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Abstract: Gifford’s basic Quorum Consensus algo- 
rithm for data replication is generalized to accom- 
modate nested transactions and transaction failures 
(aborts), A formal description of the generalized algo- 
rithm is presented using the new Lynch-Merritt input- 
output automaton model for nested transaction sys- 
tems. This formal description is used to construct a 
complete (yet simple) proof of correctness that uses 
standard assertional techniques and is based on a 
natural correctness condition. The presentation and 
proof treat issues of data replication entirely sepa- 
rately from issues of concurrency control and recov- 

ery- 

1 Introduction 

In distributed database systems, logical data items 
are often rcplicutcd in order to improve availability, 
reliability and performance. Whenever replication is 
used,’ a replication algorithm is required in order to 
ensure that t; ? replication is transparent to the user 
programs. In .G2derstanding replication algorithms, 
it is convenienb to think of each logical data item as 
being implemented by a collection of data managers 
(DMs) and transaction managers (TMs). The DMs 
retain state information, and the collective state of 
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the DMs defines the current state of the logical data 
item. The user programs invoke TMs in order to read 
or write the logical data item; the TMs accomplish 
this by physically accessing some subset of the DMs. 

One of the most well-known replication algorithms 
is Gifford’s algorithm (lo], which we call Quorum 
Consensus. Based on Thomas [21/, the ideas of this 
method underlie many of the more recent and sophis- 
ticated replication techniques (e.g., [ 1,2,8,12]). In Gif- 
ford’s algorithm, each DM iz assigned a certain num- 
ber of votes and keeps as part of its state a data value 
with an associated version numht-. Each logical data 
item x has an associated configuration that consists 
of a pair of integers called read-quorum and writc- 
quorum. If u is the total number of votes assigned to 
DMs for 2, then the configuration is constrained so 
that read-quorum + write-quorum > v. To read x, 
a TM collects the version-numbers and values from 
enough DMs so that it has a read-quorum of votes; 
then it returns the value associated with the highest 
version-number. To write Z, a TM 6rst collects the 
version-numbers from enough DMs so that it has a 
read-quorum of votes; then, it writes its value with a 
higher version number to a collection of DMs with a 
write-quorum of votes. This method generalizes both 
the read-one/write-all and the read-majority/write- 
majority algorithms. 

Here, we adopt a slightly more general configu- 
ration strategy, which is justified by Barbara and 
Garcia-Molina in 131: A configuration consists of a 
set of read-quorums and a set of write-quorums. Each 
quorum is a set of DM names, and every read-quorum 
must have a non-empty intersection with every write- 
quorum. To read a data item, a TM accesses all the 
DMs in some read-quorum and chooses the value with 
the highest version number. To write a data item, a 
TM first discovers the highest version number written 
so far by accessing aII the DMs in some read-quorum; 
then the TM increments that version number by one 
and writes the new value and version number to all 



the DMa in some write-quorum. 
In this paper, we generalize Gifford’s algorithm in 

two fundamental waya. First, we incorporate the con- 
cept of twnaaction nesting into the algorithm. Dana- 
action nesting is useful in its own right (for instance, 
as the basis of the distributed programming language 
ARGUS [14,X,19,22]). In addition, it turns out that 
nested transactions provide a useful way of under- 
standing replication algorithms even if user transac- 
tions are not nested (a8 in Gifford [lo]). This is be- 
cause the TM’s themselves can be regarded a8 sub- 
transactiona of the user transactions. Once one sees 
how to understand the algorithm in this way, it is very 
natural to generalize the algorithm to allow nesting of 
user transactions as well. Second, we extend the algo- 
rithm to accommodate transaction failures (aborts). 
Thus, for example, an operation to access a logical 
data item can complete even if some of its accesses to 
DMs abort. 

We present our algorithm using the new framework 
of Lynch and Merritt [16] for modeRing nested tranz- 
action concurrency control and recovery. The descrip 
tionz are clear, zimple, and unambiguous. A complete 
correctness proof is also described; it iz short, natural, 
and intuitive, yet completely rigorous. 

An important reason for the simplicity of the proof 
iz the fact that we are able to separate the treatment 
of replication entirely from the treatment of concur- 
rency control and recovery. That is, we are able to 
consider the replication issues solely in the context of 
serial systems. We prove that a system which includes 
the new replication algorithm and which is serial at 
the level of the individual data copies “simulate8’ (in 
a strong sense) a system which is serial at the level 
of the logical data items. In particular, it “looks the 
same” to the user transactions. Since both systems 
involved in this simulation are serial systems, the sim- 
ulation proof is very simple, and is based on standard 
assertional techniques. 

Of course, systems which are truly serial at the level 
of the data copies are of little practical interest. How- 
ever, previous work on nested transaction concurrency 
control and recovery algorithms [19,20,16,9] has pr+ 
duced several interesting algorithms which guarantee 
that a system uppcara to be serial, as far az the tram+ 
actions can tell. Combining any of these algorithms 
(at the copy level) with the new replication algorithm 
yields a combined algorithm which appears to be non- 
replicated and serial (at the logical data item level), 
as far as the user transactions can tell. 

In fact, our results show that the replication al- 
gorithm can be combined with any algorithm which 
guarantees serialisability at the copy level, to yield a 
system which is seriabzable at the logical item level. 

Thus, our work formalizes a frequently stated infor- 
mal claim that ‘quorum consensus works with any 
correct concurrency control algorithm. As long az 
the algorithm produces serializable executions, quo- 
rum consensus will ensure that the effect is just like 
an execution on a single copy database” 171. 

Related work, in addition to the papers already 
mentioned, includes some previous attempts at rig- 
orous presentation and proof of replicated data algo- 
rithms. Most notable among these is the presenta- 
tion and proof given by Bernstein, Hadzilacos, and 
Goodman [7] of Gifford’s basic algorithm. This work 
is based on serializa6ility theory, a theory which has 
made a significant contribution to the understand- 
ing of concurrency control. Thiz approach, however, 
does not appear to generalize easily to the case where 
nesting and failures are allowed. Also, Herlihy (121 
extends Gifford’e algorithm to accommodate abstract 
data types and offers a correctness proof. Again, aest- 
ing is not considered. This paper ia part of a larger 
effort to unify the work in concurrency control and re- 
covery, as well az extend it to permit nesting [16,9,13]. 

The remainder of the paper is organized as follows. 
In Section 2, we introduce the computation model. 
Then, in Section 3, we describe the generalized ver- 
sion of Gifford’s algorithm with fixed configurations 
and prove its correctness. Then we show that the 
correctness of interesting non-serial replicated systems 
follows directly from these results. In Section 4, we 
describe how these methods are expanded to give a 

correctness proof when we permit configurations to 
be changed dynamically (reconfiguration). Section 5 
contains a summary of our results and a brief discus- 
sion of possible further research. 

For the algorithm without reconfiguration, we 
present the statements of all the lemmas and theo- 
rems, and describe the highlights of the more inter- 
esting proofs. For complete detailed proofs, including 
reconfiguration, see ] 111. 

