
C o r r e c t n e s s C o n d i t i o n s / ' o r t t i gh ly
Available Repl ica ted Databases

Nancy Lynch, M a s s a c h u s e t t s he , l i tn te of T e c h n o l o g y
a r d C o m p u t e r C e r p ~ r m t o n of America

B ~ b a r a Blaustcin, Cmnputer Corporation of America

IViicliael S iegel . Bos t ,m Univers i ty and
C o m p a t e r C o ~ o r a t i o n o f Amer ica

Abstract

C<,retoness conditicms arc given which describe some nf tile
pt'tq~crlie~ c×hibiLed by Ilighly aw~itable distributed database systems
sttch a:; the 511,'x.RI) (Systcnl I~n' l lighly Available Replicated Data)
,¢.ystem cuurcntlv be~hg developed at Comptller Corporation of
/~l]lOi'iC;i. This svslcm allows a da~d~ase application to contilme
OpClatlt:~l ill tile lace o1" communicatiun faih.llCS, incheding fietwork
pa0"tidons. A penalty is paid tbr thir; c×tz'a availability: the usual
corrc,:tncss conditi,n,~; serializability of tr:msactions and preservation of
iritcgrily c,n.~traims, ,:re not guaranteed. I Iowevcr, it is still possihle to
make intcrestin~g claims about the beh,vior e,f the system. The kinds of
claims whicli can be 9roved include bom~ds on tile costs oF violatior, of
integrity cofistraints, and Ihirness guma,tces. In comrast to
serializ~bility:s all-or-m~thing character, this work has a "continuous"
flavor: small changes in available inform~itiou lead a) small
perturbations in corrcctuess conditk)ns.

"['l:.is work is novel, because there has been very little previous success
in'stating .inlcresti'ng properties whk:h are guaranteed by nonscrializable
systems.

This work was supported by ti le I)efimse Advanced
Rescan:h Projects Agency oF the I)epartment of t)cl~nse
and by the Air Force Systems Command at Rome Air
l)evelnpment Cenler under Contract No. t:30602-84-
C-0112. .The views and conclusions containeu in this
d~cnrt,'~t are those of the authors and slmtuld not be
ir/tcrlJrcted as necessarily representing the ¢lffici:d policies,
eith@ expressed or implied, of the l)cl~nse Advance
Ecsearch.Pmjccts Agc,cy' Or the U. S. Government, The
work of {he first author was also supported in part by file
Office of Naval Research under Contract N00014-85-
K-0163, by the Office oF Army Research under Contntct
I)AAG29-84-K-0058, by the Natkmal Science Foundation
under Grant I)CR-83-02391, anti by the Defense Advanced
Re~ai'e~ |st-l'~jects Age,cy (!.~A..I~I;A) under Contract
N00014-83-K-0125.

I. ' lntroduction

I.I. Background
In recent years, there has been extensive rcscarch:i..~n, the design and

tlleory of distributed dat~hases. Nearly all of !hhj~2,~.'ork has b e n
directed towards i~roviding__fjaqaeworks in ~hk:h,tla '~ctious can be
processed coi~currcntly, whilc,.l~e:~ervi,g intcgdfy /:grlstraints on the
data. Many , f the most important adwmces ill .i.ik~ribtttcd processing
have arisen fi'om this work. including, tile deveit~;fic/i't ul" techniques
)ased o ~ ock Ilg and tnuestamps, a ~d cumin l prclk~cols. The work has
led ~o elegant systent designs, as well as to a very iniercsfing theory.

It is apparent, however, theft dlere is still a [irol~lesil. The techniques
developed in distribtuted datdbase research h:~,.c.no, i, yet been accepted
by the commeJcial world to tile extent Ih~ researchers might have
hoped. In particular, airline reserwltitm sy~t,2nls, banking systems and
inventory cOnll'Ol systems (applications v01icl) motivated much of tile
research), still do nmt rely on the general mcclwnisms developed by
L'esearchers. The problem ni~ly bc limdan~ental It,' the general
approach. The mechanis,ls developed in resca:'ch gum'antce
preserwlliOn o1" integrity constraiuts, bul they arc illadctluate li)r
meeting striogent responsc time and aYai.labili~y requirements. This
inadeqtnacy scem~, to be an tmavoiddbte result of stn,.~ reqtdremenLs
Ibr :;ynchr~mizatioa among renlote nodes~

Many applications of the sort. meiltioi)cd above put a high premium
on awfiiability and fast pcd;:)mlancc, a:~.d i1~ order to ol)tain these, they
are willing [o sacrilice something ill the way of "correcme~s" or "data
inaegrity": The researcl) comlqu~ity has so Ihr been unable to provide
general fi"ameworks which gq3r, ailtee weaker c(~trectness conditions as
well as gored perti~rmance.and-.a~aiiability. Asxuesult, p:actical systems
development work fi)r th~e'ai~plication~:'is .still based on ad hoc
methods of concurrency control.

