some 
messages but deliver later messages, within a single 
transmitter working interval. 

(DL7) Suppose that ?~i = send-msg’*‘(m) and 

“i = send-msg’p’(m’) appear in the same 
transmitter working interval in /3 and i < j. If 
a receive-msg*l’(m’) event appears in p, then 
a receive-msgtlr(m) also appears in /3. 

Finally, we have the data link layer liveness prop- 
erty. It says that all messages that are sent are 

delivered eventually, provided the link remains ac- 
tive. This property expresses the reliability of the 
message delivery guaranteed by the data link layer. 

(DL8) If a send-msg’J(m) event occurs in an 
unbounded transmitter working interval in ,8, 
then there is a receive-msg’~‘(m) event in ,B. 

Now we can define the schedule module DL’J. 
We have already defined sig(DL*l’). Let 
scheds(DL’J) be the set of sequences /3 of data link 
layer actions satisfying the condition “if /3 is well- 
formed and satisfies (DLl)-(DL3) then p satisfies 
(DL4)-(DL8)“. 

Although the schedule module DLtJ represents 
the behavior one would require from an inter- 
esting data link layer, it is useful for us to de- 
fine another schedule module WDL”’ represent- 
ing weaker requirements on data link behavior. 
Thus, let sig(WDL’T’) = sig(DL’l’), and let 
scheds(WDL’I’) be the set of sequences p of data 
link layer actions satisfying the condition “if ,B is 
well-formed and satisfies (DLl)-(DLS) then fi satis- 
fies (DL4), (DL5) and (DL8)“. 

Although this weaker specification is less inter- 
esting than DL ‘1’ for describing properties of a 
useful data link layer, it is adequate for prov- 
ing our impossibility results. It is easy to 
see that WDL”’ is a weaker specification than 
DL*l’, i.e., that scheds(DL*J) E scheds(WDL’J). 
Thus, any automaton that solves DL”’ also solves 
scheds(WDLIt’), so that the impossibility results 
we obtain for solving WDL’1’ immediately im- 
ply corresponding impossibility results for solving 
DL*J. 

We next prove a simple lemma which will be use- 
ful later. In the proof of this lemma we illustrate 
the way properties such as (DLl)-(DL8) and the 
basic facts about the I/O automaton model can be 
used to show the existence of fair behaviors of an 
automaton that solves the specification for a data 
link layer. 

Lemma 4.1 Let A be any automaton that solves 
WDL’J-, and let m f hr. Then there is a fair 
schedule /3 = 7r17r2. . . of A such that beh(,O) = 
wakef~rwaker~*send~msgt~r(m)receive,msg*~r(m), 
RI = wake’~’ and 12 = wakeret. 

Proof: Since the wake actions are inputs of A, 
the sequence 7 = wakeitr wakerJtsend-msg*J (m) 



is a finite schedule of A. By Lemma 2.1, there 
is a fair schedule p of A that extends -y and 
that includes no input events of A except those 
in y. We claim that beh(,!3) must be the sequence 
waket~rwaker12send~msgt~*(m)receive-msg’~’(m). 

First, note that beh(p) is well-formed and sat- 
isfies (DLl), (DL2) and (DL3), since beh(y) has 
these properties and they are only depend on the 
sequence of inputs to A. Since A solves WRLtpP, 
beh(P) also satisfies (DL4), (DL5) and (DL8). Since 
beh(P) only extends beh(7) with output actions, 
only receive,pkt’ rr actions appear in the s&ix. 

Since the action send,msg’l’(m) occurs in 
an unbounded transmitter working interval in 
A property (DW implies that the action 
receive,msg’*’ (m) appears in p. Then (DL4) 
and (DL5) imply that receive-msg'J(tn) can only 
appear once, and that no other receive_msg’J 
event can appear. It follows that beh(P) is 
waket~twakef’*send-msg~~r(m)receive-msgc~r(m). 

3 Data Link Implementation 

In this section, we define a “data link protocol”, 
which is intended to be used to implement the data 
link layer using the services provided by the phys- 
ical layer. A data link protocol consists of two au- 
tomata, one at the transmitting station and one at 
the receiving station. These automata communi- 
cate with each other using two physical channels, 
one in each direction. They also communicate with 
the outside world, through the data link layer ac- 
tions we defined in the previous section. 

Figure 3 shows how two protocol automata and 
two physical channels should be connected, in a 
data link implementation. 

5.1 Data Link Protocols 

Let t and r again be names (for the transmitting and 
receiving station respectively). Then a transmitting 
automaton for (t,r) is any I/O automaton having 
the following external action signature. 

Input actions: 
send-msg’l’ (m), m E M 
receive-pkt’l’(p), p E P 
wake’s’ 

senLmsg’*’ 

wake”’ 
fail”’ 
crash”’ 

I- 

Figure 3: A Data Link Implementation 

f aiP 
crashtJ 

Output actions: 
send,pkt’a’(p), p E P 

In addition, there can be any number of internal 
actions. That is, a transmitting automaton receives 
requests from the environment of the data link layer 
to send messages to the receiving station r. It also 
receives packets over the physical channel from r. 
Moreover, it receives notification of the status of 
the physical channel from t to r, and notification of 
crashes at the transmitting station. It sends packets 
to r over the physical channel to r. 

Similarly, a receiving automaton for (t, r) is any 
I/O automaton having the following external signa- 
ture. 

Input actions: 
receive-pkt*J(p), p E P 
wake’*’ 
f ail’l’ 
crashrat 

Output actions: 
send-pktrpt(p), p E P 
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receiwe,msgt’f(m), m E h4 

Again, there can also be any number of internal 
actions. That is, a receiving automaton receives 
packets over the physical channel from t. Moreover, 
it receives notification of the status of the physical 
channel from r to t, and notification of crashes at 
the receiving station. It sends packets to t over the 
physical channel to t, and it delivers messages to 
the environment of the data link layer. 

A data linli protocol is a pair (At,A’), where Af 
is a transmitting automaton and A’ is a receiving 
automaton. 

5.2 Correctness of Data Link Proto- 
cols 

Now we are ready to define correctness of data link 
protocols. Informally, we say that a data link proto- 
col is “correct” provided that when it is composed 
with any “correct physical layer” (i.e. a pair of 
physical channels from t to T and from r to t, respec- 
tively), the resulting system yields correct data link 
layer behavior. This reflects the fundamental idea 
of layering, that the implementation of one layer 
should not depend on the details of the implementa- 
tion of other layers, so that each layer can be imple- 
mented and maintained independently. Formally, 
we say that a data link protocol (A’, A’) is correct 
provided that the following is true. For all C’J and 
01’ that are physical channels from t to P and from 
r to t, respectively, hide*(D) solves DLt*‘, where D 
is the composition of At, A’, C’lf and C+J, and @ 
is the subset of acts(D) consisting of send-pkt and 
receive-pkt actions. 

As mentioned earlier, our impossibility results 
can be proved for weaker data link requirements, 
Thus we also define we& correclness for data link 
protocols. This is defined exactly as for correctness, 
except that hide@(D) is required to solve WDL’lp 
instead of DL”J. Obviously, any correct data link 
protocol is also weakly correct. 

