
Hierarchical Correctness Proofs
for

Distributed Algorithms

Nancy A. Lynch and Mark R. Tuttle

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

Abstract: We introduce the input-output automa-
ton, a simple but powerful model of computation in
asynchronous distributed networks. With this model
we are able to construct modular, hierarchical correct-
ness proofs for distributed algorithms. We define this
model, and give an interesting example of how it can
be used to construct such proofs.

1 Introduction

A major obstacle to progress in the field of distributed
computation is that many of the important algo-
rithms, especially communications algorithms, seem
to be too complex for rigorous understanding. Al-
though the designers of these algorithms are often able
to convey the intuition underlying their algorithms, it
is often difficult to make this intuition formal and pre-
cise. When this intuition is formalized, the result is
typically an analysis performed at a very low level
of abstraction, involving messages and local process
variables. Reasoning precisely about the interaction
between these messages and process variables can be
extremely difficult, and the resulting proofs of correct-
ness are generally quite difficult to understand.

The full version of this paper is available as MIT Technical
Report MIT/LCS/TR-387.
This work wa8 supported in part by the Office of Naval Re-
search under Contract N00014-85-K-0168, by the OEke of
Army Research under Contract DAAG29-84-K-0058, by the
National Science Foundation under Grants DCR-83-02391 and
CCR-8611442, and by the Defense Advanced Research Projects
Agency (DARPA) under Contract N00014-83-K-0125.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and /or specific permission.

0 1987 ACM 0-89791-239-X/57/0008/0137 7%

An indication that the situation is not completely
hopeless is the fact that designers are able to convey
an informal understanding of the key ideas behind
their algorithms. The distributed minimum spanning
tree algorithm of [GHS83], for example, can be un-
derstood as several familiar manipulations of a graph.
What is needed is a way of formalizing these high-
level ideas, and incorporating them into a proof of
the detailed algorithm’s correctness.

One promising approach is to begin by construct-
ing a high-level description of the algorithm. This de-
scription might itself be an algorithm in which high-
level data structures (such as graphs) serve as states,
and process actions manipulate these data structures.
This algorithm might then be proven correct using
rigorous versions of the high-level, intuitive arguments
given by the algorithm’s designers. Successive refine-
ments of this algorithm might then be de&led at suc-
cessively lower levels of detail, and each rigorousI;.
shown to simulate the preceding algorithm. Ideally,
this approach would allow us to use in the proof of
simulation any property that has already been proven
for preceding levels. In this way, the high-level intu-
ition used to describe the algorithm would become
part of a rigorous proof of the full algorithm’s cor-
rectness.

Some time ago, we began to consider this approach
of proof by refinement for a simple resource alloca-
tion algorithm, an arbiter for a resource in an asyn-
chronous network, originally suggested by Schijnhage
in [SchBO]. C orrectness conditions for this resource
arbitration problem include both safety and liveness
conditions: the mutual ezclusion condition that at
most one user is holding the resource at any given
time; and the no lockout condition that if every user
holding the resource eventually returns the resource

137

Figure 1: A state of Schiinhage’s arbiter.

to the arbiter, then the arbiter eventually grants the
resource to every requesting user. The key idea be-
hind the algorithm can be understood as follows. The
algorithm assumes that the network forms an acyclic
graph G as illustrated in Figure 1, with the users at
the leaves of the graph, and the remaining nodes form-
ing the arbiter itself. Initially, the resource is held by
some arbiter node in the graph. A user desiring the
resource sends a request for the resource to the adja-
cent arbiter node, and this node forwards this request
in the direction of the node holding the resource. At
any given time, there is a subtree of the graph rooted
at the resource consisting of edges over which a re-
quest has been sent. The resource is allocated among
the requesting users simply by causing the resource to
traverse this tree of requests.

We found it convenient to view this algorithm at
three levels of abstraction. At the highest level is
a simple, set-theoretic statement of the correctness
conditions required of the arbiter, this statement it-
self described as an algorithm. At the second level
is a graph-theoretic description of the arbiter, similar
to the one outlined above. At the third and lowest
level is a distributed implementation of the arbiter,
describing the protocol individual processors imple-
menting the arbiter must follow in terms of messages
and local process variables.

The first problem we face is how to express these
algorithms describing the arbiter at the various lev-
els of abstraction. Two of the most popular lan-
guages are Milner’s CCS (see [Mi180]) and Hoare’s
CSP (see [Hoa85]), but certain aspects of the algo-
rithms under consideration make it clear that these
languages are not appropriate. In particular, the in-
teraction between the users and the arbiter makes a
clear distinction between those events internal and ex-

ternal to the arbiter. Input to the arbiter (a request
for the resource) can occur at any time, regardless of
whether the arbiter is in a position to grant the re-
source. Output (the granting of the resource) occurs
only under the control of the arbiter. This distinc-
tion between internal and external events is extremely
important if reasoning about the system is to be de-
composed into reasoning about system components
in isolation, as was recognized by Barringer, Kuiper,
and Pnueli in [BKP84]. Furthermore, it is clear that
satisfaction of Iiveness conditions such as the no lock-
out condition requires that the arbiter be given ‘fair
turns” to produce output, rather than simply being
overwhelmed by a flood of input. The ability to ex-
press this notion of “fair turns” depends heavily on
the distinction between internal and external events,
on the ability to determine which process controls the
performance of an action.

Unfortunately, neither CCS nor CSP makes such a
distinction, and hence neither is able to express this
notion of control. As a result, in the case of CCS,
for example, notions of fairness considered are typi-
cally variants of weak or strong fairness (see (fia86)).
Weak fairness requires that an action z be performed
infinitely often if it is continuously enabled, while
strong fairness requires that A be performed infinitely
often even if it is enabled only-infinitely often. These
notions of fairness, however, are not satisfactory in
event-driven systems such as the networks we con-
sider. In such a system, a process is always able to
accept interrupts, but should not be required to in-
terrupt itself unless some external source requests the
interrupt. Since there is no notion in CCS of an in-
terface between processes from which we can deduce
the internal and external actions of a process, vari-
ants of weak and strong fairness are essentially the
only forms of fairness that can be expressed in CCS.
Furthermore, as a side remark, we note that while the
notion of a process state is not necessary for Milner’s
intended use of CCS, we find the notion a convenient
descriptive tool, and useful when relating models of
an algorithm at different levels of abstraction.