There ts a need fbr syslem deveh~pmcnt Work, as well as.asstx:iated
theory, to Iill Ihis gap. New fiamcw, rks are r~ceded which guannltee
good performance and awdlability, yet orovidc enough di~ipliile on
application programming so tllat ¢mc!~l coru+ectncss claim:~ can be
proved. When titst response time mid high availability arc2equired, it
seems necessary [o allow violations of integrity cons,a'aints, io ~ct l r . i l l
this case, Iraditional frameworks do nut allow any:hing interesting to be
proved ~abot# the behavior of Ihe system. The difficult part of the
problem is tu gtmranltee interesting mid usefi.II cotr~tncss propcrties,
even when intcgrily constraints are violated.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

1.2. SI lARD
The new gFIARI) (System fi~r I lighly Available Replicated l)ata)

system under devclopnlent at C'ol~lputcr Cortx~ration oF America
(CCA) is designed to address tile problems described above. It
provides highly awlilable distributed data proccssh~g in the face of
commu,ication failures (ii~cluding network partitions). It does not
guarantee serializability, nor does it preserve integrity constraints, but it
does guarantee many practical and interesting properties of the
database.

© 1986 A C M 0 - 8 9 7 9 1 - 1 9 8 - 9 / 8 6 / 0 8 0 0 - 0 0 1 1 75¢ 11

'111e reader is rel~rred to [SBKI for a detailed description of the

architecture of the SIIARI) system. Briefly, the main ideas are as
lbllows. Tile network consists of a collection of nodes, each of wbich
has a copy of the complete database. (Full replication is a simplifying
assumption we have used for our initial prototype; many of our ideas
seem extendible to the case of partial replication, but this extension
remains to be ntade.) Replication allows transactious to be processed
locally, thus reducing communication costs and delays, and providing
high avaihtbility.

After a transaction is prtx:essed at its originating toxic, infi>rmation
about the transaction is broadcast reliably to all the other nodes for
incorporatlon into the database copies at those nodes. The broadcast
algorithm [GI,BKSSI ensures that, barring permanent communication
failures, every node will eventually receive infi}nrtation about every
transactkm. While the broadcast algorithm attempts to deliver
infi}nnation It> all sites in as tintely a manner as possible,
communication and node thilures can cause significant delays. Since
nodes ntay cont inue to initiate transactions dur ing COll~lnunicalio>ls
lhilures - indeed, they may not even- bc aware that there is a I~filure
somewhere in the network - these delays mean that transactions may
run against ont-ol:dale database stales.

When a node receives new in fornlatlon abou t a transaction, 110 matter
when the transaction.was initiated, this inlbrmation must be merged
into the node's copy of the database: this merging must be done
consistently at all nodes, to maintain mutual consistency. The following
mechauism is used to guarantee consistent merging. Transactions are
u>tally ordered by a globally-unique timcstamp assignment (such as one
based on local timestamps with node identifiers used fORt tiebrcaking),
and each node uscs this total ordering to determine how to merge
inlbrmation about dillkzrent transactions. Because all nodes order the
t|'ansactior.s in the same way, they will agree on thc result of merging
identical sets of transactkms. Also, at all tlmes during execution, each
nodc's copy of the datahase always reflects the effiecLs of all the
transactions known tx+ that node, as if they were run according to the
global timcstamp order.

Since messages about diflbrent transactions could arrive at a single
node out of times(amp order, keeping the cupy cutrect cntails freqnent
undoing and redoing of transactions. The SIIARI) system uses an
t|ndo-redti strategy in lieu of any other inter-node concurrency control
mechanism. This strategy allows the nodes to achieve mutual
consistency without relying on extra network connnunicatiou. There
are several implementation ideas which reduce tl)e amotmt of undoing
and redoing that is actually necessary; some 0P,these are discussed in
[BK,SKS].

Problems arise with the simple scheme described st> filr in its
interactions with the external world. Cert;fin transactions will trigger
external actions. For example, in an airline reservation system, a
btx>king transactkm might dctemfine that there are available seats on a
llight, and might cause a passenger robe infi>rmed that he has been
assigned a seat. ARhot|gh the tranm~ction is run at difl~rent nodes, and
possibly undone and redone many times, the external actinn should
only occur once - at the transaction's origin node, when the transaction
is initiated.

