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Abstract 

C<,retoness conditicms arc given which describe some nf  tile 
pt'tq~crlie~ c×hibiLed by Ilighly aw~itable distributed database systems 
sttch a:; the 511,'x.RI) (Systcnl I~n' l lighly Available Replicated Data) 
,¢.ystem cuurcntlv be~hg developed at Comptller Corporation of 
/~l]lOi'iC;i. This svslcm allows a da~d~ase application to contilme 
OpClatlt:~l ill tile lace o1" communicatiun faih.llCS, incheding fietwork 
pa0"tidons. A penalty is paid tbr thir; c×tz'a availability: the usual 
corrc,:tncss conditi,n,~; serializability of tr:msactions and preservation of 
iritcgrily c,n.~traims, ,:re not guaranteed. I Iowevcr, it is still possihle to 
make intcrestin~g claims about the beh,vior e,f the system. The kinds of 
claims whicli can be 9roved include bom~ds on tile costs oF violatior, of 
integrity cofistraints, and Ihirness guma,tces. In comrast to 
serializ~bility:s all-or-m~thing character, this work has a "continuous" 
flavor: small changes in available inform~itiou lead a) small 
perturbations in corrcctuess conditk)ns. 

"['l:.is work is novel, because there has been very little previous success 
in'stating .inlcresti'ng properties whk:h are guaranteed by nonscrializable 
systems. 
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I. ' lntroduction 

I.I. Background 
In recent years, there has been extensive rcscarch:i..~n, the design and 

tlleory of distributed dat~hases. Nearly all of !hhj~2,~.'ork has b e n  
directed towards i~roviding__fjaqaeworks in ~hk:h,tla '~ctious can be 
processed coi~currcntly, whilc,.l~e:~ervi,g intcgdfy /:grlstraints on the 
data. Many , f  the most important adwmces ill .i.ik~ribtttcd processing 
have arisen fi'om this work. including, tile deveit~;fic/i't ul" techniques 
)ased o ~ ock Ilg and tnuestamps, a ~d cumin l prclk~cols. The work has 
led ~o elegant systent designs, as well as to a very iniercsfing theory. 

It is apparent, however, theft dlere is still a [irol~lesil. The techniques 
developed in distribtuted datdbase research h:~,.c.no, i, yet been accepted 
by the commeJcial world to tile extent Ih~ researchers might have 
hoped. In particular, airline reserwltitm sy~t,2nls, banking systems and 
inventory cOnll'Ol systems (applications v01icl) motivated much of tile 
research), still do nmt rely on the general mcclwnisms developed by 
L'esearchers. The problem ni~ly bc limdan~ental It,' the general 
approach. The mechanis,ls developed in resca:'ch gum'antce 
preserwlliOn o1" integrity constraiuts, bul they arc illadctluate li)r 
meeting striogent responsc time and aYai.labili~y requirements. This 
inadeqtnacy scem~, to be an tmavoiddbte result of stn,.~ reqtdremenLs 
Ibr :;ynchr~mizatioa among renlote nodes~ 

Many applications of the sort. meiltioi)cd above put a high premium 
on awfiiability and fast pcd;:)mlancc, a:~.d i1~ order to ol)tain these, they 
are willing [o sacrilice something ill  the way of "correcme~s" or "data 
inaegrity": The researcl) comlqu~ity has so Ihr been unable to provide 
general fi"ameworks which gq3r, ailtee weaker c(~trectness conditions as 
well as gored perti~rmance.and-.a~aiiability. Asxuesult, p:actical systems 
development work fi)r th~e'ai~plication~:'is .still based on ad hoc 
methods of concurrency control. 

There ts a need fbr syslem deveh~pmcnt Work, as well as.asstx:iated 
theory, to Iill Ihis gap. New fiamcw, rks are r~ceded which guannltee 
good performance and awdlability, yet orovidc enough di~ipliile on 
application programming so tllat ¢mc!~l coru+ectncss claim:~ can be 
proved. When titst response time mid high availability arc2equired, it 
seems necessary [o allow violations of integrity cons,a'aints, io ~ct l r .  i l l  
this case, Iraditional frameworks do nut allow any:hing interesting to be 
proved ~abot# the behavior of Ihe system. The difficult part of the 
problem is tu gtmranltee interesting mid usefi.II cotr~tncss propcrties, 
even when intcgrily constraints are violated. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of 
the publication and its date appear, and notice is given that copying 
is by permission of the Association for Computing Machinery. To 
copy otherwise, or to republish, requires a fee and/or specfic 
permission. 

1.2. SI lARD 
The new gFIARI) (System fi~r I lighly Available Replicated l)ata) 

system under devclopnlent at C'ol~lputcr Cortx~ration oF America 
(CCA) is designed to address tile problems described above. It 
provides highly awlilable distributed data proccssh~g in the face of  
commu,ication failures (ii~cluding network partitions). It does not 
guarantee serializability, nor does it preserve integrity constraints, but it 
does guarantee many practical and interesting properties of  the 
database. 
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'111e reader is rel~rred to [SBKI for a detailed description of  the 

architecture of  the SIIARI) system. Briefly, the main ideas are as 
lbllows. Tile network consists of  a collection of nodes, each of wbich 
has a copy of the complete database. (Full replication is a simplifying 
assumption we have used for our initial prototype; many of our ideas 
seem extendible to the case of partial replication, but this extension 
remains to be ntade.) Replication allows transactious to be processed 
locally, thus reducing communication costs and delays, and providing 
high avaihtbility. 

After a transaction is prtx:essed at its originating toxic, infi>rmation 
about the transaction is broadcast reliably to all the other nodes for 
incorporatlon into the database copies at those nodes. The broadcast 
algorithm [GI,BKSSI ensures that, barring permanent communication 
failures, every node will eventually receive infi}nrtation about every 
transactkm. While the broadcast algorithm attempts to deliver 
infi}nnation It> all sites in as tintely a manner as possible, 
communication and node thilures can cause significant delays. Since 
nodes ntay cont inue  to initiate transactions dur ing  COll~lnunicalio>ls 
lhilures - indeed, they may not even- bc aware that there is a I~filure 
somewhere in the network - these delays mean that transactions may 
run against ont-ol:dale database stales. 

When a node receives new in fornlatlon abou t  a transaction,  110 matter  
when the transaction.was initiated, this inlbrmation must be merged 
into the node's copy of the database: this merging must be done 
consistently at all nodes, to maintain mutual consistency. The following 
mechauism is used to guarantee consistent merging. Transactions are 
u>tally ordered by a globally-unique timcstamp assignment (such as one 
based on local timestamps with node identifiers used fORt tiebrcaking), 
and each node uscs this total ordering to determine how to merge 
inlbrmation about dillkzrent transactions. Because all nodes order the 
t|'ansactior.s in the same way, they will agree on thc result of  merging 
identical sets of  transactkms. Also, at all tlmes during execution, each 
nodc's copy of the datahase always reflects the effiecLs of all the 
transactions known tx+ that node, as if they were run according to the 
global timcstamp order. 

Since messages about diflbrent transactions could arrive at a single 
node out of  times(amp order, keeping the cupy cutrect cntails freqnent 
undoing and redoing of transactions. The SIIARI) system uses an 
t|ndo-redti strategy in lieu of any other inter-node concurrency control 
mechanism. This strategy allows the nodes to achieve mutual 
consistency without relying on extra network connnunicatiou. There 
are several implementation ideas which reduce tl)e amotmt of undoing 
and redoing that is actually necessary; some 0P,these are discussed in 
[BK,SKS]. 

Problems arise with the simple scheme described st> filr in its 
interactions with the external world. Cert;fin transactions will trigger 
external actions. For example, in an airline reservation system, a 
btx>king transactkm might dctemfine that there are available seats on a 
llight, and might cause a passenger robe  infi>rmed that he has been 
assigned a seat. ARhot|gh the tranm~ction is run at difl~rent nodes, and 
possibly undone and redone many times, the external actinn should 
only occur once - at the transaction's origin node, when the transaction 
is initiated. 

When a transaction is rerun at a node, it may be necessary to undo all 
its effects ben}re redoing it starting fi'um a difli~rcnt database state. This 
requirement is a serious problem Ibr transactkms which trigger external 
actinus: it is not possible Ibr the system to undo an external action. 
Moreover, when the transaction is redone, it might not choose to trigger 
the same external action. In aa aMine reservation system, a booking 
qansactkm might decide to inlbrm a passenger of  an awfilable seat 
when the transaction is initiated. I luwevcr, if this hooking transactlon 
is unlhnlc and tllen redone from a database state in which there do not 
appear tu be any awfilable seats, it would not grant the seat. Thus, after 
the undo and redo, the dalabase would not record the fact that the 
passenger had been granted a seat, even though the passenger ha,+ 
actually been informed that a scat has becn granted. This situatkm 
produces an inconsistency between the inft>rmalion ill the datah~Ls 9 and 
file infi>rmation sent to the passenger. We wotdd like to avoid this kind 
of inconsistency. 

Thus, we lind it usefid to limit the interaction oftnmsactioas with the 
external wl>rld, by imposiug some extra structure on the transactions.. 
We reqnirc that all tr+insaclions bc divided inlo two parts: a "decision", 
which may read data and trigger external actions, but Inay not modify 
the database, and an "update", which may read and write the database 
but may not trigger external actkms. 

The decision part nf  a transaction is invoked only when the 
transaction is initiated. This part of  the transaction may interact with 
file user, giving some indication of  the likely outcome of fllc completed 
tranm~ction, The resuhs returned by the decision determine an update, 
which is then broadcast to all file nodes to be merged into all the copies 
of  the datab~me. Only the update is broadcast to the other m~es.  The 
update is the part of  the transaction that may be undone and redone: 
the decision is executed truly once. Since the decision inwtlves no 
changes to the database, just broadcasting the update is era>ugh to 
insure mutual consistency of  the database copies. 

In the example described earlier, the dccision part of  the b{mking 
transaction could read the database at the local (initiating) node and 
determine whether there appear tu> be ayailable seats. If there arc, the 
decision would inlbnn the requesting passenger that he has been 
granted a seat, and would alsa} cause the system to invoke an update 
that wrifes the reservation into tile da~base. When the update is 
received by the other nodes, the reservation is also entered into their 
copies of  the database. Thus, every node wotdd correctly record the 
fact that the passenger was granted a seat. 

Because of the distribution, and because of  the possible need fi>r 
trade and redo, the update part of  the booking tranm~ction may execute 
many times, possibly fiom diflbrcnt database suttes. No matter what 
state it is executed fi'om0 the npdaterecords the fitcts that the seat was 
assig,ed and the passenger was informed of the assignment. This 
update reeoaxl~ die lhcts ¢o~rcctly~gvcn if'it is ex'ecuted fi'om a state ti'om 
whicli ~ booking transaction run in its entirety would not/;htx~se to 
grant the passenger a seat. 

Because decisions are made with incomplete informattion about the 
updates of  preceding transactkms, it is possible that the database could" 
reach an undesirable state, e.g. a state in which a flight is overbooked. 
However, users or applicatkm programmers could monitor the database 
with additional "compensating" transactions, which invoke appropriate 
corrective actilms. In this example, a transaction might check li)r 
overbooking, and decide L{)I1 ;I particular passenger t(} unseat. The 
deciskm part of  this transactioa would inlbrm the passel:get tfiat his 
reservatiun has been rescinded. The update would just record, in the 
&ltabase, the fact that the particular passenger has heen unseated. Of  
course, applications should be designed to avoid an excessive mmot|nt of  
compensation. The correctness conditions described in tltis paper 
should help to prtwide application designer5 with guidelines tbr coping 
with these and other problems caused by a lack ofserializability. 

A preliminary design fi>r SItARI) has been completed, and is 
documented in IBK,GI+BKSS,S,SBK,SKS]. Also, a prototype 
implemenuJtion is completed. 

1.3. Correctness  Condit ions 
The SItARI) system can be iml~lemented efficiently, and seems 

capable of eXlnessiug tile kinds of transaction behavior actually used in 
commercial systems. I luwever, ifthc system is going to he widely used, 
it sllould bc possible to make precise claims ab~mt its behavior. This 
paper provides a formal setting in which such claims can be made, and 
uses that framework to prove some intcrestiug cJaims about SI IARI)'s 
bChavk>r 

I t  should ~ dear tb,. S l lARD does not guarantee serializability of 
complete transactions. It does gaar, autee serializability of tile update 
parts of  transactions, but that condition by itself does not say very 
much. Wc believe that we can say more abi~ut what is gu:'-:"-teed by 
sucl, ~ .syst.cm than ~S~. what we c.a4t concldde f:,,,, ils weak 
seriali~,abilityproperties. 

We take our cue from some of the intended applications of tl~ 
system, such as airline reservations, banking, and inventory contro!. 
'l'hcse exemplify difflbrent kinds of resource allocation applications. /n  
all these cases, there are natural integrity constraints which one would 
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want to define; these arc usuMly expressed as predicates on the 
database states. In resource anocation applications, one usefid integrity 
constraint would be that the mnnber cq' allocated resources be no 
greater than the number of  available resources. Another would be that 
the nunlber of  allocated resonrces bc no less thau the number of  
awdlable resources, provided there are enough requests Ibr resonrces. 
Both of  these conditions are described by predicates on the database 
state. 