Similar comments can also be made for CSP with
respect to fairness. In fact, CSP further complicates
the problem by identifying a process with (among
other things) all finite behaviors of the process. Since
it is impossible to deduce the infinite (fair) behavior of
a process from its finite behaviors, CSP precludes the
study of properties such as fairness without extending
the semantics of a CSP process. We note, however,
that the semantics of a CSP process is already quite
complex due to the complexity of the compositions in
CSP. Recall, for instance, that if P and Q are two
processes, then P I-I Q is a process that nondetermin-

138

istically (itself) chooses to behave either like P or Q,
while PDQ is a process that allows the environment
to determine whether it behaves like P or Q. Both
p n Q and PoQ have the same traces (since each be-
haves either like P or Q), but differ subtly in the fact
that the environment has no control or knowledge of
the choice Pn Q makes between P and Q. As a result
of this “silent,” internal choice between P and Q made
by P r! Q , it is possible to place P I-IQ and P OQ in an
environment (offering an action r as input) in which
PnQ deadlocks at its first step while POQ does not.
Reading between the lines of Hoare’s book [Hoa85],
it seems that Hoare would prefer to retain for nonde-
terministic processes the automata-theoretic (trace-
theoretic) semantics he develops for deterministic pro-
cesses. The processes PnQ and POQ, however, force
Hoare to make his first break from the trace-theoretic
semantics of deterministic processes and define the
notion of a refusal, a set of actions a process might
refuse to perform. For our purposes, the fact that

a process is able to accept input at all times should
remove the entire problem resulting from the inter-
nal versus external nondeterminism illustrated above
by P fl Q and POQ. Furthermore, the complexity
of operations allowed in CSP (such as blocking com-
munication) do not seem appropriate when describing
the loosely-coupled networks we have in mind. The
semantic simplification gained by the elimination of
such powerful operations should therefore more than
make up for the resulting loss of expressive power.
With hope, the result would be a general model of
computation in which asynchronous distributed algo-
rithms can be expressed without abandoning clean,
automata-theoretic semantics,

We were therefore led to a new model of asyn-
chronous distributed computation, the input-output
automatotl. This model is based on (possibly infinite-
state) nondeterministic automata. Automaton tran-
sitions are labeled with the names of process actions
they represent. These actions are partitioned into
sets of input and output actions, as well as internal
actions representing internal process actions. Input
actions have the unique property of being enabled
from every state; in other words, a process must be
able to accept any input at any time. As a result, a
very strong distinction is made between those actions
locally-controlled by the system itself (output and in-
ternal actions) and those actions controlled by the
system’s external environment (input actions), and
our model has the event-driven flavor characteristic
of many asynchronous distributed algorithms.

Rather than the complex compositions allowed in
CSP, we restrict ourselves to a very simple composi-
tion. Roughly speaking, the composition of a collec-

tion of automata is the Cartesian product of the au-
tomata, where automata are required to synchronize
the performance of common (shared) actions. If ?r is
an input action of A and an output action of B, then
the simultaneous performance of R by both automata
models the receipt of input at A caused by output gen-
erated at B. Since processes cannot be expected to
synchronize the generation of output in asynchronous
systems, we require that the output actions of the
composed automata be disjoint. Similarly, since in-
ternal actions model externally undetectable actions,
we require that the internal actions of each automa-
ton be disjoint from the actions of the other automata
in the composition. These restrictions on the compo-
sition of automata, together with the fact that the
input actions of an automaton are enabled from ev-
ery state, guarantee that locally-controlled actions of
a composition are controlled by precisely one compo-
nent of the composition.

As previously noted, the notion of fair computation
plays a fundamental role in our work. Informally, a
computation of a system is said to be fair if every sys-
tem component is always eventually given the chance
to take a computational step. Since one automaton
may model an entire system as well as a single sys-
tem component, it is necessary to retain certain in-
formation about the structure of the system being
modeled. In particular, it is necessary to retain in-
formation about the locally-controlled actions of each
system component. We therefore associate with every
automaton a partition of its locally-controlled actions.
The interpretation of this partition is that each class
consists of the locally-controlled actions of one system
component. With this partition, we are able to define
a simple notion of fair computation.

It is clear that most verification methods, such as
the Hoare-logic of Owicki and Gries in [OG76], the
use of invariant assertions advocated by Lamport and
Schneider in ILS84b], the temporal logic of Manna
and Pnueli in [MPSlb] and [MP8la], and the method
of deriving proof obligations of Alpern and Schnei-
der in [AS87], can be used to verify the correctness
of algorithms expressed in terms of input-output au-
tomata. We do not fix on a particular methodology
for reasoning about the behavior of individual au-
tomata. Instead, we study the problem of hierarchical
decomposition, the problem of relating the algorithms
describing the arbiter at different levels of abstrac-
tion. Lam and Shankar have successfully used no-
tions of abstraction in their verification work [LS84a].
Their notion of abstraction involves the projection
of an algorithm with several clearly distinguishable
functions onto each function individually, abstracting
away the details of the remaining functions. The re-

I.39

suit is a collection of smaller, simpler algorithms to
analyze, allowing each function to be analyzed inde-
pendently. Since, however, we are describing algo-
rithms at entirely different levels of conceptual ab-
straction, and not just ignoring certain aspects of the
algorithms’ behaviors, these techniques are not appro-
priate for our work. The use of abstraction in Harel’s
statecharts [Har87] is similar, in the sense that sys-
tem states are grouped together to form superstates.
Lamport has also advocated the use of abstraction in
the specification of program modules [Lam83]. Lam-
port’s specifications consists of a collection of hate
functions mapping program states into sets of values,
a collection of initial uuZues essentially defining the
set of states in which the system may begin compu-
tation, and a collection of properties describing the
safety and liveness conditions required. The inten-
tion of a state function is to extract some relevant in-
formation about the entity being implemented from
the program state. For example, the specification
of a queue might include a state function mapping
each program state to the value in that state of the
queue being implemented. Notice, however, that in-
correctly chosen state functions can extract highly
implementation-dependent information from the pro-
gram state, and hence constrain the implementation
of the specification. While a careful writer of speci-
fications would never use such state functions, it il-
lustrates how tightly a notion of correctness involving
state functions can couple a specification to its imple-
mentation. We prefer a simpler notion of correctness,
independent of program states, that allows us to con-
struct independently descriptions of an algorithm at
different levels of abstraction, and then relate these
descriptions to each other.

Loosely speaking, we consider one automaton A to
simulate a second automaton B if every behavior ex-
hibited by A is a possible behavior of B. The automa-
ton A simulates B in the sense that any correctness
condition satisfied by the behaviors of B is satisfied by
every behavior of A. As previously mentioned, how-
ever, fair computation is generally crucial to the sat-
isfaction of most interesting liveness conditions. We
therefore require only that the fair behaviors of A be
contained in the fair behaviors of B. The simplicity
of such correctness conditions lends a uniform struc-
ture to correctness proofs of algorithms. The problem
of proving that our low-level description of the arbiter
is a correct implementation of its high-level specifica-
tion is simply the problem of proving that each de-
scription of the arbiter simulates the description of
the arbiter at the previous (higher) level of abstrac-
tion. As an aid in doing so, we introduce the notion
of a possibilities mapping between automata, relating

the states of one automaton to the states of another.
The notion of a possibilities mapping was 6rst intro-
duced by Lynch in [Lyn83] for process algebras, and
we adapt these mappings for our own purposes. Pos-
sibilities mappings are similar in spirit to Lamport’s
state functions, but automata describing an algorithm
at different levels of abstraction are independent of the
possibilities mappings relating them. We remark that
Stark has greatl’ generalized the notion of a possi-
bilities mapping iu [Sta84]. His model is much more
general that ours, but we find ours simpler and easier
to use, and expressive enough to describe most sys-
tems of interest.

The remainder of this paper consists of three parts.
In the first part, we define the input-output automa-
ton model. In the second part, we demonstrate how
this model can be used to construct a modular, hierar-
chical correctness proof of Schkhage’s distributed ar-
biter. Finally, we end with some concluding remarks.

2 The Model

We now formalize the notions introduced in the intro-
duction. We begin with our model of computation.