2 The Model 

We use the I/O automaton model, due to Lynch- 
Merritt [ 161 and Lynch-Tuttle [ 181, as the formal foun- 
dation for our work. We model components of a 
system with (possibly infinite-state) nondeterminis- 
tic automata that have operation names associated 
with their state transitions. Communication among 
automata is described by identifying their operations. 
We only prove properties of finite behavior, so a sim- 
pla special case of the general model is sufficient. Sec- 
tions 2.1 and 2.2 provide a brief introduction to I/O 
auto.nata and systems that includes the definitions 
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from [Ml and (181 that are relevant to this work. 
Then, in Section 2.3, we extend the model with some 
new definitions that are particularly useful for mod- 
eling replicated data management algorithms. 

2.1 I/O Automata and Systems 

The basic components of the model are I/O automata. 
An I/O automaton A has components states(A), 
start(A), out(A), in(A), and steps(A). Here, atcrtes(ft) 
is a set of states, of which a subset stcrtt(/l) is desig- 
nated as the set of start states. The next two com- 
ponents are disjoint sets: out(A) is the set of output 
operutions, and in(A) ia the set of input operations. 
The union of these two s&s ie the set of operations 
of the automaton. Finally, steps(A) is the transition 
relation of A, which is a set of triples of the form 
(a’, R, s), where s’ and 8 are states, and 7~ is an oper- 
ation. This triple means that in state s’, the automa- 
ton can atomically perform operation A and change to 
state 8. An element of the transition relation is called 
a step of A. If (s’, R, s) is a step of A, we say that t 
is enabled in s’. 

The output operations are intended to model the 
actions that are triggered by the automaton itself, 
while the input operations model the actions that are 
triggered by the environment of the automaton. We 
require the following condition, which says that an 
I/O automaton must be prepared to receive any in- 
put operation at any time. 

Input Condition: For each input operation R and 
each state s’, there exist a state s and a step (s’, r, 3). 

An ezecutic of A is a finite alternating se- 
quence 30, ~1, : Q, . . . . s,, of states and operations 
of A, where so le in start(A) and each subsequence 
(Sir Fi+l, &+I) is in steps(A). From any execution, we 
can extract the schedule, which is the subsequence of 
the execution that contains only the operations (e.g., 
~l,.JiZ,.**, r,,). Because transitions to different states 
may be labeled with the same operation, different ex- 
ecutions may have the same schedule. 

If S is any set of schedules (or property of schedules), 
then automaton A is said to preserve S provided that 
the following holds. If Q = a’a is any schedule of A, 
where x is an output operation and a’ is in S, then 
Q is in S. That is, A is not the first to violate the 
property described by S. 

We model a system as a set of interacting compo- 
nents, each of which is an I/O automaton. It is con- 
venient and natural to view systems as I/O automata 
as well. Thus, we define an operation that composes 
a set of I/O automata to yield a new I/O automaton. 

A set of I/O automata may be composed to create 
a system S, provided that the sets of output opera- 
tions for the automata are disjoint. This ensures that 
every output operation in S will be triggered by ex- 
actly one component. The system S is itself an I/O 
automaton. A state of the composed automaton is 
a tuple of states, one for each component, and the 
start states are tuples consisting of start states of the 
components. The set of operations of S, ops(S), is 
the union of the sets of operations of the component 
automata. The set of output operations of S, out(S), 
is likewise the union of the sets of output operations 
of the component automata. Finally, the set of in- 
put operations of S, in(S), is ops(S)-out(S), the set 
of operations of S that are not output operations of 
S. The output operations of a system are intended to 
be exactly those that are triggered by components of 
the system, while the input operations of a system are 
those that are triggered by the system’s environment. 

The triple (a’, A, a) is in the transition relation of S 
if and only if for each component automaton A, one 
of the following two conditions holds. Either R is an 
operation of A, and the projection of the step onto A 
is a step of A, or else A is not an operation of A, and 
the state corresponding to A in tuple 8’ is identical to 
the state corresponding to A in tuple s. Thus, each 
operation of the composed automaton is an operation 
of a subset of the component automata. During an 
operation K of S, each of the components which has 
operation ?r carries out the operation, while the re- 
mainder stay in the same state. Again, the operation 
A is an output operation of the composition if it is 
the output operation of a component - otherwise, K 
is an input operation of the composition. 

An ezecution of a system is defined to be an exe- 
cution of the automaton composed of the individual 
automata of the system. If u is a sequence of opera- 
tions of a system S with component A, then a(A (read 
a~ restricted to A”) is the subsequence of u consisting 
of the operations of A. Clearly, if u is a schedule of 
S, then u[A is a schedule of A. 

The following lemma, known as the Composition 
Lemma, expresses formally the notion that an opera- 
tion is under the control of the component of which it 
is an output. 

Lemma 1 Let o’ be a schedule of a system S, and let 
u = u’i, where A is an output operation of component 
A. If o (A is a schedule of A, then u is a schedule of S . 

Proof: In [ 16). n 

Let u be a schedule of system S. We say that prop- 
erty P holds after Q iff property P holds for the final 
state of every execution of S whose schedule is u. We 
say that property P holds forever after u iff property P 
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holds for the final state of every execution of S whose 
schedule has u as a prefix. 

Let A be an automaton whose transition relation is 
restricted so that if (s’, A, 51) and (a’, r, 52) are both in 
steps(A), then 51 = 82. If A has a unique initial state, 
then we say that A is a &at.+detemriniatic automaton. 
That is, A is deterministic in the sense that its state 
is a function of its schedule. 

All of the automata that we define explicitly are 
state-deterministic. For such automata, we will freely 
use the word5 ‘state u of A after schedule ~9’ to denote 
the unique state of A resulting from the execution of 
A whose schedule is Q. 

2.2 Nested Transaction Systems 

To model nested transaction systems we use a aystem 
type, which is a tuple (T,parent,O,V). 7 is the set of 
transaction names organised into a tree by the map 
ping parent: 7 -, 7, with To as the root. In referring 
to this tree, we use traditional terminology, such as 
child, leaf, least common ancestor (lea), ancestor and 
descendant. (A transaction is its own ancestor and de- 
scendant.) The leaves of 7 are called accesses. The 
set 0 is a partition of the set of accesses, where each 
element (ch55) of the partition contain5 the accesses 
to a particular object; each element of 0 denotes its 
corresponding object. Finally, V is the set of valuea 
that may be returned by transactions. The tree atruc- 
ture is know in advance by all the components of the * 
system and can be thought of as a predefined naming 
scheme for all possible transaction5 that might ever be 
invoked. In general, the tree is an infinite structure, 
and only some of the transactions will take steps in 
any given execution. 

The root transaction T,-, plays a special role in 
this theory. The root models the environment of the 
nested transaction system (the ‘@external world”) from 
which requests for transactions originate and to which 
the results of these transactions are reported. Since it 
has no parent, To may neither commit nor abort. The 
classical transaction5 of concurrency control theory 
(without nesting) appear in our model as the children 
of To. (In other work on nested transactions, such u 
Argus, the children of To are often called ‘top-level” 
transactions.) Even in the context of classical theory 
(with no additional nesting) it is convenient to intro- 
duce the root transaction to model the environment in 
which the rest of the transaction system runs, with op 
eratione that describe the invocation and return of the 
classical transactions. It is natural to reason about To 
in the same way as about all of the other transactions. 

The internal nodes of the tree model transactions 
whose function is to create and manage subtranaac- 

tions, but not to access data directly. The only trans- 
actions which actually access data are the leave5 of the 
transaction tree, and thus they are called “accesses”. 
The partition 0 simply identifies those transactions 
which access the same object. 