However. one can go fitrther: there is often a "cost" as, sociated with 
violations nf ;ill integrity constraint, which can be expressed as a 
function tlf' file database state. In resource all(~alion applications, file 
cost of  over-allocation might be some nunlhel" which is proportional to 
the excess of the number of allocated resources over the number of  
awlilable resources. The cost of  unnecessary under-alkx:atioll might be 
proportional to tile minimmu of the number of  unsaltislied requests, 
and the excess of  the nulnber of  available resources over the number of  
allo~atcd resources, latch of the applications listed has its own 
particular cost tUne{ions, characteristic of  that application. In each case. 
it is desirable to keep the costs as low as possible. 

Thus, one kind of property we would like to prove is a bound on the 
cost of  violations of integrity constraints. Results of  the form "With 
~'Jbsolulc certainty, tile cost rcmains at mosl c." would be uureasonably 
strong in our selling, because of the uncertainty thai arises from delays 
and thihlres. Rather, it seems much more appropriate to prove results 
of  tile Ibrm "With probability p, tile cost remaius at most c." ResulLs of 
this feral would be very useful to file application designer, since they 
would allow him to adjust his design ill such a way as to Inwer the 
expected cost bound. 

We believe that results {if this filrln, are most conveniently proved in 
two parts: (1) conditimml rcsulLs {if the Ibrm "If certain conditkms 
hold, then tile cost i'cmains at most c.", and {2) probability distribution 
infbrmation describing the probability that the conditions hold. Most 
ofi.en, the conditions mentioned in {I) will bc parametrized, c.g. 
"When each transaction is initially executed, tile database state inchldes 
the cll}cts of  all but at most k of certain kinds of  preceding 
transactions." Similai'ly, the cost mentioned in the conclusion of  (I) 
k, ill be parametrizcd. Tht)s, results of  type (1) will usually be a class of  
related i'esulLs, giving cost bouuds lilr a range of quantitatively ditt~rcnt 
;issuulplions about system operation. The probability distribntion 
inlbl'lnatitm in (2) will be obtained by an independent analysis, using 
inffilrmafion Stlch as delay characteristics {if the message system, and 
expected rates of transaction processing. It should be relatively.easy to 
coml~ine tile in Ibrnmtion ill ( 1 ) and (2) to get probabilistic statements of  
the kind we want. Ill this paper, we do not carry otlt tile probabilistic 
analysis required in (2), but instead li~cus on the paramctrized 
conditional clailns in (1). 

Thus. wc obtain results of  the filrm "1 f each transaction "sees" all but 
at most k of certain kinds of preceding transactions, then the cost 
remains at nmst c(k)." Such cost bounds limit the damage which can be 
caused when trausactions operate with a bounded amount of missing 
infi~rmation. The cost bounds we obtain are, in general, intuitively 
natural, rather than extremely surl~rising: our main contribution lies in 
the fact that wc can actually li~rmulatc and prove the intuitive chums. 
Previonsly, no claims at all could be made when intbrrnation about any 
transactions was missing. We call make such claims, and our claims 
become stringer (i.e. the integrity constraints are better prcserved) 
when infimnation is more complete (i.e. when execntion is closer to 
being serializable). In contrast to serializability's all-or-nothing 
character, our work has a "continuous" Ilavor: small changes ill 
available infi~rnmtion lead to small perturbations in integrity 
coustraints. 

The question of how the costs get defined still remains to be 
addressed. Assignment of c{tsts is somethiug that must be done by 
application programmers, who tmderstand file impact of  daulbase 
behavior on the organization using the systcm. It is likely that the cost 
assigmncnt procedure will be complex and approximate. Nevertheless, 
it appears to be what is currently used by organizations, implicitly, ill 
evahlating die acceptability of  dalabasc system behavior. Tllel'elbre, it 
secms that such cost assignments should play an impo~mt  role in 
evaluating database behavior. 

Another kind of property which is of  interest flit resource-allocation 

applications is "fairness". Fairness properties describe conditions 
under which a particular request is guaranteed to be granted, or 
guaranteiM not to be granted. They also deal with relative priority of" 
differcnt requests in obtaining resources. While FIFO order might be 
an appropriate fairness condition in a serializ~lble system, weaker 
Ihil'ness conditions are inore appropriate in the SIIARI) setting, and ~lr,'~ 
still of  interest. 

In this paper, we begin by providing tile basic definitions and 
vocabulary for discussing tile operation of systems of this type. "lllen, 
fbllowing the ustml organization ill traditional concurl'cncy control 
theory, we stndy the corrccmess conditions ill two groups. First,. we 
examine c{mdititms which can he guaranteed by tile system alone 
{analogous to serializability). Thc system does guarantee to run 
transactions in some total order. Itut whereas seriali~bility would 
gtmrantce that each transaction has total information about tile,effects 
of  tile preceding transactions, the S IIA R I) system only guarantees that 
each transaction has partial infornmtitm about the preceding 
transactions. Second, we cxallline conditions which can be guaranteed 
by tile transacti{ms (analogous to pl'cservation of  integrity constraints). 
'l'ransactions might be required not just to preserve integrity, but aLqo to 
improve or restate integrity. These two kinds of conditions, those 
gnarantecd by the system and those gtml'antecd by file transactions, can 
be combined to allow proof of in{cresting properties (cost botuldS and 
fairness) fin a rtmning application. 

Wc describe otlr properties and carry out our prooEs ill file cootcxt of  
a simple prototypical re~mlce allocation example. We believe dlat this 
example contains many o f  the elements comnmn to file class o f  
applications Ibr which SHA R I) is suited. The types ofconditi{;ns stated 
and file techniques Ibr proving their correctness appear likely to extend 
to the other applications. Wherever possible, we s~{te conditions and 
describe proofs itl a general way. so that they will be directly applicable 
to other applications. 

Related work includes several other papers which weaken 
serializzbility in varions ways IFM, AM, G, B, for example]. Other 
work that seems related t~} the SIIARI) approach, although in a very 
different context, is the work on "virtual time" [J]. 

The rest of  the paper is organized as filllows. In Section 2, .we 
describe olJr database model. Ill Section 3, we-describe conditions that 
can be guaranteed by file system alone. In Sectkm 4, wc describe 
conditions that can be guaranteed by tile transactions ahmc. In Section 
5. we prove some intcrcstiug ctmt bound and thirness proper0es fiw file 
example resonrce allocation system. These properties are consequences 
of  both the conditions guaranteed by the system and those guaranteed 
by tile transatctions, lu Section 6, we present our concluskms. 

2. Database M o d e l  
This section iriclud.es fi~r01a! definitions, of  daulbase states, integrity 

constraints., and transat~tions. 

One goal of  the SHARI) design is tt~ keep file distribution and 
replication of data hidden fi'om the app|i~atiort. Ill particulOL we 
attempt to avoid explicit mention of distributionand replication in our 
correctness conditions. Otlr general approach is analogous to the usual 
appnmch for describing correctness of  distributed databases [BG, for 
example]. In the usual approacb, correctness of  a distributed database 
requircs that b the distributed database give the appearance of a 
centralized, serial database. Ill our case, the database will not appear to 
be serial, but will still appear to be centralized. 

In other database research, certain consistency conditions, called 
"integrity constrainB." arc given fi~l" the daUthasc sudes. These 
conditkms fit into our model in two ways. 'l'hc most Ihndalnerttal are 
modelled as "well-fimnedness" conditions: we will require, that 
transactions always preserve these. The other consistency conditions, 
which wc call "integrity constraints." represent desirable conditions, 
but we do not assume that they arc preserved at all times. To measure 
how Ihr a da~thasc su{tc is fi'om satisl),ing the integrity constraints, we 
impose cost measures on tile states with respect to each constraint, 
where a greater cos! indii:ates that the st{re is further IYom satisfying the 
constraint~ One goal of  SI IARI) is to minimim the cost of  states that 
arise during all executkm. 
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Out.transactions are composed of  two parts, a "decision part" and an 
"ttpdate." As described in the Introduction. the decision part reads 
data and may interact with the external world, but does not modil~¢ the 
da~tbase. The resulls returned by the decision part determine an 
update, which can read and write the database, but does not directly 
interact with the external world. 

l~xample: 

In the I:ly-By-Night airline reservation system, there are 
two integrity constrainls in addition to the well-fonnedness 
condition already described. 

In addition to providing general definitions in dais section, we also 
defin'e an airline reservation example, with four transactions. This 
example will be used throughout the rest of  the paper. 

2.1.  Sta tes  
The database has a set S of  possible &ttabase slates, among which a 

particular initial state s o is distinguished. There might be some 
addilioiaal smlcture on tile database: Ibr example, it might be composed 
ofa  collccti9n of  obje,'ts, where a state wonld consist o f a  vahw tbr each 
ol)ject. In c~isc X is an object, we let hTs) denote file value of  object X 
in database;suite s. 

Among the database states, there may be some which fitil to satisfy 
some fi.mdamental consistency conditions, and we will generally want to 
omit them entirely fi'om consideration. Therclbre, we designate certain 
of  the databasestates as well-Jbrmed. We assume that file initial state is 
well-droned. 

EgamMe: 

Fly-by-Night Airlines is a little-known airline compauy 
which has exactly one scheduled llight, Flight I. Flight I is 
scheduled to take o11" next Jan. 1 and will take its lucky 100 
passengers from Boston to an idyllic resort in the Caribbean. 

A da~base state consists of  the lbllowing objects: 

- A S S I G N E I ) -  I,IST, a finite ordered list of  people w h o  
have been notified that they have seals on Flight 1, and 

- W A I T - I , I S T ,  a finite ordered list of  people who have 
requested seals on Flight 1, but do not have assigned seals. 

The initial state has both lists empty~ The wall-formed 
states are dmse Milch satisfy the fimdamental consistency 
condition that ASSI ( JNI ! I ) -  lAST and W A I T -  I,IST must 
contain disjoint sets of people. 

Integrity Constraint 1: Overbouking should not occur. 

Formally, this says that AI, < 100. While this condition 
is certainly desirable, we do not expect that it will always 
hold. If Flight 1 is overbuokcd, the cost to Fly-by-Night 
Airlines is approximately $900 per overbooked passenger. 
(This cost  cove~ the price of  a first-class ticket on an 
alternative flight, plus hotel accomodations fur a week in the 
Caribbean.) Thus, we define cost(s, lL the cost of  state s 
which is attributed to violating constraint 1, to be 900 (AI ~s)  

/ .  lO0). 

Integrity Constraint 2: Underbuoking should not occur, 
if it is avoidable. 

Formally, this says that either AI, > 100 or else Wl. = 
0. That is, either all the seats on Flight 1 are assigned or else 
there are no waitlisted passengers. If Flight 1 is 
tmnecessarily underbookcd, the cost u~ the aidine company 
is approximately $300 Ibr each waitlisted passenger who 
could have been assigned a scat. (This is the missed profit.) 
Thns, we deline cost(s,2), the cost of  state s which is 
attributed to violating constraint 2, t~'~ be 300 rain(100 / .  
AI ,(s), Wl .(s)). 

The assigument of  costs to database states, fi,r violation of  particular 
inlegrity conslraints, is a part ofal)l)lication design. In practice, it might 
not always be obvious how to assign such costs. It is possible that the 
system could help tile application designers, by providing a fi'amework, 
in which the designers could detcnnine appropriate cost fimctions] 
Cost ftmcti,ms often summarize other inlbrmation which the 
application designers might find it easier to think ahout. Ihw instance, 
in many interesting cases (such as the airliae reservation system), the 
data is ntnncrical, at!:d the cost Ihnctions have some simple (e.g., linear) 
relationship to the data wdues. ,Perhaps patterns such as this one could 
be incorporated into a language fbr describing cost assigmnents. 
Systematizing cost assignments is a subject fi~r future research. 

We use the notation AI .(s) as a shorthand fi,r 
[ASSIGNI 'D-I . IST(s)I .  the numher of people on the assigned list in 
state s: similarly, we use Wl.(s) tbr IWAIT-I.IS'I '(s)].  We will 
sometimes refi~r twAI. and WI. as if they were objects themselves; they 
are similar .to objects, in that they have values in every database state. 
I Iowevcr, those wdues are always derived fium tile values of  the "real" 
objects, A S S I G N E I ) - I , I S T a n d  W A r I ' - I , I S T .  

2.3 .  T r a n s a c t i o n s  
In this subsectkm, we describe the structure of  transactions. As noted 

earlier, our  transactions are composed of  two parts, a "decision part" 
and an "update". The decision part reads data and may interact with 
the external world, but does not modify the database. "llle results 
returned by the decision part determine an update, which can read and 
write the da~base, but' does not directly interact with the external 
world. 

2.2 .  Integrity Cons t ra in t s  
I:or us, "integril~' constraints" represent desirable conditions, but we 

do not assume that they are preserved at all limes. Since infegrity 
constraints arc not always preserved, we find it uselid to me~lsure how 
lhr a database st:de is from satisl3,ing the integrity constraints.. Ih order 
to do this, we inlpose nonnegative rcal-vahled cost uae~lsures on die 
states w.ith respect to each constraint, where a greater cost indicates that 
the state is, fiwther from satisfying the c,u~straini. A cost of  zero 
indicates that the constraint is satislied. The to~tl cost.'of a slate is file 
sum o f t h e  costs associated with all the constraintg,. One goal of 
S t lARI)  is to minimize the cost of  states that arise during an execution. 