We also define what it means for a data link pro- 
tocol to be correct with respect to FIFO physical 
channels; again, this is defined exactly as for cor- 
rectness except that CtJ and Crf’ are restricted to 
range over only FIFO physical channels from t to r 
and from r to t, respectively, rather than over arbi- 
trary physical channels. Finally, we define a notion 

of weak correctness with respect to FIFO physical 
channels, for data link protocols. This is defined ex- 
actly as for correctness with respect to FIFO phys- 
ical channels, except that hide*(D) is required to 
solve WDLt*’ instead of DLclr. 

Obviously, any data link protocol that is cor- 
rect with respect to FIFO physical channels is also 
weakly correct with respect to FIFO physical chan- 
nels. Also, any data link protocol that is correct 
(resp. weakly correct) is also correct (resp. weakly 
correct) with respect to FIFO physical channels. 

5.3 Constraints on Data Link Proto- 
cols 

In this subsection, we define several constraints we 
wish to consider for data link protocols. 

5.3.1 Message-Independence 

Most data link protocols in the literature are 
“message-independent” in the sense that the pro- 
cessing done by the protocols does not depend on 
the contents of messages submitted by the environ- 
ment. The data link protocol might break up a 
message into packets, and might construct header 
information to add to packets, but does not typi- 
cally carry out drastically different processing based 
on the specific contents of messages. This is often 
expressed by saying that the data link layer treats 
messages (which in fact are usually structured, in- 
cluding, for example, headers from higher layer pro- 
tocols) as uninterpreted data. 

We model message-independence as follows. Let 
A = (A’,A’) be a data link protocol. Let z be 
an equivalence relation on the domain M U P U 

states(At)Ustates(AP)Uacts(At)Uacts(Ar). Then 
A is said to be message-independent with respect to 
the equivalence relation s provided that the follow- 
ing conditions hold. 

1 . 3 only relates elements of the same kind, i.e., 
elements of M, or P, or states(At), etc. Also, 
a start state cannot be related to a non-start 
state. Moreover, if a S a’ for two actions a 
and a’, then a and a’ are identical except pos- 
sibly for a difference in their message or packet 
parameter. 

2. For each pair m, m’ of messages, m E 
m’, send-msg’l’(m) E send,msg’l’(m’), and 
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3. 

4. 

5. 

receive-msgtlr(m) 52 receive-msg’l’(m’). 

For each pair p,p’ of packets, sendqkttB’(p) E 
send-pkt’e’(p’) if I and only if p 5 p’, 
receive,pkt’t’(p) E receive-pkttJ(p’) if and 
only if p z p’, send,pkt’~t(p) z send-pkt’I’(p’) 
if and only if p s p’, and receive-pktrl’(p) E 
receive-pkt’J(p’) if and only if p E p’. 

For every two states q and q’ with q E q’, if 
action a is enabled in q then there is an action 
a’ with a E a’, such that a’ is enabled in q’. 

Suppose that q E q’ and a s a’, where action 
Q is enabled in state q and action t? is enabled 
in state q’. If r is a state such that (q, a, r) is 
a step, then there exists a state t’ such that 
P z r’ and (q’, a’, r’) is a step. 

We say that 
data link protocol A is message-independent pro- 
vided that it is message-independent with respect 
to some equivalence relation. 

For a data link protocol, A, that is message- 
independent with respect to an equivalence relation 
E, we define the set headers(A,r) to be the set of 
equivalence classes of packets. Since all the packets 
in a given equivalence class are treated in equiva- 
lent ways by the protocol, we can think of them as 
modelling the set of packets that contain a particu- 
lar pattern of bits in the data link layer header. We 
say that A has bounded hepders if heuders(A, z) is 
a finite set. 

Two sequences, GC = 2122 . . . and y = ~1~2 . . ., are 
said to be equivalent with respect to z if 1~1 = Iyl 
and for every i, zi 3 UC. 

5.3.2 Crashing 

Here, we describe a “crashing” property, which says 
that a crash at either the transmitting or receiving 
station is able to cause the corresponding protocol 
automaton to revert back to its start state (thereby 
losing all processing information in its memory). 

We say that a transmitting automaton A is crash- 
ing provided that there is a unique start state 
go and (q, crashl*‘, go) is a step of A, for every 
q E states(A). Similarly, we say that a receiving 
automaton A is crashing provided that there is a 
unique start state go and (q, crashrlt, go) is a step 
of A, for every q E states(A). A data link protocol 
(A’, A’) is said to be crashing provided that A’ and 
A’ are both crashing. 

6 Specific Physical Channels 

Since the correctness of a data link protocol requires 
that it work when composed with any physical chan- 
nels, we are able to prove the impossibility of a 
correct protocol satisfying certain requirements by 
merely demonstrating that no such protocol works 
when combined ulith a specific pair of physical chan- 
nels. En this section we introduce the channels we 
will use. First we introduce a very bermissive phys- 
ical channel, which we will use in Section 8. Then 
we will introduce a closely related FIFO physical 
channel, which we will use in Section 7. 

6.1 A Permissive Physical Channel 

We begin by defining a particular “very permis- 
sive” physical channel. This channel can even be . 
considered to be a “universal physical channel”, in 
the sense of Lemma 6.2 below. This channel is not 
FIFO, and in Section 8 we will use it to prove that 
unbounded headers are needed in a protocol that 
uses this channel. 

First, we define a set S of ordered pairs (i, j) of 
positive integers to be a delivery set provided that 
it satisfies the following two conditions: for each 
positive integer j, S includes a unique element (i, j), 
and for each positive integer i, it includes at most 
one element (i, j). 

The state of the physical channel ctlr has two 
counters, counter1 and counters, an infinite deliv- 
ery set S of pairs of non-negative integers, and a 
partial mapping packet from the set of positive in- 
tegers to P. The counter counter1 represents the 
number of send-pktttr actions, and counter2 repre- 
sents the number of receive,pkt’e’ actions, that have’ 
occurred so far. The set S determines which packets 
are delivered, and in what order - it contains pairs 
(i, j) that correlate the j-th receive,pkf’J event 
with the i-th sendpkt’l’ event. Thus the restric- 
tions in the definition of a delivery set correspond 
to the requirements that a packet should not be 
delivered unless it was sent, and that each packet 
should not be delivered more than once. The map 
ping packet associates with an integer i the packet 
that was sent in the i-th send,pkttl’ event. Initially 
counter1 and counter2 are zero and packet is un- 
defined everywhere. The set S is initialized to an 
arbitrary delivery set (and remains fixed). 

When a send-pkt’l’(p) action occurs, the counter 
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counteq is incremented by one and pa&et(i) is set 
to p, where i is the new value of counterr. The 
precondition of receive-pkt’*‘(p) is that there exists 
i such that pa&et(i) = p and (i, counter2 + 1) E S. 
The effect is to increment counter2 by one. The 
fail, wake and crash actions have no effect. The 
partition puts all the output actions in a single class. 
We define the physical channel elt analogously. 

