Correctness Conditicns for Highly
Available Replicaied Databases

Nancy Lynch, Massachusetls Institute of Techriology
ard Cemputer Cerperaiion of America

Barbara Biaustein, Computer Corporation of America

Micliae) Siegel. Boston University and
Coinpnter Corporalion of Ameilea

Abstract

Correetness conditions are given which deseribe seme of Lhe
properties exhibited by highly avaliable distribuled datiase systems
steh as e SHAKD {System tor Highly Available Replcaed Dala)
system currently beilig developed at Computer Corpuration of
Amenca. This system alows o database applicadion o continue
operatica in the face of compunication Tailares, incliding ietwork
partidoss. A ponally Is paid for thin extra availability: the usval
correstness eonditions; seriadizbility of ransactions and preservation of
integrity conftraing, are not guaranteed. However, it s still pussile w
make interesting clams shout the behavior of the system. The Kinds of
claims whicli can be nroved include bounds on the costs of violatior of
inteprity comstrainis, and [airness guaranices. o contrust
serializabifity’s alb-or-nothing chatacter, this work has a "contmuous”
fMlayor: small changes in available informition lead 1w small
perturhations in correctness condilions.

‘I'fiis wark 1s novel, because there has been very little Previnus suceess
i staling ingeresting propertics which are guaranteed by nonserializable
syslcms.

Thiz work was supported by the Defense Advanced
Rescarch Projects Agency of the Department of Defense
und by the Air Force Systems Command st Rome Air
Development Center under Contract No. FM0602-84-
C-0112, The views and conclusions containea in this
docurgent are those of the authors and should not be
interpreted as necessarily representing the official policics,
cithéf cxpressed or implied, of the Defense Advance
Pesearch, Projects Ageicy or the U, S, Government, ‘The
work af the fisst author was also supported in part by the
Office of Maval Rescarch under Contract NOOD14-85-
K-0163, by the Officc of Army Rescarch under Contract
DAAG29-84-K-0058, by the National Science Foundation
under Giant IDCR-83-02391, and by the Defense Advanced
Rescaielf MGjects Agoucy {DARPAY under Conlract
NOG014-83-K 0125,

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission,

© 1986 ACM 0-89791-198-9/86/0800-0011 75¢

11

1 Intreduction

I.1. Background

In recent vears, there has been extensive rescarchaan the design and
theory of distributed databases. Nearly all of digswork has been
dirccted towards praviding. frameworks in which ‘trasdactions can be
processed concurrently, while-preserving integrity - constraints on the
data, Many of the most important advances i digiributed processing
have arisen from this work, including the develdfinielii of techniques
based on locking and tmestamps, and commit fr@ocols, “The work has
led 1o clegant system designs, as well as Lo a very interesting theory.

It is apparent. however, that there is slill a problem. The techniques
developed in distributed database rescarch hive nal vet been aceepred
by the comimercial workl to the extent thift researchens niight have
heped. [n particular, airline reservidion systems. banking systers and
inventory control sysicins {(applications whiclh modivated miech of the
rescarch), stilh do not rely on the general mechonisms developed by
researchers. ‘The problem may bhe fundimmoental we the general
approach. “the mechanisms developed in research guarantee
preservation of integrity consuaings, but they are inadeguate for
meeting sWwingeni respanse tine and availability requirenents. This
inndequacy seems to be an mavaidable result of strong, reguirements
for synchrenization among remole nodes,

Many applications of the sort mentiosied above put a high premium
on avatitability and fast performance. and i order to olitain these, they
are willing {o sacritice something in” the way of "correctness” or "dita
integrity™: “he rescarch community has so far been unable to provide
general, frameworks which gyasaitee weaker cosrectness conditions as
well as goud performance and-ayadiability, As<, result, practical systems
development work for theke applications is sll hased on ad hoe
mcthods of concurrency control,

‘There 15 a need for system devetopment work, as well as associated
theory, w Wi this gap. New frumeworks are niceded which puarantee
good performance and svailability, vet provide cnough discipline on
application progriunming so that aseful correctness claims can be
proved. When Fist response time mnd high avaitahility are yequired, it
seems necessary o alfow violations of integrity constraints 0 deeur, in
this case, traditional frameworks de tiod attow anything inferesting (o he
nioved 'nhmj,l the behavior af the sysiem. The dilficult part of the
problem is fo guarantee interesting and useful corregtness properties.
cven when iniegrity constrainis are violated.

1.2. SIIARD

The new SHARIY (Systern for {lighly Available Repiicated Data)
system under development ot Computer Corporation of Asmierica
(CCA) s designed 1o addross e probloms deseribed above. |t
provides highly available distribyted data processing in the face of
communication fuilures {lncluding network partitions). It docs not
guzrantee seriaiizability, nor does i preserve inicprity constrainds, but it
does guarantee many practical and interesting propertics of the
datibase.

‘the reader is referred to [SBK] for a detailed description of the

architecture of the SHARD systein, Bricfly, (he main ideas arc as
folows. The network consists of a collection of nodes, cach of which
has a copy of the complete database. (Full replication is a simplifying
assumption we have used for our initial prototype: many of our ideas
scem cxtendible to the case of partial replication, but this extension
remains 10 be made.) Replication allows ransactions to be processed
locally, thus rcducing communication costs and delays, and providing
high availubility.

After a transaction is processed at its originating node, information
about the transaction is broadeast reliably Lo all the other nodes for
incarparion into the database copics at those nodes, 'The broadcast
atgorithin {GLBKSS] ensures that, barring permanent communicalion
failures, every node will eventuadly receive information about cvery
tansaction. While the broadeast algorithm attempts to deliver
information to all sites in as dmely a manner as possible,
communication and node failures can cause significant delays, Since
nodes nuty continve to initiate transactions during conamunications
failures - indeed. they may not even- be aware that there is a failure
somewhere in the network - these delays mean that transactions may
run against out-of-dale database stites.

When a node receives new information about a transaction, no matter
when the transaction - was initiated, s information st be merged
into the node’s copy of the database; this merging must be done
consistently at all nodes, to maintain mutual consistency, The following
mechanism is used © guaranice consistent merging. ‘I'ransactions arc
totally ordered by a globatly-unique tinestamp assignment (such as one
based on local timestamps with node identifiers used for tichreaking),
and cach node wses this lotal ordering w0 delermine how 0 merge
information about diflerent transactions. Because all nodes order the
transactions in the same way, they will agree on the result of merging
identical sets of transactions. Also, at all times during exceution, cach
nede’s copy of the database always reflects the elfects of all the
transactions known @ that node, as if they were run according (o he
global timestamp vrder.

Since messages about different transactions could arrive at a single
nade out of limestamp order, keeping the copy correet entails lreguent
undoing and redoing of transactions. “The SHARD system uses an
unido-redo strategy in lieu of any other inter-node comcurrency control
mechanism. This strategy allows the nodes w achieve mutual
consistency without relying on cxtra network commuynicaiion. There
arc several implementation ideas which reduce the amount of undoing
Emd rcdgi}ng that is actually necessary: some of these are discussed in
BK SKS}L

Problems arise with the simple scheme described so far in its
interactions with the cxternal world. Certn transactions will trigger
external actions. For cxample, in an airline reservation system, a
booking traasaction might determine that there are available seals on a
flight, and might causc a passenger to-be informed that he has been
assigned a scai. Although the transaction ts run at different nodes, and
possibly undone and redone many times, the external action should
anly occur onee - al e transaction’s origin node, when the transaction
i initiated.

When a transaction is rerun at 2 node, it may be necessary to undo all
its elfects before redoing it starting from a difterent datbase state. "Fhis
requirement is a serious problem for transactions which trigger external
actiong: it is not possible for the system (o undo an external action,
Motcover, when the transaction is redong, it might not choose ta trigger
the same external aetion. In an airline reservation system, a booking
aansaction might decide o inform a passenger of an available seat
when the transaction is mitiated. Howzver, i this beoking transaction
is undone and then redone from a database state in which there do not
appcear to be any available seats, i would not grant the seat. 'Thus, afler
the undo and redo, the database would not record the fact that the
passenger had been granted 2 seat, even though the passenger has
actually been informed that a scat has been granted. 'This situation
produces an inconsistency between the information in the database and
the information seni k the passenger. We would like o avoid this kind
ofinconsistency.

12

Thus. we Tind it useful @ timit the interaction of transactions with the
cxtermal world, by impusing some cxira structure on the transaclions.
We require tha all isinsactions be divided into two parts: a “decision™,
which may read data ind trigger external aclivns, but may not modify
the database, and an "update”, which may read and write the database
but may nou trigger external actions,

The decision part of a wansaction is invoked only when the
transaction is inittated. 1his part of the transaction may interact with
the user, giving some indication of the Tikely outcome of the completed
transaction. "the results returned by (he decision determine an update,
which is then broadcast to all the nodes to be merged into all the copics
of the database. Only the update is broadeast to the other nodes. "The
update is the part of the transaction that may be undone and redone:
the decision is exceuted only once. Since the decision invalves no
changes 1o the database, just broadcasiing the update is enough to
insurc muta consistency of the database copics,

In the example described cartier, the decision part of the booking
transaction could read the dawmbase at the local (initiating) node and
determine whether there appear t be avaitable scats. If there are, the
decision would” infurm the requesting passenger that he hus been
gr;mlcd‘:l scat, and would also cause the system to invoke an update
that writes the reservation into the dawbase. When the update is
received hy the oiher nodes, the rescrvation is also entered into their
copics of the database. “Thus, every node would correetly record the
fact that the passenger was granted a seat.

Because of the distribution, and hecause of the possible need fur
undo and redo. the update part of the booking transaclion may execute
many times, possibly from difierent database states. No matier what
stte it is exceuted from, the update-records the facts that the scat was
assigued and the pagsenger was infonmied of the assignment. This
update reenntds dhe facts eorrectly-gverr if'it is exteuted from a state from
whicli @ busking transaction run in its eatirety would not ¢hoose to
grant the passenger a seat.

Because decisions are made with incomplete information about the
updates of preceding transactions, it is possible that the database could-
reach an undesirable state, c.g. a state in which a flight is overbooked.
However, users or application programmers could monitor the database
with additional "compensating” transactions, which invoke appropriate
corrective actions. I this example, a (ransaction might check for
overbooking, and decide on o particular passenger to unseat. The
decision part of this transaction would inform the passenger dhat his
reservation has been reseinded. “Ine update would just record, in the
database, the fact that the particular passenger has been unscated, Of
course, applications should be designed (o avoid an excessive amount of
compensation. “The correctness conditions described in this paper
should help o provide application designers with guidetines for coping
with these and other problems caused by a lack of sertulizability.

A preliminary design for SHARI) has been campleted. and s
documented in [BK,GLBKSSSSBKSKSL. Also, a prototype
implementation is completed.

L3. Correctness Conditions

The SHARIY system can be inplemented cfficiently, and scems
capable of expressing the kinds ol transaction behavior actuatly used in
commiercial sysiems, However, i the system i poing to be widely used,
it should be possible to make precise claims about its hehavior, This
paper provides a formai setting in which such cluims can be made, and
uses that fromework (0 prove some intercsting ¢laims about SHARIYs
behavior

It should be clear the STHHARD does not guarantee serializability of
complete transactions. 1t does gaaraatee serializability of the update
parts of transactions, but that condition by itself does not say very
much. W belicve that we can say more abow what is gu--»~tced by
such # system than sk what we cap caneldde fion. iIs weak
scrializability properticés,

We take our cue from some of the intended applications of the
system, such as irling rescrvations, bankimng, and inventory control,
‘These exemplify different kinds of resource allucation applications. In
all these cases, there are natral inteprity consteaints which one would

want to define; these are usuxlly cxpressed as predicates on the
database states. In resource allocatipn applications. one useful integrity
constraint would be that the number of allocated resources be no
greater than the number of available resources. Another would be that
the number of allocated resources be no less than the aumber of
available resources, provided there are enongh requests for resources,
Both of these conditions are described by predicates v the database
state.

However, onc can go further: there is often a “cost™ associated with
violations of an integrity constraint, which can be cxpressed as a
function of the database stte. In resource allocation applications, the
cast of over-allocation might be some number which is proportional
the excess of the number of allocated resources aver the number of
available resources. ‘The cost of unnecessary under-allocation might be
pruportional o the minimum of the number of unsatisfied requests,
and the excess of the number of available resources over the number of
allodated resources. Each of the applications listed has its own
particular cost functions, characteristic of that application. In eacli case,
it is desirable o keep the costs as Jow as possible.

Thus, one kind of property we would like to prove is a bound on the
cost of violations of integrity constraints. Results of the form "With
absolute certainty, the cost remains at most ¢.” waould be unreasonably
strong in our selting, because of the uncertainty that arises from delays
and failurcs. Rather, it scems much more appropriate to prove resulls
of the form "With probability p, the cost remains at most ¢.” Resulls of
this form wauld be very useful to the application designer, stnce they
would allow him o adjust his design in such a way as to lower the
expected cost bound.