More precisely, we asstnnc a finite collection of  integrity constraints. 
indexed by the set I. I,ct ,'ost(.~O denote the cost of  database state s 
which is attributed to a violation of integrity constrhiut i. The.cost of  s, 
cqst(s), is then detincd as ZiElCOSt(S,i ) 

We use the notation X / .  Y to denote max(X-Y,0) 

Formally, a n  update is any mapping fi'om S to S which preserves 
well-fi}rmedness. I.el ~ denote the set of  updates. I~et ~ denote the ,set 
of  external actions. A transalction T consists of  a decision part I) T which 
is a nmpping fiOlll the state set S to 3 X ~ g ) .  For any database stale s, 
I)T(S) is a pair consisting of  the ululate which is inw~ked when T is run 
t?om s, and the set of  external actions triggered by T when T is run 
from s. Where no confusion is likely, we will sometimes write Dr(s)  to 
denote just the update, ignoring the external actions. 

"A transaction is designed to execute nonatomically; it "observes" 
some state of  the database when it is initially run, but then later it 
transforms other, possibly difl~-rcnt, slates. The observation of  the 
database takes place J'9 the decision part, and the state transfimnation in 
the update part. b~n~h of  these, two parLs is intended to be carried out 
atomically. The state that-a transaction ubservcs is to be thought tffas 
embodying partial inlbrmatlo.n a.bout past updates, such as file 
infonnation known at the local .~ite. at the time the transaction is first 
executed. This partial information is used to'decide on the new update 
to bc generated. 
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Example: 

The airline reservation system has only four transactions: 
a REQUEST for a seat which puts the passenger on the 
waiting list, a CANCEL transaction, a M O V E - U P  
transaction which moves a waitlisted passenger to the 
assigned list, and a corresponding M O V E - D O W N  
transaction which moves an assigned passenger back to the 
waiting list. Note that we are departing slightly from the 
example discussed in the Introduction: the effects of the 
booking transaction described there are achieved by a 
combination of  a REQUEST transaction and a M O V E -  UP 
transaction. 

The four transactions are as follows: 

(1) REQUEST(P), where P is a person 

This transaction is described by the fi)llowing program. 

Decision: TRUE 
Action: 

if P is not on WAIT--LIST and P is not on 
ASSIGN El)--I .IST 

then add P to end of  WArlX-LIST 

This program is to be interpreted as follows. For any 
state s, the decision mapping D . . . .  triggers no R [~QI.J]~S I (P) 
external action and invokes the same update A. A operates 
on any state s' by adding P to the WAIT-LIST provided 
that P is not already on either the WAIT-LIST or the 
ASSIGNEI)-I .IST, in s'. In case P is on either list in s', A 
does nothing. We refer to the unique update A invoked by 
the REQUEST(P) transaction, as the request(P)update. 

(2) CANCEL(P), whele P is a person 

This is described by the following program. 

Decision: TRUE 
Action: 

~fP is on WAIT--LIST 
then remove P from WAIT~LIST 

if P is on ASSIGNED--LIST 
then remove P from ASSIGNED--n-LIST 

Again, from any state ~ the decision mapping always 

yields the same update. This update, from any state s', 
removes P from any list on which it happens to appear. I fP  
is not on either list., the update does nothing. We refer to 
the unique update invoked by the CANCEL(P).transaction. 
as the cance~P) update. 

The decision parts of  the REQUEST and CANCEL 
transactions do not perform any interesting work: they 
always invoke the same update, and trigger no external 
actions. On the other hand, the following-two transactions 
have decision parts that invoke different updates in different 
situations, and they sometimes trigger external actions. 

(3) MOVE - UP 

Decision: AL < 100 and WL > 0 and P is the first person 
on WAIT--LIST 

External event: inform P.that P is now assigned a seat 
Action: 

if P is on WAIT--LIST 
then 

[remove P from WAlT--LIST 
add P to end of ASSIGNED--LIST] 

Here, the decision part, running from state s, tests to see 
whether there is room on the ASSIGNED-LIST and a 
person waiting to be assigned. If not, no action is taken. I f  
so, the decision part selects a particular person P (the first on 
the WAlT-LIST  in state s) to be moved up from the 
W A H ' - L I S T  to the ASSIGNED-LIST. A message is sent 
to P, and the update is parametrized by P. From any state s', 
the update moves P from the waiting list to the end of  the 
assigned list, provided that P is actually on the waiting list in 
s'. Otherwise (i.e. if P is already on the assigned list, or P is 
on neither list), no change occurs. We refer to the update 
generated by the M O V E - U P  transaction when it selects 
person P as the move- up(P) update. 

(4) M O V E -  DOWN 

Decision: AL > 100 and P is the last person on 
ASSIGNED--LIST 

External event: inform P that P is now waiflisted 
Action: 

if P is on ASSIGNED--LIST 
then 

[remove,P from ASSIGNED=LIST 
add P to end of WAIT--LIST] 

The meaning of this transaction is symmetric ,with the 
preceding one. We refer to the update invoked by the 

M O V E -  DOWN transaction when it selects person P as the 
move- down(P) update. 

It is clear that all the updates, for all four transactions, preserve well- 
formedness, as required. 

Note that each of the last two transactions contains two conditionals. 
The two conditionals play diffthrent roles. The first conditional in each 
case is used to decide which update and external actions will occur. The 
second is part of the execution of the update. Also note that the 
transactions are designed to observe file database state more than once. 
For example, in the M O V E -  DOWN transaction, the transacti6n looks 
at ASSIGNED-LIST in one state s in order to attempt to select a 
person P to move down. Then whenever the move-down(P) update is 
executed, ik looks at ASSIGNED-LIST in another state s' to 
determine whether to actually move P. 

We consider this aii-line reservation system to be a prototype of a 
much more general class of resource allocation systems. It seems that 
practically all resource allocation systems must have operations of the 
four kinds described above: operations that request resources and 
cancel those requests, as welt as operations that allocate and deallocate 
the resources. Those operations will behave in somewhat different 
ways for each application. Here, to be specific, we have made a 
particular set of choices, but we expect that many of the ideas in this 
paper will carry over to other resource allocation systems. 

We introduce some additional notation which will be useful later f6r 
describing transactions. If  the first component of DT(S) is an update 
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which.maps state s' to state s", we will write T(s,s') = s ' .  IfT(s,s') = s", 
it means that if T is initially run from state s, it causes the system to 
invoke an update which, if it is ever run from state s', will produce state 
S ' ~ .  

3. Conditions Guaranteed by the System 
This section describes conditions that can be guaranteed by the 

system alone• i.e. conditions on how the system will run the 
transactions. Later, in Section 4, we describe conditions that can be 
guaranteed by the transactions alone. Then in Section 5, we combine 
these two kinds of conditions to prove properties of an application (the 
l='ly-by-Night Airline Reservation System) running on the system. 

This approach is roughly analogous to the usual approach in ordinary 
concurrency control theory. There, the serializability condition (which 
can be guaranteed by the system alone) is combined with the condition 
that individual transactions preserve integrity (which can be guaranteed 
by the transactions alone), to conclude that reachable database states all 
satisfy the integrity constraints. 

The first subsection formally describes the basic guarantees made by 
SHARD about the way in which transactions are run. SHARD 
guarantees that there is some serial order for the transactions which it 
runs. The system does not guarantee serializability of the transactions 
in this order, but it does guarantee that each transaction "sees" the 
result of some subsequcnce of the preceding transactions. While this 
condition is fundamental to the semantics of the system, it is too weak 
to allow proof of interesting properties. 

The second subsection contains refinements of the basic condition'. 
Examples of these refinements are transitivity and some specific 
requirements on the subsequences of transactions seen by certain other 
transactions. The third subsection describes implementation issues. It 
shows how SHARD and similar systems can guarantee the conditions 
described in the other two subsections. 

3.1. The Prefix Subsequence Condition 
The system guarantees that there is some serial order for the 

transactions which it runs, and that each transaction "sees" the result of  
some subsequence of the preceding transactions in this serial order. We 
state this condition more formally below. 

If s is any sequence we write s. to denote the ith element of s. An 
• • . . 1 . . . executton of a set of transactton mstances, consists of  a serial ordenng T 

for the transaction instances, together with a sequence-A of updates, a 
sequence E of sets of external actions, a sequence ~ o f  finite sequences 
of integers, and two sequences, s and L of database states. An execution 
is required to satisfy the following conditions. 

1. For i _> 1, ~i is a subsequence of the prefix sequence 
{1,...,i-i}. 

2. For i > 0, t i is the state obtained by applying the sequence 
of updates designated by '~ . to the initial database state s 0. 

That is, t i = AikC..Ail(S0)),'wl~ere ~i+l = {il,...,ik}. 

3. For i _> 1, (Ai,Ei) = DTi(ti.1). 

4. For i > 0, each s i is the state obtained by applying the 
sequence of  updates A1,...,Ai, to s 0. That is, s i = 
Ai(..-Ai(So)- 

These conditions mean the following. (1) says that each transaction 
T. has a corresponding subsequence ~ of its prefix of  preceding 

1 . • I • . 

transacttons: these are the preceding transactions that ~t "sees". (2) says 
that each state t i describes the effects of the updates of T . . ' s  prefix 

• . I A - I  . 

subsequence; it Is the state of  the database whteh T i ,  1 "sees' when Its 
decision part is run. (3) says that the update and external actions 
produced by T i are determined by its observed state t...  Finally (4) 
says that the states s~ describe the actual effect ~hbt n e c ~ r i l y  
observable by any o f  the transactions) of  running the complete 
sequence of  updates generated by all transactions through T i. 

The system guarantees to simulate (in some sense which we do not 
specify here) executions of those transactions which are submitted to it. 
In particular, it guarantees that the external actions described by 
sequence E are actually performed. 

We say that the apparent state before transaction Ti+ 1 is t r and that 
the apparent state after transaction Ti.+l is state "ri+l(t~,ti). Also, the 
actual state bejbre transaction T.+ 1 i~ s., and the acIual state a~er 
transaction Ti+ 1 is state si+ l = "l~+;(t,si]~ We extend this notation to 
nonempty consecutive sequences oJf [ransactions in place of single 
transactions: the apparent and actual states before the sequence are just 
the apparent and actual states, respectively, before the first transaction 
in the sequence, while the apparent and actual states after the sequence 
are just the apparent and actual states, respectively, after the last 
transaction in the sequence. We say that each of the s i is reachable from 
s n in the given execution. We call the state s i 1 the complete prefix state 
f6r T i in the given execution. 

Let ctt = {i,i+l,...} be a sequence of consecutive indices. Then °d, is 
said to be atomic in an execution provided that the following hold. (a) 
Each U~,j £ ctt• includes each of the other transactions Uv, k E °d,, k <j, 
in its prefix subsequence, and (b) all transactions U., j E ct.t, have the 
same subset of the transactions with indices less than i in their prefix 
subsequences. Atomicity describes the running of several consecutive 
transactions without allowing new information about the database to 
intervene. 

The prefix subsequence condition only guarantees that each 
transaction sees the result of some subsequence of its prefix. This 
condition does not rule out trivial solutions, such as every transaction 
seeing the initial database state (the result of the empty subsequence). 
In order to insure use fill behavior, we would like the system to allow 
transactions to see prefixes which are as large as possible. Some 
refinements of the prefix subsequence condition designed to insure 
lai-ge prefixes are discussed in the following subsection. 

Example" 

This example shows an execution of the transactions 
from the airline reservation system, acting non-setializably, 
but according to the prefix subsequence condition specified 
above. The left-hand column lists the successive T i, while 
the right-hand column lists the corresponding A r 

T A 

REQUEST&l)  request(P1) 
MOVE--UP move--up(P1) 
REQUEST(P2) request(P2) 
MOVE--UP move---up(P2) 

REQUEST(P102) request(Pl02) 
MOVE--UP move---up(P102) 
MOVE--DOWN move--down(P101) 
CANCEL(PI) cancel(P1) 

This execution can be obtained by having all the 
requests, the first 100 M O V E - U P  transactions, and the 
cancellation operate seeing complete prefixes. The next two 

M O V E -  UP transactions operate with incomplete prefixes. 
The first sees the results of  tile first 99 REQUESTS and 
MOVE-UPS ,  plus the REQUEST for P!01, while the 
second sees the results of the first 99 REQUESTS and 
MOVE-UPS.  nlus the REQUEST for P10Z Since each 
observes a state with only 99 people on the assigned list, 
each chooses m move a person up. Similarly, the 
M O V E - D O W N  operates with an incomplete prefix. It 
sees the results of the first 202 transactions only, but not the 
results of the two transactions involving P102. Thus, it sees 
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the assigned list with 101 people, and moves PIOI, me 
person it observes to be last, down. 

Now consider the successive reachable states s r The 
state aRer the first 204 transactions, s04, has 102 people on 
the assigned: list, in numerical order, and no one on the 
waiting list. After the MOVE-DOWN, s20 s has P101 on 
the waiting list and P1,P2,...,P100,P102 in order on the 
assigned list. The final cancellation then leaves the assigned 
list with exactly 100 passengers: P2,...,Pt0O,P102. 

This execution differs from a serializable execution in at 
least two ways. First, there is a reachable state (s204) for 
which the overbooking cost is nonzero. Second, the 
execution is not entirely "fair" in that P102 requests a seat 
after PI01 (and his request is processed aRer P101's), but 
P102 is allowed to remain on the assigned list while P101 is 
moved down. 