For x E {t, r) we define Z so that i E {t, r} and 
x # 5. 

Lemma 6.1 The automaton CD** is a physical 
channel. 

Proof: We must show that fairbehs((?“J) C 
scheds(PL”J). Let /3 be a fair behavior of @n’. If 
p is either not well-formed or does not satisfy (PLl) 
or (PL2) then it is a schedule of PL”ls, since there 
are no constraints on such schedules. So suppose /3 
is well-formed and satisfies (PLl) and (PL2). 

Suppose that (PL3) does not hold, i.e. there is 
a packet p for which two receive-pkt”l”(p) events 
occur in p. Let jr and j2 denote the number of 
receive-pkt”l* events up to and including the first 
and second receive,pktx*“(p) respectively. The pre- 
condition of receive,pkt”l”(p) implies that there 
are ir and i2 such that (il, jr), (iz, js) E S and 
the ir-th and i2-th send,pkt”~” events are both 
send,pkt2j”(p). Since S is a delivery set, ir # i2, 
This contradicts the assumption that /3 satisfies 
(PL2). Therefore, (PL3) is satisfied. 

One 
of the preconditions of the j-th receive-pkt”>*(p) 
is that there exists i such that packet(i) = p. Thus 
the i-th sendgkt”s” event in p is send_pkt2J(p). 
Also, the receive-pkt”+(p) occurs after packet(i) is 
defined, i.e. after the sendqkt”J(p) event, This 
implies that (PL4) is satisfied. 

Suppose that p has an unbounded working inter- 
val, and fix a point in that interval just after, say, 
the k-th event in /3. Suppose that infinitely many 
send,pkt2J events occur after the given point. Let 
j be the number of receive-pkt=I” events in p up 
to the given point. Since S is a delivery set, there 
exists i such that (i, j + 1) E S. Let p be the packet 
appearing in the ith send-pkt”J! event in p. Then 
the precondition of receive,pkt’l”(p) eventually be- 
comes true, and stays true until the action occurs. 
Thus, receivelpktx+r(p) appears in /3, sometime af- 
ter the k-th event. Therefore, /3 satisfies (PL6). CI 

The following lemma shows that c?*’ has among 
its behaviors all of the “sensible” failure-free sched- 
ules of the specification PL”l”. 

Lemma 6.2 Suppose p is in scheds(PL’n”), and 
/3 is well-formed, satisfies (PLl) and (PL2), and 
contains no fail”*” or crash”?* events. Then p E 
fairbehs(@l”). 

We can combine the permissive physical chan- 
nels with an arbitrary data link protocol, as fol- 
lows. If A is a data link protocol, then let d(A) 
be the composition of A’, A’, ctpr and (?I:. Also 
let D’(A) = hide@(D)(A)), where Cp is the subset of 
a&(&A)) consisting of send-pkt and receive-pkt 
actions. 

6.2 A Permissive FIFO Physical 
Channel 

We also define a particular permissive FIFO phys- 
ical channel, which we will use in the argument of 
Section 7. We define @J to be identical to c*J ex- 
cept that the start states are restricted to be those 
in which the delivery set S is monotone, that is, 
there are no pairs (ii, jr) and (is, j2) in S with 
il < i2 and jr 2 j,. Similarly, we define @J. 

Since every finite (resp. fair) execution of etst 
is also a finite (resp. fair) execution of D* we see 
that @rr is a physical channel. The restriction on 
the delivery set ensures that it is a FIFO physical 
channel. 

If A = (A’, A’) is a data link protocol, let b(A) 
be the composition of At, A’, @er and &lt. Also 
let B’(A) = hide@(B)(A)) where @ is the subset of 
ads(&A)) consisting of send-pkt and receiveqkt 
actions. 

6.3 Properties of the Permissive 
Physical Channels 

We collect here some simple properties of the chan- 
nels just defined, for use in Sections 7 and 8. 

We begin this subsection with a useful definition. 
Namely, we define a partial function del(S, (i, j)) 
that takes a delivery set S and a pair (i, j) E S, 
and returns a new delivery set S’. The new set S’ 
represents the result of deleting the given pair from 
the set, and is defined as follows. (1) For every 
j’ < j. (i’,j’) E S’ iff (i’, j’) E S. (2) (i,j) # S’. 
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(3) For every j’ > j, (i’, j’) E S’ iff (i’, j’ + 1) E 
S. We extend the function de/ so that its second 
argument is any finite subset of S rather than just a 
single pair, in the natural way: del(S, XU{ (i, j)}) = 
del(del(S, X), (i, j)). Notice that if S is a monotone 
delivery set, so is deZ(S, X). 

We say a state of Cxpe or CxlE is clean if (i) S 
does not contain any pair (i, j) with i 5 counter1 
and j > counterz, and (ii) S contains (counter1 + 
Ic, counter2 + k) for ail k > 0. The intuition is that 
the channel is empty, and from now on will act FIFO 
with no losses. The next lemma is proved by alter- 
ing the delivery set without changing those pairs 
(i, j) with j 2 counter2. 

Lemma 6.3 If p is a schedule of t?B* (resp. @*s) 
then there is a state s of cx** (resp. 6’=1*) such that 
p can leave CxJ (resp. t?xjs) in s and s is clean. 

If s is a state of cZv* or cxla, we say that a 
sequence of packets Q = qlq2 . . .qk is waiting in 
a state s if for all 1 such that 1 5 I 5 k there 
is an integer ir such that packet(&) = ql and 
(il, counter2 + I) E S in s. 

We have the fundamental property that a channel 
can deliver a sequence of packets that are waiting 
in its state. 

Lemma 6.4 Let s be a state of C?J* (resp. cxpt) 
and Q = qlq2 . . .qk a sequence of packets such 
that Q is waiting in s. Then there is an execu- 
tion fragment starting with state s with schedule ’ 
receive-pEPa” . . . receive-pkt”l*(qk). 

We now give a lemma that shows that certain 
schedules can leave a channel in a state where pack- 
ets are waiting. 

Lemma 6.5 If /3 is a schedule oft?** (resp. c?~B*) 
and y is a sequence of input actions of cx,l! (resp. 
exjrn) such that Q = Ql!zZ~~ * qn is the sequence of 
packets sent in 7, then P7 is a schedule of cxjr 
(resp. @I*) that can leave czJ (resp. exJ!) in a 
state in which Q i$ waiting. 

By surgery on S (using the de1 function) we obtain 
the following lemma which expresses the ability of 
the channels to lose any packets that have not been 
delivered. 

Lemma 6.6 If /3 is a schedule of cx*” (resp. ~?~~a) 
that can leave CxJ (resp. ex,*) in a state s in 

which Q is waiting, and Q’ is a subsequence of Q, 
then there is a state s’ such that /3 can leave @*s 
(resp. &I*) in s’ and Q’ is waiting in s’. 

We have an extra result for the non-FIFO chan- 
nels. We say that a packet p is in transit from 
x to f in a sequence ,f3 of actions provided that 
send-pkt”l*(p) Jccurs in p and receive-pkFl”(p) 
does not occur in /3. We have the result that any 
sequence of packets in transit can be waiting in the 
channel. 