We Lelieve that results of this form, are most conveniently proved in
two parts: (1) conditional results of the form “If cerlain conditions
hold, then the cost remains at most €., and (2) probability disiribution
information describing the probability that the conditions hold. Most
often, the conditions mentioned in (1) will be parametrized, c.g.
"When cach transaction is iniially executed. the database state includes
the effects of all hut at most k of certain kinds of preceding
transactions.” Similarly, the cost mentioned in the conelusion of (1)
will be parametrized. Thys, results of type (1) will usually be a class of
relited resulis, giving cost bounds far o rmge of quantitatively different
assumplions about system operation. “The probability distribution
information in (2} will be eblained by an independent analysis, using
information sech as delay characteristics of the message sysiem. and
expected rates of Lransaction processing. [Ushould be relativelycasy to
comjiine the information in (1) and (2} 1o get probabifistic stiatements of
the kind we want. In this paper, we do not carry out the probabilistic
analysis required in (2), but insicad fucus on the paramctrized
conditional claims in (1),

Thus, we obtain results of the form "If cach transaction "sees” all but
at most k of certain kinds of preceding transactions, then the cost
remaing at most ¢(k).” Such cost bounds limit the damage which can be
caused when ransactions operate with a bounded amount of missing
information. The cost bounds we abizin are, in gencyal, intuitively
natural, rather than extremely surprising: our main congribution lies in
the fact that we can actually formutale and prove the intuitive claims.
Previously, no claims at all could be made when information about any
transactions was missing. Wce can make such claims, and our clains
become stronger (ic. the integrity coenstraints arc better preserved)
when information is more camplete {i.e. when execution is closer to
being serializable). In contrast o serializability’s all-or-nothing
character, our work has a “continuous™ flavor: small changes in
available informution lead o small perturbations in integrily
constraints,

The question of how the cosis pel defined sdll remains to be
addressed. Assignment of costs is something that must be done by
application programmers, who understand the impact of database
behavior on the organization using the system. 1 is Tikely that the cost
assignment procedure will be complex and approximate. Nevertheless,
it appears to be what is currently used by organizations, implicitly, in
evaluating the acceptability of database system behavior, Therefore, it
seems that such cost assignments should play an important rele in
evaluating database behavior.

Another kind of property which is of interest for resource-allocation

13

applications is “fairness”. Fairness properties describe conditions
under which a particular request is guaranteed to be granted, or
guaranteed not to-be granted. “They also deal with relative priority of
different requests in obtaiging resources. While FIFO order might be
an appropriate fsirness condition in a serializable system, weaker
{airncss conditions are more appropriate in the SHARD sctting, and arg
still of interest.

In this paper. we begin by providing the hasic definitions and
vocabulary for discussing the nperation of sysiems of this type, ‘Then,
following the usual orginization in taditional concurrency control
theary, we study the correctness conditions in two groups. First, we
cxamine conditions which can be guaranteed by the system alone
tanalogous to serializability). The system does guarantec to run
(ramsactions in some talal order. But whereas serializability would
guarantee that cach transaction has total information about the-cMfects
of the preceding transactions, the SIHTARD system only puaransees that
cach transaction has partial - information about the preceding
transactions. Second, we examinge condilions which can be guaranteed
By the transactions Gmalogous o preservation of integrity consiraints).
"Fransactions might be required not just to preserve integrity, but also o
improve of restore integrity. Phese two kinds of conditions, those
puaranteed by the systein and those guavanteed by the trinsactions, can
be combined to allow proul of interesting properties {cost bounds and
fairness) for a running application.

Wo deseribe our properties and carry out our proofs in the context of
asimple prototypical resource allocation example. We believe that this
example contains many of the clements common o, the class of
applications Tor which SHARDY is suited. 'The types of conditions stated
and the techniques for proving their correciness appear likely (o extend
10 the other applications. Wherever possible, we state conditions and
deseribe proofs in a general way, so that they will be direetly applicable
to other applications.

Related work includes scveral other papers which wcaken
serinfizability in various ways [I'M. AM, G, B, Tor cxample]. Other
work that scems related o Lhe SHARIY approach, although in a very
different context. is the work on "virtal time” [J].

The rest of the paper i organized as fbllows. In Section -2, .we
describe ope database model, In Section 3, we-describe conditions that
ean be guarantced by the systiem alome. In Scoction 4, we describe
conditions that can be guaranteed by the transactions alene. In Section
$. we prove some interesting cost bound and fairness propertics for the
example resource allocation system. ‘These properties are consequences
of both the conditions guaranteed by the sysiem and those guaranteed
by the tramsictions. In Section 6, we present our conelusions.

2. Database Model - o
"I'iis seetion includes formal definitions, of database states, integrity
constratnts, and wansuetions.

Onc gual of the SHARID design is to keep the distribution and
replicadon of data hidden from the appligation.. In particular, we
altempt {0 avoid explicit mention of distribution-and replication in our
correetness conditions. Qur general approach is analogaeus to the usnal
approach for describing correctness of distributed databases [BG, for
example]. In the usual approach. correctness of a distributed databasc
requires that the distributed database give the appearance of a
centralized, serial dutabase. 1n our case, the database will net appear o
be serial, but will still appear to be centralized.

In other database research, certain consistency conditions, palllcd
“integrity cunstraints,” are given for the database states. These
conditions it inte our model in iwo ways. The most fundamental are
mudelled as “well-formedness” conditions; we will require. that
transaclions always preserve these. ‘The other consistency conditions,
which we call "integrity constraints,” represent desirable conditions,
but we do not assumne that they are preserved at all times, “T'o measure
how (ar a database state is from satisfying the incgrity constrainls, we
impose cast measures on the states with respect o cich constraint,
where a greater cost indicates ihat the staie is furiher from sitisfying the
constrainl, Onc goal of SHARILY is o minimize the cost of states that
arise during an exceution,

Quitransactions are comiposed of two parts, a "decision part” and an
“update.” As described in the Intreduction, the decision part reads
data and may interact with the external world. but does not modify the
database. "Phe results returned by the decision part determing an
update, which can read and write the database, but does not directly
interact with the external world.

In addition to providing general definidons in this section, we also
define an airline reservation example, with four transactions. “This
cxample will be used throughout the rest of the paper.

2.1, States

The database has a seu 8 of possible durehase stares, among which a
particular snftial state s i distinguished. “There might be some
additional sirocture on the database: for example, it might be composed
ol a collection of objecets, where a state would consist of a velue for cach
object, In case X s an obicel, we let X¢s) denote the value of object X
in databasersiate s.

Among, the database states, there may be sume which fail to satisfy
some fundamental consistency conditions. and we will geacrally want to
omit them cntirely from consideralion. Therefare, we designate certain
of the databasc states as well-fonned. We assume that the mitial state is
well-formed.

IZxample;

Fly-by-Night Aitlines is a little-known airline company
which has exuctly one scheduled light, Flight 1. Flight 1 is
scheduled o take off neat Jan. 1 and will take s lucky 100
passengers from Boston w an idyllic resort in the Caribbean.

A database state consists of the following objects:

- ASSIGNED - LIST, a finitc ordered list of people who
have been notified that they have seats on Flight 1, and

- WAIT—LIST, a finite ordered list of people who have
requested seats on Flight 1, but do not have assigned scats.

'The initial state has both lists empry, ‘Ihe well-formed
states are thoke which sisfy the fundamental consistency
concition that ASSIGNED— LIS'T and WATT—LIST must
cimtain disjoint sets of people.

We use the notation Al(s) a3 a shorthand for
JASSIGNED = 1IST(s)]. the number of people on the assigned list in
state s; simitarly, ‘we use WI(s) for JWAIT—~LISI(S). We will
sometimes refer to Al and WL, ax if they were ubiecls themscetves; they
are similar 1 objects, in that they have values in every database state,
However, Lthose values are adways derived from the values of the "real”
abjects. ASSIGNED - LIST and WAIT—LLIST.

2.2, Integrity Constraints

[or us, "integrity constrainls” represent desirable conditions, but we
do not assume that they are preserved at all times, Since integrity
constraings are not always preserved. we lind it useful o mepsure how
far & ditabase state is from satislying the integrity constraints. - In order
1o do this, we impose nonnegative ical-valuced cost icasures on the
states with respect to cach constraint, where @ greater cost indicates that
the state is- further from satisfying the constrainl. A cost of zero
indicates that the constraint is satisticd. The total cost’of a state is the
sum of the costs associated with all the constraints, Onc goal of
SHARIY is to minimize the eost of states that arise during an execution.

More precisely, we assume a finite collection of jntegrity constraints,
indexed by the sct 1. Let cosifs.i) denote the cost of database state s
which is attributed to a violation of integrity constraint i. The.cost of s,
cosi(s), is then defined as)Jietcusl(s,i)

We use the notation X /.Y o denote max(X-Y,0)

14

Example:

In the FFly=By-Night airline reservation system, there are
twa integrity constraints in addition 10 the well-formedness
condition already described.

Integrity Constraint 1; Qverbooking should not occur.

Formally, this says that Al. < 160, Whilc this condition
is certainly desirabic, we do not expect that it will always
hold. If FFlight 1 is uverbaoked, the cost o Fly-by-Night
Airlines is approximately $900 per overhooked passenger.
{I'his cost covers the pricc of a first-class tickel on an
alternative flight, pius hotel accomodations for a week in the
Caribbean.) 'Thus, we define cost(s, 1), the cost of state s
which is attributed to violating constraint 1, to be 900 (Al {s)
7.100).

lutegrity Constraint ;' Underhooking should not oceur,
if it is avoidable.

Tiormally, this says that cither AL 2 100 or clse W1 =
0, “I'hat is, cither all the seats on Flight 1 arc assigned or clse
there are no waithisted passengers. IF Iight 1 is
unnccessarily underbooked, the cost to the airline company
ts approximately $300 for cach waitlisted passenger who
could have been assigned a scat. (This is the missed profit.)
Thus, we define cost(s,2), the cost of state s which is
attributed to violating constraint 2, o be 300 min(100 /.
Al (s}, W1Ls)).

The assignment of costs to database states, for violation of particular
integrily constraints, is 2 part of application design. In practice, it might
not always be obvious how 1o assign such costs. 1t is possible that the
system could help the application designers, by providimg a framework
W which the designers could detennine appropriate cost functions.
Cost functions oflen summarize other information which the
application designers imight Tind i easicr o think about. 1For instance,
in many interesting cases (such as the airtine reservation system), the
data is numerical, and the cost fimctions have somne simple {c.g., lincar)
relationship to the data values. Perhaps patterns such as Lhis onc could
he corporated-inro a linguage for deseribing cost assignments.
Systematizing cost assignments is a subject for future research.,

2.3, Transactions

In this subscction. we describe the structure of transactions. As noted
carlier, our transactipns are composed of two pars, a "decision part”
and an “npdate”. ‘The decision part reads data and may interact with
the external world, but does not modily the database, The results
returned by the decision part determine an updale, which can read and
wiile the datiabasc, but does not dircetly interact with the external
waorld.

Formally, an updare is any mapping from S to S which preserves
well-furmedness. el A denote the set of updates. 1.et & denote the set
of external actions. A transaction 1" consists of a decision parf 1), which
is 2 mapping from the state set S to A X SHE). For any database state s,
1> (s} is a pair consisting of the wpdate which is invoked when ‘I is run
fram s, and the sct of external actions triggered by 'I' when 1" is run
from s. Where no confusion is likely, we will sometimes write 1, {s) to
denote just the update, ignoring the external actions.

“A transaction is designed to execute nonatomically; it "observes”
some state of the database when it is initially run, but then later it
transforms other, possibly different, slates. ‘The observation of the
database uikes place jn the decision part, and the state transformation in
the update pari. Faeh of tiese two parts is intended to be carried owt
atomically. The state that-a transaction abserves is to be thought of as
embodying partial information about past updates, such as the
information known at the local site at the time the transaction is first
executed, "This partial information is used o"decide on the new updale
to be generated.

Example;

‘The airline reservation system has only four transactions:
a REQUEST for a scat which puts the passenger on the
waiting list, a CANCEL transaction, a MOVE-UP
transaction which moves a waitlisted passenger to the
assigned fist, and a corresponding MOVE—-DOWN
transaction which moves an assigned passenger back to the
wailing list. Notc that we arc departing slightly from the
examplc discussed in the Introduction: the effects of the
beoking transaction described there are achieved by a
combination of a REQUEST transaction and a MOVE—-UP
transaction.

The four transactions arc as follows:
(1) REQUEST{P), where P is a person

"This transaction is described by the following program.