The systems we describe are serial systems. A serial 
system is the composition of a set of I/O automata. 
This set, contains a transaction for each internal node 
of the transaction tree, a basic object for each element 
of 0, and a scrotal scheduler for the given system type. 
The system primitives are the transaction automata 
and the basic objects; these describe user programs 
and data, respectively. The serial scheduler controls 
communication between the primitives, and thereby 
defines the allowable orders in which the primitives 
may take steps. All three types of system components 
are modelled as I/O automata. These automata are 
described below. (If X is a basic object associated 
with an element X of the partition 0, and T is an 
access in X, we write T~occcs~cs(X) and say that “T 
is an acce58 to X”.) 

Non-access !lkansactions: nansactions axe mod- 
elled as I/O automata. In modelling transactions, we 
consider it very important not to constrain them un- 
necessarily; thus, we do not want to require that they 
be expressible as programs in any particular high-level 
programming language. Modeling the transactions as 
I/O automata allow5 us to state exactly the proper- 
ties that are needed, without introducing unnecessary 
restrictions or complicated semantics. A non-access 
transaction T is modelled as an I/O automaton, with 
the following operations: 

Input Operations: 
CREATE(T) 
COMMIT(T’,v), where T’Echildren(T) and VE V 
ABORT(T’), where T’Echildren(T) 

Output Operations: 
REQUEST-CREATE(T’), where T’Echildren(T) 
REQUEST-COMMIT(T,v), where VE V 
The CREATE input operation ‘wakes up” the 

transaction. The REQUEST-CREATE output opera- 
tion is a request by T to create a particular child trans- 
action l. The COMMIT input operation reports to T 
the successful completion of one of its children, and re- 
turns a value recording the result5 of that, child’s exe- 
cution. The ABORT input operation report5 to T the 

‘Note that there is no provision for T to pass information to 
its child in this request. In a programming language, T might 
be permitted to pass parameter valuer to a subtransaction. Al- 
thcugh this may be a convenient descriptive aid, it is not nec- 
essary to include in it the underlying formal model. Instead, 
we wnsider transactions that have different input parameters 
to be different transactions. 
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unsuccessful completion of one of its children, with- 
out returning any other information. We call COM- 
MIT(T’,v), for any v, and ABORT(T’) return oper- 
ations for transaction T’. The REQUEST-COMMIT 
operation is an announcement by T that it has fin- 
ished its work, and includes a value for reporting the 
results of that work to its parent. 

It is convenient to use two separate operations, 
REQUEST-CREATE and CREATE, to describe 
what takes place when a subtransaction is activated. 
The REQUEST-CREATE is an operation of the 
transaction’s parent, while the actual CREATE takes 
place at the subtransaction itself. In actual dis- 
tributed systems such aa Argus (151, this separation 
does occur, and the distinction will be important 
in our results and proofs. Similar remarks hold for 
the REQUEST-COMMIT and COMMIT operations, 
which occur at at transaction and its parent, respec- 
tively. 

We leave the executions of particular transaction 
automata largely unspecified; the choice of which chil- 
dren to create, and what value to return, will de- 
pend on the particular implementation. However, it 
is convenient to assume that schedules of transaction 
automata obey certain syntactic constraints. Thus, 
transaction automata are required to preserve well- 
formedness, as defined below. 

We recursively define tuell-formedness for sequences 
of operations of transaction T. Namely, the empty 
schedule is well-formed. Also, if a = a’~ is a sequence 
of operations of T, where r is a single operation, then 
CY ia well-formed provided that a’ is well-formed, and 
the following hold: 

If A is CREATE(T), then 
(i) there is ___ CREATE(T) in a’. 

If r is COMML’,T’,v) or ABORT(T’) for a child T’ of T, 
(i) REQUEST-CREATE(T’) appears in a’ and 
(ii) there is no return operation for T’ in a’. 

If I is REQUEST-CREATE(T’) for a child T’of T, then 
(i) there is no REQUEST-CREATE(T’) in &’ 
(ii) there is no REQUEST-COMMIT for T in a’ and 
(iii) CREATE(T) appears in a’. 

If K is a REQUEST-COMMIT for T, then 
(i) there is no REQUEST-COMMIT for T in Q’ and 
(ii) CREATE(T) appears in a’. 

These restrictions are very basic; they simply say that 
a transaction is created at most once, does not receive 
repeated (OF confiicting) notification of the fates of its 
children, and does not receive information about the 
fate of any child whose creation it has not requested. 
Also, a transaction performs output operations nei- 
ther before it is created nor after it has requested to 
commit, and a transaction does not request the cre- 

ation of any given child more than once. 
Except for these minimal conditions, there are no 

restrictions on allowable transaction behavior. For ex- 
ample, the model allows a transaction to request to 
commit without discovering the fate of all subtransac- 
tions whose creation it has requested. Also, a trans- 
action can request creation of new subtransactions at 
any time, without regard to its state of knowledge 
about subtransactions whose creation it has previ- 
ously requested. Particular programming languages 
may choose to impose additional restrictions on trans- 
action behavior. (An example is Argus, which sus- 
pends activity in transactions until subtransactions 
complete.) However, our results do not require such 
restrictions. 

Barric Objecte: Since access transactions model ab- 
stract operations on shared data objects, we associate 
a single I/O automaton with each object, rather than 
one with each access. The operations of a basic object 
automaton X are the invocation and return operations 
of the its access transactions: 

Input Operations: 
CREATE(T), for T E acceeees(X) 

Output Operations: 
REQUEST-COMMIT(T,v), for TEacceeses(X), VEV 
Let a be a sequence of operations of basic object X. 

Then an access T to X ia said to be pending in 01 prw 
vided that there is a CREATE(T) but RO REQUEST- 
COMMIT for T in cy. 

It is convenient to require that schedules of basic ob- 
jects satisfy certain syntactic conditions. Thus, each 
basic object is required to preserve well-formedness, 
which is defined recursively as follows. 

The empty schedule is well-formed. If a = ca’~ is a 
sequence of operations of basic object X, where ?r is a 
single operation, then Q! is well-formed provided that 
TV’ is well-formed, and the following conditions hold. 

If K is CREATE(T) then 
(i) there is no CTCEATE(T) in a’, and 
(ii) there are no pending accesses in a’. 

If I is a REQUEST-COMMIT for T then 
(i) there is no REQUEST-COMMIT for T in a’, and 
(ii) CREATE(T) appears in a’. 

That is, the schedules of basic objects are restricted 
to consist of alternating CREATE and REQUEST- 
COMMIT operations, starting with a CREATE, and 
with each (CREATE, REQUEST-COMMIT) pair 
having the same access transaction, where each ac- 
cess transaction has at most one CREATE. 

Serial Scheduler: The serial scheduler is a fully 
specified automaton. The serial scheduler can choose 
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nondeterministically to abort any transaction T after 
parent(T) ha8 issued a REQUEST-CREATE(T) op 
eration, a8 long a8 T ha8 not actually been created. 
Thus, the “semantics” of an abort(T) operation are 
that T was never created. Furthermore, a transac- 
tion can only be created if (1) it has not already been 
created, (2) it8 parent ha8 requested it8 creation, and 
(3) all of it8 created siblings have returned. In other 
words, the scheduler runs transaction8 according to a 
depth-first traversal of the transaction tree. 

Finally, the scheduler cannot commit a transaction 
until all of the transaction’s children have returned. 
The formal definition of the serial 8cheduler, adapted 
from [l&9], i8 a8 followe. 