Lemma 6.7 Let p be a schedule of c,Z+r, and Q a 
sequence of distinct packets. If each packet in the 
sequence is in transit from x to 3 in /3, then $ can 
leave CzJ in a state s such that Q is waiting in s. 

7 Tolerating Host Crashes 

In a data link protocol a useful property would be 
the ability of the protocol to tolerate a host crash. 
A host crash causes all the memory at the host to 
be lost. (In our model this is reflected by setting 
the state of the automaton in that host to its distin- 
guished initial state.) Baratz and Segall [BS83] con- 
jectured that no such protocol is possible. The link 
initialization protocol of [BS83] cannot tolerate host 
crashes as we have defined them. However if there is 
a single non-volatile bit (a bit that is not reset dur- 
ing the host crash) the [BS83] protocol is correct. 
We prove that no messageindependent data link 
protocol can tolerate arbitrary host crashes (with- 
out access to non-volatile memory). 

The essense of our proof is to take a data link 
protocol that is alleged to be crashing, message- 
independent and weakly correct, and to find two 
executions of the system that leave the transmit- 
ting and receiving automata in equivalent states, al- 
though in one every message has been delivered and 
in the other there is an undelivered message. The 
protocol must eventually deliver the missing mes- 
sage in any fair extension of the second execution, 
even if no more inputs arrive from the environment. 
An equivalent extension of the first execution will 
cause some message to be delivered, although ev- 
ery message sent had already been delivered. This 
contradicts the claimed correctness of the protocol. 

Recall that for z E {t, r) we define 55 so that 
z E {t,r} and x # F, and we define @(A) to be 
the result of composing data link protocol A with 
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the permissive FIFO physical channels 6’*lr and &#* 
and then hiding the sending and receiving of pack- 
ets. For cr = so~lsl . . . ~r,s, a finite execution of 
B’(A) and k an integer with 0 5 Iz 5 tz let US de- 
fine the following: ilt~(o~,z, k) is the sequence of 
packets received by A” during the first L steps of cu; 
outA(cr, z, k) is the sequence of packets sent by AZ 
during the first Ic steps of rr; stateA(o, t, !c) is the 
state of Ax in sk; acts~(cr, 2, k) is the sequence of 
actions of A” during the first k steps of CY. 

We now state the main lemmas we will use to 
prove the result of this section. 

The first lemma shows that one can modify the 
suffix of an extension of one execution to give an 
extension of another, if the two executions end 
with the data link protocol automata in equivalent 
states. This modification may alter states and ac- 
tions, but only into equivalent states and actions. 
This lemma can be proved by an easy induction on 
j, using the definition of message-independence. 

Lemma 7.1 Let A = (At,Ar) be a message- 
independent data link protocol. Let or = 
SfJ?rlSl . . . lF,,S,, and & = OOilCl . . .li& be finite 
executions of B)(A) with the following properiies: 
stateA(a, 2, n) 5 stateA(b,x,k) forx E {f,r}, and 
in both s, and 4, both physical channels are clean. 

Suppose 
&I = i&l& . . .%kik+)+lik+l . . .+k+&+j is a f;- 
nite execution of &(A) that is an extension of 
&. Then there exists a finite execution crl = 
8OWSl . . .7r,s~x,+~s”+l . . . nu+isu+i that is an ex- 
2ension of LY such that for all j with 1 5 
j < i, 'kk+j s nn+j and stateA(a,x,n + j) E 
stateA(&, 2, k + j) for x 6 {t, r}. 

The next lemma will be crucial in the inductive 
proof of Lemma 7.3. Speaking informally, we use 
it to “pump up” the sequence of packets waiting in 
the channels, as illustrated in Figure 4. If a schedule 
can leave the system so that waiting in one phys- 
ical channel is a sequence of packets equivalent to 
the packets’ delivered across that channel in a ref- 
erence execution, then we can extend the schedule 
by crashing the destination host and replaying that 
host’s part of the reference execution, and this can 
leave the system so that a sequence of packets is 
waiting in the other physical channel, equivalent to 
the packets sent by the host in the reference execu- 
tion. 
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Lemma 7.2 Let A = (A’, At) be a message- 
independent, cmshing data link protocol. Let (Y = 
SO?rlSl . . . ?r,s, be an execution of B’(A) such that 
?rl = waketl’, 7r2 = wakerIt and no wake, fail or 
crash events occur in ~3. . , A,. Suppose x E (t, r}, 
A is an integer with 2 < k 5 n and p is a finite 
schedule of D’(A) with the following properties: 

1. 

2. 

beh(P) is well-formed, satisfies (DLl)-(DLCS), 
and contains unbounded transmitter and re- 
ceiver working intervals, and 

@ can leave B’(A) in a state where the state of 
A’ is s, and a seqvence Q of distinct packets 
is waiting in the state of @lx such that Q E 
in&, 2, k). 

Figure 4: Illustration for Lemma 7.2 

Then there is a sequence y of actions of A” with the 
following properties: 

1. By is a finite schedule of B’(A), 

2. beh(@y) is well-formed, satisfies (DLl)-(DL3) 
and contains unbounded transmitter and re- 
ceiver working intervals, 

3. y z crashx~*actsA(Q, x, k), and 

4. fly can leave &(A) in a state where the state 
of A” is s, the state of A” is s’ such that s’ E 
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stoteA(cr,x, k), and a sequence Q’ of disiinct 
packets is waiting in the state of &I* such that 
Q’ s o&&,x, 12). 

Proof: As notation, let (ss?~rsr . . .?rksh)lAf = 
to&t1 . . .q&tl, so that 4142.. .& = actsA(cx,z, k), 
$1 = st&cA (cu, 2, k), the sequence of packets sent in 
41 f . .41 is o&A(o, x, k) and the sequence of pack- 
ets received in 41.. .di is inA(&, z, k). Also let 
Q = qlqz . . . w. 

First we construct inductively an execution &r 
of A”. To begin, let s~$s~, . .n!-rs~-r be some 
execution of A” with schedule p A”; 1’ such an ex- 
ecution exists because PIA” is a schedule of A” 
by Lemma 2.2. Put ?ri = crash”** and put s[i = 
to, the initial state of A”. Since A” is crashing, 
b;-l, $, s:) is a step of A”. Put n$+r = wake2** = 

41 and s;+~ = tl. Then (s~,n~+,,s~+,) is a step of 
A” since (to, 91, tl) is. 

So suppose that we have so far constructed 
S~7l(S{ v * * j+cS[i+i d for i such that 1 < i < I, so 
that s~+i G ti. We show how to define $+$+I and 
then how to define si+i+r. 

1. If $i+r = receive-pkt*l=(p) then put $+i+l = 
receive-pkt”l”(qh) where h is chosen so that 
d++r is the h-th receive,pkt”l” event in cr. By 
the assumption that Q = in~(cu, x, k), we have 
d J+i+l E #i+l- Since the automaton is input- 
enabled, xj+i+r is enabled in sj+i. 