2.1 Input-Output Automata

An action signature S is a collection of disjoint sets of
input, output, and internal actions. We denote these
sets by in(S), out(S), and id(S), respectively, and
their union by acts(S). S ince id(S) is the set of in-
ternal actions, it is natural to refer to the actions of
in(S) and out(S) as the set of external actions, de-
noted by ezt(S). F inally, we denote the set of locally-
controlled actions, the actions of int(S) and out(S),
by lo&(S).

An input-output automaton A consists of

1. a set states(A) of states;

2. a set start(A) E states(A) of start states;

3. an action signature Jig(A),

4. a transition relation

steps(A) E states(A) x acts(sig(A)) x states(A)

with the property that for every input action A
and state a there is a transition of the form
(a, a, 0’); and

5. an equivalence relation part(A) on local(.sig(A)).

The equivalence relation part(A) is the partition of
the locally-controlled actions referred to in the intro-
duction.

140

An element (a, X, u’) of steps(A) is. referred to as a
step of A. If (a, r, ~2) is a step of A, we say that the
action R is enabled from a. Since every input action is
enabled from every state, we say that an automaton is
input-enabled. An execution of A is a finite sequence
aoxlal... rkak or infinite sequence aOr a1 mJa2 . . . of
alternating states and actions beginning with a start
state such that each triple (ai, ~i+l,ai+l) is a step
of A. A state is said to be reachable if it is the final
state of a finite execution. The schedule of an exe-
cution e is the subsequence of actions appearing in e,
denoted by sched(e). We denote the sets of execu-
tions and schedules of A by ezecs(A) and scheds(A),
respectively.

Since certain subsets of executions and schedules
are of particular interest to us (such aa the set of fair
executions, for example), we are led to define the no-
tions of execution modules and schedule modules, es-
sentially sets of executions and schedules, respectively,
together with an action signature.

An execution module E consists of a set states(E) of
states, an action signature Big(E), and a set ezecs(E)
of executiona. Each execution of E iz an alternating
sequence of states and actions of E beginning with a
state, and ending with a state if the sequence is finite.
An execution module E is said to be an execution
module of an automaton A if E and A have the same
states, the same action signatures, and the executions
of E are executions of A. We denote by Ezecs(A) the
execution module of A having as its set of executions
the executions of A. (We follow the convention of
denoting sets with lower case names and modules with
capitalized names.)

A schedule module S consists of an action signa-
ture aig(S) together with a set scheds(S) of schedules.
Each schedule of S is a finite or infinite sequence of
actions of S. Given an execution module E, there is a
natural schedule module associated with E consisting
of the action signature of E together with the sched-
ules of the executions of E. We denote this schedule
module by Scheds (E), and write Scheds (A) as a shore
hand for Scheds (Ezecs (A)).

An eztetnal action signature is an action signature
with no internal actions. As a special case of a sched-
ule module, we define an external schedule module to
be a schedule module with an external action signa-
ture. Given a schedule module S, we define the ex-
ternal action signature of S to be the action signa-
ture obtained by removing the internal actions from
the action signature of S, and the external sched-
ule module Eztetnal(S) to be the schedule module
with the external action signature of S and the sched-
ules obtained by removing from every schedule of S
the internal actions of S. We write Ezternal(E) for

Ezternal(Scheds (E)) for an execution module E, and
similarly for an automaton A.

We refer collectively to automata, execution mod-
ules, and schedule modules as objects, the type of an
object determining whether it is an automaton, exe-
cution module, or schedule module.

2.2 Composition

We now define the composition of automata, execu-
tion modules, and schedule modules.

Recall from the introduction that whether the com-
position of a collection of automata is defined de-
pends on their action signatures. We say that the ac-
tion signatures (Si : i E I) are compatible if Out (Si)n
OUt(Sj) = 0 and int(Si) n acts(Sj) = 0 for every
i, j E I. We say that the objects (0; : i f I} are
compatible if their action signatures are compatible.
The composition S = niEI Si of compatible action
signatures is defined to be the action signature with

1. in(S) = ilJ, in(S) - jvI out(Sj),

2. out(S) = iII out(and

3. int(S) = (J if&t(&).
iEI

Notice that the output and internal actions of the
components become the output and internal actions of
the composition, respectively, and that the remaining
actions become the input actions of the composition.

The composition A = n;Er Ai of compatible au-
tomata iz defined to be the automaton with

1. states(A) = I-J atotes(
&I

2. start(A) = J-J1 start(Ai),

3. aio(A) = ivI Sig(A),

4. part(A) = &llpart(Ai), and

5. 8tep8(d) equal to the set of triples ({ai}, X, {a:})
such that for all i E I

(a) if R E UCh(Ai) then (Q,A,~:) E &eps(Ai),
and

(b) if r $ acts(Ai) then ai = a:.

In the case that I is the finite set (1,. , . , n), we denote
the composition A by Al A,. It is convenient to
denote the execution of Ai induced by an execution e
of the composition A by el A;. More formally, if a =
(ai} is a state of the composition A, define alAi = CQ.

141

IfI?= aoAlal.. . is an execution of A, define elAi to
be the sequence obtained by deleting xioj if rj is not
an action of A;, and by replacing the remaining aj by
aj(A<.

The composition E = nIiEr E; of compatible ex-
ecution modules is defined as follows. Informally, if
each Ei is an execution module of an automaton Ai,
then E is the execution module of the composition
ni Ai with executions e such that clA; is an execu-
tion of Ei for every i. More formally, the states of E
are fliEI states(Ei) and the action signature of E is
II iE1 sig(Ei). If a = {oi} is a state of E, define
alEi = oi. If c = aoxlal . . . is a sequence of states
and actions of E, define elEi to be the sequence ob-
tained by deleting xjoj if rj is not an action of Ei,
and replacing the remaining aj by oil Ei. The execu-
tions of E are those sequences e = aoslal . . . of states
and actions of E such that ejE; is an execution of Ei
for every i, and oj-1 IEi = oj IEi whenever rj is not
an action of Ei.

The composition S = aide Si of compatible sched-
ule modules is defined as follows. The action signature
Of S is ni,, Sig(Si). If 9 is a sequence of actions of S,
define SlSi to be the subsequence of s consisting of ac-
tions of Si. The schedules of S are those sequences s
of actions of S such that slSi is a schedule of Si for
every i.

These compositions are clearly related. For exam-
ple, the execution module of a composition of au-
tomata is the composition of the execution modules
of the automata. Notice that actions shared by sev-
eral objects are not hidden by these compositions. In
the full paper [LT87] we define a simple operation to
hide such actions, merely relabeling a set of actions
as internal actions. Notice also that the compatibil-
ity of a collection of objects, and hence whether their
composition is defined, depends solely on their action
signatures. In the full paper we define a simple oper-
ation to rename the actions of an object and thereby
avoid incompatibility due to naming conflicts.

2.3 Fairness

Informally, computation in a system of processes is
said to be fair if every system component is allowed to
make computational progress infinitely often. Recall
that associated with an automaton A is a partition
part(A) of its locally-controlled actions, where each
class is interpreted as the set of locally-controlled ac-
tions of one component in the system modeled by A.
An execution e of A is said to be fair if the following
conditions hold for each class C of part(A):

1. If e is a finite execution, then no action of C is
enabled from the final state of e.

2. If e is an infinite execution, then either actions
from C appear infinitely often in e, or states from
which no action of C is enabled appear infinitely
often in e.