The atate of the serial scheduler has component8 
create-requeeted, created, commit-requested, commit- 
ted, aborted, and returned. Commit-requested is a 
8et of (transaction,value) pairs, and the reet are sets of 
transaction names. Initially, create-requested ,= (To}, 
and the other sets are empty. 

The step8 of the transition relation for each automa- 
ton we define are exactly those triples (s’, R, 8) Satib 
fying the pre- and postconditions listed, where A ie 
the indicated operation. If a component of 8 i8 not 
mentioned in the postcondition, then it is taken to be 
the same in 8 a8 in 8’. 

Input Operations: 
REQUEST-CREATE(T) 
REQUEST-COMMIT(T,v) 

Output Operations: 
CREATE(T) 
COIvMIT(T,v) 
ABOIXT(T) 

OREQUEST-CREATE(T) 
Poateonditiom: 

create-requested(s) = create-requested(8’) U {T} 
oREQUEST-COh4MIT(T,v) 

Postconditiom: 
commit-requeated(s)=commit-requerted(s’)U{(T,v)} 

l CFtEATE( T) 
Preconditiona: 

T E create-requested - (creatsd(8’) U aborted( 
siblings(T) fl created(s’) C retumed(s’) 

Postconditiona: 
created(s) = created(8’) U {T) 

l COMMIT(T,v) 
Preconditions: 

(T,v) E commit-requeeted(s’) 

T $! retumed(8’) 

children(T) n create-requested C retumed(s’) 
Postconditiono: 

committed(s) = committed(8’) U {(T,v)) 
returned(s) = retumed(8’) U {T} 

l ABORT(T) 
Preeonditionx 

T E create-requeeted(8’) - (created(e’) U aborted( 
siblings(T) n created(e’) C_ returned 

P&conditions: 
aborted(s) = aborted(8’) u {T} 
returned(s) = returned U {T} 

Let S be a serial syetem, and let u be a sequence of 
operation8 of S. We say that u is well-formed iff its 
projection at every primitive is well-formed. If u is a 
schedule of S, then u is a serial schedule. In [16], it is 
shown that all serial schedules are well-formed. 

Let S be a serial system, and let 7 be an arbitrary 
sequence of operations. We say that 7 is aerially cor- 

rect with respect to S for transaction T provided that 

7lT = ulT for Borne schedule u of S. 

2.3 Model Extensions for Replicated 
Data Systems 

In this section, we add to the model some defini- 
tions that are useful for formaliping and understand- 
ing replicated data management algorithms. 

In order to unde&and why these particular defini- 
tions are useful, it is helpful to keep in mind the gen- 
eral proof strategy we use. As explained in Section 1, 
for each algorithm considered we first construct a se- 
rial system in which database items are implemented 
a8 multiple replicas, where access to the replica8 is 
controlled by the replication algorithm. Then, we con- 
8trUCt a eerial system with the Same user transactions 
in which each database item L implemented a8 a single 
replica. Finally, we prove that each user transaction2 
in the replicated aystem ha8 the same execution as its 
corresponding transaction in the non-replicated sye- 
tern. 

We have already discussed aerial systems and pro- 
vided formal definition8 for transactions, accesses, and 
executions. However, in order to give a more precise 
meaning to the above description of our proof strat- 
egy, we need formal definition8 for “database item,” 
%eplica,” and ‘corresponding transaction.” 

Logical Data Items: We refer to database items 
a8 “logical data iteme” to distinguish them from their 
physical counterparts, the replicarr. 

‘For each eyetem, we will define formally what ir meant by 
a ueer transaction in terms of the syrtem type, In general, 
however, one may think of ueer transactionr ae all the non- 
acceee transactions that do not model part of the replication 
algorilhm. Aa a rule, ueer transactions are those transactions 
which we do not dercribe with fully-specified automata. 
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A logical data item x is a variable, whose type is the 
tuple (V,, i2). The set V, is the domain of possible 
values for x, and i, E V, is the initial value of x. 
We require that a special undefined value, nil, be an 
element of VI, 

Read-write Objects: Each replica is modelled as 
a fully specified basic object called a read-write ob- 
ject, where the domain and initial value depend upon 
the particular data replication management algorithm 
and the type of the logical data item. 

The state of a read-write object 0 with domain D 
with initial value d E D consists of two components, 
active and data. The variable active (initially nil) 
holds the name of the current access to 0. Data holds 
an element of D (initially d). Every read-write ob- 
ject has a set of accesses, denoted uccesses(0). Each 
access T to a read-write object has the attributes 
kind(T) E {read,write} and data(T) E D. When 
kind(T) = write, data(T) is the data to be written. 

Input Operatione: 
CREATE(T), where T E accesses(O) 

Output Operations: 
REQUEST-COMMIT(T,v), where T E accesses(O) 

@CREATE(T), for T E accesses(O) 
Postconditiom: 

active(s) = T 
OREQUEST-COMMIT(T,v), where kind(T) = read 

Precondifions: 
active(s’) = T 
v = data(s’) 

Postconditiom: 
active(s) = nil 

l R.EQUEST-COMMIT(T,v), where 
kind(T) = write and data(T) = d 

Prccondifiotls: 
active(e’) = T 
v = nil 

Postconditions: 
data(s) = d 
active(s) = nil 

A read-write object accepts read and write accesses. 
For read accesses, it returns the value in the data 
component of its state. For write accesses, it records 
the new data value. 

If TEacceaaea(O), we say that O(T)=O. That is, 
we use O(T) to denote the read-write object to which 
T is an access. 

Lemma 2 Read-write objects are basic objects. 

Extensions of Systems: We want to define for- 
mally the notion of “corresponding transactions” so 

that we can be precise in our comparisons of each 
pair of replicated and non-replicated systems. In or- 
der to do so, we must impose certain restrictions on 
the system types of the two systems. 

Let S’ and S be two systems with system types C’ 
and C, respectively. System type YZ’ is an eztension 
ofayatem type C if the transaction tree of C is a sub- 
graph of the transaction tree of C’ and both trees have 
the same root. Yf C’ is an extension of C, then we say 

that system S’ is an eztension of system S. 
If system S’ is an extension of system S, relating 

the transactions in the two systems is easy. We define 
function 7&f : Ts -4 T& to map transactions in S 
to their same-named transactions in S’. The inverse, 
3&s, is a partial function unless S and S’ have the 
same transaction tree. 

ConlQprations: As a final addition to the model, 
we introduce the following general definitions, which 
are central to the algorithms we study. 

Let S be any arbitrary set, and let Q be the power 
set 2’. We define configurations(S) to be the set of 
all pairs of the form (r, w), where r, w Z Q. (We 
sometimes refer to r and w as sets of read-quorums 
and write-quorums, respectively.) The set Iega1(S) 
is defined to be the set of all elements (t, w) of 
configurations(S) such that every element of r has a 
non-empty intersection with every element of w. 

We say that every element of configurations(S) is a 
configuration of S, and that every element of legal(S) 
is a legal configuration of S. 

Notation: We let N denote the set of non-negative 
integers (i.e., {0,1,2 ,... }). 