When a transaction is rerun at a node, it may be necessary to undo all
its effects ben}re redoing it starting fi'um a difli~rcnt database state. This
requirement is a serious problem Ibr transactkms which trigger external
actinus: it is not possible Ibr the system to undo an external action.
Moreover, when the transaction is redone, it might not choose to trigger
the same external action. In aa aMine reservation system, a booking
qansactkm might decide to inlbrm a passenger of an awfilable seat
when the transaction is initiated. I luwevcr, if this hooking transactlon
is unlhnlc and tllen redone from a database state in which there do not
appear tu be any awfilable seats, it would not grant the seat. Thus, after
the undo and redo, the dalabase would not record the fact that the
passenger had been granted a seat, even though the passenger ha,+
actually been informed that a scat has becn granted. This situatkm
produces an inconsistency between the inft>rmalion ill the datah~Ls 9 and
file infi>rmation sent to the passenger. We wotdd like to avoid this kind
of inconsistency.

Thus, we lind it usefid to limit the interaction oftnmsactioas with the
external wl>rld, by imposiug some extra structure on the transactions..
We reqnirc that all tr+insaclions bc divided inlo two parts: a "decision",
which may read data and trigger external actions, but Inay not modify
the database, and an "update", which may read and write the database
but may not trigger external actkms.

The decision part nf a transaction is invoked only when the
transaction is initiated. This part of the transaction may interact with
file user, giving some indication of the likely outcome of fllc completed
tranm~ction, The resuhs returned by the decision determine an update,
which is then broadcast to all file nodes to be merged into all the copies
of the datab~me. Only the update is broadcast to the other m~es. The
update is the part of the transaction that may be undone and redone:
the decision is executed truly once. Since the decision inwtlves no
changes to the database, just broadcasting the update is era>ugh to
insure mutual consistency of the database copies.

In the example described earlier, the dccision part of the b{mking
transaction could read the database at the local (initiating) node and
determine whether there appear tu> be ayailable seats. If there arc, the
decision would inlbnn the requesting passenger that he has been
granted a seat, and would alsa} cause the system to invoke an update
that wrifes the reservation into tile da~base. When the update is
received by the other nodes, the reservation is also entered into their
copies of the database. Thus, every node wotdd correctly record the
fact that the passenger was granted a seat.

Because of the distribution, and because of the possible need fi>r
trade and redo, the update part of the booking tranm~ction may execute
many times, possibly fiom diflbrcnt database suttes. No matter what
state it is executed fi'om0 the npdaterecords the fitcts that the seat was
assig,ed and the passenger was informed of the assignment. This
update reeoaxl~ die lhcts ¢o~rcctly~gvcn if'it is ex'ecuted fi'om a state ti'om
whicli ~ booking transaction run in its entirety would not/;htx~se to
grant the passenger a seat.

Because decisions are made with incomplete informattion about the
updates of preceding transactkms, it is possible that the database could"
reach an undesirable state, e.g. a state in which a flight is overbooked.
However, users or applicatkm programmers could monitor the database
with additional "compensating" transactions, which invoke appropriate
corrective actilms. In this example, a transaction might check li)r
overbooking, and decide L{)I1 ;I particular passenger t(} unseat. The
deciskm part of this transactioa would inlbrm the passel:get tfiat his
reservatiun has been rescinded. The update would just record, in the
<abase, the fact that the particular passenger has heen unseated. Of
course, applications should be designed to avoid an excessive mmot|nt of
compensation. The correctness conditions described in tltis paper
should help to prtwide application designer5 with guidelines tbr coping
with these and other problems caused by a lack ofserializability.

A preliminary design fi>r SItARI) has been completed, and is
documented in IBK,GI+BKSS,S,SBK,SKS]. Also, a prototype
implemenuJtion is completed.

1.3. Correctness Condit ions
The SItARI) system can be iml~lemented efficiently, and seems

capable of eXlnessiug tile kinds of transaction behavior actually used in
commercial systems. I luwever, ifthc system is going to he widely used,
it sllould bc possible to make precise claims ab~mt its behavior. This
paper provides a formal setting in which such claims can be made, and
uses that framework to prove some intcrestiug cJaims about SI IARI)'s
bChavk>r

I t should ~ dear tb,. S l lARD does not guarantee serializability of
complete transactions. It does gaar, autee serializability of tile update
parts of transactions, but that condition by itself does not say very
much. Wc believe that we can say more abi~ut what is gu:'-:"-teed by
sucl, ~ .syst.cm than ~S~. what we c.a4t concldde f:,,,, ils weak
seriali~,abilityproperties.