Decision; TRUE
Action:
if P is not on WAIT—LIST and P is not on
ASSIGNED—LIST
then add P to end of WATT—LIST

This program is to be interpreted as follows. For any
state s, the decision mapping DR[QQU]-‘S'I‘(P) riggers no
external action and invokes the same update Al A opcrales
on any state 5 by adding P to the WATT—LIST provided
that P is not already on cither the WAIT—LIST or the
ASSIGNED—LIST, in s". Incasc Pis on cither listin §', A
docs nothing, We refer to the unique update A invoked by
the REQUEST(P) transaction, as the reguest{P) update.

(2) CANCEL(P), where P is a person

This is described by the following program.

Decision: TRUE
Acticn:
if P is on WAIT—LIST
then remove P from WAIT—LIST
if P is on ASSIGNED—LIST
then remove P from ASSIGNED--LIST

Again, from any state 5, the decision mapping always

yields the same update. This update, from any stale &,
removes P from any list on which it happens to appear. 1f P
is not on either list, the update does nothing. We refer to
the unique update invoked bv the CANCEL(F) transaction,
as the cancelf P) update,

The decision parts of the REQUEST and CANCEL
transactions do not perform any interesting work: they
always invoke the same update, and trigger no external
actions. On the other hand, the following-two transactions
have decision parts that invoke different updates in different
situations, and they sometimes trigger external actions.

15

(3) MOVE—~UP

Decision: AL < 100 and WL > 0 and P is the first person
on WAIT—LIST
External event: inform P that P is now assigned a seat
Action:
if P is on WAIT—LIST
then
[remove P fram WAIT—LIST
add P to end of ASSIGNED—LIST]

Here, the decision part, running from state s, tests to see
whether therc is room on the ASSIGNED-LIST and a
person waiting to be assigned. If not, no action is taken, If
50, the decision part selects a particular person P (the first on
the WAIT-—LIST in state s) to be moved up from the
WAIT—LIST to the ASSIGNED-LIST. A message is sent
to P, and the update is parametrized by P. From any state 8,
the update moves P from the waiting list to the end of the
assigned list, provided that P is actually on the waiting list in
s’. Otherwise (i.c. if P is already on the assigned list, or P is
on neither list), no change occurs. 'We refer to the update
generated by the MOVE —UP transaction when it selects
person P as the move—up(P}update,

(4¢) MOVE-DOWN

Decision: AL > 100 and P is the last person on
ASSIGNED—LIST
External event: inform P that P is now waitlisted
Action:
if P is on ASSIGNED—LIST
then

[remove:P from ASSIGNED—LIST
add Pio end of WAIT-—-LISTI

‘The meaning of this transaction is symmetric with the
preceding one. We refer o the update invoked by the

MOVE-DOWN tansaction when it selects person P as the
mave ~down(P) update.

It is clear that all the updates, for alt four transactions, preserve well-
formedness, as required.

Note that each of the last two transactions contains two _cnndi_r.iona!s.
The two conditionals play different roles. The first condl_llonal in each
case is used to decide which update and extema actions will occur. The
second is part of the exccution of the update. Also note that the
transactions are designed to obserye the databasc state more than once.
For example, in the MOVE~DOWN transaction, the transaction looks
at ASSIGNED~ LIST in one state 5 in order to attempt to selec a
person P to move down. Then whenever the r_nove=down(]-‘) upda}e is
executed, iy looks at ASSIGNED-LIST in another state s o
determine whether to actually move P.

We consider this airline reservation system to be a prototype of a
much more general class of resource allocation systems. It seems that
practically all resource allocation systems must have operations of the
four kinds described ahove: operations that request resources and
cancel those requests, as well as operations that allocate and de:_lllocate
the resources. Those operations will behave in somewhat different
ways for each application. Here, to be specific, we have made a
particutar set of choices, but we expect that many of the ideas in this
paper will carry over to other resource allocation systems.

We introduce some additional notation which will be useful later for
describing transactions. If the first component of Di(s) is an update

which maps stale §' to state s, we will write T(s8) = 5", If T(58) = 5",
it means that if ‘T is initially Tun from state s, it causes the system to
invoke an update which, if it is ever run from state s’; will produce state
S”

3. Conditions Guaranteed by the System

This section describes conditions that can be guaranteed by the
system alone, ie. conditions om how the system will run the
transactions. Later, in Section 4, we describe conditions that can be
guaranteed by the transactions alone. Then in Section 5, we combine
these two kinds of conditions to prove properties of an application (the
Fly-by-Night Airline Reservation System) running on the system,

This approach is roughly analogous to the usual approach in ordinary
concurrency control theory, There, the serializability condition (which
can be guaranteed by the system alone) is combined with the condition
that individual transactions preserve integrity (which can be guaranteed
by the transactions alone), to conclude that reachable database states all
satisfy the integrity constraints,

‘The first subsection formally describes the basic guarantees made by
SHARD about the way in which transactions are un. SHARD
guarantees that there is some serial order for the transactions which it
runs. The systenri does not guarantee serializability of the transactions
in this order, but it does guaraniee that cach transaction "sees” the
result of seme subsequence of the preceding transactions. While this
condition is fundamental to the scmantics of the system, it is too weak
to allow proof of interesting properties.

The second subsection contains refincments of the basic condition!
Fxamples of these rcfinements are transitivity and some specific
requirements on the subsequences of transactions seen by certain other
transactions. The third subscction describes implementation issucs, Tt
shows how SHARD and similar systems can guarantee the conditions
described in the other two subsections.

3.1. The Prefix Subsequence Condition

The system guarantees that there is some serial order for the
transactions which it runs, and that each transaction "sees” the result of
some subsequence of the preceding transactions in this serial order. We
state this condition more formalty below.

If s is any sequence, we write s; o denote the ith element of 5. An
execution of a set of transaction instances, consists of a serial ordering T
for the ransaction instances, together with a sequence-A of updates, a
sequence E.of sets of external actions, a sequence T of finite sequences
of integers, and two sequences, s and t, of database states. An execution
is required to satisfy the following conditions.

LFori> 1 '*:!; is a subsequence of the prefix sequence
{l,...i-1}.

2. Fori> 0, tis the state cbtained by applying the sequence
of updates designated by ﬂ; 410 the initial database state S
That i, = A, (A, G Where 5, = L)

3.Foriz 1, (AE) = DTi(ti-l)‘

4. Fori > 0, each § is the state obtained by applying the
sequence of updates Al""’Ai' o s, That is, 5 =
Af-Aysy)

These conditions mean the following. (1) says that each transactjon
T. has a corresponding subsequence 'El'; of its prefix of preceding
transactions: these are the preceding transactions that it "sees”. (2) says
that cach state t; describes the effects of the updates of T; “'s prefix
subsequence; it is the statc of the database which T, , "secs" when its
decision part is run. (3) says that the update and external actions
produced by T, are determined by its ebserved state %]. Finally, (3)
says that the ‘states s. describe the actval effect (not necessarily
abservable by any of the transactions) of ronning the complete
sequence of updates generated by all transactions through T,.

16

The system guarantees to simulate (in some sense which we do not
specify here) exccutions of those transactions which are submitted to it.
In particular, it guarantccs that the external actions described by
sequence E are actually performed.

We say thal the apparent state before transaction T

ie1 B L and that

the apparent stote afier transaction T,,, is state T8, Ako, the
actual state before transaction T, +1 s, and thé aclusl state after
transaction T, isstate s, . = T, (t.s). We extend this notation to
. I . . .
nonempty consecutive séquences of trinsactions in place of single
transactions: the apparent and actual states before the sequence are just
the apparent and actual states, respectively, before the first transaction
in the scquence, while the apparent and actual states after the sequence
are just the apparent and actual states, respectively, after the last
transaction in the sequence. We say that each of the s. is reechoble from
?, in the given cxecution. We call the state s, the complete prefix state
or T, i in the given exccution.

Letl = {ii+1,..} be a sequence of consecutive indices. Then Al is
said to be atomic in an execution provided that the following hold. (a)
Each U, j € A, includes each of the other transactions U, k € L, k e
in its plefix subsequence, and (b) all transactions U,, j & AU, have the
same subset of the transactions with indices less than 1 in their prefix
subsequences. Atomicity describes the running of several consecutive
transactions without allowing new information about the database to
intervene,

The prefix subsequence condition only guarantees that each
transaction sees the result of some subsequence of its prefix. This
condition does not rule out trivial solutions, such as every transaction
secing the initial database state (the result of (he empty subsequence).
In order to insure uscful behavior, we would like the system to allow
transactions to see prefixes which are as large as possible. Some
refinements of the prefix subsequonce condition designed to insure
large prefizes are discussed in the following subsection,

Example:

This example shows an execution of the transactions
from the airline reservation system, acting non-serializably,
but according t0 the prefix subsequence condition specified
above. The lefi-hand column lists the successive Ti. while
the right-hand column lists the corresponding A

T A

REQUEST(P1) request(P1)
MOVE—UP move—up(Pl)
REQUEST(P2) request(P2)
MOVE—{P move—up(P2)
EEQUESTG’IOZ) request{P102)
MOVE—UP move—up(P102)
MOVE—DOWN move—down{P101)
CANCEL(PL) cancel(P1}

This exccution can be obtained by having all the
requests, the first 100 MOVE—UP (ransactions, and the
cancellation operate secing complete prefixes. The neat two

MOVYE~ UP transactions operate with incomplete prefixes.
The first sees the results of the first 99 REQUESTS and
MOVE~UFS, plus the REQUEST for P101, while the
second sees the results of the first 99 REQUESTS and
MOVE-UPS. nlus the REQUEST for P102. Since cach
abscrves a stale with only 99 peaple on the assigned list,
each chooses to move a person up. Similarly, the
MOVE-DOWN aperates with an incomplete prefix. It
secs the results of the first 202 transactions only, but not the
results of the two transactions invelving P102. Thus, it sees

the assigned list with 101 pecple, and moves P101, te
persen it observes to be last, down.

Now consider the successive reachable states s, The
state after the first 204 wransactions, s,,, has 102 people on
the assigned list, in numerical order, and no one on the
waiting list After the MOVE—DOWN, S35 has P101 on
the waiting st and PLP2,.,P100,P102 in order on the
assigned list. The final cancellztion then leaves the assigned
Tist with exactly 100 passengers: P2,....P100,P102,

This execution differs from a serializable execution in at
least two ways. First, there is a.reachable state (s,0,) for
which the overbooking cost is nomzero. Second, the
execution is rot entircly “fair” in that P102 requests a seat
after PI01 (and his request is processed after P101's), but
P102 is allowed to remain on the assigned list while P101 is
moved down.

Notice that there is a danger of "thrashing” in this system, If a
MOVE—UP transaction does not sec a previous request and
coriesponding MOVE~ UP, say for person P, it may move another
person Q to the assigned List. A later MOVE-~DOWN transaction
might operate with a complete prefix, observe an overbooking, and
move Q down. Another MOVE—UP might then execute, secing the
move— down{QQ) update, but still not secing the updates missed by the
previous MOVE-UP: it may then reassign A later
MOVE— DOWN might then move Q back down, and so on. This kind
of thrashing is very” undesirable, not just because of its obvious
inefficiency, but because of the external effects of the conflicting
transactions.

3.2. Additional Conditions
In this subseciion, we suggest some' conditions which say that
particular transactions must include at least cortain other transactions in
their, prefix subsequences. The conditions presented here are meant to
be examples only, and are not necessarily intended to hold for all
SHARD-like systems and all transactions. These restrictions are usefil
in guarantecing certain properties of executions, as we demonstrate in
Section 5. On the other hand, they reduce system availability, System
and application designers must weigh the correctness gained by
restricting the prefix subsequences against the reductions in availability.
First, we say that execution e-is fransitive provided that the following
condition holds. Let T, T and T be transactions {i.e. transaction
instances) occurring in e. IfT” is in the prefix subsequence of T-and T
is in the prefix subsequence of T°, then T” s in the prefix subsequence
of T. Transidvity is a natural requirement, ensuring a basic sort of
consistency among the prefixes seen by related transactions.
Exampie:

The execution in the “previcus example fails to be
transitive, but for a trivial reason, Namely, (he
REQUEST(P101) and REQUEST(P102) transactions are
assumed to execute with complete prefixes. Since the
MQOVE-UP which genecrates move—up(P10l) sees the
effects of REQUEST(P101), transitivity would imply that
this MOVE — UP should also see a complete prefix, which is
not what happens. However, note that REQUEST and
CANCEL transactions have only trivial decision parts, so
they would capse the same updates t0 be pgenerated no
matter what prefix they sce. Therefore, we can modify the
execution slightly, assigning each of REQUEST(P101) and
REQUEST(P102) the prefix subsequence consisting of the
first 198 trapsactions, without changing the updates
generated. The resulting modified execution-is transitive.

Another restriction which might be useful in some cases is to require
that some particular transaction T must run with the complete prefix,
This might be useful for very crucial transactions, say for an audit

17

cransaction in a high-finance banking system: 1t might e uesiravle for
audits to see the effects of all the preceding deposit, withdrawal and
transfer (ransactions. Although we have not done so in this paper, it
should be possible toprove strong cofreciness results about transactions
running with complete prefixes.