2. If di+l = send-msgr~f(m) (which can only 
happen if t = t) then put $+i+r = 
send-msgt~r(m’) where m‘ is any message 
such that send-msg’*‘(m’) does not occur in 
+... ,+F’ 7r! This is possible by the as- 
sumption that there is an infinite alphabet 
of messages. By the assumption of message- 
independence, n:+i+l ~ 4 i+le Since the au- 
tomaton is input-enabled, rj+i+r is enabled in 
Sj+i- 

3. If &+r is a locally controlled action of A” then 
let ~~rj-+i+l be a locally controlled action that 
is enabled in S(i+i such that ?rs.+i+l z &+I. 
This is possible by the assumption of message- 
independence, since s~+i E ti and &+I is en- 
abled in ti. 

By the assumption that +$;+I is not a wake, fail or 
crash event, these exhaust the possibilities. Now 
choose $~+i+l SO that (s~+~,T~+~+~,s~.+~+~) is a 

step of A” and sli+i+l E ti+l, which is possible 
by the assumption of message-independence, since 
(ti, &+I, ti+l) is a step of A” and $+i+r was cho 
sen in every case to ensure that it was equivalent to 
9 i+r and enabled in s$+~. 

Completing the construction above gives a fi- 
nite execution &r = &xi.. . ni+,s[i+, of At. Let 

Y = r’. r’. 
J J-+1 * * *$+I- By the construction we see 

G crash*l*& . . .dJ = crash”~factsA(a, 2, k). 
&nce beh(/?) is well-formed, and 7 begins with 
crashz*ewake”~* and contains no subsequent crash, 
wake or fail events, we see that beh(&) is well- 
formed. Similarly beh(,&) satisfies (DLl)-(DL3) 
and contains unbounded transmitter and receiver 
working intervals. 

Now P7lA” is just 7riri.. .?ritl, so ,07 is a fi- 
nite schedule of AZ that can leave AZ in a St-l+*’ 
s’.+ z tl 
di 

= stdeA(a,x, k). Also /?7lA* is JUSL 

A” which is a finite schedule of Ae that can 
leave AZ in state s. Now 7l@9” is by construction 
receive,pktt12(ql). . . receive,pkt’+(ql,) and since 0 
can leave A” in a state where Q is waiting in @J 
we see by Lemma 6.4 that @7$‘*~” is a finite sched- 
ule of @*=. Finally 7l&*” consists of crashz~* fol- 
lowed by a sequence of send-pkt”?* actions which is 
equivalent to to the sequence of send-pkt21Z actions 
in &da.. -41. By Lemma 6.5, /J71&** is a finite 
schedule of &tt that can leave et** in a state in 
which a sequence Q’ of packets is waiting, where Q’ 
is equivalent to outA(a, 2, k). 

Now we apply Lemma 2.3 to deduce that /37 is a 
finite schedule of a(A) that can leave @(A) in a 
state where the state of A* is s, the state of AZ is 
equivalent to StateA(o, 2, k) and a sequence equiva- 
lent to outA(a, z, k) is waiting in the state of &‘. 

0 

The next lemma shows that we can find an execu- 
tion that ends with the data link protocol in states 
equivalent to those in any suitable given execution, 
but with a sequence of packets equivalent to those 
sent in the original execution waiting in the chan- 
nels. 

Lemma 7.3 Let A be a nzessage-independent, 
crashing data link protocol. Let a = so?rlsl . . . n,,sn 
be un execution of &(A) such that u1 = waketp+, 
3r2 = wakerpt and no wake, fail or crash events 
occur in 7r3...7rn. Suppose k is an integer with 
2 5 k 5 n. Let x denote the station such that 
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zk E acts(A”). Then there is a finite schedule ,8 of 
L?)‘(A) with the folIowing properties: 

1. beh(P) is well-formed, satisfies (DLl)-(D&3), 
and contains unbounded transmitter and re- 
ceiver working intervals, and 

2. p can leave i?(A) in a state where the state of 
AS is equivalent to &&?A(&, 2, k), the State of 
A” is equivalent to .stateA(cr,Z, k), and a se- 
quence Q of distinct packets is waiting in the 
state of exa* such that Q z oUtA(a, x, k). 

Proof: Assume inductively that we have proved 
the lemma for ail smaller values of k. 

If all the actions ~3,. . . , rk are in acts(A”), then 
o&A((Y,z, k) must be the empty sequence, and 
therefore we deduce that inA(o, z:, k) is also empty. 
Also stateA(a, f, k) must be equal to stotcA(CY, f, 2) 
Thus the sequence wake”~“wakeCJ is a finite sched- 
ule of &(A) with well-formed behavior satisfying 
(DLl)-(DLS) d an containing unbounded tranmitter 
and receiver working intervals, that can leave AZ 
in state stateA(o, 5, k) with a sequence equivalent 
to inl(cr, t, 6) waiting in &t. We can therefore 
apply Lemma 7.2 to obtain p. 

Otherwise let j be the greatest integer such that 
2 < j < k and Xj E octs(A’). Then inA(o, 2, k) is 
a subsequence of outA(o, E, j), and st&cA(o, 5, k) 
must equal st&!eA(o, f, j). By using the assumed 
truth of the lemma for the smaller value j we get 
a schedule /31 with well-formed behavior satisfying 
(DLl)-(DL3) d an containing unbounded transmit- 
ter and receiver working intervals that can leave 
A” in state equivalent to &teA(o, 5,j) with a se- 
quence equivalent to outA(a, i, j) waiting in @‘z. 
By Lemma 6.6, pr can also leave 6’(A) in a state 
with A’ in a state equivalent to stateA(a, jz, j), and 
with a sequence equivalent to z’nA(o, 2, k) waiting in 
^ ‘A. 

: 

We can therefore apply Lemma 7.2 to obtain 
0 

We can now use the previous lemma to find a 
schedule of a crashing message-independent data 
link protocol that can lead to states equivalent to 
those at the end of a given execution, but in which 
a message has .been sent but not received. 

Lemma 7.4 Let A = (At, A’) be a message- 
independent, crashing data link protocol. Let cy = 
SORlSl . . .R,Sn 6e an erecution of $(A), such 
that XI = wake’s’, 7r;, = wake’J and beh(rr) = 

wake*~Fwake’~tsendmsgt~‘(m)receive~msgt~r(m)~ 
Then there is a finite schedule p of @(A) with the 
following proper-dies: 

1. beh(,B) is well-formed and satisfies (DLl)- 

(DL J), 

2. beh(P) ends in send,msg’~‘(ml) for some ml, 

9. /3 can leave D(A) in a state where the state 
of A’ is equivalent to stateA(a,t,n), the state 
of A’ is equivalent to stoteA(Q,f,n), and the 
state of each physical channel is clean. 

Proof: Let n’ denote the greatest integer less than 
or equal to n such that x,# E acts(A’). Lemma 7.3 
yields a finite schedule p’ of @(A) with the fol- 
lowing properties: beh(/3’) is well-formed, satisfies 
(DLl)-(DL3), and contains unbounded transmitter 
and receiver working intervals, and 0’ can leave 
&(A) in a state where the state of A’ is equiv- 
alent to stateA (CY, r, n’), and a sequence Q of dis- 
tinct packets is waiting in the state of &lt such 
that Q s outA(a, r, n’). 