These conditions may be interpreted as follows. If e
is finite, then computation in the system has halted
since no process is able to take another step. If e is
infinite, then every process has been given an infinite
number of chances to take a step, although it may be
that some processes were unable to take steps every
time the chance was offered. This notion of fairness is
similar to weak fairness (see [Fra86]), except that the
performance of input actions is never required.

We denote the set of fair executions of an automa-
ton A by fair(A), and the execution module of A have
fair(A) as its set of executions by Fair(A). An im-
portant property of this definition of fairness is the
fact that the fair executions of a composition are the
composition of the fair executions of the components:
that is, Fair(ni Ai) = ni Fair(Ai). In the full pa-
per [~T87], we explore several consequences of our
definition of fair computation not directly related to
algorithm verification, including an interesting notion
of process equivalence induced by fair computations.

2.4 Correctness

As mentioned in the introduction, we consider an
automaton A to simulate an automaton B if the
fair behavior of A is contained in the fair behavior
of B. More formally, we define the schedule module
Fbeh(A) = Ezternal(Fair(A)) to be the (externally
observable) fair behavior of A, and denote the sched-
ules of Fbeh(A) by fbeh(A). Viewing the automaton B
as a specification satisfied by the automaton A, we say
that A satisfies B if A and B have the same exter-
nal action signature and f&h(A) C jbeh(B). A sat-
isfies B in the sense that every correctness condition
satisfied by the fair behavior of B is satisfied by the
fair behavior of A. Notice that since automata are
input-enabled, the trivial satisfaction of a specifica-
tion by an automaton exhibiting no behavior is not
possible. We extend these definitions to objects of ar-
bitrary type by defining Fbeh(O) = Ezternal(O) for
execution modules and schedule modules 0. Notice
that since execution modules need not be nonempty,
it is possible for an execution module with no execu-
tions to satisfy every execution module with the same
external action signature. Therefore, we say that an
object 0 is implementable if it is satisfied by an au-
tomaton A. The object 0 is implementable in the
sense that there is a system (modeled by the automa-
ton A) satisfying the specification represented by the

142

object 0. We say that an object 0 solves (the prob-
Iem specified by) an object 0’ if 0 is an implementable
object satisfying 0’. Notice that if an automaton A
satisfies an automaton B, then A certainly solves B.

Clearly, the notion of satisfaction is the basis of the
definitions stated above. In the remainder of this sec-
tion we exhibit a sufficient condition for one automa-
ton to satisfy another. The key to this sufficient con-
dition is the notion of a possibilities mapping. Sup-
pose A and B are automata with the same external
action signature, and suppose h is a mapping from
states(A) to the power set of states(B). The map
ping h is said to be a possibilities mapping from A
to B if the following conditions hold:

1. For every start state a of A, there is a start state b
of B such that b E h(a).

2. For every reachable state a of A, every step
(a, 7r, a’) of A, and every reachable state b E h(a)
of B:

(a) If A is an action of B, then there is a step
(b, K, b’) of B such that b’ E h(a’).

(b) If A is not an action of B, then 6 E h(a’).

Such a mapping, reminiscent of bisimulation from
CCS [Mi180], enables us to relate executions of A
to executions of B as follows. If e and f are two
finite executions of A and B, respectively, we say
that f finitely corresponds to e under h if sched(f) =
ached(e)lB and the final state of f is contained in
the image of the final state of e under h. In general,
if e and f are two executions of A and B, we say
that f corresponds to e under h if for every finite pre-
fix ei = a07rlal . . . ai of e there is a finite prefix fi of f
finitely corresponding to ei under h such that f is the
limit of the fi. It is easy to show that if h is a possibil-
ities mapping from A to B and e is an execution of A,
then there is an execution f of B corresponding to e
under h. The existence of a possibilities mapping is
a useful relationship between the automata A and B
since it allows us to relate the states appearing in exe-
cutions of A to the states appearing in corresponding
executions of B. We now show how this relationship
can be used to prove that A satisfies B.

Let S and T be two sets of states, and let lI be a
set of actions. Given an execution e = aoxlal . . ., the
execution e satisfies the condition S r-, (T, II) ifwhen-
ever the execution passes through a state of S, eventu-
ally either the execution passes through a state of T or
an action from Ii is performed.’ More formally, e sat-
isfies the condition S c--) (T, IT) if, whenever ai E S,

‘This condition may alao be expressed in the temporal logic
of [BKP84].

either ai E T for some j 2 i or pi E l3 for some
j > i. As a notational convenience, we will denote
the condition S c-, (Z’, II) by S c--, II when the set T
is empty. Notice, however, that the fair executions
of an automaton A axe precisely those executions sat-
isfying the conditions states(A) - (disabled(C), C)
where C is a class of part(A) and disubled(C) is the
set of states from which no action of C is enabled. It
is straightforward to prove the following.

Lemma 1: Let h be a possibilities mapping from A
to A’. Let e be an execution of A, and let e’ be an
execution of A’ corresponding to e under h.

1.

2.

Let S 2 h”(S’), h(T) C T’, and II Cr II’.
If e satisfies S L, (T, II), then e’ satisfies S’ 4
(T’, IT’).

Let h(S) E S’, T 2 h-‘(T’), and II 2 II’.
If e’ satisfies S’ c--) (T’,ll’), then e satisfies
s - (TJ),

As a result, a possibilities mappings can be used as
part of a sufficient condition for an automaton A to
satisfy an automaton B, as claimed.

3 A Distributed Arbiter

In this section, we sketch how the ideas introduced in
the previous section can be used to construct a modu-
lar, hierarchical correctness proof for Schijnhage’s dis-
tributed arbiter.

3.1 A High-Level Model

In our high-level model of the arbiter, the automa-
ton Al, we refer to the arbiter itself as a, and to the
users of the arbiter as ~1,. ,. , un. A state of AI con-
sists of a set requesters of requesting users, together
with the identity holder of the entity currently hold-
ing the resource (either a user or the arbiter itself).
The start state of A1 is the state in which the set
requesters of requesting users is empty, and the ini-
tial holder is the arbiter itself. The actions of A1 are
given in Figure 2 .’ A user u requests the resource with
the input action request(u), which simply places (I in
the set requesters of requesting users. The user u re-
turns the resource to the arbiter with the input action
return(u). If the user is actually holding the resource

2 We define the transition relation of an automaton by defin-
ing the preconditions and effects of every action. The triple
(a, i, a’) is a transition of the automaton if the state u satisfies
the precondition of R, and the state a’ can be obtained from a
by modifying a as specified by the effects of w. The precondi-
tion for an action ia omitted if it is true, as is the case for input
actions.

143

Input Actions:
request (u)

effects:
requester8 4- requesters U (u)

return(u)
effects:

if holder = u then
holder t a

Output Actions:
grant (u)

preconditions:
u E requester8
holder = a

effects:
rcquestcra 6 requesters - (u}
holder t u

Figure 2: The actions of Al.

when it tries to return the resource, this action makes
the arbiter the new holder of the resource. If the user
is not actually holding the resource, this Veturn” is ig-
nored. The arbiter grants the resource to a requesting
user u with the output action grant(u). This action
merely removes u from the set of requesting users and
makes u the new hoIder of the resource.