Requiring a complete prefix is very restrictive. There are some
variants on this condition which are less restrictive but still lead to sgme
very useful properties. For example, we might limit the number of
previous transactions which are not visible to a pariicular transaction.
Namely, transaction T is said to be k-complete in exccution e provided
that, in e, T sces the results of all but at most k of the preceding
transactions. The k-completeness condition, for a particular k, does not
seem (0 be a natural requirement to impose on an implementation,
since in general, it scems difficult 1o guarantee a reliable value for k. (It
might be possible ta obtain an estimate of this value by considering
known characteristics of the message system together with the expected
tate of transaction processing.} However, k-completeness seems 1o be
more useful as 2 hypothesis for conditianal claims which describe the
behavior of the system in different situations, for ditferent values of k,

Another kind of condition which timits the amount of concurrency is
as follows. Let G be a group of transaction instances. We say that
group G is ceatralized in execution e provided that, in c, each of the
transactions in G includes in its prefix subsequence all the others from
G which precede it in the complete prefix. For cxample, it might be
useful to centralize all the wansactions which could cause the cost of a
particular integrity constraint to become nonzero (e.. all ihe
withdrawal transactions, in a banking system). This stratcgy might be
used t0 guarantece that this cost cam never become noniero.
Alternatively, it might be useful to centralize alt the transactions which
affect a particular object, or a particular portion of the database, This
strategy might be used 1o guarantee scrializable execution for those
objects or portions of the database.

If the system guarantees that transactions in (3 are centralized, it
might be useful for the application programmers and users to imagine
the existence of a centralized “agent" for G. For instance, it might be
useful for users of the airline system to think of a single agent who
manages all the MOVE—UPs and MOVE—DOWNs, ic. all the
movement betwean WAIT—LIST and ASSIGNED-LIST. This
abstraction could be uscful cven if there is actually no such centralized
agent, but rather if (using some locking strategy, for example), the agent
is implemented in a distributed way.

Some specific groupings for the airline reservation system are
discussed in detail in Section 5, along with examples of correctness
conditions that result from this requirement.

The final condition presupposes a notion of time. A timed execution
is an execution, together with a nonnegative reat number (“real time™)
for each transaction instance. These real times are intended to model
the times at which the transactions are initiated. In the event that the
transaction order is determined by timestamps, these real limes need
not be the same as the timesiamps, and in fact the real times need not
aven be ordered in the same way as the transaction sequence. However,
if the order of real times is monotonic, we say that the timed execution
is orderly. An execution is said to have Fbounded delay provided that
the prefix subsequence of each transaction T includes every transaction
in the prefix whose real time is at keast t smaller than T's'real time.
Thus, each*transaction can see the effect of every other transaction that
precedes it in the transaction ordering and i not too recent.

3.3. Implementation Issues

It is very natural to use the conditions described in the preceding
subsections as the correctness conditions for the distributed system
described in the Introduction. The system is able to assign timestamps
in some way so as to determine 2 total ordering of the transactions. The
4ransactions are initally executed at one node, and then information
about the transactions is sent to the other nodes. The nodes can undo
and redo actions in erder 1o ensure that as new updates are seen, each
succecding update has the effect that it would if executed in a complete
prefix state. There are a number of optimizations which allow the
system to avoid undoing large numbers of wansactions [BK], and
optimized storage structurcs make this process even more efficient
[SKS]).

The updates only are sent around, and are undone and redone to
vield a sequential ordering. The fact that the decision parts are not
redone means that the system does not satisfy ¢ usual notion of
serializability; however, the system does satisfy the prefix subsequence
property, i.e. that every wansaction sees the effects of a subscquence of
its prefix.

It should be clear that au appropriate distributed conmunication
proteo! vouid guaramee wansiivity, pernaps by piggybacking
information about known transactions on messages.

There are a number of ways that a system could guarantee the
subsequence restrictions described in the previous subsection. _For
instance, consider centralization of the transactions in G. It is possible
to force all the transactions in G to run at the same nade of a
distributed system. Alternatively, a transaction in G with timestamp t
might have to wait ilf it reccives messages from all nodes saying "1 will
issue no more G transactions with timestamp earlier than t." This type
of concurrency control might significantly reduce system av_ailablllty.
The probabilistic concurrency control methods of {S] provide other
techniques for obtaining centralization.

4. Conditions Guaranteed by the Transactions

This section describes conditions which might be guaraniced by the
transactions, analogous to preservation of integrity constraints in the
usual development. We do not intend to require that all of these
conditions hold for all sets of transactions; rather, we expect different
cenditions to be useful in different applications. We attempt to
formulate the conditions in a general way, so that they might apply to
different resource allocation applications. We describe how the
conditions apply to the airline reservation system.

The first subsection defines sume conditions involving costs of
database states. Update parts of transactions are analyzed to determine
whether or not they have the potential of increasing the cost, or are
guaranteed to decrease the cost, with respect to a particular integrity
constraint.

The second subsection discusses conditions involving fairness, a
preperty particularly important in applications in which certain entities
compete for access (0 some resource or service. Wg_deﬁne priarity
among competing entities, and prove that certain conditions ensure that
Transactions preserve priority.

We define an application to consist of a collection of database states,
(including designation of initial and well-formed states), their integrity
constraint information (including costs), and a set of transactions. The
properties we describe in this section are properties of applications.

4.1. Conditions Involving Costs)

We say that an application is initially zero ¢ast provided that Cosi(s
= (. That is, all the integrity constrainis are satisfied in the initial
database state, Clearly, the airline system is initially zero cost.

Another interesting property would be that a transaction T' "preserves
integrity”, just as it is required to do in the usual concurrency control
theory. A formal statement of this property might be: "Ifsisa well'-
formed state with cost{s) = 0, and if Tiss} = ¢, then cost{s’} = 0."
This savs that if T runs so that it changes the same state that it sees, then
it does not cause a violation of the integrity constraints if }hcy_ were
previously satisfied. (We might say that T does not cause a violation of
the integrity constraints "on purpose”.) ln the prescut setting, a more
general kind of condition is appropriate, which also involves the

oenavior ot transactions when the costs are nonzero,

We begin by describing a very strong property of a transaction T that
says that there is no possibility of T ever causing an increase in the cost
for constraint i. An updatc A is said w be increasing for constraint i
provided that there is some well-formed s for which cost(A(s),i) >
cost(s,i). That is. the update has the potential of increasing the cost of

18

constraint 1, although ii neea not actually do so0 m all circumstances,
Otherwise, i.¢. if the update could never increase the cost of constraint i,
A is said t0 be non-increasing for constraint L A transaction 'T'is safe for
constraint i provided that the following holds. ITs'is a well-formed state
and D, (s) = A, then A is nonincreasing for constraint i: Otherwise, i.e.
iftherc is some well-formed s for which Dfs) is increasing, then we say
that 1" is kasafe for constraint i.

Example:

In the airline system, the request(P} update is
nonincreasing for the overbooking constraint, but is
increasing for the underbooking constraint, since in states
with fewer than 100 assigned people, and with P not already
waitlisted or assigned, this request causcs an increase in cost
(of $300). The cancel(P) update is also nonincreasing for the
overbooking constraint, but s increasing for the
underbooking constrainl, since in -states with at most 100
assigned people (including 1) -and sufficienty many
waitlisted people, this cancellation causcs an increase in cost
{of 300). On the other hand, the move—up(P) update is
increasing for the overbooking constraint, since in states
with at Jeast 100 assigned people, this move-up causes an
increase in cost (of $900). However, it is nonincreasing for
the underbooking constraint. Finally, the move—down(P)
updatz s nonincreasing for the overbooking cotistraint, but
is increasing for the underbooking constraint since in states
with at most 100 assigned people, this move-down'causes an
increase in cost (of $300).

Example:

‘The only updates that are increasing for the vv. oookin B
constraint are those of the form move —up(P). Since only
the MOVE—UP transaction can generate a move—up(P)
update, the other wtransactions are all safe for the
overbooking consiraint, However, the MOVE-UP
transzaction is unsafe for the overbooking constraint. On the
other hand, the MOVE—UP transaction is safe for the
underbooking constraint, but the other three transactions
are all unsafe for the underbooking constraint,

A less restrictive, interesting property to consider might be intuitively

described as: "Transaction T does nol inctease the cost of integrity
constraint i on purpose.” One simple formal way of stating this
praperty is: “Ifs is a well-formed state and if T(s,s) = §', then cost(s',i}
< cost(s,i)." For technical reasons, we dcfine a slightly stronger
formulation, as follows.

We say that transaction T preserves the cost of constraint i provided
that the following holds. If s is a well-formed state, T(s.5) = ', D,(s) =
A and A is increasing for constraint & then cosi(s’i} = 0. Thats, the
decision part of a transaction T will only invoke an update part that
(potentiallyj increases the cost of constraint i, when the state that T
believes will exist after the update tuns, will have a cost of O for
constraint i. It is easy to sec that this condition implies the simpler

formulation described above. Also, it is obvious that if T is safe for

constraint i, then it preserves constraint i
Example:

We show that all transactions prese:rve the cost of the:
overbooking consiraint. Since ail transactions except for the
MOVE—UP transaclion are safe for the overbooking
constraint, they preserve the overbooking constraint. The
MOVE—UP transaction is unsare for the overbooking
constraint, so more arguiment is required in this case. The
MOVE—UP {ransaction only generates a maove—up{P)
update from 3 state s for which-AL(s} < 100 and WL, oy >0,
Then the state < resulting from applying the move—up(P}

update t0 s has AL{s") < itN), and thus éosi{s’,1) = 0.

Now consider the underbooking constraint. The
MOVE—UP tansaction is safe for the underbooking
congiraint, and hence preserves the cost of the
underbooking constraint. We also show that the
MOVE—-DOWN transaction preserves the cost of the
underbooking constraint, The MOVE—DOWN iransaction
only generates an update which is increasing . for the
underbooking constraint from a slate s for which AL(s) >
100. Then the state §' resulting from applying the update to
s has AL(S") > 100. and thus cost(s’,2) = 0.

On the other nana. it is easy (@ see that REQUEST(P)
and CANCEL(Py eransactions do not preserve the cost of
the underbooking constrams.

Since we are working in a setting in which integrity constraints are
not always satisfied, 7.2, costs may be nonzero, another useful property
of transactions might be that they actually reduce the cost, not just
preserve it. A transaction which reduces the cost for an integrity
consiraint can be regarded as a “compensating. trapsaction” for
violalions of that integrity constraint. One possible formulation is as
follows. We say that transaction T cbmpensates for constraing i
provided that the following holds. If 5 is well-formed, I{ss) = &', and

cost(s,i) > 0, then cost(s’,i) < cost(s,i).
Lemma I: Assume that all costs are integral. Assume that
T compensates for constraint i, Then for any well-formed s,
either cost(s,i) = Q. or there is some integer k > 0 such that
';’(s,s) = 8, T(s,8)) = 5,...Tls, .8, ;) = s, and costfs, i) =

Proof: By repeated application of the definition. I

This lemma implies that if compcnsating transactions are run
atomically from any point in an exccution, using any available prefix
subsequence, they will eventually result in an apparent state in which
the cost of the constraint is 0. This idea can be stated formally as
follows,

Corollary 2: Assume that all costs are integral. Assume
that T compensates for constraint i. Let e be any finite
exccution, Al any subsequence of the indices of ¢, and t the
resuil of the updates indexed by A, applicd to s,

Then either cost(t,i) = 0, or else there is an extension of e
to another execution, by an atomic suffix consisting of T"s
only, such that the prefix subsequence of the first T in the
suffix is AL, t' is the apparent state after the last transaction,
and cost{t’,i) = 0.

Example:

It is easy to see that the MOVE—UP rransaction
compensates for the underbooking constraint, and the
MOVE-DOWN transaction compensates for the
overbooking constraint. In fact, it is possible to show that
from any well-formed state, any atomic sequence of
imtermingled MOVE-UP and MOVE-DOWN
transactions which contain sufficiently many of each will
eventually reach an apparent cost-of (for both integrity
constraints,

Our last property involving costs, bounds the increase in cost that can
32sult from the execution of a bounded number of transactions. First,
we say that s < t provided that there is a sequence of updates leading
from s to s, d—nﬁ a snbsequence of that sequence contalning all but at
most K of the updates, such that the result of the subséquence applied
to s, is . That 15, state t contains all the information in state s, except
possibly for the effects of at most k updates. Then we say that function

19

I bounds the cost increase for integrity constraint i provided that the
following holds. For well-formed staes s and ¢, if 5 <, L then costs,i)
< cost(ti) + (k). Thus, i{k) bounds the increase in the cost of
integrity constraint i that can be incurred by k transactions,

FExampie:

n the ajrtine reservation system, it is casy to . ¢ tnat

900k bounds the cost increase for the overbooking
constraint, while 300k bounds the cost increase for the
underbocking constraint.