Since the sequence inA( a, t, n) is a subsequence 
Of outA(a, r, n’), we can use Lemma 6.6 t0 see that 
p’ can also leave &(A) in a state where the state of 
A’ is equivalent to stateA(f.2, r, n’), and a sequence 
Q’ is waiting in the state of C?st such that Q’ G 
inA(a, t, n). 

We can now apply Lemma 7.2 to obtain a se- 
quence 7 such that /?‘r is a finite schedule of @(A), 
beh(P’y) is well-formed and satisfies (DLl)-(DL3), 
y 5 C?Y&Sh”‘odSA(Q,t,n), and /?‘y can leave b(A) 
in a state where the state of A’ is equivalent to 
stateA(o, r, n’) and the state of A’ is equivalent to 
statcA(CV, t, n). By using Lemma 6.3 to modify the 
states of the channels, we see /?‘y can also leave 
Ij’(A) in a state with all the properties listed al- 
ready, and also both physical channels clean. We 
put p = P’y. 

We now note, using the definition of n’, 
that statcA(o, r, n’) = stateA(o, r, n). Since 
y is equivalent to crashtJfactsA(cr, t,n) and 
beh(actsA(a,t,n)) = beh(cY)IA’, we have that 
beh(P) ends in crash*~rwaket~‘send~msgt~‘(m~) for 
some ml. Since beh(,B) is well;formed and satisfies 
(DLl)-(DL3), we are done. cl 

Finally we can use the results above to prove our 
impossibility theorem. 
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Theorem 7.5 There is no data link protocol that is 
weakly correct with respect to FIFO physical chan- 
nels, and is message-independent and crashing. 

Proof: Assume that A = (A’, A’) is such a pro- 
tocol. 

First we observe that there is a finite execution 
a = SOT1 81 . ..?r.Sn 

of b(A) with the following properties: beh(a) = 
wake’*‘wake”“send-msg**‘(m)receive-msg’*’(m) 
for some m, ?rl = waketIP, ~2 = wakePIt, and in sn 
each physical channel is clean. The existence of such 
an Q is proved by using Lemma 4.1 to get an execu- 
tion with the required behavior, truncating it after 
the state following the receive-msg’l’(m) event (to 
make it finite), and finally using Lemma 6.3 to alter 
the component of each state of each physical chan- 
nel, without altering the schedule, so as to leave the 
physical channels clean. 

Next we appeal to Lemma 7.4 to obtain a finite 
execution & = iciilii . . . ii&k of B’(A) with the 
following properties: beh(&) is well-formed, satis- 
fies (DLl)-(DL3), ends in send-msgt~r(ml) for some 
ml, stateA(&, z, k) E stateA(a, z,n) for CE E (t,r}, 
and each physical channel is clean in %,,. 

By Lemma 2.1, there is a fair execution of @(A) 
that extends h and contains no additional inputs 
to B’(A). The behavior of this extension is well- 
formed and satisfies (DLl)-(DL3) since beh(&) has 
these properties, and they are not affected by out- 
put actions. Thus the behavior of this exten- 
sion must satisfy (DL8). Since send-msg’I’(mr) 
is followed in the extension by no input action 
of 3(A), it occurs in an unbounded transmit- 
ter working interval. The extension therefore con- 
tains receive-msg’j’(ml) by (DL8). Thus the suf- 
fix of the extension after & contains at least one 
receive-msgt~f event, and it contains no input ac- 
tions of &(A). Let m2 be the message parameter 
in the first receive,msgtlT event in the suffix of the 
extension. By truncating the extension after this 
receive,msg’J(m2) event, we obtain a finite execu- 
tion &I of a(A) with the following properties: it ex- 
tends &, and beh(Br) = beh(&)receive_ms#*‘(m2). 

Applying Lemma 7.1 to the executions a, h and 
&I, we deduce the existence of a finite execution 
(~1 of &(A) such that (~1 extends a and the ac- 
tions in the suffix of cyl after Q are equivalent to 
those in the suffix of &1 after h. Thus crl has the 
following properties: it extends cr, and beh(al) = 

beh(a)receive-msg’*‘(ms) for some ms. Note that 
beh(al) is well-formed and satisfies (DLl)-(DL3). 

Now we use Lemma 2.1 to get a fair extension of 
al with no additional inputs. This extension (whose 
behavior is well-formed and satisfies (DLl)-(DL3)) 
contains no additional outputs by (DL4) and (DL5). 
Thus this fair extension has behavior equal to 
beh(al). Thus we have shown that the sequence 
waket*‘wake’~‘send-msg’~‘(m)receive~msg’~’(m) 
receive,msg’I’(ms) is a fair behavior of a’(A). 

If ms # m this fair behavior does not satisfy 
(DL5), since it contains receive-msg’J(m3) but no 
sencLmsg’~‘(m3). If ma = m this fair .behavior 
does not satisfy (DL4) since it contain two events 
send,msgt~‘(m). In either case, since the fair be- 
havior is well-formed and does satisfy (DLl)-( DL3), 
we have found a contradiction with the assumption 
that b’(A) solves WDL’>’ . 0 

8 Using Bounded Headers 
With Non-FIFO Channels 

In this section, we consider the case where the phys- 
ical channel need not be FIFO; non-FIFO physi- 
cal channels make the design of data link protocols 
more difficult than FIFO physical channels. We 
show that it is impossible to have a weakly cor- 
rect, message-independent data link protocol that 
has bounded headers. 

8.1 k-bounded Protocols 

Our impossibility proof requires a technical restric- 
tion, that the protocol be “k-bounded”. This re- 
striction means that for any message, there is some 
execution in which at most k packets are used to 
transmit the message. Most practical protocols 
are in fact l-bounded. The formal definition of 
k-boundedness is made in terms of the permissive 
physical channel C’jr defined earlier. 

We require a preliminary definition. Namely, a 
sequence of data link layer actions /3 is valid if (1) 
p is well-formed, (2) p satisfies (DLl) to (DL5) and 
(DW, an! (3) a wake event, but no fail or crash 
events, occur in p. 

The following lemmas give basic properties of 
valid sequences. 
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Lemma 8.1 Let p be a valid sequence of data 
link layer actions. Let m be a message. If 
send-msgtJ (m) occurs in p then receive-msgtB’(m) 
occurs in 0. 

Proof: Suppose a send-msg’~‘(m) occurs in p. 
By (DLl) the send-msgtl’(m) event occurs in a 
transmitter working interval in p. Since there are 
no fail or crash events in /3, this working in- 
terval is unbounded. Since (DL8) is satisfied, a 
receive,msgt*’ (m) also occurs in /?. 0 

Lemma 8.2 Let p be a valid sequence of data 
link layer actions and let m be a message such 
that send-msg*J(m) does not occur in p. Then 
@end-msg’j’(m)receive-msgtp’(m) is a valid se- 
quence. 

Recall that D’(A) = hideo(D(A)), where D(A) 
is the composition of A’, A’, ctlr and cl’, and Q 
is the subset of acts(b(A)) consisting of send&t 
and receiveqkt actions. 