Notice that there is a danger of  "thrashing" in this system. If a 
M O V E - U P  transaction does not see a previous request and 
corresponding M O V E - U P ,  say for person P, it may move another 
person Q to the assigned list. A later MOVE-DOWN transaction 
might operate with a complete prefix, observe an overbooking, and 
move Q down. Another M O V E - U P  might then execute, seeing the 
move-down(Q) update, but Still not seeing the updates missed by the 
previous M O V E-UP;  it may then reassign Q. A later 
MOVE-  DOWN might then move Q back down, and so on. This kind 
of thrashing is very"undesirabl¢, not just because of its obvious 
inefficiency, but because of'.the external effects of the conflicting 
transactions. 

transaction in a high-finance banking system: tt mlglat-0e tieslm0'le for 
audits to see die effects of all the preceding deposit, withdrawal and 
transfer transactions. Although we have not done so in this paper, it 
should be possible tceprove strong correctness results about transactions 
running with complete prefixes. 

Requiting a complete prefix is very restrictive. There are some 
variants on this condition which are less restrictive but still lead to some 
very useful properties. For example, we might limit the number of  
previous transactions which arc not visible to a particular transaction. 
Namely, transaction T is said to be k-complete in execution e provided 
that, in e, T sees the results of all but at most k of the preceding 
transactions. The k-completeness condition, for a particular k, does not 
seem to be a natural requirement to impose on an implementation, 
since in general, it seems difficult to guarantee a reliable value for k. (It 
might be possible to obtain an esdmate of  this value by considering 
known characteristics of  the message system together with the expected 
rate of transaction processing.) However, k-completeness seems to be 
more useful as a hypothesis for conditional claims which describe the 
behavior of the system in different situations, for different values of  k. 

Another kind of  condition which limits the amount of concurrency is 
as follows. Let G be a group of transacuon instances. We say that 
group G is centralized in execution e provided that, in e, each of  the 
uansactions in G includes in its prefix subsequence all the others from 
G which precede it in the complete prefix. For example, it might be 
useful to centralize all file transactions which could cause the cost of  a 
particular integrity constraint to become nonzero (e.g. all the 
withdrawal tr/msactions, in a banking system). This strategy might be 
used to guarantee that this cost can never become nonzertx 
Alternatively, it might be useful to centralize all the transactions which 
affect a particular object, or a particular portion of  the database. This 
strategy might be used to guarantee serializable execution for those 
objects or portions of the database. 

3.2. Additional Conditions 
In this subsection, we suggest some" conditions which say that 

particular transactions must include at least certain other transactions in 
their prefix subsequences. The conditions presented here are meant to 
6e examples only, and are not necessarily intended to hold for all 
SHARD-like systems and all transactions. These restrictions are useful 
in guaranteeing certain properties of executions, as we demonstrate in 
Section 5. On the other hand, they reduce system availability. System 
and application designers must weigh the correctness gained by 
restricting the prefix subsequences against the reductions in availability. 

First, we say that execution e is transitive provided that the'follOwing 
condition holds. Let T, T and T" .M transactions (i.e. transaction 
instances) occurring in e. If q" is in the prefix subsequence of  T a n d T "  
is in the prefix subsequence of'I", then T '  is in the prefix subsequenc¢ 
of  T. Transitivity is a natural requirement, ensuring a basic sort of 
consistency among the prefixes seen by related transactions. 

Example" 
The execution in the "previous example fails to be 

transitive, but for a trivial reason. Namely, the 
REQUEST(P101) and REQUEST(P102) transactions are 
assumed to execute with complete prefixes. Since the 
M O V E - U P  which generates move-up(P101) sees the 
effects of REQUEST(P101), transitivity would imply that 
this M O V E -  UP should also see a complete prefix, which is 
not what happens. However, note that  REQUEST and 
CANCEL transactions have only trivial decision parts, so 
they would cause the same updates to be generated no 
matter what prefix they see. Therefore, we can .modify the 
execution slightly, assigning each of REQUEST(P101) and 
REQUEST(P102) the prefix subsequence consisting of the 
first 198 transactions, without changing the updates 
generated. The resulting modified execution-is transitive. 

Another restriction which might be useful in some cases is to require 
that some particular transaction T must run with the complete prefix. 
This might be useful for very crucial transactions, say for art audit 

If the system guarantees that transactions in G are centralized, it 
might be useful for the application programmers and users to imagine 
the existence of  a centralized "agent" for G. For instance, it might be 
useful for users of the airline system to think of  a single agent who 
manages all the MOVE-UPs  and MOVE-DOWNs,  i.e. all the 
movement between WAIT-LIST and ASSIGNED-LIST. This 
abstraction could be useful even if there is actually no such centralized 
agent, but rather if (using some locking strategy, for example), the agent 
is implemented in a distributed way. 

Some specific groupings for the airline reservation system are 
discussed in detail in Section 5, along with examples of  correctness 
conditions that result from this requirement. 

The final condition presupposes a notion of  time. A timed execution 
is an execution, together with a nonnegative real number ("real timer') 
for each transaction instance. These real times are intended to model 
the times at which the transactions are initiated. In the event that the 
transaction order is determined by timestamps, these real times need 
not be the same as the timestamps, and in fact the real times need not 
ev.en be ordered in the same way as the transaction sequence. However, 
if the order of real times is monotonic, we say that the timed execution 
is orderly. An execution is said to have t-bounded delay provided that 
the prefix subsequence of each transaction T includes every transaction 
in the prefix whose real time is at least t smaller than T's' real time. 
Thus, each~transaction can see the effect of every other transaction that 
precedes it in the transaction ordering and is not too recent. 

3.3. Implementation Issues 
It is very natural to use the conditions described in the preceding 

subsections as tile correctness conditions for the distributed system 
described in the Introduction. '['he system is able to assign timestamps 
in some way so as to determine a total ordering of the transactions. The 
,transactions are initially executed at one node, and then information 
about the transactions is sent to the other nodes. The nodes can undo 
and redo actions in order to ensure that as new updates are seen, each 
succeeding update has the effect that it would if executed in a complete 
prefix state. There are a number of optimizations which allow the 
system to avoid undoing large numbers of  transactions [BK], and 
optimized storage structures make this process even more efficient 
[SKS]. 
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The updates only are sent around, and are undone and redone to 
yield a sequential ordering. The fact that the decision parts are not 
redone means that the system does not satisfy the usual notion of  
serializability; however, the system does satisfy the prefix subsequence 
property, i.e. that every transaction sees the effects o fa  subsequence of 
its prefix. 

It should be clear that an appropriate distributed communication 
protocol t;uuid guarmltec transitivity, perhaps by piggybacking 
information about known transactions on messages. 

There are a number of ways that a system could guarantee the 
subsequence restrictions described in the previous subsection. For 
instance, consider centralization of the transactions in G. It is possible 
to force all the transactions in G to run at the same node of a 
distributed system. Alternatively, a transaction in G with timestamp t 
might have to wait till it receives messages from all nodes saying "I will 
issue no more G transactions with timestamp earlier than t." This type 
of concurrency control might significantly reduce system availability. 
The probabilistic concurrency control methods of IS] provide other 
techniques for obtaining centralization. 

4. Conditions Guaranteed by the Transactions 
This section describes conditions which might he guaranteed by the 

transactions, analogous to preservation of integrity constraints in the 
usual development. We do not intend to require that all of these 
conditions hold for all sets of transactions; rather, we expect different 
conditions to be useful in different applications. We attempt to 
formulate the conditions in a general way, so that they might apply to 
different resource allocation applications. We describe how the 
conditions apply to the airline reservation system. 

The first subsection defines some conditions involving costs of 
database states. Update parts of  transactions are analyzed to determine 
whether or not they have the potential of increasing the cost, or are 
guaranteed to decrease the cost, with respect to a particular integrity 
constraint. 

The second subsection discusses conditions involving fairness, a 
propexty particularly important in applications in which certain entities 
compete for access to some resource or service. We define priority 
among competing entities, and prove that certain conditions ensure that 
transactions preserve priority. 

We define an application to consist of  a collection of database states, 
(including designation of initial and well-formed states), their integrity 
constraint infbrrnation (including costs), and a set of transactions. The 
properties we describe in this section are properties of applications. 

4.1. Conditions Involving Costs 
We say that an application is initially zero cost provided that Cost(s a) 

= 0. That is, all the integrity constraints are satisfied in the inifi]il 
database state. Clearly, the airline system is initially zero cost. 

Another interesting property would be that a transaction T "preserves 
integrity", just as it is required to do in the usual concurrency control 
theory. A formal statement of  this prupelty might be: "If s is a well- 
formed state with cost(s) = 0, and if 'l~s,s) = s', then cost(s') = 0." 
This says that ifT runs so that it changes the same state that it sees, then 
it does not cause a violation of the integrity constraints if they were 
previously satisfied. (We ntight say that T does not cause a violation of 
the integrity constraints "on purpose".) In the present setting, a more 
general kind of condition is appropriate, which also involves the 

oenavlor ot transactions when the costs are nonzero. 

We begin by describing a very strong property of a transaction T that 
says that there is no possibility of T ever causing an increase in the cost 
for constraint i. An update A is said to he increasing for constraint i 
provided that there is some well-formed s for which cost(A(s),i) > 
cost(s,i). That is. the update has the potential of increasing the cost of  

constraint l, although it neea not actually do so m all cimumstances. 
Otherwise, i.e. if the update could never increase the cost o f  eonst(ain(i, 
A is said to be non-increasing for constraint i. A trantsaction Tis ~jCe for 
constraint i provided that the followit~gholds.' l f s i s  a well-formed state 
and D.,.(s) = A, then A is nonincreasing for constraiht ~. Otherwise i e 
iftherd is some well-formed s for which DEs) is increasing, then .we~,  
that T is unsafe for constraint i. 

Example: 

In the airline system, the request(P) update is  
nonincreasing for the overbooking constraint, but is 
increasing for the underbooking constraint, since in states 
with fewer than 100 assigned people, and ~vith P not already 
waitlisted or assigned, this request causes an increase in cost 
(of $300). The cancel(P) update is also noninci'easingfor the 
overbooking constraint, but is increasing for the 
underbooking constraint, since in 'states with at most 100 
assigned people (including l ) a n d  sufficiently many 
waitlisted people, this cancellation causes an increase in cost 
(of $300)• On the other hand, the move-up(P)  update is 
increasing for the overbooking constraint, since in states 
with at least 100 assigned people, this move-up causes an 
increase in cost (of $900)• However, it is nonincreasing for 
the underbooking constraint. Finally, the move-down(P) 
update is nonincreasing for the overbooking constraint, but 
is increasing for the underbookirig constraint singe in states 
with at most 100 assigned people, this move-down'causes an 
increase in cost (of $300). 

Example: 

The only updates that are increasing for the o~, oooking 
constraint are those of  the form move-up(P).  Since only 
the M O V E - U P  transaction can generate a move-up(P)  
Update, the other transactions are all safe for the 
overbooking constraipt. However, the M O V E - U P  
transaction is unsafe for the overbooking constraint. On ~ e  
other hand, the MOVE~-UP transaction is safe for the 
underl~ooking constraint, but the other three transactions 
are all unsafe for the underbooking constraint. 

A le~ restrictive, interesting property to consider might be intuitively 

described as: "Transaction T does not incfease the cost o f  integrity 
constraint i on purpose." One simple formal way of stating this 
property is: " l f s  is a well-formed state and if T(s,s) = s', then cost(s',i) 
< cost(s,i)." For technical reasons, we define a slightly stronger 
formulation, as follows. 

We say that transaction T preserves the cost of constraint i provided 
that the following holds, l f s  is a well-formed state, T(s,s) = s', DT(s ) = 
A and A is increa.~ing for constraint i, then cost(s',i) = 0. "Ihat is, the 
decision part of a transaction T will only invoke an update part that 
(potentially) increases the cost of constraint i, when the state that T 
believes will exist after the update runs, will have a cost of 0 for 
constraint i. It is easy to see that this condition implies the simpler 

• formulation described above. Also, it is obvious that if T is safe for 
constraint i, then it preserves constraint i. 

Example: 

We show that all transactions prese~ v e the cost o f  the. 
overbooking constraint. Since all transacuons except for the 
M O V E - U P  transaction are safe for the overbooking 
constraint, they preserve the overbooking constraint. The 
M O V E - U P  transaction is unsure ~ the overbooking 
constraint, so more argument is required in this case. The 
M O V E - U P  transaction only generates a m o v e - u p ( P )  
update from a state s for which.AL(s) < 100 and WL~z) k0, 
Then the state s' resulting from applying the move-up(P)  
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update to s has AL(s') < 100, and thus cost(s',l) = 0. 

Now consider the underbooking constraint. The 
M O V E - U P  transaction is safe for the underbooking 
constraint, and hence preserves the cost of  the 
underbooking constraint. We also show that the 
M O V E - D O W N  transaction preserves the cost of  the 
underbooking constraint. The MOVE-DOWN transaction 
only generates an update which is incr.easing f o r  the 
underbooking constraint from a state s for which AL(s) > 
100. Then the state.s' resulting from applying the update to 
s has AL(s') ~ ],ll0. and thus cost(s',2) = 0. 

On the other nano, it is easy to see that REQUEST(P) 
and CANCEL(Pr transactions do not preserve the cost o f  
the underbooking constramt~ 

Since we are working in a setting in which integrity constraints are 
not alwayssatisfied, i.e. costs may be nonzero, another useful property 
of transactions might be that they actually reduce the cost, not just 
preserve it. A transaction which reduces the Cost for an integrity 
constraint can be regarded as a "compensa!:ing. transaction" for 
violations of that integrity constraint. One possible tbonulation is as 
follows. We say that transaction T cbmpensate~ for constraint i 
provided that the following holds. If s ib well-formed,:T(s,s) % s', and 

¢ost(s,i) > 0, then cost(s',i) < cost(s,i). 