Notice that since at most one user is holding the re-
source at any time, every execution of AI satisfies the
mutual exclusion condition. The satisfaction of the
no lockout condition, however, clearly requires some
cooperation from the users. Let u be a user node, and
let us define the following sets of states and actions.’

RtnResf (u) = {a E atates(Al) : holder = u in s}
RtnResT(u) = {return(u)}

GrRes;(u) = (8 E states(A1) : u c requester8 in s)
GrResy(u) = {grant(u)}

The condition

RtnReal = A RtnRes; (u) L--) RtnResy(u)
u

says that any user holding the resource will eventually
return the resource to the arbiter. The condition

GrResl = A GrResi(u) - GrRes’;(u)
tL

3 We will be defining several correctness conditions for each
of the models we study. We will subscript these conditions to
indicate the level of abstraction with which they are associ-
ated. Furthermore, the sets of states and actions used to define
these conditions will be superscripted with the letters s and a,
respectively.

says that any user requesting the resource will even-
tually be granted the resource. The correctness con-
dition

NoLockout 1 = RtnResl > GrResl

says that if users holding the resource always return
the resource, then users requesting the resource will
always be granted the resource. This is precisely the
no lockout condi,ion we require the arbiter to satisfy.
We denote by El the execution module of Ai with the
executions of Al satisfying the condition NoLockout 1.
The execution module Ei serves as our specification
of the arbiter.

3.2 An Intermediate-Level Model

Our second model of the arbiter is essentially the
global description given in the introduction (see Fig-
ure 1). In this model, the arbiter and its users are
modeled by an undirected, acyclic graph G. The
leaves of G are user nodes representing the users, la-
beled ui,...,~~. The arbiter itself consists of the re-
maining arbiter nodes, labeled al,. . . , a,. Arrows are
placed on edges of the graph to indicate either a re-
quest for the resource or the granting of the resource.
The (directed) edge of G from the node u to w is de-
noted by (u, w). With every edge (u, w) we associate
a set arrows(u, w) containing the arrows on the edge
(u, w). The states of AZ are determined by the sets
urrows(u, w). The start states of AS are chosen from
those states in which all arrow sets are empty, ex-
cept that one arrow set arrows(u, u;) contains a grant
arrow for some arbiter node ai, In general, the re-
source is considered to be held by a node at the head
of a grant arrow. Such a node is called a root of the
graph. Therefore, the initial states are chosen from
those states in which no requests are pending and an
arbiter node is the root of the graph. The particu-
lar set of start states chosen is of no importance at
the moment, so we will defer the choice until the next
section.

A user u; requests the resource with the input
action request(ui, aj), placing a request arrow 011

the edge (u;, sj) from itself to the adjacent arbiter
node oj. The arbiter grants the resource to ui with the
output action grcnt(aj, ui), removing this request ar-
row from (u<, oj) and placing a grant arrow on (oj, u;).

The user returns the resource with the input action
grant(u;, oj) 1 moving the grunt arrow from the edge
(aj, pi) to the edge (ui, ai). In general, if an arbiter
node oj finds itself at the head of a request arrow, its
response depends on whether it is holding the resource
or not. If the arbiter holds the resource, then it must
be at the head of a grunt arrow, and so there must be

144

Input Actions:
requesf (u, a)

effects:
arrows(u, cb) + urrowu(u, t-4) U {requcaf }

grunt (u, lz)
effects:

if grant E arrows(u,u) then
arrotud(cz, u) 4- afrow9(0, u) - {request}
arrowa(a, u) i- arrotua(a, u) - {grant}
arrowa(u, a) t arrowb(u, u) U (granf)

Internal and Output Actions:
request (u, v)

preconditions:
request E urrowu(w,a) for some uJ
(a,~) pointa toward a root
requesf 4 urrotus (u, v)

effects:
urrowa(u, u) t orrowa(a, u) U {requcaf}

grant(a, v)
preconditions:

request E arrows(v, s)
grunt E arrowa(w, a) for some w
request 4 arrowa(y, a) for y E (w, u)

effects:
arfowd(v,u) t mrowd(u,u) - {regueaf}
arrowa(w, u) t urrowa(w, 13) - {grant}
orrooIvd(u, v) t orrowd(u, u) U {grmf}

Figure 3: The actions of AZ.

a grunt arrow on some edge (wt aj>. The arbiter node
selects the first node u in some fixed ordering of its
adjacent nodes having a request arrow on (v, ai). The
arbiter then grants the resource to this node with the
action gront(aj,u), removing the request arrow and
moving the grant arrow to the edge (aj, u). If the ar-
biter node aj does not hold the resource, then the ar-
biter forwards the request in the direction of the node
holding the resource with the action requeat(ai, o),
placing a request on the edge (ai, u) pointing toward
a root (that is, the edge (oj,*) in the path from aj
to the root). The actions of AZ are formally defined
in Figure 3. Here we fix for each node an ordering
of its adjacent nodes. We denote by (v, w) the set of
nodes strictly between v and w in this ordering, and
by (TJ, w] the set of nodes (u, w) together with w. The
external actions of AZ are the actions request(ui,aj),
grunt(ui, oj), and grant(aj, ui); and the remaining ac-
tions are internal actions. For technical convenience,
we remove all potentially unreachable states from Aa
so that all states are reachable.

Straightforward inductive arguments show that the
automaton AZ satisfies the following invariants:

Lemma 2: Every state of A2 has precisely one root.

Lemma 3: Let s be a state of Ag, and let a be an
arbiter node of G. If arrowa(a, u) contains a request
arrow, then (a, u) points toward the root of G.

The first invariant, Lemma 2, shows that AZ satisfies
the mutual exclusion condition. However, in order to
ensure that the arbiter satisfies the no lockout condi-
tion, it is cIearly important that arbiter nodes forward
all requests in the direction of the root, and that ar-
biter nodes holding the resource eventually grant the
resource to adjacent requesting nodes. Let a; be an
arbiter node adjacent to nodes v and w, and let US

define the following sets of states and actions.

FwdReq~(a,u) = {s E states(A2) :
request E urrows(w, a) for some w,
(a, u) points toward the root, and

request $! urrowa(a, V) in 5)
FwdReqi (a, u) = (grant(u, a), requeat(a, w))

FwdGri(a, u, w) = {s E statea(A2) :
request E arrowa(u, a) and
grant E arrowa(w, u) in s}

FwdGrz(a, u, w) = t9rda, Y) : Y E (~4 4

The first arbiter correctness condition

FwdReq= = A FwdReq; (a, u) Y FwdReq;(u, u)
a,v

states that if an arbiter node a is at the head of a
request arrow and has not forwarded the request in
the direction of the root, then either u becomes the
root (pos&ly because v is a user node, and u has
placed a grunt arrow on (u, a)), or u eventually for-
wards the request in the direction of the root. The
second arbiter correctness condition

FwdGra = // FwdGrl(a, o, w) c-) FwdGrl(a, v, w)
a,v,w

states that if an arbiter node Q is a root at the head
of a request arrow, then it eventually forwards the
resource to an adjacent requesting node. The correct-
ness condition

cz = FwdReq, A FwdGra

ensures that arbiter nodes always forward requests in
the direction of the root; and that arbiter nodes hold-
ing the resource always grant it to adjacent request-
ing nodes. We define EZ to be the execution module
of AZ with those executions of A2 satisfying the con-
dition C,.