We say that A is k-bounded if the following condi- 
tion holds for every finite schedule /? of d’(A) such 
that beh(P) is valid, and for every message m such 
that send-msg’I’(m) does not occur in p: there is 
a schedule Pr of D’(A) such that 

1. beh(y) = send_msg’J (m)receive-msg’l’(m), 

2. y does not include any receive-pkt’p’(p) actions 
such that sendpkt’“(p) occurs in fl, and 

3. the number of receive_pkW events in y is at 
most k. 

Suppose that A is a k-bounded data link pro- 
tocol. Let ,8 be a finite schedule of B’(A) 
such that beh(P) is valid and let m be a mes- 
sage such that send-msgtJ(m) does not occur in 
fl. Then define packet-setA(m, 0) to be the set 
of packets received from t by r in some par- 
ticular 7 such that Py is a schedule of b’(A), 
beh(r) = send-msgtl’(m) receive-msgtlr(m), y 
does not include any receive-pkt’J(p) actions such 
that send-pkt’l’(p) occurs in p, and such that the 
number of receive-pkt’s’ events in y is at most k. 
Such a 7 exists by the definition of k-boundedness. 

8.2 The Proof 

The essence of this section is to take a sup- 
posed message-independent, k-bounded weakly cor- 
rect data link protocol with bounded headers, and 

to produce a schedule in which every message sent 
has been delivered, but a large collection of packets 
is in transit, in fact, a collection equivalent to the set 
of packets which can be used to transmit a new mes- 
sage. If those packets in transit are now delivered, 
the receiving automaton will announce delivery of a 
message although none was sent that has not been 
delivered already, contradicting the assumed weak 
correctness of the protocol. 

We begin by defining a partial order between sets 
of packets, with a parameter k, with respect to an 
equivalence relation z, in the following way: T ck,w 
T’ if: (1) T C T’, and (2) there exists a packet p, 
such that p E T’, p 4 T and the number of packets 
p’ E T such that p E p’ is less than k. 

When the equivalence relation, s:, is clear from 
the context we use the notation <k for <k,w, 

We now prove the crucial inductive step that we 
will use to “pump up” the collection of packets in 
transit. 

Lemma 8.3 Let k be an integer. Let A be a weakly 
correct k-bounded data link protocol that is message- 
independent with respect to z. Let /? be a finite 

schedule of D(A) such that beh(/3) is valid, and let 
T be a set of packets that are in transit in PI@. 
Then at least one of the ;following holds. 

1. 

8. 

There exists a 
message m such that send-msg’g’(m) does not 
occur in /3 and there is a one-to-one mapping, 
f, from the packets in packetSetA (m, p) to the 
packets in T, such that p E f(p) for all p. 

There is a finite schedule & of B’(A) such 
that: 

(a) beh(py) is valid, 

(b) y does not include any receive-pkt’lr(p) 
action such that send_pkt’~‘(p) occurs in 
p, and 

(c) there exists a set T’ of packets in transit 
in /37lC’~‘, where T <k T’. 

Proof: Fix k, A, 0 and T as in the hypotheses. Let 
m be any message such that send-msg’~‘(m) does 
not occur in p. Since A is k-bounded, there exists 
a sequence yl such that ,Oyr is a schedule of d’(A), 

beh(yl) = send-msg’~‘(m)receive-msgQ(m), y1 
does not include any receive,pkt*p’(p) events such 
that sendqktttr(p) occurs in p, and the packets de- 
livered from t to r in yr are packet_setA(m, ,f3) and 
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therefore are at most k in number. It follows from 
Lemma 8.2 that beh(/?71) is valid. 

If for every packet p in pactetsetA(m,P) there 
are at least k packets p’ in T such that p’ E p, then 
by standard results in combinatorics there is a one- 
to-one function f from packets in packet_setA(m, p) 
to packets in ‘I’, such that f(p) E p for all p. In such 
a case (1) holds. 

Otherwise, we can find some packet po in 
pocket-setA(m, /3) such that there are fewer than 
k packets p’ in T such that po z p’. Since 71 con- 
tains receive-pkt’*‘(po) and no message sent in /3 
is delivered in 71, 71 also contains send-pkt**‘(po). 
Let p denote the prefix of 71 up to and including 
send-pkttp’(pc). We claim that there exists a se- 
quence fi such that using y = p@, py satisfies (2). 

In case either receive-msg’I’(m) is in p or 
send-msgtl’(m) is not in p, ,? can be taken to be the 
empty sequence. (In the former case, Lemma 8.2 
implies that beh(pp) is valid.) So suppose that 
send-msg’l’( ) m is in p and receive-msg’*“(m) is not 
in p. 

By Lemma 6.3, there is an execution Q’ of D’(A) 
such that sched(a) = ,L?P and ctlf is clean in the 
final state of (Y. By Lemma 2.1, there is a fair 
execution Q” of d’(A) such that cr” extends cu’ and 
contains no input events of D’(A) except those in 
a’. Let beh(a”) = ppp’ . Thus @pp’ is a fair schedule 
of d’(A). 

Since A is weakly correct and beh(@pp’) is well- 
formed and satisfies (DLl)-(DL3), beh(/?pp’) also 
satisfies (DL8). S ince send-msg’l’( m) occurs in 
beh@pp’), (DL8) implies that receive-msg*p’(m) 
also occurs in be!@&). Let i be the prefix of 
p’ ending with receive-msg’l’(m). We claim that b 
has the needed properties, 

First, since every message sent in fl is received in 
p, and the onIy message sent in p is m, 6 contains 
no receive-msgtsr events except receive-msgtlP (m) 
by (DL4) and (DL5). Thus beh(pp@) = 
beh(/?)send~msg’~P(m)receiue-msgt~r(m) which is 
valid by Lemma 8.2. Second, since @ is the schedule 
of an execution fragment that begins with ctzr in a 
clean state pb does not include any receive-pkt’l’(p) 
such that send-pkttl’(p) occurs in p. Finally, the 
choice of T’ = T U {ps} satisfies the third claim. q 

Using the above we can find a schedule in which 
every message sent has been delivered, but where a 
large collection of packets are in transit. 

Lemma 8.4 Let k be an integer. Let A = (At,A’) 
be a weak/y correct k-bounded data link protocol that 
is message-independent with respect to 5, and has 
bounded headers. Then there exist a finite sched- 
ule P of b’(A), a set T of packets, and a message 
m such that the following conditions are true. (1) 
beh(P) is valid, (2) every packet in T is in transit 
in PI@, (3) sznd,msg’~‘(m) does not occur in p, 
and (4) there is a one-to-one mapping, f, from the 
packets in packetsetA(m,P) to the packets in T, 
such that p G f(p) for all p. 

Proof: Let H be the finite set headers(A, E). By 
the definition of the partial order <L,=, the maxi- 
mum length of a chain of sets in the <k,% order is 
at most k. IHI. 