Lemma 3: Let U be an atomic subsequence in execution
e. Let s be the actual siate before A, and 5 the actual state
after AU, Let « be the apparent state before A, and t the
apparent state after U. Ifs <, then s’ <,

Prool: Straightforward, I

4.2, Conditions Involving Fairness

Another property of interest in some applications, i.c. those in which
certain enlitics compete for access 1o some resoufce of service, is
"fairness”. In order to be able to swte fairmess conditions, we extend
our application model to include the competing entitics. [n each state,
we designate certain entities as "known" (i.e. currently competing).
Alsa, in each state, we assume that therc is a partial order on the known
entities which describes priority.

We say that trapsaction T preserves priorily provided that the
following condition holds. If s is a well-formed state and T(s;s} = &',
then: (a) If P and Q are both known in s and also in §, and if P
precedes Q in s, then P precedes Qin °, (b) IFP isknown insand Q is
not, and P and Q are both known in ¢, then P precedes Q in s°,

Example:

in our example, the people are the competing entities.
In any state s, the known people are thosc on the
WAIT—LIST or the ASSIGNED~ LIST, in's. For P and Q
known in s, we define P < Q to mean that cither P precedes
Q on the WAIT-LIST, or P precedes Q on the
ASSIGNED - LIST, or elsc P is on the ASSIGNED—LIST
and Q is on the WAIT—LIST. Then all of the transactions
preserve priority.

A stronger property is also of interest. We say that transaction T
strongly preserves priorify provided thai the following condition hokds.
Ifsand s° are weli-formed states and T{s,s’) = s”, then: (a) If P and Q
arc both known in s* and also in §”, and if P precedes Q in &', then P
precedes Q ins™. (b) H P is known in §* and Q is not, and P and Qare
both known in 5", then P precedes Q in s™.

Example:

It is easy to see that the REQUEST and CANCEL
transactions strongly preserve priority, but the MOVE— UP
or MOVE—DOWN transactions do not. For cxample,
censider the MOVE— UP transaction. Assume that in state
s, pesson P is first on the WAIT - LIST, and that transaction
T, ruft from state s, generates & move— up(P) update. In
state §', P is on the WAIT—LIST but is not the first person;
person Q is first. Then the move-up(P) action still moves P
to the end of the ASSIGNED- LIS, in this case moving it
ahead of Q. We have P> Q in state s', but P < Q in state 5"
Thus, the MOVE~UP transaction is capable of changing
the relative priorities of P and Q.

Similar remarks hold for the MOVE-DOWN
transaction.

5, Properties of the Airline Reservation System

This scction illustrates how the ideas presented in the previous
sections can be used to prove interesting properties of executions of a
particular application, the Fly-by-Night Airline System. Where it B
possible, we state the results in a general way, so that they might later
be applied to other examples.

Proving properiies of executions of SHARD-like systems is far more
difficult than for systems that preserve serializability. It is necessary to
consider how a transaction’s updales will execute on arbitrary §v_ell»
formed database states, not just the database state seen by the decision
patt. With current technigues, it is not easy (0 uncersiand how
transactions and updates will behave in all' possible sitations, just by
cxamining the transaction code. Even somc of the relatively simple-
sounding results in this section have proofs that are somewhal delicate;
Our hope is that more experience with examples and proofs of this sort
will cventually make the task easier.

The first subsection gives a bricf discussion of some policy decisions
affecting priority, that were embodied in the application design. The
sceond subsection proves upper bounds on the costs of database states
that could result from running the airline reservation system. All the
bounds in this subsection are proved using the assumption that
transactions se¢ the effects of all but at most k of the preceding
transactions. The cost bounds are stated in terms of this k. The third
subsection refines the necessary conditions for obtaining these cost
bounds and sharpens the bounds. The results in this subsection require
only that iransactions see the results pf certain critical preceding
transactions, rather than arbitrary transactions.

The fourth subsection proves results which rely on “centralization™
assumptions, ie. that some transactions sce all of the preceding
(ransactions of a certain type. Using centralization, we prove that some
integrity constraints can never be violated. The final subsection proves
some faimess properties.

5.i. Policy Decisions]) B

Transactions in every application embody certain policy decisions.
This subscction contains two examples which illustrate the policy
decisions embodicd in the Fly-by-Night System,

Fxample:

Suppose that two REQUEST(P} transactions oocur
without an intervening CANCEL(P). Both REQUEST(P)
transactions gencrate request(P) updates. At some point, it
might be necessary to determine the effect of a sequence of
updates including both of these request(P) updates. Then
the second request{P) would be applied to a state s which
reflects the previous occurrence of the earlier request(P).
Thus, P might be in WAIT-LIST(s) or
ASSIGNED-— LIST{s); in this case, the update is defined td
have no effect. The policy embodied in this definition is
that if a person P is alrcady on the WAIT-LIST or
ASSIGNED--LIST, and makes a duplicate request, the
new request does not change P's original priority.
Alternative policy decisions might cause the second request
to alter the priority somehow.

Example:

It is possible for two MOVE— UP transactions to occur
which invoke move— up(P) updates for the same P, without
an intervening CANCEL(P), or MOVE—DOWN which
invokes a move— down(l") update. This could happen if the
second MOVE— UP transaction is initiated without the first
in its prefix subsequence. At some point, it might be
necessary 0 determine the effect of a sequence of updates
including both of these move—up(P) updates. Then the
second move—up{P) would be apphied to a state 5 which

20

retle.is the previous occurrence of the earlier request(P).
Then P could be in ASSIGNED- LIS1{5); in this case, the
update has no effect. The policy embodied in this definition
is that if a person P is already on the ASSIGNED—LIST, a
new attempt to assign him 2 seat does not alter P’s previous
pricrity. Alternative policy decisions might cause the
second move —up{P) to alier the priority,

5.2. Cost Bounds Resulting from k-Comgleteness
In this subsection, we prove upper bounds on the costs of the states
reachable by running the airline system. All the bounds in this
subsectic_m are praved using the k-completeness assumption, ie. the
assumption that transactions see the effects of all but at most k of the
preceding transactions. We begin with some preliminary lemmas.
Lemma 4: Let e be an execution, and T a k-complete
transaction instance in e. Let s be the actual state before T
and §° the actual state after T, in e. Let t be the apparent
state before T and ' the apparent state after T.

1. Thens < tands Sz t.

2, Let i be a constraint, and assume that f bounds the
cost of constraint i. Then cost(s,i} < cost(t,i) + fk)
and cost(s’,i) < cost(t',i) + Kk).

Proof: Straightforward. 1

The following theorem shows that k-complete transactions that
preserve the cost of a constraint are guaranteed not to make the cost of
that constraint larger, (except in the special case that the cost is very
smalt). '

Theorem 5: Let ¢ be an execution, and T a k-complete
transaction instance in €. Let i be a constraint, and assume
that f bounds the cost for constraint i. Assume that T
preserves the cost of constraint i. Let s be the actual state
before T and &' the actual state after T, in e. Then either
cost(s"i) < cost(s,i) or else cost(s',i) < Rk).

Prool: Let t be the apparent statc before T and t' the
apparent state afier T. Then t* = T(tt). Assume that T
invokes action A in execution e, i.e. that D(t}) = A,

Assume that cost(s’,i} > cost(s,i). Then A is increasing for
constraint i. Since T preserves the cost of constraint i, it
follows that cost(t',i} = 0. By Lemma 4, cost(s’,i) < cost(t’,i)
+ f{k) = flk). ¥

We can specialize the preceding results t¢ obtain bounds for the

airline system.

Corollary 6: Let e be an exccution of the airline system,
and T a k-complete transaction instance in e. Let s be the
actual state before T and 8 the actuai state after T, in e.

1If T is any transaction, then either cost(s’l) <
cosi(s,1) or else cost(s’,1) < 900k,

2 T s a MOVE-UP or MOVE-DOWN
transaction, then either cost(s',2) < cost(s,2) or else
cost(s’,2) < 300k.

Prool:

1. By Lemma 5, the fact that all transactions preserve
the overbooking constraint, and the fact that %00k
bounds the cost increase for the overbooking
constraint.

2By lemma 5, the fact that MOVE-UP and
MOVE—-DOWN transactions preserve the
underbocking constraint, and the fact that 300k
bounds the cost increase for the underbooking
constraint. ’

The previous results are enough to yield an upper bound for. the
overbooking cost (although not for the widerbooking cost) in all

reachablc states. We obtain such an upper bound for the overbooking
cost as a special case of the following more gencral theorem.

Theorem 7: Assume that the application has the property
that all transactions preserve the cost of constraint i. Lete
be an execution. Let f bound the cost of constraint i,
Assume that all occurrences of transactions that are unsafe
for constraint i, in e, are k-complete. Let s be any state
reachable i e, Then cost(s,i) < Rk).

Proof: The proof is by induction on the length of ¢, The
basis, length 0, is immediate. For the inductive step, assume
that the length of e is at least 1, and that T is the last
transaclion in . Let s be the actual state before T, and s’ the
actual state after T,

The inductive assumption implies that cost(s,i) < fik). If
cost(s',i) < cost(s,i}, the claim is immediate. So assume that
cosi(s’,i) > cost(s,i); then T is unsafe for constraint i, and so T
is k-complete in e, by assumption. Then Theorem 5 implies
that cost(s',_i} < flk), as needed. 1

Our invariant upper bound on the overbooking cost follows as a
corollary.

Corollary 8: Let e be an execution of the airline system.
Assume that all MOVE - UP transactions are k-complete in
€. Let § be any state reachable in e. Then ensifs,1} < 900k,

Proof: By Theorem 7, the fact that all transactions
preserve the overbooking constraint, thc fact that 900k
bounds the cost increase for the overbooking constraint, and
the fact that only MOVE—UP transactions are unsafe for
the overbeoking constraint.

We would also like to obtain an analogous invariant upper bound for
the underbocoking cost. Unfortunately, such a bound does not hold for
our airline system, since it can fail in an execution where many requests
or cancellations arrive in rapid succession without sufficient intervening
MOVE—UPs, In order to prove an upper bound on the underbooking
cost, il appears to be necessary to assume something about the
MOVE — UP transactions occurring sufficiently frequently.

To be specific, we define a partition § of the indices of ¢ into groups
consisting of consecutive indices to be a grouping of e for constraint i
provided that each group satisfies one of the following.
(2) It consists of exactly one index j, and transaction
constrainti.

{b) If t is the apparent state after the group, then cost(ti) = 0.

That is. we will consider instances of transactions that preserve the cost
of copstraint i individually, but we will consider other transactions
together, paying special attention 1o points during the execution where
the transactions believe they have reduced the cost of the constraint to
0. Ot course, not every execution will have such a grouping, but if the
application contains & compensating transaction for constraint i,
Lemma 2 implies that exccutions with such groupings are abundant,

Ti preserves

The normal states of e, with respect to a particular grouping, are just
those states which are reachable after the groups, i.e. the actual states

after the groups.

21

The next thearem says that, if we restrict attention to norinal states

only, an invariant upper bound helds for the underbooking constraint.

Theorem %; Let e be an execution and § a grouping of e
for constraint i. Assume that fbounds the cost of constraint
1. Assume that all transactions that preserve the cost of i, as
well as all transactions that occur at the ends of groups, are
k-complete in €. Let s be any normal state reachable in e
Then cost(s,i) < k).

Proof; By induction on the length of e. The basis, length
0, is immediate. For the inductive step, assume that the
length of e is at least 1, and that T is the last transaction in e.
Let s be the actual state before T, and §' the actual state after
T. Let t be the apparent state before T, and t’ the apparent
state after T. There are only two cases that need o be
considered.

If T is the last transaction in a group, then cost(t',i) = 0.
Since T is k-complete, Lemma 4 implies that cost(s'i) <
cost(t’,i) + fk), = f{k), as needed,

Otherwise, T is a transaction that preserves the cost of
constraint i, and occurs alone in a group. ‘Then 5 is 2 normat
state in e, The inductive assumption implies that cost(s,i) <
fk). If cost(s’i) < cost{s,i), the claim is immediate. So
assume that cost{s’ i) > cost{s,i). Then Theorem 5 implies
that cost(s',i) < Kk), as needed. B

The preceding theorem specializes immediately to our example. The
REQUEST and CANCEL transactions are the ones that do not
preserve the underbooking constraint, while the MOVE--UP
transaction compensates for that constraint. Thus, executions which
have groupings for the underbooking constraint can be constructed by
including a sequence of MOVE— UP transactions immcdiately afier
each REQUEST and after each CANCEL transaction.

Corollary 10: Let € be an exccution and § a grouping of ¢
for the underbooking constraint. Assume that alf
MOVE--UP and MOVE—DOWN transactions, as well as
all wransactions that occur at the ends of groups, are k-
complete in ¢. Let s be any normal state rcachable in e.
Then cosi(s,2) < 300k,

Thus, under suitable k-completeness assumptions, combined with
assumptions aboul frequency of compensating transactions, we can
prove invariant upper bounds on the costs in all reachable states (or all
normal reachable states).