3 Fixed Quorum Consensus 

In this section, we formalire and prove the correct- 
ness of a generalized version of Gifford’s algorithm 
without reconfiguration, as described in the introduc- 
tion. In Section 3.1, we define system B, a replicated 
serial system that uses the fixed quorum consensus 
algorithm to manage replicas, and prove some prop- 
erties of its schedules. Then, in Section 3.2, we define 
a corresponding non-replicated serial system, named 
system A. We prove the correctness of the fixed quo- 
rum consensus algorithm in Section 3.3 by showing 
that system B simulates system A in a strong sense. 
Finally, in Section 3.4, we show that non-serial repli- 
cated systems are correct. 

33 



3.1 Replicated Serial Systern 

The replicated serial system defined in thii section is 
an ordinary serial system in which certain logical data 
items are replicated. That is, they are implemented 
as several basic objects (replicas), rather than just 
one. We impose a restriction on the transaction tree 
so that all accesses to the replicas are the children 
of transaction manager automata (TMs), which we 
define explicitly. The TMs model the Quorum Con- 
sensus algorithm itself. We model the read and write 
operations of the algorithm by providing two kinds of 
TMs, read-TMs and write-TMs. We place no restric- 
tions on the remaining automata, except that they 
preserve well-formedness. The system is formally de- 
fined as follows. 

Fix I, a set of logical data items. We define sys- 
tem B to be a serial system of type (T, parent, 0, V). 
With each element 2 of -I, we associate: 

dm(x), a subset of 0 

act(z), a rnbset of the accesses in T 

tm, (z) and tm,,, (z), disjoint subsets of the non- 
accesses in T, and 

config( a legal configuration of dm(z). 

Let tm(z) = tm,(z)Utm,(z). Werequire that ace(z) 
is exactly the set of all accesses to objects in &n(z). 
In our replicated serial system, the replicas for z will 
be associated with the members of dm(z), and the 
logical accesses to z will be managed by automata 
associated with the members of tm(x). Since we want 
all accesses to replicas for z to be controlled by the 
replication algorithm, we require that TE ucc(z) iff 
parent(T)E tm(s). Finally, for all pairs z,y E I, we 
require that dm(z) n dm(y) = 6. 

We define the uacr tratwactions in B to be the set of 
non-access transactions in T that are not in tm(s) for 
all 2 E I. We refer to accesses in act(2) for all 2 E I 
aa replica accesses, and to the remaining accesses in 
T a0 non-replica accesdea. 

Figure 1 provides an example of a possible transac- 
tion tree for system B. 

In system B, each member of dm(z) has a corre- 
sponding data manager automaton (DM) for 2, each 
member of t-(z) has an associated read-TM au- 
tomaton for 5, and each member of tm,(z) has an 
associated write-TM automaton for z. Ram the re- 
strictions on the system type, then, the members of 
ucc(z) are the accesses to the DMs for z. Further- 
more, the accesses to DMs for z are exactly the chil- 
dren of the TMs for z. DMs and TMs for x are de- 
scribed below. 

Figure 1: A possible transaction tree for system B. 
Transactions are labeled as follows: U = user trans- 
action; TM = transaction manager; a, & = non-replica 
accesses; 21 = accesses to replica 1 of logical data item 
x, etc. 

Data Managers: The set of data managers for log- 
ical data item x models the set of physical replicas 
of 2. Each DM is a read-write object that keeps a 
version-number and a value for z. The formal defini- 
tion follows. 

If z is a logical data item, a DM for z is a read- 
write object over domain 0, = N x V, with initial 
data (0, is). We refer to each member of D, as a 
(version-number,value) pair. (For VE D,, we use the 
record notation v.version-number and v.value to refer 
to the components of v.) 

Lemma S DMs are basic objects. 

Recall that we have restricted the system type of 
B so that accesses to DMs for x are invoked only by 
TMs for z. We now define read-TMs and write-TMs 
for 2. 

Read TMe: Let x be a logical data item in I. The 
purpose of a read-TM for x is to perform a logical read 
access to x. A read-TM for x invokes read accesses 
to multiple DMs for 2. It then returns the “current” 
value of x, which it calculates from the information 
returned by the read accesses. In Lemma 8, we show 
that read-TM8 in system B do, in fact, return the 
proper value of 2. That is, a read-TM returns the 
value that would be expected, given the sequence of 
logical write accesses to z that precedes its invocation. 

.I read-TM T for x has atate components awake, 
dat;r, requested, and read, where awake is a boolean 
value data is a value in the domain Dz, requested 
is a subs+ of act(z), and read is a subset of dm(x). 
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Initially, data is (O,i,), awake is false, and requested 
and read are both empty. 

Note: Whenever an undefined variable (for exam- 
ple, q in the REQUEST-COMMIT operation of the 
following automaton) appears in the pre- and/or post- 
conditions for an operation, then that variable has 
an implicit existential quantifier (i.e., there exists a q 
such that...). 

Input Operations: 
CREATE(T) 
COMMIT(T’,v), where T’Echildren(T) and VED, 
ABORT(T’), where T’ E children(T) 

Output Operations: 
REQUEST-CREATE(T’), where T’ E children(T) 
REQUEST-COMMIT(T,v), where v E D, 

&REATE(T) 
Postconditions: 

awake(s) = true 
OREQUEST-CREATE(T’), where kind(T’) = read 

Preconditions: 
awake(d) = true 
T’ $Z requested 

Postconditions: 
requested(s) = requested U {T’} 

.COMMIT(T’,d) 
Postconditions: 

read(s) = read($) U {O(T’)} 
if d.version-number>data(s’) .version-number, 

data(s) = d 
.ABORT(T’) 

Postconditions: 
(no change) 

oREQUEST-COMMIT(T,v) 
Preconditiona. 

awake = true 
q E config(z).r 
4 E read(s’) 
v = data(s’).value 

Postconditions: 
awake(s) = false 

A read-TM collects data from some number of DMs 
for z, always keeping the data from the DM with the 
highest version number seen so far. When a read- 
quorum of DMs has been seen, the read-TM may re- 
quest to commit and return its data. 

It is interesting to note the extensive use of nonde- 
terminism in this algorithm. For example’ the read- 
TM does not set out to access any particular read- 
quorum in the configuration. Rather, the read-TM 
simply invokes any number of accesses to any of the 
DMs until it happens to notice that COMMIT oper- 
ations have been received from some read-quorum of 

DMs. Also, since it is not necessary for correctness (as 
opposed to efficiency) for the read-TM to remember 
which of its children have aborted, the ABORT(T’) 
operation has no postconditions. 

The nondeterminism allows for greater generality of 
our results. However, one would not want to imple- 
ment read-TMs this loosely in a real system. For the 
sake of efficiency, one would want to limit the num- 
ber of accesses invoked by a read-TM. For example, 
one would want the read-TM to invoke accesses with 
some particular read-quorum in mind. The important 
point, however, is that all of our results apply even if 
such heuristics are added. Our proofs depend only 
upon the fact that all operations performed satisfy 
the preconditions and postconditions we define. 

Write TMs: Let 2 be a logical data item in I. The 
purpose of a write-TM for z is to perform a logical 
write access to 2. The formal description of a write- 
TM automaton follows. 

A write-TM T for z has state components awake, 
data, read-requested, write-requested, read and writ- 
ten, where awake is a boolean variable, data is an el- 
ement of D,, read-requested and write-requested are 
subsets of act(z), and read and written are subsets 
of &a(z). Initially, data = (0, i,), awake is false, and 
the sets are empty. Every write-TM T for z has an 
associated value value(T) E V,. 