Lemma I: Assume that all costs are integral. Assume that 
T compensates for constraint i. Then for any well-formed s, 
either cost(s,i) = 0, or there is ~ some integer k > 0 such that 
Tts,s) = s 1, TOrS l) = s2,...,T(st.rSk.1) = s k and cost(svi) = 
0. 

Proof: By repeated application of  the definition. | 

This lemma implies that if compensating transactions are run 
atomically from any point in an execution, using any available prefix 
subsequence, they will eventually result in an apparent state in which 
the cost of  the constraint is 0. This idea can be stated formally as 
follows. 

Corollary 2: Assume that all costs are integral. Assume 
that T compensates for constraint i. Let e be any finite 
execution, q.l, any subscquenee of the indices of e, and t the 
result of the updates indexed by 'M,, applied to s 0. 

Then either cost(t,i) = 0, or else there is an extension o fe  
to another execution, by an atomic suffix consisting o f ' F s  
only, such that the prefix subsequence of the first T in the 
suffix is q.l,, t' is the apparent state after the last transaction, 
and cost(t',i) = 0. 

Example: 

It is easy to see that the M O V E - U P  transaction 
compensates for the underbooking constraint, and the 
M O V E -  DOWN transaction compensates for the 
overbooking constraint. In fact, it is possible to show that 
from any well-formed state, any atomic sequence of 
intermingled M O V E -  UP and M O V E -  DOWN 
transactions which contain sufficiently many of each will 
eventually reach an apparent cost-of 0 for both integrity 
constraints. 

Our last property involving costs,.bounds the increase in cost that can 
~sul t  from the execution of a bounded number of  transactions. First, 
we say that s < ,  t provided that there is a sequence of updates leading 

l o from s o to s, ~ a subsequence of that seque.nce containino all but at 
most k of  the updates, such that the result of  the subsequence applied 
to s n is t. That is, state t contains all the information in state s, except 
posglbly for the effects of  at most k updates. Then we say that-function 

r oounas the cost increase tbr imegrity constraint i provided that the 
following holds. For well-formed states s and t, if s <k t, then cost(s,i) 
_< cost(t,i) + f(k). Thus, f(k) bounds the incre~d in the cost of  
integrity constraint i that can be incurred by k transactions. 

Example: 

in me airline resereauon systeml it is easy t o .  e toa t  

900k bounds the cost increase for the overbooking 
constraint, while 300k bounds the cost increase for the 
undcrbooking constraint, 

Lemma 3: Let qL be an atomic subsequence in execution 
e. Let s be the actual state before %, and s' the actual state 
after cLt. Let t be the apparent state before %, and t' the 
apparent state after °d,. Ifs  <--t t, then s' <--k t'. 

Proof: Straightforward, | 

4.2. Conditions Involving Fairness 
Another property of interest in some applications, i.e. those in which 

certain entities compete for access to some resource or service, is 
"fairness". In order to be able to state fairness conditions, we extend 
our application model to include the competing entities. In each state, 
we designate certain entities as "known" (i.e. currently competing). 
Also, in each state, we assume that there is a partial order on the known 
entities which describes priority. 

We say that transaction T preserves priority provided that the 
following condition holds. If s is a well-formed state and T(s,s) = s', 
then: (a) If P and Q are both known in s and also in s', and if P 
precedes Q in s, then P precedes Q in s'. (b) I fP  is known in s and Q is 
not, and P and Q are both known in s', then P precedes Q in s'. 

Example: 

In our example, the people are the competing entitles. 
In any state s, the known people are those on the 
WAlT-LIST or the ASSIGNED-LIST, in s. For P and Q 
known in s, we define P < Q to mean that either P precede~ 
Q on the WAIT-LIST, or P precedeg Q on the 
ASSIGNED-LIST, or else P is on the ASSIGNED-LIST 
and Q is on the WAIT-LIST, Then all of the transactions 
preserve priority. 

A stronger property is also of interest. We say that transaction T 
strongly preserves priority provided that the following condition holds. 
If sand s' are well-formed states and T(s,s') = s", then: (a) I fP  and Q 
are both known in s' and also in s", and if P precedes Q in s', then P 
precedes Q in s". (b) I fP  is known in s' and Q is not, and P and Qare  
both known in s", then P precedes Q in s". 

Example: 

It is easy to see that the REQUEST and CANCEL 
transactions strongly preserve priority, but the MOVE-  UP 
or M O V E - D O W N  transactions do not. For example, 
consider the M O V E -  UP transaction. Assume that in state 
s, person P is first on the WAIT-LIST, and that transaction 
q\ rub from state s, generates a move-up(P)  update. In 

state s', P is on the W A I T -  LIST but is not the first person; 
person Q is first. Then the move-up(P) action still moves P 
to the end of the ASSIGN ED-LIST, in this case moving it 
ahead of Q. We have P > Q in state s', but P < Q in state s'~. 
Thus, the M O V E - U P  transaction is capable of changing 
the relative priorities of  P and Q. 

Similar remarks hold for the MOVE-DOWN 
transaction. 
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5. Properties of the Airline Reservation System 
This section illustrates how the ideas presented in the previous 

sections can be used to prove interesting properties of executions of a 
particular application, the Fly-by-Night Airline System. Where it is 
possible, we state the results in a general way, so that they might later 
be applied to other examples. 

Proving properties of executions of SHARD-like systems is far more 
difficult than for systems that preserve serializability. It is necessary to 
consider how a transaction's updates will execute on arbitrary well- 
formed database states, not just the database state seen by the decision 
part. With current techniques, it is not easy to understand how 
transactions and updates will behave in all possible situations, just by 
examining the transaction code. Even some of the relatively simple- 
sounding results in ~his sectionhave proofs that are somewhat delicate; 
Our hope is that more experience with examples and proofs of this sort 
will eventually make the task easier. 

The first subsection gives a brief discussion of some polic~, decisions 
affecting priority, that were embodied in the application design. The 
second subsection proves upper bounds on the costs of database states 
that could result from running the airline reservation system. All the 
bounds in this subsection are proved using the assumption that 
transactions see the effects of all but at most k of the preceding 
transactions. The cost bounds are stated in terms of this k. The third 
subsection refines the necessary conditions for obtaining these cost 
bounds and sharpens the bounds. The results in this subsection require 
only that &ansactions see the results of certain critical preceding 
transactions;rather than arbitrary transactions. 

The fourth subsection proves results which rely on "centralization" 
assumptior~s, i.e. that some transactions see all of the preceding 
transactions of a certain type. Using centralization, we prove that some 
integrity constraints can never be violated. The final subsection proves 
some fairness properties. 

5.1. Policy Decisions 
Transactions in every application embody certain policy decisions. 

This subsection contains two examples which illustrate the policy 
decisions embodied in the Fly-by-Night System. 

Example: 

Suppose that two REQUEST(P) transactions occur 
without an intervening CANCEI~P). Both REQUEST(P) 
transactions generate request(P) updates. At some point, it 
might be necessary to determine the effect of a sequence of 
updates including both of these request(P) updates. Then 
the second request(P) would be applied to a state s which 
reflects the previous occurrence of the earlier request(P). 
Thus, P might be in W A I T -  LIST(s) or 
ASSIGNED-  LIST(s); in this case, the update is defined to 
have no effect. The policy embodied in this definition is 
that if a person P is already on the WAIT-LIST or 
ASSIGNED--LIST, and makes a duplicate request, the 
new request does not change P's original priority. 
Alternative policy decisions might cause the second request 
to alter the priority somehow. 

Example: 

It is possible for two M O V E - U P  transactions to occur 
which invoke move-up(P)  updates for the same P, without 
an intervening CANCEL(P), or M O V E - D O W N  which 
invokes a m o v e -  down(P) update. This could happen if the 
second M O V E -  UP transaction is initiated without the first 
in its prefix subsequence. At some point, it might be 
necessary to determine the effect of a sequence of updates 
including both of these move-up(P)  updates. Then the 
second move-up{P)  would be applied to a state s which 

reflt.~s the previous occurrence of the earlier request(P). 
Then P could be in ASSIGNED-  LISq (s); in this case, the 
update has no effect. The policy embodied in this definition 
is that i fa  person P is already on the ASSIGNED-LIST,  a 
new attempt to assign him a seat does not alter P's previous 
priority. Alternative policy decisibns might cause the 
second move-up(P)  to alter the priority. 

5.2. Cost Bounds Resulting from k-Completeness 
In this subsection, we prove upper bounds on the costs of the states 

reachable by running the airline system. All the bounds in this 
subsection are proved using the k-completeness assumption, i.e. the 
assumption that transactions see the effects of all but at most k of the 
preceding transactions. We begin with some preliminary lemmas. 

Lenuna 4: Let e be an execution, and T a k-complete 
transaction instance in e. Let s be the actual state before T 
and s" the actual state after T, in e. Let t be the apparent 
state before T and t' the apparent state aRer T. 

L Then s --<k t and s' <~  t'. 

2. Let i be a constraint, and assume that f bounds the 
cost of constraint i. Then cost(s,i) < cost(t,i) + f(k) 
and cost(s',i) < cost(t',i) + f(k). 

Proof: Straightforward. I 

The following theorem shows that k-complete transactions that 
preserve the cost of a constraint are guaranteed not to make the cost of 
that constraint larger, (except in the special case that the cost is very 
small). 

Theorem 5: Let e be an execution, and T a k-complete 
transaction instance in e. Let i be a constraint, and assume 
that f bounds the cost for constraint i. Assume that T 
preserves the cost of constraint i. Let s be the actual state 
before T and s' the actual state after T, in e. Then either 
cost(s',i) < cost(s,i) or else cost(s',i) < f(k). 

Proof: Let t be the apparent state before T and t' the 
apparent state after T. Then t' = T(t,t). Assume that T 
invokes action A in execution e, i.e. that DT(t) = A. 

Assume that cnst(s',i) > eost(s,i). Then A is increasing for 
constraint i. Since T preserves the cost of constraint i, it 
follows that cost(t',i) = 0. By Lcmma 4, cost(s ' , i)< cost(t',i) 
+ f(k) = f(k). i 

We can specialize the preccding results to obtain bounds for the 
airline system. 

Corollary 6: I.ct e be an execution of the airline system, 
and T a k-complete transaction instance in e. Let s be the 
actual state before T and s' the actual state after T, in e. 

1. If T is any transaction, then either cost(s',1) < 
cost(s,1) or else cost(s',l) < 900k. 

2.1f T is a MOVE-UP or MOVE-DOWN 
transaction, then either cost(s',2) < cost(s,2) or else 
cost(s',2) <_ 30Ok. 

Proof: 

1. By Lemma 5, the fact that all transactions preserve 
the overbooking constraint, and the fact that 900k 
bounds the cost increase for the overbooking 
constraint. 
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2. By Lemma 5, the fact that M O V E - U P  and 
M O V E -  DOWN transactions preserve the 
underbooking constraint, and the fact that 300k 
bounds the cost increase for the underbooking 
constraint. 

The previous results are enough to yield an upper bound for the 
overbonking cost (although not for the tuiderbooking cost) in all 

reachable states. We obtain such an upper bound for the overbooki~ 
cost as a special case of the following more general theorem. 

Theorem 7: Assume that the application has the property 
that all transactions preserve the cost of constraint i. Let o 
be an execution. Let f bound the cost of constraint i. 
Assume that all occurrences of  transactions that are unsafe 
for constraint i, in e, are k-complete. Let s b e  any state 
reachable h, e. Then cost(s,i) .~ f(k). 

Proof: The proof is by induction on the length of e. The 
basis, length 0, is immediate. For the inductive step, assume 
that the length of e is at least 1, and that T is the last 
transaction in e. Let s be the actual state before T, and s' the 
actual state after T. 

The inductive assumption implies that cost(s,i) <_ f(k). I f  
cost(s',i) _< cost(s,i), the claim is immediate. So assume that 
cost(s',i) ) cost(s,i); then T is unsafe for constraint i, and so T 
is k-complete in e, by assumption. Then Theorem 5 implies 
that cost(s',!) < f(k). as needed. | 

Our invariant upper bound on the overbooking cost follows as a 
corollary. 

Corollary 8: Let e be an execution of the airline system. 
Assume that all M O V E - U P  transactions are k-complete in 
e. Let g be any state reachable in e. Then cn~t.(s,1) < 900k. 

Proof: By Theorem 7, the fact that all transactions 
preserve the overbooking constraint, the fact that" 900k 
bounds the cost increase for the overbooking constraint, and 
the fact that only M O V E - U P  transactions are unsafe for 
the overbookingconstraint- | 

We would also like to obtain an analogous invariant upper bound for 
the underbooking cost. Unfortunately, such a bound does not hold for 
our airline system, since it can fail in an execution where many requests 
or cancellations arrive in rapid succession without sufficient intervening 
M O V E -  UPs. In order to prove an upper bound on the underbooking 
cost, it appears to be necessary' to assume something about the 
M O V E -  UP transactions occurring sufficiently frequently. 

To be specific, we define a partition ~ of the indices ofe  into groups 
consisting of consecutive indices to be a grouping of e for constraint i 
provided that each group satisfies one of the following. 
(a) It consists of exactly one index j, and transaction '1~ preserves 
constraint i. 
(b) l f t  is the apparent state after the group, then cost(O) = 0. 
That is. we will consider instances of transactions that preserve the cost 
of co,~straint i individually, but we will consider other transactions 
together, paying special attention to points during the execution where 
the transactions believe they have reduced the cost of the constraint to 
0. Of course, not every execution will have such a grouping, but if the 
application contains a compensating transaction for constraint i, 
Lemma 2 implies that executions with such g~oupings are abundant. 