The ideas used to prove the preceding results can be used 1o say

more. Consider an execution e in which costs become very large
{because k-complereness or frequency assumptions fail). If there is ever
a time during the . execution after which good completeness and
frequency propestics begin to hold, it is easy to see that correspondingly
good upper bounds will be reestabiished. For instance, we can geta
result of this type for the underbooking constraint, using the ideas of
Corollary 10. If we assume that the reguired transactions are k-
complete from some point on in the executipn, then {once the next
compensating group has occurred), the underbooking cost satisfies an
upper bound of 300k. On the other hand, if we want o cbtain a similar
result for the overbooking cost, we cannot base it on the simple ideas of
Corollary 8. Rather, we would have to use ideas similar to those uged
for the underbocking cost. At some point after k-completeness beging
to hold in the execution, we would hypothesize a group of
MOVE—DOWNs, bringing the apparent overbooking cost to 0, in
order to compensate for any excess averbooking cost. With such a
hypothesis, an eventual 900k bound on the overbooking cost couid be
proved. We omit formal statements of these results here,

It is possible to combine the results of Corollaries § and 10 to get 2
single invariant upper bound on the otal cost for the airline system.
For example, we abtain the following.

Corollary I11: Let e be an execution and § a grouping of e
for the underbooking ‘constraint. Assume that all
MOVE-UP and MOVE—DOWN transactions, as well as
all transactions that occur at the ends of groups,. are k-
complete in e. Let s bz any normal state reachable in e,
Then cost(s) < 900k,

Proof: Immediate from Corollaries 8, 10 and the fact that
every well-formed state has either cost(s,1) = 0 or cost(s,2)
=00

We finish this subsection with a closer look at the kinds of
improvements that are guaranteed by compensating transactions. For
example, it would b nieg to have a lemma which says that a k-complete
transaction which compensates for constraint i, is guaranteed 1o actually
improve the 'cost of constraint i, unless that cost is small,
Unfortunately, this is.not mue. Although the compensating Iransaction
might "try” 1o improve matters, it is possible that, because of missing
information from its awn prefix, it might not succeed in doing so. For
cxample, a MOVE=DOWN transaction might observe tco many
people . on the ASSIGNED-LIST, and might therefore invoke a

.move—~down update. But if it happens to invoke a move—down for a
person who had actually cancelled in the interim, that move —down will
not improve the actual cost.

We do know, however, that running the transaction scveral times’in
succession (atomically) can guarantee actual improvement. More
precisely, we obtain the following,

Lemma 12: Assume that all costs are integral. Let fbound
the cost of constraint i. Assume that T compensates for
constraint i. let e be any finite exccution, Al any
snbsequence of the indices of ¢, containing all but at mogt k
of the indices in ¢, and let s be the actual state aftere.

Then either cost(s,i) < f{k), or else there is an extension of
¢t another execution, by an atomic suffix consisting of T's.
only, sucl that the prefix subsequence of the first T in the
suffix is “u, & is the actual state after the last transaction, and
cost(s’,i) < fk).

Proof: Let t be the result of AU applicd to s, Then s <, t.
By Corollary 2, cither cosi(t,i) = 0, or else there is an
extension of ¢ to another execution, by an atomic ‘suffix
consisting of T°s only, such that the prefix subsequence of
theé-first T in the suffix is @, ¢ is the apparent state after the
last transaction, and cost(’,)) = 0. If cost(t,i}) = 0, then
since s <, ¢ it follows that cost(s.i) < cost(ti) + f(k) =
k), as necded. Otherwise, Lemma 3 implies that s 5O
and so cost(s’,i) < cosi(t’i) + flk) = Ak), as needed. B

This theorem specializes to the airline system as follows.

Corollary 13 Let ¢ be any finite execution of the airline
system, U any subsequence of the indices of e, containing
alf but at most k of the indices in e, and let s be the actual
state after e,

1. Either cosi{s,1) < 900k, or clse there is an extension
of e to another execution, by an atomic suffix
consisting of MOVE—DOWNSs only, such that the
prefix subsequence of the first T in the suffix is A, 8’
is the actual state after the last . transaction, and
cost(s’,1) < 900k.

22

2. Kither cost(s,2) < 300k, or else there is an extension

- 6f ¢ w another execution, by an atomic suffix
consisting of MOYE — UPs only, such that the prefix
subsequence of the first T in the suffix is 4, §" is the
actual state after the last transaction, and cost(s',2) <
300k,

Thus, the cost bounds of this subsection limit the damage that can be
caused when transactions operate with a bounded amount of missing
information. As noted before, the bounds we obtain are intuitive rather
than surprisipg. However, we know of no way to prove these sorts of
intuitive statements in earlier frameworks

We note that it is possible to obtain more refined versions of the
resulis in this subscction. Generally, it is not actually necessary that the
indicated transactions sce all but k of the entire set of preceding
transactions. Rather, only certain types of preceding (ransactions are
important in each case, since they suffice to determine the resulss of
criticai decisions. For instance, in Carollary 8, it is not necessary“that
the MOVE—UPs be k-complete; for example, it would suffice for them
to -see all but k ofthe preceding MOVE—-UP and REQUEST
trangaetions. We examine this issuie more closely in the next subsection.

5.3, More Relined Cost Bounds

In this subsection, we reconsider some of the results of the preceding
subsection. We sharpen those resuits so that they only require tha
transactions see the results of certain critical preceding transactions,
rather than arbitrary preceding transactions, The results in this
subsection give detailed information that is specialized to our
application; thus, they are not stated in very general terms. However, it
seems that the general approach used in this subsection shoild cxtend
to other applications.

We begin by proving some basic lemmas about sequences ot updates,
It is helpful to think of these results in terms of an automaton whose
stales represent (abstractions of) the global states of the database, and
whose staie-transitions represent the updates. (The decision parts of
transactions are not modelied by this automaton.) The sequence of
updates which occur in an execution is modelled by a path in the
antomaton. We are interested in identifying subscquences of a
sequence of updates, which are guaranteed to lead to the same state in
the automaton as does the whole sequence. If a transaction executes
seeing only such a subsequence as its prefix subsequence, it would be
guaranteed to have accurate information.

Let A be a sequence of updates (of the Fly-by-Night airline system)
and P a person. As assignment witness for P in A is an ordered pair of
updates, {(A,B), from U, satisfying the following conditions.

(a) A is a request(P) update, B is a move—up{P) update, and A
precedes B in A

{b) There are no cancel(P) updates after A in A

{c) There are no move— down{P) updates after Bin A.

A waiting witness for P in A is either of the following:

(1) An update A, from ., satisfying the following conditions.

(a) A is a request{P) update.

{b) There are no cancel(P) or move—up(P) updates after A in A
(2) A pair (A,B) of updates satisfying the following conditions.

(a) A is a request{P) update, B is 2 move—down(P) update, and A
precedes Bin A. -

{b} There are no cancel(P) updates after A in A.

(c) There are no move —up(P) updates after Bin A.

Recall that a person is known in a given state s if he is either in
ASSIGNED - LIST(s) or WAIT - LIST(s).

Lernma 14: Let A be a sequence of updates, and s the
state resulting from applying A tos,. Let P bea person.
(a) P is known in state s exacty if there is a request(P)
update in A which is not followed by a cancel(P) update.
(b) P is in ASSIGNED-LIST(s} exactdy if there is an
assignment witness for P in A.
{c) P is in WAIT-LIST(s) exactly if there is a waiting
witness for Pin L.

Prool: By analysis of the possible stale transitions.

Yor the next several lemmas, we use the following notation. Let A-be
a finite sequence of updates and let B be a subsequence of A. Lets be
the state which results from applying A to s,, and let t be the state
which results from applying % to s,, The next ﬂ:mmas relate the states s

andt

Lemma 15 Let P be a person. Assume that P is in
ASSIGNED —~LIST(s), and let (A,B) bc an assignment
witness for P in . Assume that % cantains both updates A
and B. Then P is in ASSIGNED ~LIST(2).

Proof: By definition of an assignment witness, A is a
request(P) update, B is 2 move—up({P) update, and A
precedes B in A Also, A contains no cancel(P) updates
after A and no move—down(P) updates after B. Now, B
contains both A and B, in that order. Also, B cannot
contain any cancel(P) updates after A or move—down{P)
updates after B3, since there are none in A, Thus, (A,B}is an
assignment witness for Pin %, Lemma 14 implies that P is
in ASSIGNED - LIST(1). 1

[emma 16; Let P be a person. Assume that P is in
WAIT—LIST(s). Assume that at least one of the following
holds.

(a) A is a waiting witness for P in .4, and % contains update
A.

(b) (A,B) is a waiting witness for P in A and B contains both
updates A and B.

Then P is in WAIT —LIST(1).

Proof: Similar to the proof of Lemma 15. 1

The preceding two lemmas will be applied in cases where A denotes
the entire sequence of updates preceding a particular transaction T,
while B denotes the subsequence of updates actually seen by T, The
lemmas imply that if T sees certain of the preceding wransactions, and a
person P is actoally on the ASSIGNED—LIST or WAIT—LIST, then
T is guaranteed to know it. On the other hand, the next several lemmas
deal with the opposite implication; they describe circumstances under
which a transaction that believes that a person P is actually on the
ASSIGNED —LIST or WAIT — LIST, is guaranteed tp be correct.

Lemma 17: Let P be a person. Assume that % contains the
last cancel(P) update, if any, in A, IfPis knownint, then P
is known in s.

Proof: Assume P is known in ¢ Then Lemma 14 implics
that there is a request(P} update in 8 which is not followed
by a cancel(P) update in B. This request(l’) update also
occurs in A, and there are no cancel(P) updates after the
request(P) in A, since B contains the last cancel(P) update
from A. Therefore, Lemuna 14 implies that P is known in s.
i

Temma 18: Lct P be a person. Assume that % contains the
last move— down(P) update, if any, in .A. Also assume that
B contains the last cancel(P) update, if any, in A, IfPisin
ASSIGNED - LIST(t), then P is in ASSIGNED— LIST(s).

Proof: Assumec that P is in ASSIGNED - LIST(t). Then
Lemma 14 implies that there is an assignment witness (A, B},

for P in %, Thus, A is a request{?) updaie and B is:a
move—up{P) update, A precedes B in B, there are no
cancel(P) updates in 4 after A and there aré no
move — down(P) updates in B after B, Updates A and B also
appear in A, in that order. There are no canceliP) updates
after A in A, since < contains the last cancel(P) npdate (if
any) in A. Similariy, there arc no move—~ down{P) updates
after B in L. Thus, (A.B) is an assignment witness for P in
A. Lemma 14 implies that P is in ASSIGNED - LIST(s). 1

23

Lemma 19: Let P be a person. Assumne that @ contains the
last move —up(P) update, if any, in .A. Also assume that <
contains the last cancel{F) update, if any, in A IfP i in
WAIT~-LIST(t), then P is m"WAIT— LIST(s).

Proof: Analogous to the proof of Lemma 13, ¥

Again, we can apply the preceding three lemmas ta the casc where A
denoles the entire sequence of updates preceding 2 particular
transaction I, and % denotes.the sequence of updates actually seen by
T. .‘The lemmas imply -that -if T sces certain of the preceding
twansactions, then T is gnaranteed t know that a particutar P is not on
the ASSIGNED—LIST or WATT - LIST.

Now we can prove rennea versions of the results of the previous
subsection. Since the notation and details become somewhat unwieldy,
we present versions of Corollaries 6 and 13 only, and omit the others.

Theorem 28 Lat e be an execution of the airiine system,
and T a transaction insiance in ¢. Let § be the actual state
before T and §' the actual state after T, in ¢,

1. Assume that there are at most k persons P such that P
is in ASSIGNED—LIST(s) but the prefix
subsequence scer: by T fails to include an assignment
witness for P, Then cither cost(s’.1) < cost(s,1) or
else cost(s’,1) < 900k.

2. Assume that T is a MOVE- UP or MOVE—-DOWN
transaction. Assume that there are at most k persons
P such that P is not in ASSIGNED ~ LIST(s) but the
prefix subsequence scen by T fails to include either
the last cancel(P} or tire last move — down(P) from A,
‘Then either cost{s’,2) < cost{s,2) or clse cost(s,2) <
300k.

Praol: Let t be the apparent state before T and ¢ the
apparent state after T. Then £ = T(tt). Assume that T
invokes action A in execution ¢, ie. that DT(I) = A,

1. Assume that cost(s’,1) » cost(s,1). Then T is a
MOVE— UP ransaction, A is a move—up update,
and AL{t) < 100. For all persons P in
ASSIGNED-LIST!s), except for the k cxceptions

described in the hypothesis, Lemma 15 implies that P
is in ASSIGNED-LIST(t). Thercfore, Alfs) <
AL(E) + k<100 + k. It follows that AL(s} < 100
+ k, and socost(s’,1) < 900k.