We take our cue from some of the intended applications of tl~
system, such as airline reservations, banking, and inventory contro!.
'l'hcse exemplify difflbrent kinds of resource allocation applications. /n
all these cases, there are natural integrity constraints which one would

.1.2

want to define; these arc usuMly expressed as predicates on the
database states. In resource anocation applications, one usefid integrity
constraint would be that the mnnber cq' allocated resources be no
greater than the number of available resources. Another would be that
the nunlber of allocated resonrces bc no less thau the number of
awdlable resources, provided there are enough requests Ibr resonrces.
Both of these conditions are described by predicates on the database
state.

However. one can go fitrther: there is often a "cost" as, sociated with
violations nf ;ill integrity constraint, which can be expressed as a
function tlf' file database state. In resource all(~alion applications, file
cost of over-allocation might be some nunlhel" which is proportional to
the excess of the number of allocated resources over the number of
awlilable resources. The cost of unnecessary under-alkx:atioll might be
proportional to tile minimmu of the number of unsaltislied requests,
and the excess of the nulnber of available resources over the number of
allo~atcd resources, latch of the applications listed has its own
particular cost tUne{ions, characteristic of that application. In each case.
it is desirable to keep the costs as low as possible.

Thus, one kind of property we would like to prove is a bound on the
cost of violations of integrity constraints. Results of the form "With
~'Jbsolulc certainty, tile cost rcmains at mosl c." would be uureasonably
strong in our selling, because of the uncertainty thai arises from delays
and thihlres. Rather, it seems much more appropriate to prove results
of tile Ibrm "With probability p, tile cost remaius at most c." ResulLs of
this feral would be very useful to file application designer, since they
would allow him to adjust his design ill such a way as to Inwer the
expected cost bound.

We believe that results {if this filrln, are most conveniently proved in
two parts: (1) conditimml rcsulLs {if the Ibrm "If certain conditkms
hold, then tile cost i'cmains at most c.", and {2) probability distribution
infbrmation describing the probability that the conditions hold. Most
ofi.en, the conditions mentioned in {I) will bc parametrized, c.g.
"When each transaction is initially executed, tile database state inchldes
the cll}cts of all but at most k of certain kinds of preceding
transactions." Similai'ly, the cost mentioned in the conclusion of (I)
k, ill be parametrizcd. Tht)s, results of type (1) will usually be a class of
related i'esulLs, giving cost bouuds lilr a range of quantitatively ditt~rcnt
;issuulplions about system operation. The probability distribntion
inlbl'lnatitm in (2) will be obtained by an independent analysis, using
inffilrmafion Stlch as delay characteristics {if the message system, and
expected rates of transaction processing. It should be relatively.easy to
coml~ine tile in Ibrnmtion ill (1) and (2) to get probabilistic statements of
the kind we want. Ill this paper, we do not carry otlt tile probabilistic
analysis required in (2), but instead li~cus on the paramctrized
conditional clailns in (1).

Thus. wc obtain results of the filrm "1 f each transaction "sees" all but
at most k of certain kinds of preceding transactions, then the cost
remains at nmst c(k)." Such cost bounds limit the damage which can be
caused when trausactions operate with a bounded amount of missing
infi~rmation. The cost bounds we obtain are, in general, intuitively
natural, rather than extremely surl~rising: our main contribution lies in
the fact that wc can actually li~rmulatc and prove the intuitive chums.
Previonsly, no claims at all could be made when intbrrnation about any
transactions was missing. We call make such claims, and our claims
become stringer (i.e. the integrity constraints are better prcserved)
when infimnation is more complete (i.e. when execntion is closer to
being serializable). In contrast to serializability's all-or-nothing
character, our work has a "continuous" Ilavor: small changes ill
available infi~rnmtion lead to small perturbations in integrity
coustraints.

The question of how the costs get defined still remains to be
addressed. Assignment of c{tsts is somethiug that must be done by
application programmers, who tmderstand file impact of daulbase
behavior on the organization using the systcm. It is likely that the cost
assigmncnt procedure will be complex and approximate. Nevertheless,
it appears to be what is currently used by organizations, implicitly, ill
evahlating die acceptability of dalabasc system behavior. Tllel'elbre, it
secms that such cost assignments should play an impo~mt role in
evaluating database behavior.

Another kind of property which is of interest flit resource-allocation

applications is "fairness". Fairness properties describe conditions
under which a particular request is guaranteed to be granted, or
guaranteiM not to be granted. They also deal with relative priority of"
differcnt requests in obtaining resources. While FIFO order might be
an appropriate fairness condition in a serializ~lble system, weaker
Ihil'ness conditions are inore appropriate in the SIIARI) setting, and ~lr,'~
still of interest.