The normal states of e, with respect to a particular grouping, are just 
those states which are reachable after the groups, i.e. the actual states 
after the groups. 

The next theorem says that, if we restrict attention to non nal states 
only, an invariant upper bound holds for the underbooking constraint. 

Theorem 9: Let e be an execution and (~ a grouping of e 
for constraint i. Assume that fbounds the cost of constraint 
i. Assume that all transactions that preserve the cost of i, as 
well as all transactions that occur at the ends ofgronps, are 
k-complete in e. Let s be any normal state reachable in e. 
Then cost(s,i) < f(k). 

Proof: By induction on the length of e. The basis, length 
0, is immediate. For the inductive step, assume that the 
length o fe  is at least 1, and that T is the last transaction in e. 
Let s be the actual state before T, and s' the actual state after 
T. Let t be the apparent state before T, and t' the apparent 
state after T. There are only two cases that need to be 
considered. 

I f  T is the last transaction in a group, then cost(t',i) = 0. 
Since T is k-complete, Lemma 4 implies that cost(s',i) 
eost(t',i) + f(k), = f(k), as needed. 

Otherwise, T is a transaction that preserves the cost of 
constraint i, and occurs alone in a group. Then s is a normal 
state in e. '/'he inductive assumption implies that cost(s,i) < 
f(k). If  cost(s',i) < cost(s,i), the claim is immediate. So 
assume that cost(s',i) > cost(s,i). Then Theorem 5 implies 
that eost(s',i) < f(k), as needed. Ill 

The preceding theorem specializes immediately to our example. The 
REQUEST and CANCEL transactions are the ones that do not 
preserve the underbooking constraint, while the M O V E - U P  
transaction compensates for that constraint. Thus, executions which 
have groupings for the underbooking constraint can be constructed by 
including a sequence of M O V E - U P  transactions immediately after 
each REQUEST and after each CANCEL transaction. 

Corollary 10: Let e be an execution and ~ a grouping o fe  
for the underbooking constraint. Assume that. all 
M O V E - U P  and M O V E - D O W N  transactions, as well as 
all transactions that occur at the ends of groups, are k- 
complete in e. Let s be any normal state reachable in e. 
Then cost(s,2) < 300k. 

Thus, under suitable k-completeness assumptions, combined with 
assumptions about frequency of compensating transactions, we can 
prove invariant upper bounds on the costs in all reachable states (or all 
normal reachable states). 

"l'he ideas used to prove the orecedin$, results can be used to say 

more. Consider an execution e in which costs become very large 
(because k-completeness or frequency asi;umptions fail). If  there is ever 
a time during the execution after which good completeness and 
frequency properties begin to hold, it is easy to see that correspondingly 
good upper botinds will be reestablished. For instance, we can get a 
result of this type for the underbooking constraint, using the ideas of 
Corollary 10. If  we assume that the required transactions are k- 
complete from some point on in the execution, then (once the' next 
compensating group has occurred), the underbooking cost satisfies an 
upper bound of 300k. On the.other hand, if we want tO obtain a similar 
result for the overbooking cost, we carinot base it on the simple ideas of 
Corollary 8. Rather, we would have to use ideas similar to those u/g"od 
for the underbooking cost. At some point after k-completeness begins 
to hold in the execution, we would hypothesize a group of 
MOVE-DOWNs,  bringing the apparent overbooking cost to 0, in 
order to compensate for any excess overbooking cost. With such a 
hypothesis, an eventual 900k bound on the overbooking cost could be 
proved. We omit formal statements of these results here. 
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It is possible to combine the results of Corollaries 8 and 10 to get a 
single invariant upper bound on the total cost for the airline system. 
For example, we obtain the following. 

Corollary 11: Let e be an execution and ~ a grouping o fe  
for the underbooking 'constraint. Assume that all 
M O V E - U P  and M O V E - D O W N  transactions, as well as 
all transactions that occur at the ends of groups, are k- 
complete in e. Let s be any normal state reachable in e. 
Then cost(s) < 900k. 

Proof: Immediate from Corollaries 8, 10 and the fact that 
every weLl-formed state has either cost(s,1) = 0 or cost(s,2) 
= 0 . |  

We finish this subsection with a closer look at the kinds of 
improvements that are guaranteed by compensating transactions. For 
example, it would b¢ nice to have a temma which says that a k-complete 
transaction Which Compensates for constraint i, is guaranteed to actually 
improve the •cost of constraint i, unless that cost is small. 
Unfortunately,'this is.not true. Although the compensating transaction 
might "try" to improve matters, it is possible that, because of missing 
information from its own prefix, it might not succeed in doing so, For 
example, a MO~6E .-- DOWN transaction might observe too many 
people o n  the A:SSIGNED-LIST,  and might therefore invoke a 

.move-down update. BUt if it happens to invoke a move-down  for a 
person who.had actually cancelled in the interim, that move -down  will 
not improve the actual cost. 

We do know, however, that running the transaction several t imesin 
succession (atomically) can guarantee actual improvement. More 
precisely, we obtain the following. 

Lemma 12: Assume that all costs are integral. Let fbound 
the cost of constraint i. Assume that T compensates for 
constraint i. Let e be any finite execu t i~  q.l, any 
subsequence of the indices of e, containing all but at mort k 
of the indices in e, and let s be the actual state after e. 

Then either cost(s,i) < ffk), or else there is an extension of 
:e-to another execution, by an atomic suffix consisting of T ' s  
onty, sucta tha t  the prefix subsequence of the first T in the 
suffix is ~ ,  s, is the actual state after the last transaction, and 
cost(s',i) < f(k). 

• Proof: Let t be the result o f %  applied to s 0. Then s -<-k t. 
By Corollary 2, either cosi(t,i) = 0, or else there is am 
extension of e to another execution, by an. atomic sul'fiX 
consisting of T's only, such that the prefix subsequence 6f 
th6first T in the suffix is ct.t, t' is the apparent state after the 
last transa¢tion, and cost(t',i) = 0. If cost(O) = 0, then 
since s < k  t, it follows that cost(s,i) < cost(O) + f(k) = 
f(k), as needed. Otherwise, Lemma 3 implies that s' <--k t', 
and so cost(s',i) < cost(t',i) + f(k) = f(k), as needed. | 

This theorem specializes to the airline system as follows. 

Corollary 13: Let e be any finite execution of the airline 
system, q.l, any sunsequence of the indices of e, containing 
all but at most k of the indices in e, and let s be the actual 
state after e. 

1. Either cost(s,l) < 900k, or else there is an extension 
of e to another execut4on, by an atomic suffix 
consisting of M O V E - D O W N s  only, such that the 
prefix subsequence of the first T in the suffix is q.i, s' 
is the actual state after the last.transaction, and 
cost(s',l) < 90Ok. 

2. Either cost(s,2) < 300k, or else there is an extension 
• Of e to another execution, by an atomic suffix 

consisting of M O V E -  UPs only, such that the prefix 
subsequence of the first T in the suffix is q.t, s' is the 
actual state after the last transaction, and cost(s',2) < 
300k. 

Thus, the cost bounds of this subsection limit the damage that can be 
caused when transactions operate with a bounded amount of missing 
information. As noted before, the bounds we obtain are intuitive rather 
than surprising. However, we know of no way to prove these sorts of 
intuitive statements in earlier frameworks 

We note that it is possible to obtain more refined versions of the 
results in this subsection. Generally, it is not actually necessary that the 
indicated transactions see all but k of the entire set of preceding 
transactions. Rather, only certain types of preceding transactions are 
important in each case, since they suffice to deterinine the resu!~ of 
critical decisions.• For instance, in Corollary 8, it is not necessary that 
the M O V E -  UPs be k-complete; for example, it would suffice f0t them 
to see I .all but k 0f : the  preceding M O V E - U P  and. REQUEST 
transaetfons. We examine this issue more closely in the next subsection. 

5.3. More Refined Cost Bounds 
In this subsection, we reconsider some of me results of the precedin{ 

subsection. We sharpen those results so that they only require tha 
transactions see the results of certain critical preceding transactions, 
rather than arbitrary preceding transactions. The results in this 
subsection give detailed information that is specialized to our 
application; thus, they are not stated in very general terms. However, it 
seems that the general approach used in this subsection sho, fld extend 
to other applications. 

We begin by proving some basic lemmas about sequences ot updates. 
It is helpful to think of these results in terms of an automaton whose 
states represent (abstractions o0 the global states of the database, and 
whose state-transitions represent the updates. (The decision parts of 
transactions are not modelled by this automaton.) The sequence of 
updates which occur in an execution is modelled by a path in the 
automaton. We are interested in identifying subsequences of  a 
sequence of updates, which are guaranteed to lead to the same state in 
the automaton as does the whole sequence. I f  a transaction executes 
seeing only such a subsequence as its prefix subsequence, it would be 
guaranteed to have accurate information. 

Let ...4. be a sequence of updates (of the Fly-by-Night airline system) 
and P a person. As assignment witness for P in .X is an ordered pair of 
updates, (A,B), from .X, satisfying the following conditions. 
(a) A is a request(P) update, B is a move-up(P)  update, and A 
precedes B in .£. 
(b) There are no cancel(P) updates after A in ...4.. 
(c) There are no m o v e -  down(P) updates after B in ~. 

A waiting witness for P in ~ is either of the following: 
(1) An update A, from .X, satisfying the following conditions. 

(a) A is a request(P) update. 
(b) There are no cancel(P) or move-up(P)  updates after A in ..4.. 

(2) A pair (A,B) of updates satisfying the following conditions. 
(a) A is a request(P) update, B is a m o v e -  down(P) update, and A 

precedes B in ..,4.. 
(b) There are no cancel(P) updates after A in A. 
(c) There are no m o v e -  up(P) updates after B in £ .  

Recall that a person is known in a given state s if he is either in 
ASSIGNED-  L1ST(s) or W A I T -  LIST(s). 

Lemrna 14: Let A be a sequence of updates, and s the 
state resulting from applying A to s 0. Let P be a person. 
(a) P is known in state s exactly if there is a request(P) 
update in .X which is not followed by a cancel(P) update. 
(b) P is in ASSIGNED-LIST(s)  exactly if there is an 
assignment witness for P in ..4.. 
(c) P is in WA1T-I.IST(s) exactly if there is a waiting 
witness for P in .4.. 
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Proof: By analysis ofthe possible state transitions. | 

For the next several lemmas, we use the following notation. Let A b e  
a finite sequence of  updates and let ~B be a subsequence of A. Let s be 
the state which results from applying .A to sn, and let t be the state 
which results from applying • to s,. The next l;6mmas relate the states s 
and t. 

Lemma 15: Let P be a person. Assume that P is in 
ASSIGNED-LIST(s), and let (A,B) be an assignment 
witness for P in A. Assume that '~ contains both updates A 
and B. Then P is in ASSIGNED-LIST(t). 

Proof: By definition of  an assignment witness, A is a 
request(P) update, B is a move-up(P)  update, and A 
precedes B in A. Also, A contains no cancel(P) updates 
after A and no move-down(P) updates after B. Now, 
contains both A and B, in that order. Also, 9 cannot 
contain any cancel(P) updates after A or move-down(P) 
updates after B, since there are none in A. Thus, (A,B) is an 
assignment witness for P in ~.  Lemma 14 implies that P is 
in ASSIGNED-LIST(t). II 

t 

1,erama 16: Let P be a person. Assume that P is In 
WAIT-LIST(s). Assume that at least one of the following 
holds. 
(a) A is a waiting witness for P in A, and 9 contains update 
A. 
(b) (A,B) is a waiting witness for P in A and ~ contains both 
updates A and B. 
Then P is in WAIT-  LIST(t). 

Proof: Similar to the proof of Lemma 15. II 

The preceding two lemmas will be applied in cases where A denotes 
the entire sequence of updates preceding a particular transaction T, 
while 9 denotes the subsequence of updates actually seen by T. The 
lemmas imply that if T sees certain of the preceding transactions, and a 
person P is actually on the ASSIGNED-LIST or WAIT-LIST, then 
T is guaranteed to know it. On the other hand, the next several lemmas 
deal with the opposite implication; they describe circumstances under 
which a transaction that believes that a person P is actually on  the 
ASSIGNED- LIST or WAIT-  LIST, is guaranteed to be correct: 

Lemma 17: Let P be a person. Assume that ~ contains the 
last cancel(P) update, if any, in A. I fP  is known in t, then P 
is known in s. 

Proof: Assume P is known in t. Then Lemma 14 implies 
that there is a request(P) update in 9 which is not followed 
by a cancel(P) update in 9 .  This request(P) update also 
occurs in A, and there are no cancel(P) updates after the 
request(P) in A, since 9 contains the last cancel(P) update 
from A. Therefore, Lemma 14 implies that P is known in s. 
| 

Lemma 18: Let P be a person. Assume that ~ contains the 
last move-down(P) update, if any, in A. Also assume that 
9 contains the last cancel(P) update, if any, in A. If P is in 
ASSIGNED- LIST(t), then P is in ASSIGNED- LIST(s): 

Proof: Assume that P is in ASSIGNED-LIST(t). Then 
Lemma 14 implies that there is an assignment witness (A,B), 

for P in ~ .  Thus, A is a request(P) upda~, c and B is:a 
move-up(P)  update, A precedes B in 9,  there are no 
cancel(P) updates in ~, after A and there are no 
move-down(P) updates in 9 after B. Updates A and B also 
appear in A, in that order. There are no cancc!~P) updates 
after A in .A, since • contains the last cancel(P) update (it~ 
any) in .A. Similarly, there are no move-down(P) updates 
after B in .....1.. Thus, (A,B) is an assignment witness for P in 
A. Lemma 14 implies that P is in ASSIGNED- LIST(s). | 

Lemma 19: Let P be a person. Assume tha t~  contains th~ 
last move-up(P)  update, if any, in A. Also assume that 
contains the last cancel(P).opdate, if any, in A. If P is in 
W A I T -  LIST(t), then P is r e W A I T -  LIST(s). 