While Lemma 2 states that executions of Es sat-
isfy the mutual exclusion condition, and while con-
dition C’s ensures that arbiter nodes holding the re-
source always grant the resource to requesting nodes,

145

we have not yet shown that every execution of EZ
satisfies the no lockout condition. As before, this re-
quires cooperation on the part of the users. Let u be
a user node adjacent to the arbiter node a, and let us
define the following sets of states and actions.

RtnResi (u) = {s E states(A2) :
grant

RtnRes,“(u) = {grant(u, ca)}

GrRe$ (u) = {s E states(A2) :
request

GrRes;(u) = {grant(a, u)}

The condition

E arrows(a, u) in 9)

E arrows(u, u) in a}

RtnResa = A RfnRes;(u) c-) RtnResi(u)
u

says that user nodes holding the resource always re-
turn the resource, and the condition

GrResa = A GrResi (u) - GrResi (u)
u

says that the arbiter always satisfies requesting users.
The condition

NoLockoutp, = RtnResz I GrRksz

says that if users return the resource, then the arbiter
satisfies all requests. It is fairly simple to show that

Lemma 4: Every execution of Ea satisfies the con-
dition NoLockouta.

With this, we are now ready to show that the exe-
cution module Es satisfies the execution module Er,
the specification of the arbiter. Recall that one re-
quirement for Er to satisfy & is that both execution
modules have the same external action signature. For
the sake of exposition, however, we have given the ac-
tions of A2 names reflecting their level of abstraction,
rather than using the names of the actions of Al. It
is a simple matter to rename the (external) actions
of AZ and ~3’2 (yielding Ai and ~74) to be consistent
with those of A1 and El by renaming request(u, a) as
request(u), grant(u, u) as return(u), and grant(a, u)
as grant(u). Having done so, we construct the map
ping hr mapping the state 8 of A; to the state t of AI
such that

u E requesters in t iff
request f arrows(u, u) in 3

holder = u in t iff
grant E arrowa(u, u) in 9

holder = a in t ifI
grant # arrows(a, u) for every user u in 3

It is a routine matter to prove that

Lemma 5: The mapping hl is a possibilities map-
ping from Ah to Al.

Furthermore, using Lemma 1 and the possibilities
mapping hr, it is easy to prove that

Lemma 6: Ei satisfies El.

3.3 A Low-Level Model

Previous models have given global descriptions of the
arbiter’s behavior. In the description of the arbiter
given above, the arbiter nodes are intended to rep-
resent processes in a distributed network implement-
ing the arbiter. In this model we actually distribute
the arbiter by modeling each process with a separate
automaton. These automata describe the low-level
protocol followed by each process implementing the
arbiter. Notice that while previous models have ac-
knowledged the asynchrony of processor step times,
they have essentially ignored the asynchrony of the
network’s message system by assuming instantaneous
message delivery. We now introduce this asynchrony
into the model, modeling the message system as an in-
dependent automaton. By composing the automata
modeling arbiter processes together with the automa-
ton modeling the message system, we obtain a global
model of the arbiter.

In order to model asynchronous message delivery
at the intermediate level of abstraction (with the au-
tomaton AZ), it is convenient to add to the graph G an
extra arbiter node ba+, (or bat+) between every pair
of adjacent arbiter nodes u and a’. The node b,,,!
acts as a message buffer between a and a’: The send-
ing of a message from a to a’ corresponds to placing
an arrow on the edge (u, ba,,y), and the delivery of
the message by the message system corresponds to
placing an arrow on the edge (b,,,, , u’). Since they
function as message buffers, we will hereafter refer to
the nodes b Cl,n, as buffer nodes, and not arbiter nodes.
We denote by 9 the graph obtained from G by the ad-
dition of such buffer nodes. Two user or arbiter nodes
(processes) are said to be neighbors in 5 if they are
separated by at most a buffer node. Since the results
of the previous section hold for arbitrary connected,
acyclic graphs, and since 5 is such a graph, these re-
sults hold for the graph 8. We therefore fix $ as the
graph underlying the model AQ. Furthermore, we fix
as the set of start states of A2 those start states in
which no buffer node is a root. In such states, the ar-
biter holds the resource, and no undelivered messages
are pending. With this added structure of ,$, we can
prove the following invariant concerning buffer nodes
during executions of AZ.

146

Lemma 7: Let a. and u’ be adjacent arbiter nodes,
and let s be a state of AZ. Lf request E

nrrows @,,I) a’) or grant E arrows(a’, b,,,~), then
request E arfows(a, ba,aj).

That is, if the arbiter node a has not sent a request
CO the arbiter node a’, then there will be no request
in transit from a to a’ and no grunt in transit from a’
to a.

Previous models have given some indication of the
behavior required of arbiter processes. In the first
place, arbiter processes must always forward a request
for the resource in the direction of the resource. Since
the network is acyclic, the process is able to deter-
mine the direction of the resource by remembering
the direction in which it last forwarded the resource,
Furthermore, arbiter processes holding the resource
must grant the resource to a requesting process. In
particular, if arbiter process a receives the resource
from process u, then a must grant the resource to
the first requesting process after v in a fixed ordering
of its neighbors. Therefore, the state of an arbiter
process is determined by a set requesting of processes
from which it has received a request for the resource,
the linT: last$ru;ard over which the resource was last
Sent, a f!ag h.olding indicating whether the process is
holding the resource, and a flag requesting indicating
whether the process has sent a request in the direc-
tion of the resource. Initially, some arbiter process is
designated as the initial holder of the resource, and is
known to all processes in the network. For each ar-
bizer process a, each arbiter (nonbuffer) node of 5, we
construct an automaton A, modeling the process a.
The actions of A, are given in Figure 4. Here, TV is a
neighbor of a.

The behavior required of the message system is very
simple. The system must be able to accept messages
for delivery, and ensure that every message seait is
eventually delivered. The state of the message system
is simpIy a collection of undelivered messages. More
formally, the state of the message system consists of a
set messages of triples of the form (a, a’, request) and
(a, a’, grant) denoting request and grant messages, re-
spectively, to be delivered from a to a’. We construct
an automaton M to model the asynchronous message
system. The actions of M are given in Figure 5. Here,
a and a’ are neighboring arbiter nodes.

The global model A3 of the arbiter at this low level
of abstraction is constructed by composing the au-
tomata A, modeling the arbiter processes together
with the automaton M modeling the message system,
and hiding actions inherently internal to the global
system (that is, the actions of the message system M).

AS mentioned in the introduction to this model, an

Input Actions:
receiverequesf(u, u)

effects:
requesting + requesting U (v}

feceivegrant(u, 13)
effects:

if holding = false and lostforward = Z) then
holding +- true
requested + false

Output Actions:
aendrequest (a, u)

preconditions:
requesting # 0
requeated = false
holding = false
kstforward = v

effects:
requested +- true

sendgrant (u, v)
preconditions:

v E requesting
holding = true
lastforward = w
y 4 requesting for all y E (w, v)

effects:
requesting 4- requesting - {u)
lastforward = v
holding + f&e

Figure 4: The Actions of A,.

arbiter process a is required to forward all requests,
and to grant the resource to a requesting process if
the arbiter process holds the resource. Let u and w
be two neighbors of the arbiter process a, and let us
define the following sets of states and actions.