Input Operations: 
CREATE(T) 
COMMIT(T’,v), where T’fchildren(T) and VED, 
ABORT(T’), where T’ E children(T) 

Output Operations: 
REQUEST-CREATE(T’), where T’ E children(T) 
REQUEST-COMMIT(T,v), where v = nil 

.CREATE(T) 
Postconditions: 

awake(s) = true 
OREQUEST-CREATE(T’), where kind(T’) = read 

Preconditions: 
awake = true 
T’ # read-requested 

Postconditions: 
read-requested(s) = read-requested U {T’) 

GOMMIT(T’,d), where kind(T’) = read 
Postconditions: 

if writ+requested(s’) = {}, 
read(s) = read(s’) U {O(T’)} 
if d.version-number>data(s’) .version-number, 

data(s) .version-number = d.version-number 
*REQUEST-CREATE(T’), where 

kind(T’) = write and data(T)) = d 
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Preconditions: 
awake = true 
q E config(z).t 
q E read(s’) 
d = (data(a’).version-number+l,value(T)) 
T’ @ write-requested 

Postconditions: 
write-requested(s) = write-requested u {T’} 

l COMMIT(T’,v), where kind(T)) = write 
Postconditions: 

written(s) = written U {O(T’)} 
.ABORT(T’) 

Postconditions: 
(no change) 

OREQUEST-COMMIT(T,v) 
Preconditions: 

awake = true 
v = nil 
q E config(z).w 
q C written 

Poatconditiona: 
awake = false 
A write-TM invokes read accesses to some num- 

ber of DMs for x, keeping track of the highest ver- 
sion number returned. Once information from a 
read-quorum of DMs has been collected, the write- 
TM may begin invoking write accesses. (See the 
REQUEST-CREATE(T’) operation.) The version- 
number of each write access invoked is one greater 
than the version-number in the data component of 
the write-TM’s state, and the value of each write ac- 
cess invoked is value(T). Once COMMIT operations 
have been received from a write-quorum of DMe, the 
write-TM may request to commit. 

It is possible that some read accesses to the DMs 
may not commit until after the write-TM has already 
invoked one or more write accesses. Thus, some read 
accesses may actually return the data that was written 
to the DMs on behalf of the write-TM itself. There- 
fore, in order to prevent the write-TM from seeing the 
data it wrote and incorrectly increasing its version- 
number, the COMMIT operation for read accesses is 
defined so that the state of the write-TM is modified 
only if no write accesses have been invoked. 

Our discussion of the nondeterminism in read-TM8 
also applies to write-TMs, as well as to alI other au- 
tomata we define. 

Lemma 4 TMs are transactions. 

Lemma 6 Schedules of system B are well-formed. 
Proof: By Lemmas 3 and 4, DMs are basic objects 

and TMs are transactions. Therefore, system B is a 
serial system. In [ 161, it is proved that all schedules 
of serial systems are well-formed. n 

The following definitions are useful for describing 
the logical accesses to the logical data items in system 
B and for setting up inductive arguments about these 
logical accesses. 

Access sequence: This definition formaliaes the in- 
tuitive notion of a sequence of logical accesses to 5. 

Let p be a sequence of operations of system B, and 
let x be a logical data item in I. Then the ucccss 
sequence of z in p, denoted access(x, a), is defined to 
be the subsequence of p containing the CREATE and 
REQUEST-COMMIT operations for the members of 
tm(2). 

Logical state: The following definition formalizes 
the intuitive notion of the “current state” of a logical 
data item, the expected return value of a logical read. 

Let p be a sequence of operations of system B, and 
let x be a logical data item in I. The logical atate of 
x after /7, denoted logical-state(x, a), is defined to be 
either value(T) if REQUEST-COMMIT(T,v) is the 
last REQUEST-COMMIT operation for a write-TM 
in access(x,p), or i, if no REQUEST-COMMIT op- 
eration for a write-TM occurs in access(x, B). 

Current version number: Let /3 be a sequence of 
operations of system B, and let x be a logical data 
item in I. Let Iast(x,/9) denote the subset of WC(X) 
such that for each member T of last (x, a), REQUEST- 
COMMIT for T is the last REQUEST-COMMIT op 
eration for a write access to O(T) in /3. The cur- 
rent version number of z after 8, denoted cutrent- 
un(x, /?), is defined as follows. If h&(x,/3) is non- 
empty, then current-vn(x, B) is the maximum over all 
T&&(x, a) of data(T).version-number. Otherwise, 
current-vn(x, a) = 0. 

The next pair of lemmas follow immediately from 
the above definitions and Lemma 5. 

Lemma 6 If p is a schedule of B and x is a logical 
data item in I, then access(x,p) begins with a CRE 
ATE operation for some TM in tm(x) and contin- 
ues alternately with REQUEST-COMMIT and CRE 
ATE operations for TMs in tm(x) such that each 
REQUEST-COMMITfor T is preceded immediately 
by a CREATE(T) operation. 

Lemma 7 Let x be a logical data item, and let @ be 
a schedule of B. Then the following property holds 
after /3: The highest version number among the states 
of all DMs in dm(x) is current-vn(x, /3). 

The following lemma is the key to the proof of The 
orem 1Q. Condition 1 is only needed for carrying 
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through the inductive argument. The important part 
of the lemma is Condition 2, which tells us that each 
read-TM returns the value expected as dictated by 
the previous logical write operations. That is, each 
read-TM returns the logical-state of the data item. 
Because the system is serial, we are able to carry out 
a simple inductive proof using standard assertional 
techniques. 

Lemma 8 Let x be a logical data item in I. Let p 
be a schedule of B such that access(x,B) is of even 
length. 

1. The 

(4 

following properties hold after /9: 

There exists a write-quorum q E config (x) .w 
such that for all DMs 0 E q, if d is the data 
component of 0, then d.version-number = 
current-vn(x, /3). 

W 

2. u/3 

For all DMs 0 E dm(x), if d is the data 
component of 0, then d.version-number 
= current-vn(x, a) implies that d.value = 
logical-state(x, /3). 

ends in REQUEST-COMMIT(T,u) with TE 
tm,(x), then u = logical-state(x, /3). 

Proof: By induction on the length of B. The 
base case (/3 the empty schedule) is trivial. Let 
@ = B’r, where access(x, 7) begins with the last 
CREATE operation in access(x,B). Assume that 
the Lemma holds for /9’. By Lemma 6 and the 
fact that access(x,B) is of even length, access(z, r) 
= (CREATE(T,), REQUEST-COMMIT(T, ,vJ)) for 
some T, E tm(x) and VI E V,. The following asser- 
tions about -j may be easily proved: 

Fact 1: Ai. accesses in r to DMs in dm(x) are de- 
scendants of ?‘,. 

Fact &: Let s be the state of Tf after any prefix of /3. 
If read(s) is non-empty, then data(s).version-number 
and data(s).value contain the highest version-number 
and associated value among the states of the DMs in 
read(s) after 8’. 

Fact 3: Let s be the state of T, after any prefix of/J. 
If read(s) contains some read quorum r E config(z).r, 
then data(s).version-number = current-vn(z, /8’) and 
data(s).value = logical-state(z, a’). 

Fact 4: Xf T, is a write-TM, then all write ac- 
cesses T’ invoked by Tf have data(T’) = (current- 
vn(x, @‘)+l, value(Tf)). 