Proof: Analogous to theproofofLemma 18. | 

Again, we can apply the preceding three lemmas to the case where A 
denotes the entire sequence of updates preceding a particular 
transaction T, and 9 denotes'the secluence of updates actually seen by 
T. qhe lemmas imp ly  that if T sees certain of the preceding 
transactions then T is gaaranteed to know that a particular P is not on 
the ASSIGNED- LIS~I: or WAIq - LIST. 

Now we can prove renneu versions of the results of the previous 
subsection. Since the notation and details become somewhat unwieldy, 
we present versions of Corollaries 6 and 13 only, and' omit the others. 

Theorem 20: Let e be an execution of the airline system, 
and T a transaction inst..nee in e. Let s be the actual state 
before T and s' the actual state after T, in e. 

1. Assume that there are at most k persons P such that P 
is in ASSIGNED-LIS'I~s) but the prefix 
subsequence seer~ by T fails tO include an assignment 
witness tbr P. Then either cost(s',l) < cost(s,1) or 
else cost(s',l) <_ 900k. 

2. Assume that T is a MOVE-  UP or M O V E -  DOWN 
transaction. Assume that there are at most k persons 
P such that P is not in ASSIGNED- LIST(s) but the 
prefix subsequence seen by T fails to include either 
the last cancel(P) or the last move-down(P) from A~ 
Then either cost(s',2) < cost(s,2) or else cost(s',2) _< 
300k. 

Proof: Let t be the apparent state before T and t' the 
apparent state after T. Then t' = T(t,t). Assume that T 
invokes action A in execution e, i.e. that DT(0 = A. 

1. Assume that cost(s',]:) > cost(s,1). Then T is a 
M O V E - U P  transaction, A is a m o v e - u p  update, 
and AL(t) < 100. For all persons P in 
ASSIGNED-LIST(s), except for the k exceptions 

described in the hypothesis, Lemma 15 implies mat P 
is in ASSIGNED~LIST(t). Therefore, AL(s) < 
AL(t) + k < 100 + k. It follows that AL(s') < 100 
+ k, and so cost(s',l) ~ 900k. 

2. Assume that cost(s',2) > cost(s,2). Then T is a. 
M O V E - D O W N  transaction, A is a move-down.- 
update, and AL(t) > 100. For all persons P in 
ASSIGNED-LIST(0, except for the k exceptions 
described in the hypothesis, Lemma 18 implies that P 
is in ASSIGNED-LIST(s). Therefore, AL(s) > 
A(t) - k > 100 - k. It follows that AL(s') > 100 - k,. 
and so cost(s',2) ~ 300k. 

I 
Theorem 21: Let e be any finite execution o f  the airline 

system, q.l, any subsequence of the indices of  e, and let s be 
the actual state aRer e. 

1. Assume that there are at most k persons P such that P 
is in ASSIGNED- LIST(s) but q..t fails to include an 
assignment witness for P. 
Then either cost(s,l) _< 900k, or else there is an 
extension of e to another execution, by an atomic 
suffix consisting of MOVE-DOWNs only, such that 
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the prefix ~ubsequence of the first T in the suffix is 
°d., s' is the actual state after the iast transaction, and 
cost(s',l) < 900k. 

2. Assume that there are at most k persons P such that P 
is in WAIT-LIST(s) but ctJ, fails to include a waiting 
witness for P. Also assume that for all but at most k 
persons P, i fP  is not in ASSIGNED-LIST(s), then 
q J, includes the last cancel(P) (if any) from e, and °d. 
includes the last move-down(P) (if any) from e. 
Then either cost(s,2) _< 300k, or else there is an 
extension of e to another execution, by an atomic 
suffix consisting of M O V E -  UPs only, such that the 
prefix subsequence of the first T in the suffix is ctt, s' 
is the actual state after the last transaction, and 
cost(s',2) _< 300k. 

Proof: Let t be the result o f %  applied to s 0. 

]. By Corollary 2, either cost(t,1) = 0, or else there is an 
extension of e to another execution, by an atomic suffix 
consisting of MOVE-DOWNs only, such that the prefix 
subsequence of  the first T h,, the suffix is qt, such that t' is 
the apparent state after the stiffix, and cost(t',l) = 0. 

First assume cost(t,l) = 0. Then AL(t) < 100. Let P be 
any person in ASSIGNED-LIST(s). l f P  is not one of the 
k exceptions described in the hypothesis, then Lemma 15 
implies that P is in ASSIGNED-LIST(t).  It follows that 
hL(s) < AL.(t) + k < I00 + k, so cost(s,l) < 900k, as 
needcd. 

Second, assume that the extension exists. Then AL(t') < 
100. Let the actual state affter the suffix be s'. Let P be any 
person in ASSIGNED-LIST&).  Then P is also in 
ASSIGNED- LIST(s), since the suffix does not add anyone 
to the assigned list. If P is not one of  the k exceptions 
described in the hypothesis, then Lemma 15 implies that P is 
in ASSIGNED-LIST(t). None of  the MOVE-DOWNs 
in the suffix could have generated a move-down(P), since 
if one did, then P would not be in ASSIGNED-LIST(s').  
Therefore, P is in ASSiGNED-LIST(t ') .  It follows that 
AL(s') <_ AL(t') + k < 10O + k, so cost(s',l) < 900k. 

2. By Corollary 2, either cost(t,2) = 0, or else there is an 
extension of e to another execution, by an atomic suffix 
consisting of M O V E - U P s  only, such that the prefix 
subsequence of the first T in the suffix is °d,, t' is the 
apparent state after the suffix, and cost(t',2) = 0. 

First assume cost(t,2) = 0. Then either AL(t) _> 100 or 
else WL(t) = 0. Let P be any person in WAIT-LIST(s). If  
P is not one of the k exceptions described in the hypothesis, 
then I.emma 16 hnplies that P is in WAIT-LIST(t). It 
follows that WL(s) < WL(t) + k. Let P be any person in 
ASSIGNED- LIST(t). If P is not one of  the k exceptions 
described in the hypothesis, then Lemma 18 implies that P is 
in ASSIGNED-LIST(s). It follows that AL(t) < AL(s) + 
k. Thus, either WL(s) < k or else AL(s) _> 109 - k. Thus, 
cost(s,2) < 300k. 

Second, assume that the extension exists. Then either 
AL(t') > 100 or else WL(t') = 0. Let the actual state after 
the suffix be s'. Let P he any person in WAIT-LIST(s').  

Then P is also in WAIT- LiST(s), since the suttlx noes ~ot 
add anyone to the wait list. If P is not one of the k 
exceptions described in the hypothesis, then Lemma 16 
implies that P is in WAIT-LIST(t). None of  the 
M O V E - U P s  in the suffix could have generated a 
move-up(P) ,  since if one did, then P would not. be in 
WAIT-LIST(s').  Therefore, P is in WAIT-LIST(t ') .  So 
WL(s') <_ w ~ e )  + k. 

Now let P be any person in ASSIGNED- L1ST(t'). Then 
P must be known in t, since otherwise the m o v e - u p s  in the 
suffix could nut put P into ASSIGNED-LIST(t ') .  I fP is in 
ASSIGNED- LIST(t), and P is not one of the k exceptions 
described in the hypothesis, then Lemma 18 implies that P is 
in ASSIGNED-  LIST(s) and hence in 
ASSIGNED-LIST(s') .  On the other hand, if P is in 
WAIT-LIST(t),  and P is not one of these same 1~ 
exceptions, then Lemma 17 implies that P is known in s. 
Since P is in ASSIGNED-  LIST(t'), a move-up(P)  occurs 
in the suffix. Then P is in ASS1GNED-LIST(s'). So 
AL(s') > AL(t') - k. It follows that either WL(s') < k or 
AL(s') _> 100- k. In either case, cost(s' ,2)< 300k. 

It is also possible to give refined versions of  Corollaries g, 10, and 11. 
We omit the details. 

5.4. Cost Bounds Resulting from Centralization 
In this subsection, we give two results which describe conditions 

under which overbooking cannot occur at all. These conditions involve 
fairly strong centralization assumptions. The basic idea is that if all the 
m o v e - u p  decisions are made centrally, it should not be possible to 
overbook. However, in order to prove this result, it is necessary for us 
to make some technical restrictions involving the requests. 

Theorem 22: Let e be a transitive execution. Assume that 
the M O V E - U P  transactions are centralized in e. Assume 
that for each P, the transactions that generates updates 
involving P are centralized in e. Let s be any state reachable 
in e. Then cost(s,1) = 0. 

Proof: The proof is by induction on the length of  e. The 
base case, where the length o fe  is 0, is easy. So assume that 
the length ofe is at least one. Let T be the last transaction in 
e. Let t be the apparent state before T and t' the apparent 
state after T. Let s be the actual state before T, and s' the 
actual state after T. Let .A be the actual sequence of  updates 
preceding T, and let • be the sequence whose effects are 
seen by T. 

The inductive assumption says that cost(s,1) = 0. The 
only way that cost(s',l) can be nonzero is if T is a 
M O V E - U P  transaction which gene~tes a m o v e - u p  
update. Then Al~t) < 100. 

We clan,, that ASSIGNED- LIST(s) C_ 
ASSIGNED-LIST(t).  If this is so, then AI~s) < 100, so 
AL(s') < 100 and cost(s',l) = 0, as needed. 

So fix P in ASSIGNED-LIST(s). Then there is an 
assignment witness for r in .£. The move-up(P)  of the pair 
also appears in ~ ,  since the M O V E - U P  transactions are 
centralized. The request(P) of  the pair appears in the prefix 
seen by the move-up(P),  since the transactions generating 
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P updates are centralized. Therefore, the request(P) also 
appears in ~ ,  by transitivity. Thus, • contains the 
a.ssignment witness, and Lernma ] 5 implies that P is in 
ASSIGNED-LIST(t) .  | 

The second result of this subsection is just a minor variant of  the first, 
with an alternative technical restriction on the requests. 

Theorem 23: Let e be a transitive execution. Assume that 
the M O V E - U P  transactions are centralized in e. Assume 
that for each P, there is at most one REQUEST&) 
transaction in e. Let s be any state reachable in e. Then 
cost(s,1) = O. 

Proof: The proof is nearly identical to the preceding one. 
The only difference is in the argument that the request(P) is 
in the subsequence seen by the move-up(P) .  We know 
that some request(P) appears in the subsequenee seen by the 
move-up(P)  action, for otherwise that action would not 
have been invoked. Since there is only one such request(P), 
the claim holds. I 

Of course, it would be better if we could prove the same result only 
assuming centralization of M O V E - U P  transactions and transitivity. 
and not making any assumptions about the transactions generating 
updates for the same person. But this stronger statement is not true, as 
is shown by the following example. 

Example: 

Consider an execution which consists of a succession of 
blocks of 4 transactions each, 

REQUEST(P1), CANCEL(P1), REQUEST(P1), 
M O V E -  UP, 
REQUFST(P2), CANCELfP2), REQUEST(P2), 
MOVE - UP ..... 
REQUEST(P101), CANCEL(P101), REQt~EST(P101), 
MOVE - UP. 

The successive M O V E - U P  transactions produce 
updates move-up(P1),..., move-up(P101).  This execution 
is possible if each of the first 100 M O V E - U P  transactions 
sees the first request in the same block, but not the cancel or 
the second request. The last M O V E - U P  sees all the 
previous M O V E -  UP's and the requests that they see, plus 
the cancels. Then this last M O V E - U P  will think that the 
earlier M O V E - U P ' s  acted erroneously, and that there is 
really no one on the assigned list. It will therefore decide to 
movePt01 up. The cost after this execution is nonzero. 

Similar xesults to those in this section should" be provable, at least in 
prm~i!~le, for the underbooking cost. However, the centralization 
assumpttons that appear to be needed are so strong that the results do 
not seem very interesting. 

5.5. Fairness 
In this subsection, we consider fairness properties of the airline 

reservation system. As before, the results are stated in terms of the 
specific example, but the techniques appear to generalize to other 
applications. 

For this section, we make the following very strong assumption; We 
assume that all M O V E - U P  and M O V E - D O W N  transactions are 
centralized; thus. there is essentially one "agent" making all decisions 
about seat assignment. It remains to be seen whether this assumption 
can be weakened, while still permitting proof of interesting fairness 
claims. 

Recall the definition of passenger priority from Section 4.2: we say P 
< Q,. for known P and Q, to mean that either P precedes Q on the 
W A I T -  LIST, or P precedes Q on the ASSIGNED-  LIST, or else P is 
on the" ASS I G N E D -  LIST and Q is on the WAIT-LIST.  

Lemma 24: Let ...4 be a sequence of updates, and l e t s  be a 
subsequence of ..4. Let P and Q be people. Assume thali 
contains all m o v e - u p  and move -down  updates from .A.. 
Also assume that ~, contains all the request and cancel 
updates for P and Q, from .A.. Let s be the result of.X and t 
the result of'~,, applied to s 0. Then P < Q in t if and only if 
P< Qin.s. 