2. Assume that cost(s’,2) > cost(s,2). Then T is a.
MOVE—-DOWN transaction, A is a move—down-
update, and AL(t) > 100, For all persens P in
ASSIGNED - LIST(1), except for the k exceptions
described in the hypothesis, Lemma 18 implies that P
is in ASSIGNED--LIST(s). Therefore, AL{s) >
A(D - k> 100 - k. It follows that AL(s") 2 100 - k..
and 50 cos{s’,2) < 300k,

[]

Theerem 21: Tet e be any finite execution-of the airline
system, AU any subsequence of the indices of ¢, and let s be
the actual state after e,

1. Assume that there are at most k persons P such that P
is in ASSIGNED — LIST(s) but % fails to include an
assignment witness for P.

Then either cost(s,1) < 900k, or else there is an
extension of e ta another execution, by an atomic
suffix consisting of MOVE—DOWNs only, such that

the prefix subsequence of the first T in the suffix is
Al, 8 is the actual state after the iast transaction, and
cost(s’,1) < 900k.

2. Assume that there are at most k persons P such that P
is in WAIT ~ LIST(s) but 4l fails to include a waiting
witness for P. Also assume that for all but at most k
persons P, if P is not in ASSIGNED - LIST(s), then
Q. includes the last cancel(P) (if any) from ¢, and QU
includes the last move— down(P) {if any) from e.
Then cither cost(s,2) < 300k, or else there is an
extension of e to another execution, by an atomic
suffix consisting of MOVE~ UPs oaly, such that the
prefix subsequence of the first T in the suffix is AU, 5°
is the actual state after the last transaction, and
cost(s’,2) < 300k.

Proof: Let t be the result of 9l applied to 8-

1. By Corollary 2, either cosi(t,1) = 0, or else there is an
extension of ¢ to another execution, by an atomic suffix
consisting of MOVE—DOWNs only, such that the prefix
subsequence of the first T i he suffix is A1, such that t' is
the apparent state after the suffix, and cost(t,1) = 0.

First assume cost(t,1) = 0. Then AL{t) < 100. Let P be
any person in ASSIGNLED - LIST(s). If P is not one of the
k exceptions described in the hypothesis, then Lemma 15
implies that P is in ASSIGNED- LIST(t). It follows that
AL(s) € AL() + k < 100 + k, so cost(s,1) < 900k, as
needed.

Second, assume that the extension exists. Then AL{L) <
100. Let the actual state after the suffix be s'. Let P be any
person in ASSIGNED-LIST(s}. Then P is also in
ASSIGNED - LIST(s), since the suffix does not add anyone
to the assigned list. If P is not one of the k exceptions
described in the hypothesis, then Lemma 15 implies that P is
in ASSIGNED~-LIST(t). None of the MOVE—DOWNs
in the suffix could have generated a move-—-down(P), since
if vne did, then P would not be in ASSIGNED - LIST(s).
Therefore, P is in ASSIGNED-- LIST{t"). It follows that
ALY < ALY + k < 100 + &, so cost{s’,1) < 900k,

2, By Corollary 2, either cost(t,2) = 0, or else there is an
extension of e to another execution, by an atomic suffix
consisting of MOVE—UPs only, such that the prefix
subsequence of the first T in the suffix is AU, ¢ is the
apparent state after the suffix, and cosi(t’,2) = 0.

First assume cost{t,2) = 0. Then cither AL{t) > 10¢ or
else WL(t} = 0. et P be any person in WAIT—-LIST(s). If
P is not one of the k exceptions described in the hypothesis,
then Lemma 16 implies that P is in WAIT-LIST{). It
follows that WL{s) < WL(t) + k. Let P be any person in
ASSIGNED-LIST(t). If P is not one of the k exceptions
described in the hypothesis, then Lemma 18 implies that P is
in ASSIGNED—LIST(s). 1t follows that AL(1) < AL(s) +
k. Thus, cither WL(s) < k or ¢lse AL(s) > 160 - k. Thus,
cost{s,2) < 300k.

Second, assume that the extension exists. Then either
AL(t) > 100 or else WI{t'} = 0. Let the actual state after
the suffix be . Let I’ be any person im WAIT—LIST(s").

24

Then P is also in WATT~ L131(s), since the sptilx aoes-uot
add anyone to the wait list. If P is not one of the k
exceptions described in the hypothesis, then Lemma 16
implies that P is in WAIT—LIST(tf). None of the
MOVE-UPs in the suffix could have generaied a
move—up(P), since if one did, then P would not be in
WAIT-LIST(s"). Therefore, P is in WAIT - LIST(t). So
WL(s) < WL{) + k.

New let P be any person in ASSIGNED — LIST(t'). Then
P must be known in t, since otherwise the move—ups in the
suffix could not put P into ASSIGNED—LIST(?). IfPisin
ASSIGNED - LIST(t), and P is not one of the k exceptions
described in the hypothesis, then Lemma 18 implies that P ig
in ASSIGNED - LIST(s) and hence in
ASSIGNED-LIST(s’). On the other hand, if P is in
WAIT-LIST(t), and P is not one of thesc same k
exceptions, then Lemma 17 implies that P is known in s.
Since P is in ASSIGNED~LIST(t'), a move ~up{P} occurs
in the suffix. Then P is in ASSIGNED—LIST(s'}. Seo
AL{s) > AL{t) - k. 1t follows that either WL{s') < k or
AL(s) > 100 - k. In either case, cost(s’,2) < 300k,

It is also possible to give refined versions of Corollarics 8, 10, and 11.
We omit the details,

54. Cost Bounds Resulting from Centralization
In this subsection, we give two results which describe conditions
under which overbooking cannot accur at all. These conditions involve
fairly strong centralization assumptions, The basic idea is that if all the
move—up decisions are made centrally, it should not be possible to
overbook. However, in order to prove this result, it is necessary for us
w make some technical restrictions involving the requests.
Theorem 22: Let e be a transitive execution. Assume that
the MOVE—UP transactions are céniralized in e, Assume
that for each P, the transactions that generates updates
involving P are centralized in e. Lets be any state reachable
in ¢. Then cost(s,1} = 0.

Proof: The proof is by induction on the length of e. The
basc case, where the length of e is 0, is easy. So assume that
the length of ¢ is at least one. Let T be the last transaction in
e. Lett be the apparent state before T and ¢ the apparent
state after T. Let s be the actual state before T, and §° the
actual state after T. Let A be the actual sequence of updates
preceding T, and let 98 be the sequence whose effects are
seen by T,

The inductive assumption says that cost(s,]) = 0. The
only way that cosy(s',1) can be nonzero is if T is a
MOVE-UP transaction which generates a move—up
update. Then AL(t)< 100.

We claw. that ASSIGNED— LIST(s)
ASSIGNED-LIST(r). If this is so, then AL({s) < 100,
AL{s) < 100 and cost(s’,1) = 0, as needed.

c
50

So fix P in ASSIGNED-LIST(s). Then there is an
assignment witness for - n 4. The move —up(P) of tha pair
also appears in B, since the MOVE— UP transactions are
centralized. The request(¥) of the pair appears in the prefix
secn by the move—up(P), since the transactions generating

P updates are centralized. Therefore, the request(P) also
appears in B, by transitivity, Thus, B contains the
assignment witness, and Lemma 15 implies that P is in
ASSIGNED-LIST(). 1

The second result of this subsection is just a minor variant of the (irst,
with an aiternative technical restriction on the requests,

Theorem 23: Let € be a transitive execution. Assume that
the MOVE—UP transactions are centralized in e. Assume
that for each P, there is at most one REQUEST(P)
transaction in e. Let s be any state reachable in e. Then
cost(s,1) = 0.

Proof: The preof is nearly identical to the preceding one.
The only difference is in the argument that the request{P) is
in the subsequence seen by the move—up(P). We know
that some request(P) appears in the subsequence seen by the
move—-up(P) action, for otherwise that action would not
have been invoked. Since there is only one such request(P),
the claim holds. §

OF course, it would be better if we could prove the same result only
assuming centralization of MOVE— UP transactions and transitivity,
and not making any assumptions about the transactions generating
updates for the same person. But this sironger statement is not true, as
is shown by the following example.

Example:

Consider an execution which consists of a succession of

blocks of 4 transactions each,

REQUEST(P1), CANCEL(P]), REQUEST(P),
MOVE-UP,
REQUEST(P2), CANCEL{P2), REQUEST(F2),
MOVE-UP.,..,
REQUEST(P101), CANCEL{P101), REQUEST(P10L),
MOVE-UP.

The successive MOVE—UP transactions produce
updates move—up(P1),...,, move—up(PL01). This execution
is possible if each of the first 100 MOVE~UP transactions
sees the first request in the same block, but not the cancel or
the second request. The last MOVE—UP sees all the
previous MOVE—UP's and the requests that they see, plus
the cancels. Then this last MOVE—UP will think that the
earlicr MOVE—UP's acted erroncously, and that there is
really no one on the assigned list. It will therefore decide to
move PiD1 up. The cost after this execution is nonzere.

Similar results to those in this section should be provable, at least in
principle, for the underbooking cost. However, the centralization
assumptions that appear to be needed are so strong that the results do
not seem very interesting.

5.5. Fairness

In this subsection, we consider fairness properties of the airline
reservation system. As before, the resulls are stated in terms of the
specific example, but the techniques appear to gencralize to other
applications.

For this section, we make the following very strong assumption. We
assume that all MOVE—UP and MOVE—DOWN transactions are
centralized; thus. there is essentially one "agent” making all decisions
about scat asSignment. It remains to be seen whether this assumption
cf'u'! be weakened, while still permitting proof of interesting fairness
claims.

25

Recall the definition of passenger priority from Section 4.2: we say P
< Q. for knewn P and Q, to mean that either P precedes Q on the
WAIT - LIST, or P precedes Q on the ASSIGNED - LIST, or else P is
on the ASSIGNED~ LIST and Q is on the WAIT—LIST.

Lemma 24: Let A be a sequence of updates, and let B bea
subsequence of A. Let P and @ be people. Assume that %8
contains all move--up and move—down updates from L.
Also assume that % contains all the request and cancel
updates for P and Q, from 4. Lets be the result of A andt
the result of <8, applied to s Then P < Qin tif and only if
P<Qins

Proof: The updates in .4 which are not included in ® are
only request and cancel updates for persons other than P
and Q. These cannot affect the relative priority of P and

Q.

The following theorem says that, under certain restrictions, the
relative priority of two requests is determined at the time the "agent”
for MOVE—UP and MOVE~DOWN transactions first learns about
both requests. Thus, except for an initial period of uncertainty during
which the agent has not yet learned about the requests, their relative
priority 15 fixed.

Theorem 25: Let ¢ be a transilive execution. Assume that
the MOVE—UP and MOVE-DOWN (ransactions are
centralized. Lei P and Q be people cach of whom has
exactly one REQUEST wansaction, but no CANCEL
transactions, in e. Let T be a MOVE-UP or
MOVE-—-DOWN tramsaction having both REQUEST{(P)
and REQUEST(Q) in its prefix subsequence. Tt t be the
apparent state, and $ the actual state, before T. IFP<Q int
then also P < Q in s and all other actual database states

occuring later in e,

Proof: First, we show that P < Q%in 5. Lot A be the
sequence of upuates preceding T, and B the subsequence
actualty 'seen by T. The centralization assumption implies
that *b centains all move~up and move —down updates
from . The other assumptions imply that % contains all
the request and cancel updates for P and Q, from L. Then
Lemma 24 implies that P < Qin s

Assume that ’[‘1 is the first transaction (T or later) after
which it is false that P ¢ Q. Let 1, be the apparent state
before T, and t," the apparent state after T). Let 5, be the
actual state before T, and 5, the actual state after T,. Then
P<Qin §, but not in s,". The only possibility is that 'I‘L isa
MOVE—-UP or MOVE—-DOWN transaction that causes
th,e order of P and Q to become in terchanged; thus, Q< Pin

5.

We claim that P < Q in t,. Let A be the sequence of
updates preceding Tl. and let 8 be the subsequence actually
seen by T]. B contains all the moving updates from .4, by
the centralization assumption. Alsa, B contains the requests
for P and Q, since the subsequence seen by T does, 7T is
either equal to T, or else is in T,'s subsequence, and
transitivity holds. Thus, applying Lemma 24, the orderings
int, and §, are the same, so P< Q in t,.