By Fact 1, in order to prove that the induction hy- 
pothesis holds for 8, we merely need to demonstrate 
that Ti preserves the properties stated. There are 
two possibilities for Tf; it may be either a read-TM 
or a write-TM: 

If Tf is a read-TM, then logical-state(x,@ = 
logical-state(x, a’) by definition. Also, since Tf in- 
vokes only read accesses, the version-number and 
value components of the states of the DMs in dm(x) 
after p are the same as after /3’, and current-vn(x, ~9) 

current-vn(x,/3’). Therefore, part 1 of the Lemma 
h=olds for 8. 

Let SJ be the state of Tf when Tf issues its 
REQUEST-COMMIT operation. The preconditions 
for REQUEST-COMMIT require that read(sj) con- 
tain some read-quorum r E config(x).r. There- 
fore, by Fact 3, data(s,).value = logical-state(x,p’), 
which equals logical-state(x,p). By definition, vj = 
data(s,).value, so part 2 of the Lemma holds for B. 

If Tj ie a write-TM, then logical-state(x,/3) 
= value(T/) by definition. Let sf be the state of 
T, when Tj issues its REQUEST-COMMIT oper- 
ation. The preconditions for REQUEST-COMMIT 
require that written contain some write-quorum 
w E config (x).w. Furthermore, no DM is added to the 
written component of the state of T, unless a write 
access to that DM has committed to Tf . So, r must 
contain a REQUEST-COMMIT operation for a write 
access to each DM in w. After a COMMIT of a write 
access T’ to a DM, the data component of that DM is 
equal to data(T’). Therefore, by Fact 4, the states af- 
ter /3 of all the DMs in w must have value = value(Tf) 
and version-number = current-vn(x,@‘)+l. (By Fact 
1, Tf is the only transaction that issues write accesses 
to DMs in dm(x) in r.) 

By Lemma 7, current-vn(x, j3’) is the highest 
version-number among the states of DMs in dm(x) 
after /Y. Since every write access in r to DMs 
in dm(x) has version-number = current-vn(x,@‘)+l, 
we know that this is the highest version-number 
among DMs in dm(x) after p. That is, current- 
vn(z, j3’)+1 = current-vn(x, /3). Therefore, since 
value(Tf) = logical-state(x,b), part 1 of the Lemma 
holds. Since Tf is not a read-TM, /3 does not end 
with a REQUEST-COMMIT of a read-TM for x, so 
part 2 holds vacuously. 

Thus, the Lemma holds in both cases. n 

3.2 Non-replicated Serial System 

As the basis of our correctness condition, we 
define non-replicated serial system A of type 
( TA ,parentA ,oA,VA) in term8 of replicated serial sys- 
tem B of type (& ,parentg,O~,&i).~ System A ie 
identical to System B, except that logical accesses to 
objects in I (which are implemented as TMs in sys- 
tem B) are implemented as accesses in system A, and 

‘We introduce the subscripts to distinguish the components 
of A from the componente of B. 
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Figure 2: The transaction tree for system A that cor- 
responds to the transaction tree for B shown in Fig- 
ure 1. Transactions are labeled as follows: U = user 
transaction; a, b, z, y = accesses. 

the logical data items in I (which are implemented as 
collections of DMe in system B) are implemented as 
single read-write objects in system A. These changes 
are reflected in the system type, which is formally da 
fined as follows: 

0 parentA = parentB restricted to 7~ 

W VA = VB 

Informally, to construct the type of system A from 
that of system B, we first remove from 7” all the ac- 
cesses to the DMs for objects in 1. As a result, all 
the TMs for objects in I become leaves in 7 and 
are therefore accesses. Next, we remove from 0 all 
the DMs for objects in 1. Also, we partition all the 
accesses that were formerly TMs according to their 
logical data item. Each class of this partition is a new 
object in 0. Th us, each logical data item is imple- 
mented by a single object. 

Figure 2 illustrates the transaction tree for system 
A that corresponds to the transaction tree for system 
I3 given in Figure 1. 

We would like to relate transactions in system B to 
those in system A. Recall that the function 7~~3 is 
well-defined, provided that system B is an extension 
of system A. Thus, we state the following easy lemma. 

Lemma 9 System B is an extension of system A. 

We define uger transactions in system A to be all 
non-access transactions in 7~. We note that T is 
a user transaction in system B iff Y’A(T) is a user 
transaction in system A. This is because if T is a TM 
in system B, then ?BA(T) is an access transaction. 

Transactions and objects in system A have the same 
corresponding automata as in system B, except that 
for all z E I, the following hold: 

1. 

2. 

The object corresponding to tm(z) is modelled as 
a read-write object 0 over domain V, with initial 
value i,. (We refer to this particular read-write 
object as O(z),) 

For each transaction TE tm(z), ~BA(T) is an ac- 
cess to O(z) such that 

(a) if T is a read-TM, then ?BA(T) is a read 
access, and 

(b) if T is a write-TM, then &A(T) is a write 
access with data(&A(T)) = value(T). 

3.3 Correctness 

In this section, we prove that system B is correct by 
showing that user transactions cannot distinguish be- 
tween replicated serial system B and non-replicated 
serial system A. 

Theorem 10 Let /3 be a schedule of replicated aerial 
system 8. There exists a schedule Q of non-replicated 
serial system A such that the following two conditions 
hold. 

1. For all objects 0 in system B that are not in 
dm(z) for any 2, (rl0 = BlO. 

2. For all user transactions T in system B, 
+-BA(T)=~IT. 

Proof: We construct CY by removing from /3 al1 the 
REQUEST-CREATE(T), CREATE(T), REQUEST- 
COMMIT(T,v), COMMIT(T,v), and ABORT(T) og 
erations for all transactions T in act(s) for all 2 E I. 
Clearly, the two conditions hold. What needs to be 
proved is that o is a schedule of A. We proceed by 
induction on the length of @. 

The base case (p empty) is trivial. Let /3 = /~‘KP, 
where the claim holds for /3’. Let a = ar’x,, where o’ 
is the schedule of A corresponding to p’. We show, 
by a simple case analysis, that for each possible oper- 
ations VP, the claim holds for j3. 

The interesting case is when x~ is a REQUEST- 
COMMIT(T,u), where TE tm(z) for some z E I. By 
the construction or, = x,3. By the definition of system 
A, &A(T) is an access to a read-write object. The 
only precondition for a REQUEST-COMMIT of T, 
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then, is that T has been created. By the construction 
and the fact that p is a well-formed schedule, CRE- 
ATE(T) occurs in cy’. Therefore, the precondition for 
REQUEST-COMMIT(T,o’) is satisfied in A for some 

I 
U. 

If T is a write-TM, then u = u’ = nil. We need 
to show that v = u’ if T is a read-TM. By Lemma 8, 
we know that u = logical-state(z, a’). By definition 
of a read-write object, u’ is the value in the state of 
O(z) after Q’. We observe that, by the construction, 
cr’jO(z) = access(z, a’). So, by definition of system A, 
the last write access in Q’ to O(z) has the same value 
as the last write-TM in /3’. Hence, the value in the’ 
state of O(z) after Q’ is logical-state(z, a’). Therefore, 
u = (I’. n 

3.4 Concurrent Replicated Systems 

So far, we have been able to deal exclusively with se- 
rial systems in order to simplify our reasoning. We 
now complete the correctness proof by showing that 
non-serial replicated systems are correct. Recall the 
definition of serial correctness: Let S be a serial sys- 
tem, and let 7 be an arbitrary sequence of operations. 
Wa say that 7 is serially correct with respect to S 
for transaction T provided that 7(T = alT for some 
schedule u of S. 