Starting with pi as the schedule waket~‘wake’lt, 
and TI as the empty set, we apply Lemma 8.3 re- 
peatedly, obtaining pi and Ti, i = 2, . . . . as long as 
case (2) of the lemma holds. Since the construction 
insures that Ti <k,z Ti+l for all i 2 1, eventually 
case (1) of Lemma 8.3 must hold. That is, for 
some fixed i, fli is a schedule of D’(A), all pack- 
ets in the set Ti are in transit in ,&, and beh(@i) 
is valid; moreover, there exists a message m such 
that send-msgt>‘(m) does not occur in pi and there 
is a one-to-one mapping, f, from the packets in 
paCket>etA(m, pi) to the packets in Ti, such that 
p G f(p) for all p. Taking B = & yields the result. 

0 

Now we use the schedule given by the previous 
lemma to prove the impossibility result of this sec- 
tion. 

Theorem 8.5 There is no weakly correct data link 
protocol that is message-independent, has bounded 
headers, and is k-bounded for some k. 

Proof: Assume the contrary, and let A = 
(At, A’) be a data link protocol that satis- 
fies all these conditions. Let H be the fi- 
nite set headers(A, E). The proof is done 
by creating a schedule of B’(A) in which, for 
some message m, either receive-msg’~‘(m) appears 
twice, or a receive-msg’lr(m) occurs although a 
send,msgtJ(m) event does not occur. 

Choose m, ,f3 and T satisfying Lemma 8.4. 
By the conclusions of that lemma and the defi- 
nition of paCket_SetA, there exists a sequence 71 
of actions such that /3yi is a schedule of D’(A), 
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beh(n > = send-msg*n’(m)receive-msg’~‘(m), yl 
does not include any receive-pkt*J(p) actions such 
that send-pkt*t’(p) occurs in p, all the packets in T 
are in transit in p, and there is a one-to-one map- 
ping, f, from the set of packets delivered at r in yi 
to the set T such that p s f(p) for all p. We modify 
the schedule p-yr to reach the contradiction. 

We will now construct a sequence ys such 
that: (1) Py2 is a schedule of B’(A), (2) every 
receive-pkt*J(p) action in ys has a send,pktQ(p) 
in p, and (3) y2 is equivalent to yl(A’. 

Let (Y be an execution of A’ such that shed(a) = 

(Pn)lA’. W e rs construct a new execution o’ of fi t 
A’ and then define y2 so that sched(a’) = (PIA’)y2. 

The construction of cr’ is done by induction 
on the lengths of prefixes of (Y. Suppose cy = 
SO7rlSl f. . sj and let cr’ be expressed in the form 

I CY =s$r’ls’l*.*s~. For each i, the construction will 
ensure that si z S: and r* s ni ’ 

As the basis, define cr and (Y’ to be identical up to 
and including the state just after the portion having 
schedule PIA’. Now suppose that sb7risi . . s s: has 
already been defined and consider 7r:+rs:+r. 

If =i+1 is a receive,pkt*J(p) action, then de- 
fine 7r:+r to be receive-pkt*l’(f(p)). By assump- 
tion on f, p S f(p), so that receiveqkt*“(p) z 
receive-pkt*l’(f(p)), i.e., ri+l E T(!+~. 

If Ri+r is a locally-controlled action of A’, then 
since Si E .s: the message-independence assumption 
implies that there is an action equivalent to ri+r 
that is enabled in s{; let 7ci+r be this action. 

Note that these exhaust the possibilities because 
beh( yl IA’) = receive-msg*J(m), so %*+I cannot be 
wake’l’, fail’~’ or crash’**. Having defined ri+r, 
we now define ++I. Since si z s: and rri+r z ni+l, 

the message-independence assumption implies that 
there is a state s such that s G si+r and (s:, T:+~, s) 
is a step of A’. Let si+r = s. This completes the 
construction of Q’. 

NOW fix 72 so that sched(a’) = (PIA+)y2. Then 
we claim that y2 has the required properties. Prop- 
erties (2) and (3) are immediate from the construc- 
tion, as is the fact that (@72)(A’ is a schedule of 
A’. By construction, no action in 72 is in acts(A*), 
so (Py2)(At = PIA’ which is a schedule of A*. 
Since p(Cl* 
tion y2 It?,* 

is a schedule of CC,*, and by construc- 
is just a sequence of sendqkt’p’ actions 

which are inputs to CJ*, we deduce that (&,)]C,* 
is a schedule of (?I*. Finally notice that PJC*J 

is a schedule of I!?‘*,~, and ^/zJ~*J is a sequence of 
receive-pkt*l’ actions for packets that are in transit 
from t to r in ,0. By Lemmas 6.7 and 6.4 (PY~)@*,~ 
is a schedule of (?*I~. Then Lemma 2.4 yields Prop- 
erty (1)) completing the proof of our claim. 

Since the action receive-msg*~‘(m) occurs in 
YIP’ and ~2 3 711Ar, there is some message m’ 
such that the action receive-msgtJ (m’) occurs in 
~2. Fix m’ for the remainder of the proof. 

By Lemma 2.1 there is a fair schedule py2y3 of 
@(A) such that y3 contains no inputs to D(A). 
This has behavior that is well-formed and satis- 
fies (DLl)-(DL3). Since beh(P) is valid, for every 
message mi such that send-msg*~‘(mi) occurs in 
p, the event receive-msg*~r(mi) also occur in /3. 
The action receive,msg*~‘(m’) appears in py2 ya. 
If the action send-msg*~‘(m’) appears in /3, then 
a receive,msg*~‘(m’) event also occurs in /?, so 
beh(P727s) does not satisfy (DL4). On the other 
hand, if the action send,msg*~‘(m’) does not appear 
in p, then since no send,msg’J events occur in 72~3, 

we see that beh(py& does not satisfy (DLS). Ei- 
ther case yields a contradiction with the assumption 
that D’(A) solves WDL*“. 0 

Note that the execution constructed in the pre- 
ceding impossibility proof did not include any fail 
or crash actions. In fact, we could just as well have 
proved the result for a simpler sort of data link layer 
specification, not including fail or crash actions at 
all. 

9 Discussion 

The formal definitions we have given such as 
“message-independence” and “having bounded 
headers” seem to us to capture the essential features 
of the corresponding intuitive concepts as they ap- 
pear in real network protocols, while also making 
the proofs easy. Alternative definitions could be 
given in some cases. We here mention a few points 
about these. 

First, one might consider protocols where some 
simple information about the message content was 
used, for example the length might determine the 
number of packets needed to contain the message. 
This could be modelled by allowing different mes- 
sages to be in different equivalence classes. All that 
seems needed for the proofs we have given to re- 
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main valid is the existence of some class that con- 
tains enough different messages. In the final version 
of this paper we expect to extend all the proofs to 
this case. 

Second, one might consider protocols where the 
number of different headers used in the packets 
that transmit the first n messages is a function of 
n, rather than a constant as in a protocol with 
bounded headers. Stenning’s protocol uses a new 
header for each new message, that is, the number 
of headers used grows linearly with n. We expect 
to model this in the final version of this paper, and 
repeat the proof given in Section 8 to show that us- 
ing a sublinear number of headers is impossible if 
the physical channels might not be FIFO. 
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