Proof: The updates in ..4 which are not included in '~ are 
only request and cancel updates for persons other than P 
and Q. These cannot affect the relative priority of P and 
Q . I  

The following theorem says that, under certain restrictions, the 
relative priority of two requests is determined at the time the "agent" 
for M O V E - U P  and M O V E - D O W N  transactions first learns about 
both requests. Thus, except for an initial period of uncertainty during 
which the agent has not yet learned about the requests, their relative 
priority is fixed. 

Theorem 25: Let e be a transi~ve execution. Assume that 
the M O V E - U P  and M O V E - D O W N  transactions are 
centralized. Let P and Q be people each of whom has 
exactly one REQUEST transaction, but no CANCEL 
transactions, in eo Let T be a M O V E - U P  or 
M O V E - D O W N  tran~,actiorl having both REOUF~T(P) 
and REQUEST(Q) in its prefix suhsequence. Let t b e  the 
apparent state, and s the actual state, before T. l fP  < Q in t. 
then also P < Q in s and all other actual database states 
occuring later in e. 

Proof: First., we show that P < Q~in s. Let ..,4 be the 
sequence.of upuates preceding T, and ~B the subsequence 
actuall)/'seen by T. The centralization assumption implies 
that ~B contains all m o v e - u p  and move-down updates 
from .A_ The other assumptions imply that $ contains all 
the request and cancel updates for P and Q, from .,4. Then 
Lcmma 24 tmplies that P < Q in s. 

Assume that T 1 is the first transaction (T or later) aRer 
which it is false that P < Q. Let t 1 be the apparent state 
before T 1 and 12' the apparent state after T r Let s I be the 
actual state before T 1 and s t' the actnal state after T r Then 
P < Q in s I but not in Sl'. The only possibility is that T 1 is a 
M O V E - U P  or M O V E - D O W N  transaction that causes 
the order of P and Q to become interchanged; thus, Q < P in 
sl'. 

We claim that P < Q in I 2. Let .A be the sequence of 
updates preceding T1, and let ~ be the subsequence actually 
seen by T]. ~ contains all the moving updates from .A., by 
the centralization assumption. Also, ~ contains the requests 
for P and Q, since the subsequenee seen by T does, T is 
either equal to T 1 or else is in Tt's subsequence, and 
transitivity holds. Thus, applying Lemma 24, the orderings 
in 12 and s t are the same, so P < Q in t 1. 

Now we claim that Q < p in tl'. This follows using 
Lemma 24, sinc,~ Q < P in st'. But i fP  < Q in t I and Tl(tl,12 ) 
= tl', then P < Q in t l '  , since all transactions preserve 
priority. This yields a contradiction. | 
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We can interpret the preceding theorem as follows. We might 
imagine that at the actual flight time, next January 1, the complete 
execution becomes known to the check-in attendant. The people that 
h e  actually allows to proceed onto the airplane are the 100 people who 
show tap, who have the highest priority in the final database state. 
(CANCEL transactions can be run for the others, and then sufficiently 
many M O V E - U P  or MOVE-DOWN transactions to cause AL to 
equal 100 or WL to equal 0.) I fP  and Q had previously become known 
to the "agent" for M O V E - U P  and MOVE-DOWN transactions, 
with P < Q, and if P and Q both show tap, if Q gets onto Flight 1, then 
so does P 

Example: 

Our transaction definitions can lead to the following 
behavior for passengers' relative priorities. Assume that 
REQUEST(P) precedes REQUEST(Q), but the request(Q) 
update becomes known to the "agent" before the reauestlP) 

update. Then a move-up(Q)  can occur, which moves Q up 
past P. Later, a move-down(Q) can occur. When this 
happens, our definitions say that Q gets put at the head of  
the WArF-LIST,  ahead of  P. Subsequently, the mowng 
agent can learn about the request(P) also. At that point, Q < 
P, so by Theorem 25, Q remains ahead of P. This happens 
even though there is sufficient information in the system to 
allow for Q to be placed on the WAIT-LIST after P, which 
is in keeping with their tlmestamp order for requests. Thus, 
the order obtained in the final state is determined by the 
order at the time a M O V E - U P  or M O V E - D O W N  
transaction first sees both requests, but is not necessarily 
determined by the actual order in which the requests were 
initially made. 

It is possible to redesign the application to respect the 
original request order in this situation. It suffices to include 
request timestamps explicitly in the database. Each of the 
two lists would always be kept sorted according to 
timestamp order. Thus, when the request(P) becomes 
known to the agent, he would insert P ahead of Q on the 
waiting list. (More precisely, when the move-down(Q) is 
nm from a state in which P is on the waiting list, Q is not 
placed at the head of  the waiting list, but rather is inserted in 
timestamp order, after P.) This relative position would be 
maintained from then on. 

Theorem 25 makes a claim about relative priorities at times after a 
conceptual "agent" learns about two requests. In orde,' for this 
condition to be .meaningful as a correctness claim, the user must have a 
fairly detailed 'and sophisticated conceptual model o f  system operation, 
including prefix subsequences and agents, it might also be interesting 
to state fairness claims which involves a less detailed conceptual model. 
For example , we might want to state a condition which could be 
paraphrased aa follows. "If a REQUEST(p) is made sufficiently earlier 
than a REQUEST(Q), then P must precede Q in the final state." The 
following lemma can be used to infer such a property. 

Lenuna 26: Let e be a transitive execution. Assume that 
the M O V E - U P  and M O V E - D O W N  transactions are 
centralized. Let P and Q be people each of whom has 
exactly one REQUEST transaction, but no CANCEL 
transactions, m e .  Assume that REQUEST(P) precedes 
REQUEST(Q) in e. Further assume that any M O V E - U P  
or M O V E - D O W N  ~.ransaction that has REQUEST(Q) in 
its prefix also has REQUEST(P) in its prefix. Then P < Q in 
any actual state reached during e in which both P and Q are 
known. 

Proof: Assume the contrary, and let T be the first 
transaction in e such that Q < P in the actual database state 
after T. Let t be the apparent state before and t' the apparent 
state after T. Let s be the actual state before and s' the actual 

state after T. TheaQ < P in s' but not in s. 

First,, we claim that T must be a moving transaction. I~T 
were a REQUEST(P) transaction, men the REQUEST(Q)' 
cannot be reflected in s' since it occurs after RFQUEST(P) 
All other cases can be ruled out by similar trivial argument. 
So T is a moving transaction; thus, 1-" and Q are known in s, 
so that P < Q in s. The only possibilities are that T is a 

• " L  

M O V E -  UP transactmn that moves Q up past P, or that T Is 
a M O V E - D O W N  transaction th~it moves P down past 
Q. For either of these to happen, at least one of request(P) 
and request(Q) must be in the prefix subsequence ofT. 

Case 1: T has both request(P) and request(Q) in its prefi~ 
subsequence. 
Then both P and Q are known an t. If  P < Q in t, then 
Theorem 25 implies that P ( Q in s', a contradiction. On the 
other hand, ifQ < P in t, then Theorem 25 implies that Q < P 
in s, again a contradiction. 

Case 2: T has only request(P), but not request(Q), m its 
prefix subsequence. 
Then T must be a M O V E - D O W N  which moves. P down 
past Q. Therefore, Q must be in ASSIGNED- LIST(s). But 
in order for this to occur, there must be some M O V E - U P  
transaction T' appearing earlier than T in e, which moves Q 
up; dearly, request(Q) must be in the prefix subsequence of 
T'. T' is in the prefix subsequence ofT,  since the moving 
transactions are centralized. By transitivity, request(Q) is in 
the prefix subsequence ofT. This is a contradiction. I 

We can use this lemma to obtain a theorem of  the form we described 
earlier, i.e. that if REQUEST(P) occurs sufficiently long before 
REQUEST(Q) (and other suitable conditions hold), then P retains 
priority over Q. All that is needed is an additional assumption that if 
REQUEST(P) occurs sufficiently long before REQUEST(Q), then any 
M O V E -  UP or M O V E -  DOWN transaction that has request(Q) in its 
prefix also has request(P) in its prefix. 

Theorem 27: Let e be a transitive, orderly timed execution 
having t-bounded delay. Assume that the M O V E -  UP and 
M O V E - D O W N  transactions are centralized. Let P and Q 
be people each of whom has exactly one REQUEST 
transaction, but no CANCEL transactions, in e. Assume 

• that REQUEST(P) precedes REQUEST(Q) by at least time 
L in e. Then P < Q in any actual state reached during e.in 
which both P and Q are known. 

Proof: The t-bounded delay assumption and orderdine~s 
imply that any M O V E - U P  or M O V E - D O W N  that has 
REQUEST(Q) in its prefix also has REQUFST(P)in its 
prefix. The previous lemma then yields the result. I 
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6. Conclusions 
In this paper, we have given precise correctness conditions for,;a 

highly available replicated database system such as CCA's SHARD. 
First. we gave basic definitions for the SHARD database and. 
transaction model. We then described assumptions about how file 
system runs the transactions, followed by assumptions about 
applications. Finally, these two types of assumptions were combined to 
prove some interesting properties of a particular running application 

." . . . .  ' .  t . '  
an atrhne reservaUon system. Although the example ~s snnple, ~t 
illustrative of a large class of important resource-allocation problems. 

The assumptions about how the system must run the transactions (in 
particular, the prefix subsequence condition) have been described in a 
very general way. They embody a new modal for data processing, 
which is quite different from, and imposes new structure on, ~ e  
traditional models used in concurrency control theory. We expect tliat 
this model will prove very fruitful for future research and for 
application design. 

In describing our assumptions about the airline reservation 
application, we have tried to be as general as possible. The types of  
assumptions we have listed seem to be very appropriate for resource 
allocation applications, but we do not believe that they comprise a 
complete set of interesting application assumptions. It is likely that 
study of additional examples will yield other interesting types of 
assumptions as well. 

The particular properties proved for our application involve bounds 
on the costs attributable to violations of integrity constraints, and 
fairness. For other resource allocation applications, similar cost bound 
and fairness results should be  provable. 

"['he system exhibits nonserializable behavior, so that being able to 
prove interesting conditions is an accomplishment. In the u~a l  
development, no guarantees at all can be proved in case information 
about any preceding transaction is missing. In contrast, we can prove 
interesting properties even with incomplete information. Moreover, 
small changes in available information lead to small changes in costs for 
integrity constraints. 

The analysis required to obtain some of our results has been very 
delicate. This is because it is necessary to consider how updates will 
execute in many possible situations, not just from the database state 
seen by the decision parts of their transactions. Another difficulty is 
that SHARD does not impose any a priori restrictions on the kinds and 
orders of transactions that are submitted and processed, qhe need to 
consider the behavior of transactions in the presence of arbitrary 
preceding transactions, and arbitrary partial knowledge about the past, 
makes the analysis of SHARD transactions more difficult than for 
ordinary (serializable) transactions. But this kind of analysis seems 
unavoidable; whether or not a formal, mathematical analysis is carried 
out for a particular application, application programmers do need to 
consider, at least informally, how transactions will behave in the 
presence of arbitrary preceding transactions and arbitrary partial 
knowledge about the past. We provide a J~amework for this kind of  
analysis, but more needs to be done to develop appropriate styles of 
.programming and methods of analysis. 

A next step in this research should b e t  he consideration of other 
example applications. Additional resource allocation examples should 
be examined, such as exatiiples from banking and inventory control. 
Other, non-resource-allocation, examples should be studied. Some 
examples appropriate for SHARI) might involve "distributed data 
structures". The highly-available distributed dictionary studied in ~ M ]  
is one example that fits the SHARD framework, and there should be 
others. Also, it has been claimed that name servers such as Grapevine 
[B] have interesting but nonserializable behavior; it seems likely that 
they can be described within our framework. Still other appropriate 
examples might arise from real-time control. 

For each of  these examples, simple prototypes could be defined, 
capturing the essential behavior of the example. Study of these: 
prototypes should determine the appropriate properties to prove 
each case. Cost bounds and fairness should reappear, but other, 
properties should also be of interest. It is important to look for general, 
methods of programming and analysis. 

Other theoretical work also seems posfibte. For instance, we hay6 
described some interesting automaton structure in Section 5.3. Thi~ 
structure could be studied and generalized. Also, it should be possible 
to obtain complexity results. Particular examples of desirable 
application behavior could be studied individually, and costs (e.g, 
amount of communication, or local storage) determined for achieving 
correct behavior. 

On the systems design side, SHARD itself needs to be generalized in 
at least two tmportant ways. First., the inessential full replication 
assumption needs to be removed. Even with only partial replication, it 
should be possible to continue to nmintain the correctness conditions 
we describe in this paper, by judicious assignment of data and 
transactions to nodes, (i.e. in such a way that each transaction will have 
copies of all the data it requires). It should even be possible to allow 
some of  the data which transactions read to be present in summary 
form, rather than in its full detail. Second, the SHARD work needs to 
be integrated with earlier work on serializability. It should be possible 
to build an application system in which certain critical transactions mn 
serializably, while the others run in a highly available manner. The 
application designer should be able to specify the modes of operatioa 
for different transactions. As the system design gets extended, the 
theory also needs to be extended to incorporate these two 
generalizations. 

It is apparent to us that there is an interesting theory to be developed, 
for proving properties of nonserializable highly available replicated 
database systems. We believe that this paper gives some useful ideas on 
how to begin. 
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