Mow we claim that Q < P in L'. This follows using
Lemma 24, since G<Pin 5. ButifP<Qin t,and Tl(tl,tl)
= tl‘, then P< Q in tl', since afl transactions preserve
priority. This yields a contradiction. 4

We can interpret the preceding theorem as follows. We might
imagine that at the actual flight time, next January 1, the complete
exccuiion becomes known to the check-in attendant. The people that
‘he actually aflows to proceed onto the dirplane are the 100 people who
show up, who have the highest priority in the final database state,
(CANCEL transactions can be run for the others, and then sufficiently
many MOVE—~UP or MOVE—DOWN transactions to cause AL to
equal 100 or WL to equal 0.} If P and Q had previously become known
to the “agent” for MOVE-TUP and MOVE-TDOWN transactions,
with P < Q, and if P and Q both show up, if Q gets onto Flight 1, then
so daes P

Example:

Our transaction definitions can lead to the following
behavior for passengers’ relative prioritics. Assume that
REQUEST(P} precedes REQUEST(Q), but the requesi(Q)
update becomes known to the "agent” before the reauesi(P)

update. Then a move —up(Q) can cccur, which moves Q up
past P. Later, a move—down(Q) can occcur, Whes this
happens, our definitions say that Q gets put at the head of
the WAITF—-LIST, ahead of P. Subsequently, the moving
agent can learn about the request(P) also. At that point, Q <
P, so by Theorem 25, Q remains ahead of P, This happens
even though there is sufficient information in the system to
allow for Q 10 be placed on the WAIT — LIST afier P, which
is in keeping with their timestamp order for requests. Thus,
the order obtained in the final state is determined by the
order at the time a MOVE-UP or MOVE-DOWN
transaction first sees both requests, but is not necessarily
determined by the actual order in which the requests were
initially made.

It is possible w redesign the application to respect the
original request order in this situation. ¥t suffices to include
request timestamps explicitly in the database., Each of the
two lists would always be kept sorted according to
timestamp order. Thus, when the request(P) becomes
known to the agent, he would insert P ahead of Q on the
waiting list. (More precisely, when the move —down(QQ) is
run trom a state in which P is on the waiting Tist, Q is not
placed at the head of the waiting list, but rather is inserted in
timestamp order, after P.} This relative position would be
maintained from then on,

Theoreni 25 makes a claim abouf relative priorities at times after ‘a
conceptual "agent” “learns about two requests. In ordes for this
condition to bé meaningful as a correctncss claim, the user must have a
fairly defailed 'and sophisticated conceptual model of systemn gperation,
including prefix subsequences and agents. i might also be interesting
to statc fairness claims which involves a less defailed conceptual model.
For example, we might want to state a condition which could be
paraphrased aa follows. "If a REQUEST(P) is made sufficiently earlier
than a REQUEST(Q), then P must precede Q in the final state.” The
following lemma can be used 1o infer such a property.

Lemina 26: Let ¢ be a transitive execution. Assume that
the MOVE—UP and MOVE-DOWN (ransactions are
centralized. Let P and Q be people each of whom has
cxaclly one REQUEST transaction, but no CANCEL
transactions, m ¢. Assume that REQUEST(P) precedes
REQUEST({Q) in e. Further assume that any MOVE-UP
or MOVE—-DOWN transaction that has REQUEST(Q) in
its prefix also has REQUEST(P) in its prefix. Then P<Qin
any actual state reached during e in which both F and Q are
known,

26

Proof: Assume the contrary, and let T be the first
transaction in e such that Q < P in the actual database slate
after T. Let t be the apparent state before and € the apparent
state after T. Let s be the actual state before and §° the actual

state affer T. Then Q <P in 5’ but net in s.

First, we claim that T must be a moving transaction. IfT
were a REQUEST(P) transaction, then the REQUEST(Q)
cannot be reflected in s* since it occurs after REQUEST(P)
All other cases can be ruled out by similar trivial arguments.
So T is a moving transaction; thus, ¥ and Q are known in s,
so that P< Q in s. The only possibilities are that T is a
MOVE - UP transaction that moves Q up past P, or that Ths
a MOVE—DOWN transaction that moves P down past
Q. For either of these to happen, at least one of request(P)
and request{Q) must be in the prefix subsequence of T.

Case 1: T has both request{P) and request(Q) in its prefix
subscquence.
Then both P and Q are known i t. If P < Q in t, then
Theorem 25 implies that P < Q in 5", a contradiction. 'On the
other hand, if Q < Pir t, then Theorem 25 implies that Q ¢ P-
in s, again a contradiction.

Case 2: T has only request{P), but not request(QQ}, in its
prefix subsequence.
Then T must be a MOVE—DOWN which moves P down
pasi Q. Therefore, Q must be in ASSIGNED~-LIST(s). Buit
in order for this to occur, there must be some MOVE-UP
transaction I” appearing earlier than T in e, which moves Q'
up; clearly, request(Q) must be in the prefix subsequence of
T. T isin the prefix subsequence of T, since the moving
transactions are centralized. By transitivity, request(Q) is in
the prefix subsequence of T. This is a contradiction. B

We can use this lemma to abtain a thenrem of the form we described
carlier, ic. that if REQUEST(P) occurs sufficiently long before
REQUEST(QQ) (and other suitable conditions hold), then P retains
priority over Q. All that is necded is an additional assumption that if
REQUEST{P} occurs sufficienily long before REQUEST(Q), then any
MOVE - UF or MOVE—DOWN transaction that has request{Q} in its
prefix also has request(P) in its prefix. :

Theorem 27; Let ¢ be a transitive, orderly timed execution
having t-bounded delay. Assume that the MOVE— UP and
MOVE-DOWN transactions are centralized. Let P and Q
be people each of whom has exactly one REQUEST
transaction, but no CANCEL iransactions, in e. Assume

- that REQUEST(P) precedes REQUEST(Q) by at least time
t,in e. Then P < Q in any actual state reached during e-in
which both P and Q are known.

Proof: The t-bounded delay assumption and orderliness
imply that any MOVE—UP or MOVE—DOWN that has
REQUEST(Q) in its prefix also has REQUEST(P} in its
prefix. The previous lemma then yields the result, 8

6. Conclusions

In this paper, we have given precise correciness conditions for, a
highly available replicated database system such as CCA's SHARD.
First. we gave basic definitions for the SHARD database and
transaction model. We then described assymptions about how the
system runs the rramsactions, followed by assumptions about
applications. Finally, these two types of assumptions were combined to
prove some interesting properties of a particular running app!icapiqn.
an airline reservation system. Although the example is sinple, it 'i§
illustrative of a large class of important resource-allocation problems.

The assumptions about how the system must run the transactions {(in
particular, the prefix subsequence condition) have been described in a
very gencral way. They embody a new model for data processing;
which is quite different from, and imposes new structure on, the
traditional models used in concurrency control theory. We expect (hat
this model will prove very fruitful for futyre research and for
application design.

In describing our assumptions about the airline reservation
application, we have tricd to be as general as possible. The types of
assumptions we have listed seem to be very appropriate for resource
allocation applications, but we do not believe that they comprise a
complete sct of interesting application assumptions. It is likely that
sudy of additional examples will yield other interesting types of
assumptions as well.

‘The particular properties proved for our appiication involve bounds
on the costs attributable o violations of integrity constrainis, and
fairness. For other resource allocation applications, similar cost bound
and fairness results should be provable.

The system exhibits nonserializable behavior, so that being able fo
prove interesting conditions s an accomplishment. In the usual
development, no guarantees at all can be proved in case information
about any preceding transaction is missing. In contrast, we can prove
interesting properties even with incompicte information, Moseover,
small changes in available information lead to small changes in costs for
integrity constraints.

The analysis required to obtain some of our results has been very
delicate. This is because it Is necessary to consider how updates will
exceute in many possible sitations, not just from Ihe database state
seen by the decision parts of their transactions. Anuother difficulty is
that SHARD does not impose any a priori restrictions on the Kinds and
arders of transactions that are submitted and processed. The need to
consider the behavior of transactions in the presence of arbitrary
preceding transactions, and arbitrary partial knowiedge about the past,
makes the analysis of SHARD transactions more difficult than for
ordinary (scrializable) transactiops, But this kind of analysis seems
unavoidable; whether or not a formal, mathematical analysis is carricd
aut for a particular application, application programmers do need to
consider, at least informally, how transactions will bchave in the
presence of arbitrary preceding transactions and arbitrary partial
knowledge about the past. We provide a fiamework for this kind of
analysis, but more needs t be done to develop appropriate styles of
-programming and methoeds of analysis.

A next step in this research should be' the consideration of other
example applications. Additional resource allocation examples should
be examined, such as exafmples from banking and inventory control.
Other, non-resource-allocation, cxamples should be stedied. Some
exampies appropriate for SHARIY might involve "distributed data
structures”, The highly-available distributed dictionary studied in [FM}
is one example that fits the SHARD framework, and there should be
others. Also, it has been claimed that name servers such as Grapevine
[B] have interesting but nonserializable behavior; it seems likely that
they can be described within our framework. Still other appropriate
examples might arise from real-time control,

For cach of these examples, simple prototypes could be defined,
capluring the essential behavior of the example. Study of these
prototypes should determine the appropriate propertics to prove im
each case. Cost bounds and fairness should reappear, but othen
properties should also be of interest. It is important to look for general,
methods of programming and analysis.

27

Other theoretical work also seems possible. For instance, we have
described some interesting automaton structure in Section 5.3, This
structure could be swdied and gencralized. Also, it should be possible
t0 obtain complexity results. Particular examples of desirable
application behavior could be studied individually, and costs (e.g.
amount of communication, or local storage) determined for achieving
correct behavior,

On the systems design side, SHARD itself needs to be generalized in
at feast two important ways. First, the inessential full replication
assumption needs to be removed. Even with only partial replication, it
should be possible to continue to maintain the correctness conditions
we describe in this paper, by judicious assignment of data and
transactions to nodes, (i.e. in such a way that each transaction will have
copies of all the data it requires). It should even be possible to allow
some of the data which transactions read to be present in summary
form, rather than in its full detail. Second, the SHARD work needs 1o
be integrated with earlier work on serializability. It should be possible
ta bujld an application system in which certain critical transactions run
serializably, while the others run in a highly available mannes. The
application designer should be able to specify the modes of operation
for different transactions. As the system design gets extended, the
theory also needs to be extended to incorporate these two
generalizations.

Ivis apparent to us that there is an interesting theory to be developed,
for proving properties of nonserializable highly available replicated
database systems. We believe that this paper gives some useful ideas cn
how to begin.

7. References
[AM] Allchin,). E and McKendry, M. - S,
“Synchronization and Recovery of Actions," Proc. af
the Second Aunual ACM Symposium on Principles of
Distributed Compuiing, Mantreal, Quebec, Canada,
August 17-19, 1983, pp. 31-44.

[B] Birrell, A, D, Levin, R., Needham, R. M, and
Schroeder, M. D., "Grapevine: An Exercise in
Distributed Computing,” Comm. of the ACM 25, 4
(April 1982), pp. 260-274,

[BG] Bernstein, P. A., and Goodman, N., "Concurrency
Contrel in Distributed Database Systems,” ACM
Computing Surveys 13,2 (June 1981), pp. 185221,
[BK] Blaustein, B. T. and Kaufman, C. W, "Updating
Replicated Data During Communication Failures,”
Proc. of the Eleventh ind. Conf on Very Large
Databases, Stockholm, Sweden, August 1985, pp.
49-58,

[FM] Fischer, M. J. and Michael, A, "Sacrificing

Serializability to Attain High Availability of Data in
an Unreliable Network," Proe. of the Symposium on
Principles of Database Systems, los Angeles,
California, March 29-11, 1982, pp. 70-75.
IG] Garcia-Molina, H., "Using Semantic Knowledge for
Transaction Processing in a Distributed Database,”
Tech. Rep. 285, Princeton Univ. Dept. of Riectrical
Engineering and Computer Science, April 1981
Also appeared in Transactions on Darabise Systems,
8, 2 (Junc, 1983), pp. 186-213.

{GLBKSS]

i1

18]

[SBK}

[SKS]

(5]

Garcia-Molina, H.,, Lynch, N. A., Blaustein, B, T,
Kaufman, C. W., Sarin, 8. K., and Shmueli, O,
"Notes on a Reliable Broadcast Protocol,” CCA
technical report, 1985.

Jefferson, D., "Virtual Time," Transactions on
Programming languages and Systems, (Juty 1985), 7,
3, pp. 404-425,

Sarin, S. K., "Robust Application Design in Highly
Available Distribmed Databases”, Proc. fifth Symp.
Reliability in Distributed Sofiware and Dalabase
Systems, Januvary 1986, pp. 87-94,

Sarin, 8. K., Blaustein, B. T, and Kaufman, C. W.,
"System Architecture for Partition-Talerant
Distributed Databases,” IEEE Transactions on
Computers C-34, 12 (December 1985), pp.
1158-1163.

Sarin, S. X., Kaufman, C. W., and Somers, I. E,
"Using History Information to Process Delayed
Database Updaies,” CCA. 1986, submitted for
publication.

Sarin, 8. K., and Lynch, N, A_, "Discarding Obsolete
Information in a Replicated Database System,”
CCA, 1986, submitted for publication,