With the following theorem, we show that given 
a correct concurrency control algorithm, combining 
that algorithm with our replication algorithm yields 
a correct system. This theorem allows us to achieve a 
complete separation of the issues of concurrency con- 
trol and recovery from the issues of replication. In 
other words, one may prove a concurrency control al- 
gorithm corr -.t, then separately prove a replication 
algorithm COT, -t for serial systems, and finally apply 
this theorem to -how that the (combined) concurrent 
replicated system is correct. The modularity of this 
proof method permits us to ignore all the complicated 
interactions of the two algorithms that one would need 
to consider in a direct proof that the concurrent repli- 
cated system simulates a non-replicated serial system. 

Theorem 11 Let C be any system that has the same 
type as system B, and let the set of user transactions 
in C be the same as in S. Assume that all schedules 7 
of C are serially correct with respect to serial system 
B for all non-orphan4 non-access transactions. Then 
all schedules 7 of C are serially correct with respect 
to system A for all non-orphan user transactions. 

Proof: Immediate from Theorem 10. m 

‘A a tramaction T ir an orphan in 7 if ABORT(T’) occum 
in 7 for rome ancestor T’ of T. 

So, any concurrency control algorithm that pro- 
vides serialisability at the level of the copies may be 
combined with the Fixed Quorum Consensus replica 
management algorithm to produce a correct system. 
Interesting concurrency control algorithms that sat- 
isfy this condition include Reed’s multi-version times- 
tamp concurrency control algorithm [20] and Moss’ 
two phase locking algorithm with separate read and 
write locks [19]. (S ee also the correctness proof given 
by Fekete et al. [9].) 

4 Reconfiguration 

In this section, we describe how the results of Sec- 
tion 3 are extended to systems that permit reconfig- 
uration. By reconfiguration, we mean that read- and 
write-quorums are permitted to change dynamically, 
rather than being fixed for the entire execution. This 
flexibility is important for coping with site and link 
failures in practical systems. For example, if some 
DMs are down, we may want to change the quorums 
so that logical accesses can be processed in spite of 
the failures. 

To prove the reconfiguration algorithm correct, sys- 
tems A and B are redefined. Then, proofs analogous 
to those for the fixed configuration systems are COA- 

strutted. In doing so, some interesting new consid- 
erations arise: As before, the logical accesses are de- 

scribed in terms of read- and write-TMs. However, 
we also need a new kind of TM, called a reconfigure- 
TM, to effect changes in the quorums. We would like 
the reconfigure-TMs to be modelled as transactions 
for the sake of uniformity, and to be positioned in 
the tree as children of the user transactions in order 
to model the correct atomicity requirements. For in- 
stance, if T and T’ are TMe for z that are invoked 
by the same user transaction, we would like to per- 
mit reconfiguration of zz to take place between the 
COMMIT of T and the CREATE of T’. However, the 
reconiigure-TMs are special in that their invocations 
and returns are not to be controlled, or even seen, by 
the user transactions. Rather, they are intended to 
run spontaneously and transparently from the user’s 
point of view. So, we want the reconfigure-TMs to be 
positioned in the tree as children of the user trans- 
actions, but we do not want the user programs to be 
aware of their invocations and returns. 

This conflict introduces a modelling problem. We 
solve the problem by associating a apy automaton 
with each user transaction. The spy wakes up with 
the associated transaction and nondeterministically 
invokes reconfigure-T& until the associated trans- 
action requests to commit. In this way, we capture 
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formally the notions of spontaneity and transparency 
while at the same time modelling the proper atomicity 
requirements, 

Gifford’s reconfiguration algorithms works as fol- 
lows. In addition to a value and a version number, 
each replica of z contains a configuration and a gen- 
eration number. The value and version number are 
initialized as in the non-reconfiguration case, and all 
replicas of z initially hold the same configuration and 
generation number. 

To perform a logical read of z, a TM reads DMs for 
2, keeping in its state the value v and version number 
t from the DM with the highest version number seen, 
the configuration c and generation number g from the 
copy with the highest generation number seen, and 
the set d of the names of the DMs read. If the TM 
reaches a state in which c has a read-quorum that is 
a subset of d, then the TM returns v. 

To perform a logical write of z with new value II’, 
a TM again reads DMs for z, keeping in its state the 
version number t from the DM with the highest ver- 
sion number seen, the configuration c and generation 
number g from the DM with the highest generation 
number seen, and the set d of the names of the DMs 
read. If the TM reaches a state in which c has a read- 
quorum that is a subset of d, then the TM computes 
the new version number t’ = t + 1 and writes v’ along 
with t’ to some write-quorum of DMs in c. 

To reconfigure z with new configuration c’, a TM 
first reads DMs for x and computes u t c g and d, , I , I 
juet as for a logical read. lf the TM reaches a state 
in which c has a read-quorum that is a subset of d, 
then the TM does the following. It writes v and t to 
a write-quorum in c’, and it writes c’ and g’ = g + 1 
to a write-quorum in c.% 

We generalize Gifford’s reconfiguration algorithm 
in the same ways that we generaliied the fixed quo- 
rum consensus algorithm in the previous section. To 
simplify our reasoning, we aeparate the read, write, 
and reconfigure tasks of the TMs into modules called 
coordinotora. This is done most naturally by intro- 
ducing another level of nesting, providing additional 
evidence of the power of nesting as a modelling tool. 

The formalisms and proofs follow the same pattern 
as those of the previous section. The complete proof 
may be found in [ll]. 

5 Conclusion 

We have presented a precise description and rigor- 
ous correctness proof for a generalization of Gifford’s 
data replication algorithm that accommodates nested 
transactions and transaction failures. The algorithm 
was described using the new Lynch-Merritt input- 
output automaton model for nested transaction sys- 
tems, and the cf rrectness proof was constructed di- 
rectly from this description. 

The algorithm was decomposed into simple mod- 
ules that were arranged naturally in a tree structure. 
This use of nesting as a modelling tool enabled us to 
use standard assertional techniques to prove proper- 
ties of transactions based upon the properties of their 
children. 

Each module was described in terms of an automa- 
ton that made extensive use of nondeterminism. Al- 
though one would not actually implement a system 
in this way, the nondeterminism permitted us to con- 
struct a correctness proof that was independent of any 
particular programming language or implementation. 

The modularity of the proof strategy permitted us 
to separate the concerns of replication from those of 
concurrency control and recovery. Our arguments 
were simple, in part, because of this separation. That 
is, we were able to deal exclusively with serial systems 
in order to simplify our reasoning. Then, to complete 
the proof, we presented a simple theorem which stated 
that combining any correct concurrency control algo- 
rithm with our replication algorithm yields a correct 
system. 

One possible direction for further work involves us- 
ing this general technique to add transaction nesting 
to other, more complicated, data replication schemes, 
and prove the resulting algorithms correct. Some in- 
teresting examples include the “Virtual Partition” ap 
preach of Abbadi and Toueg [2], and Herlihy’e “Gen- 
eral Quorum Consensus” 1121. 

Some replication algorithms guarantee weaker cor- 
rectness conditions than the one presented here for 
Gifford’s algorithm. It would be interesting to 
see what impact these weaker correctness conditions 
would have on the proof structure that we have pre- 
sented. 
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