FwdReqi(v) = {s E atates(A,) : requesting f Q,
requested = jizise,

holding = false, and
la&forward = v in 9)

FwdReqz(u) - {receivegrant(v, G.),
sendrequest(a, v)]

FwdGri(u, w) = {s E states(-4,) : u E requesting
holding = true, and

la&forward = zu in s)
FwdGrz(v, w) = { sendgrant (a, y) : y E (w, u]}

The condition

FwdReq, = A FwdReqt (u) L+ FwdReqz(u)
”

says that the arbiter process a having received a re-
quest and not holding the resource will either for-

147

Input Actions:
aendrequest(a, a’)

effects:
messages + message5 U {(a, a’, request))

sendgrant (a, a’)
effects:

tW88Uge8 t 77W88Uge8 U { (U,U',grUnt)}

Output Actions:
receiverequest(a, a‘)

preconditions:
(a, a’, request) E messages

effects:
messages + messages - {(a, a’, request)}

teceiuegrant(a, a’)
preconditions:

(a, a’, grant) E message8

effects:
me88age8 t messages - {(a, a’, grant))

Figure 5: The actions of M.

ward a request for the resource or receive the resource
(without having requested it, perhaps from a user).
The condition

FwdGr, = A FwdGri(v) - FwdGrE(v)
”

says that the arbiter process a holding the resource
and having received a request will eventually forward
the resource to a requesting process. The condition

C, = FwdReqa A FwdGr,

is the desired correctness condition for the arbiter pro-
cess a. We note the following.

Lemma 8: Every fair execution of A, satisfies C,.

We let the execution module E, = Fair(A,). The
execution module .& is clearly an implementable ex-
ecution module.

We must also require that the message system de-
liver all messages sent. Let a and a’ be two neighbor-
ing arbiter processes, and let us define the following
sets of states and actions.

DelReqR(a, a’) = (9 E states(M) :

(CL, a’, request) E messages in s}
DelReq& (a, a’) = (receiverequest(u, a’)}

DelGrh(a, a’) = {s e states(M) :
(a, a’, grunt) E messages in 9)

DelGr&(a, a’) = {receivegrant(a, u’))

If we let

DelReq, = /\ DelReq’&(a, a’) - DelReq&(a, a’)
u,a’

and

DelGrM = A DelGr$(a, a’) - DelGrL(a, a’),
a.a’

then the condition

CM = DelReqM A DelGrM

says that messages sent are always delivered. We de-
note by EM the execution module of M with the exe-
cutions satisfying CM. We note that since we are im-
plementing the arbiter protocol and not the message
system, we have not constructed a particular automa-
ton whose fair executions satisfy the condition CM.
In the full paper, however, we do prove that E-w is
implementable, being satisfied by a message system
delivering messages in the order they are received.

Finally, we define Es to be the composition of the
execution modules E, and EM after hiding the in-
ternal actions of AS. Since the component execution
modules are implementable, so is Es.

Again, having named the actions of AS for the con-
venience of exposition, we must rename the actions
of Aa to correspond to the actions of A:! at the higher
level of abstraction before proving that the execution
module Es satisfies the execution module Ea. Af-
ter renaming the actions of Aa and Es (yielding Ai
and E$) to be consistent with the names of actions
of AZ and Ea, we construct a possibilities mapping hz
from A)3 to AZ. In order to define this mapping, it
will be necessary to refer to state variables from each
of the components of A:. While the name of the
state variable messages of M’ is unique to M’, the re-
maining components share variable names. In order
to avoid ambiguity, we will indicate the component
to which a state variable belongs by subscripting the
variable with an appropriate identifier. For example,
the set requesting of requesting processes in Ai will
be denoted by requesting,. The mapping hg maps the
state a of A$ to the set of states t of Aa satisfying the
following conditions:

Ul : request E arrows(u, a) iff u E requesting,
U2 : grant E arrows(u,a) iff

holding, = true and lastforward, = u
U3 ; request E arrowa(U,u) iff

requested, = true and lastforward, = u
U4 : grant E arrowa(0, u) iff

holding, = fake and lastforward, = u

148

Al ; request E arrows(b,l,,,a) iff a’ E requesting,
A2 : grant E arrows(b,l,,, a) iff

holding, = true and lastforward, = a’
A3 : reque.st E arrows(a, b,,,~) iff

requested, = true and lastjorward, = a’
A4 : grunt E arrows(a, b,,,l) iff

(a, a’, grunt) E messages

I1 : request E arrows(a, bo,ar),
request $ arrows(b,,,c, a’), and
grunt $4 arrows(a’, ba+l) iff

(a, a’, request) f messages
I2 : {a, b,,,,) points toward the root iff

holding, = false and lastjorward, = a’

The conditions Ul - U3 and Al - A3 are straight-
forward. They say that the arbiter process a has re-
ceived a request from a process v in t iff v is in a’s set
requesting of requesting processes in s; that a has re-
ceived the resource from u in t iff a holds the resource
in s and last sent (and hence received) the resource
to V; and that a has forwarded a request for the re-
s.ource toward the root in t iff a has sent a request in
the direc. ion it last forwarded the resource in s. U4
ssyj thalr chz user u has the resource in t iff in s the
1’1 ^S :ie c1 1ast forwrtrded the resource to u and has not
received the reuo.u;ce since. A4 says that the resource
is in transit between a and a’ in t iff there is a grant
message from a to a’ in the message buffer messages
in s. Conditions I1 and I2 are invariants that m.ust
be preserved by the mapping. I1 says that if a request
Jltessage is in transit in s then it must not have been
received in t. 12 says that the value of lastforward .
correctly records the direction of the resource in the
network.

We first prove that

Lemma 9: The mapping ha is a possibilities map-
ping from AL to AZ.

Using Lemma 1, we then prove that

Lemma 10: I?; satisfies Ez.

We note that the proofs Lemmas 9 and 10 make heavy
use of invariants such as Lemmas 2, 3, and 7 proven
at the intermediate level of abstraction, in addition to
the invariants I1 and I2 satisfied by the mapping ha.
As a result, properties proven at a higher level of ab-
straction are actually used in the correctness proof of
the low-level implementation.

Renaming the actions of EA to agree with those
of Ei to obtain Ej’, we use Lemmas 6 and 10 together
with the fact that Eg is implementable to show that

Theorem 11: Ey solves El.

With this, the proof of the correctness of a fully-
detailed implementation of Schdnhage’s resource al-
location is complete.

4 Conclusions

In this work we have introduced a simple, power-
ful model of computation in asynchronous distributed
networks. We have shown how this model can be used
to construct modular, hierarchical correctness proofs
of distributed algorithms. The technique demon-
strated in this paper shows that the high-level, intu-
itive understanding of an algorithm’s designer need
not be sacrificed for the sake of rigorous correct-
ness. To the contrary, this technique makes use of
the intuition, incorporating it into a proof of the
detailed algorithm’s correctness. We feel that the
strongest evidence for the usefulness of the input-
output automaton model, however, is the fact that

it has already been used successfully by others mod-
eling a variety of distributed algorithms. Exam-
ples of the use of input-output automata differing
from the arbiter example discussed in this work in-
clude concurrency control algorithms (see [LM86],
[HLMW87], [FLMW87], and [GL87]), mutual exciu-
sion algorithms (see [Wel87]), hardware register al-
gorithms (see [Blo87]), and dataflow computation
(see (Lyn86]). I n many of these papers the model
has been found to be especially helpful when attempt-
ing to identify the interface between system compo-
nents, and discovering a system’s natural decompo-
sition. While our work has described one method
for proving the correctness of algorithms within the
input-output automaton model, others are being ex-
amined. Work in progress ((FLS871, for example) con-
tinues to explore ways in which this model can be used
to decompose systems and their proofs of correctness.

One important question related to this work is that
of how much of the correctness proofs we generate can
be checked by machine. In general, the use of cor-
rectly chosen possibilities mappings to prove that one
object satisfies another is quite mechanical and should
be checkable by machine. In the case of the arbiter
examined in this paper, for example, each description
of the arbiter is essentially a finite state description,
with the exception of the message system described
at the lowest level of abstraction. It is fairly simple,
however, to characterize the behavior of the message
system in terms of temporal logic. One interesting
question is whether it is possible to use a temporal
logic characterization of the message system together
with finite state descriptions of the remainder of the

149

arbiter to mechanically verify the satisfaction of one
description of the arbiter by another.

While this work has essentially ignored the notion
of time, time is a very important part of modern dis-
tributed systems. Timeouts, for instance, are a cru-
cial part of the fault-tolerance of many communica-
tions algorithms. Furthermore, the analysis of an al-
gorithm’s complexity requires some notion of bounds
on processor step times and message delivery times.
We give in the full paper [LT87] some ad hoc tech-
niques for reasoning about the time complexity of the
arbiter discussed in this paper. We analyze the com-
plexity of the arbiter at the intermediate-level of ab-
straction, and it is not hard to see how this complexity
result translates down to the lower level of abstrac-
tion. In general, however, relating time complexities
at different levels of abstraction is a difficult prob-
lem. The problem of incorporating time more natu-
rally into our model and of investigating techniques
for reasoning about time in our model certainly de-
serve further study.

Acknowledgments

Much of the preliminary work for this paper (includ-
ing the conception of the input-output automaton)
was done concurrently with the work of the first au-
thor and Michael Merritt in [LM86], and that work
has greatly influenced this paper. Conversations with
and the experience of Alan Fekete, Ken Goldman, and
Jennifer Welch as they have used input-output au-
tomata in their work have also been very helpful. The
presentation of this work was improved by comments
from Leslie Lampcrt and Liuba Shrira.

References

[AS871 Bowen Alpern and Fred B. Schneider.
Proving boolean combinations of deter-
ministic properties. In Proceedings of
Second Annual Symposium on Logic in
Computer Science, June 1987.

[BKP84] Howard Bar-ringer, Ruurd Kuiper, and
Amir Pnueli. Now you may compose
temporal logic specifications. In Proceed-
ings of the 16th Annual ACM Symposium
on Theory of Computation, pages 51-63,
April 1984.

[I310871 Bard Bloom. Constructing two-writer
atomic registers. In Proceedings of the 6th
Annual ACM Symposium on Principles
of Distributed Computing, August 1987.

(FLMW87]

[FLS87]

[Fra86]

[GHS83]

[GL87]

[Har87]

[HLMW87]

[Hoa85]

[Lam831

[LM86]

Alan Fekete, Nancy Lynch, Michael Mer-
ritt, and William Weihl. Nested trans-
actions and read/write locking. In Pro-
ceedings of the 6th Annual ACM Sympo-
sium on Principles of Database Systems,
pages 97-111, March 1987.

Alan Fekete, Nancy Lynch, and Liuba
Shrira. A modular proof of correctness
for a network synchronizer. 1987. In
progress.

Nissim Francez. Fairness. Springer-
Verlag, Berlin, 1986.

Robert Gallagher, Pierre Humblet, and
Phillip Spira. A distributed algorithm for
minimum-weight spanning trees. ACkf
Transactidhs on Programming Languages
and Systems, 5(1) :66-77, January 1983.

Kenneth Goldman and Nancy Lynch.
Quorum consensus in nested transac-
tion systems. In Proceedings of the 6th
Annual ACM Symposium on Principles
of Distributed Computing, August 1987.
Also available as MIT Technical Report
MITJLCSITR-390.

David Harel. Statecharts: a visual for-
malism for complex systems. 1987. To
appear in Science of Computer Program-
ming.

Maurice Herlihy, Nancy Lynch, Michael
Merritt, and William Weihl. On the
correctness of orphan elimination algo-
rithms. In Proceedings of the 17th An-
nual IEEE Symposium on Fault- Tolerant
Computing, July 1987.

C. A. R. Hoare. Communicating Se-
quential Processes. Prentice-Hall Inter-
national, Englewood Cliffs, New Jersey,
1985.

Leslie Lamport. Specifying concurrent
program modules. ACM Transactions
on Programming Languages and Systems,
5(2):190-222, April 1983.

Nancy Lynch and Michael Merritt. Intro-
duction to the Theory of Nested Transac-
tions. Technical Report MIT/LCS/TR-
367, Laboratory for Computer Science,
Massachusetts Institute of Technology,
1986.

150

[LS84aj

[LS84b]

[LT87]

Pen831

bYn861

[Mil80j

[MP8la]

[MPSlb]

[OG76]

[Sch80]

[Sta84]

Simon S. Lam and A. Udaya Shankar. Technology, August 1984. Available as
Protocol verification via projections. Technical Report MIT/LCS/TR-342.
IEEE Transactions on Software Engi-
neering, SE10(4):325-342, July 1984. [We1871 Jennifer L. Welch. Synthesis of efficient

mutual exclusion algorithms. 1987. In
Leslie Lamport and Bed Schneider. The
“Hoare logic” of CSP, and all that. ACM
Transactions on Programming Languages
and Systems, 6(2):281-296, April 1984.

progress.

Nancy A. Lynch and Mark R. Tut-
tle. Hierarchical Correctness Proojs for
Distributed Algorithms, Technical Re-
port MIT/LCS/TR-387, Laboratory for
Computer Science, Massachusetts Insti-
tute of Technology, April 1987.

Nancy A. Lynch. Concurrency Control
for Resilient Nested Transactions. Tech-
nical Report MIT/LCS/TR-285, Labo-
ratory for Computer Science, Massachu-
setts Institute of Technology, February
1983.

Nancy Lynch. Unpublished notes, 1986.

Robin Milner. A Calculus of Communi-
cating Systems. Lecture Notes in Com-
puter Science 92, Springer-Verlag, Berlin,
1980.

Zohar Manna and Amir Pnueli. Verifi-
cation of concurrent programs: tempo-
ral proof principles. In Dexter Kozen,
editor, Logic of Programs, Lecture Notes
in Computer Science 131, pages 200-252,
Springer-Verlag, Berlin, 198 1.

Zohar Manna and Amir Pnueli. Verifi-
cation of concurrent programs: the tem-
poral framework. In Robert S. Boyer
and J. Strother Moore, editors, The Cor-
rectness Problem in Computer Science,
pages 215-273, Academic Press, London,
1981.

Susan Owicki and David Gries. An ax-
iomatic proof technique for parallel pro-
grams I. Acta Informatica, 6(4):319-340,
August 1976.

Arnold Schonhage. Personal Communi-
cation, 1980.

Eugene W. Stark. Foundations of a The-
ory of Specification for Distributed Sys-
tems. PhD thesis, Laboratory for Com-
puter Science, Massachusetts Institute of

151