In this paper, we begin by providing tile basic definitions and
vocabulary for discussing tile operation of systems of this type. "lllen,
fbllowing the ustml organization ill traditional concurl'cncy control
theory, we stndy the corrccmess conditions ill two groups. First,. we
examine c{mdititms which can he guaranteed by tile system alone
{analogous to serializability). Thc system does guarantee to run
transactions in some total order. Itut whereas seriali~bility would
gtmrantce that each transaction has total information about tile,effects
of tile preceding transactions, the S IIA R I) system only guarantees that
each transaction has partial infornmtitm about the preceding
transactions. Second, we cxallline conditions which can be guaranteed
by tile transacti{ms (analogous to pl'cservation of integrity constraints).
'l'ransactions might be required not just to preserve integrity, but aLqo to
improve or restate integrity. These two kinds of conditions, those
gnarantecd by the system and those gtml'antecd by file transactions, can
be combined to allow proof of in{cresting properties (cost botuldS and
fairness) fin a rtmning application.

Wc describe otlr properties and carry out our prooEs ill file cootcxt of
a simple prototypical re~mlce allocation example. We believe dlat this
example contains many o f the elements comnmn to file class o f
applications Ibr which SHA R I) is suited. The types ofconditi{;ns stated
and file techniques Ibr proving their correctness appear likely to extend
to the other applications. Wherever possible, we s~{te conditions and
describe proofs itl a general way. so that they will be directly applicable
to other applications.

Related work includes several other papers which weaken
serializzbility in varions ways IFM, AM, G, B, for example]. Other
work that seems related t~} the SIIARI) approach, although in a very
different context, is the work on "virtual time" [J].

The rest of the paper is organized as filllows. In Section 2, .we
describe olJr database model. Ill Section 3, we-describe conditions that
can be guaranteed by file system alone. In Sectkm 4, wc describe
conditions that can be guaranteed by tile transactions ahmc. In Section
5. we prove some intcrcstiug ctmt bound and thirness proper0es fiw file
example resonrce allocation system. These properties are consequences
of both the conditions guaranteed by the system and those guaranteed
by tile transatctions, lu Section 6, we present our concluskms.

2. Database M o d e l
This section iriclud.es fi~r01a! definitions, of daulbase states, integrity

constraints., and transat~tions.

One goal of the SHARI) design is tt~ keep file distribution and
replication of data hidden fi'om the app|i~atiort. Ill particulOL we
attempt to avoid explicit mention of distributionand replication in our
correctness conditions. Otlr general approach is analogous to the usual
appnmch for describing correctness of distributed databases [BG, for
example]. In the usual approacb, correctness of a distributed database
requircs that b the distributed database give the appearance of a
centralized, serial database. Ill our case, the database will not appear to
be serial, but will still appear to be centralized.

In other database research, certain consistency conditions, called
"integrity constrainB." arc given fi~l" the daUthasc sudes. These
conditkms fit into our model in two ways. 'l'hc most Ihndalnerttal are
modelled as "well-fimnedness" conditions: we will require, that
transactions always preserve these. The other consistency conditions,
which wc call "integrity constraints." represent desirable conditions,
but we do not assume that they arc preserved at all times. To measure
how Ihr a da~thasc su{tc is fi'om satisl),ing the integrity constraints, we
impose cost measures on tile states with respect to each constraint,
where a greater cos! indii:ates that the st{re is further IYom satisfying the
constraint~ One goal of SI IARI) is to minimim the cost of states that
arise during all executkm.

13

Out.transactions are composed of two parts, a "decision part" and an
"ttpdate." As described in the Introduction. the decision part reads
data and may interact with the external world, but does not modil~¢ the
da~tbase. The resulls returned by the decision part determine an
update, which can read and write the database, but does not directly
interact with the external world.

l~xample:

In the I:ly-By-Night airline reservation system, there are
two integrity constrainls in addition to the well-fonnedness
condition already described.

In addition to providing general definitions in dais section, we also
defin'e an airline reservation example, with four transactions. This
example will be used throughout the rest of the paper.

2.1. Sta tes
The database has a set S of possible &ttabase slates, among which a

particular initial state s o is distinguished. There might be some
addilioiaal smlcture on tile database: Ibr example, it might be composed
ofa collccti9n of obje,'ts, where a state wonld consist o f a vahw tbr each
ol)ject. In c~isc X is an object, we let hTs) denote file value of object X
in database;suite s.

Among the database states, there may be some which fitil to satisfy
some fi.mdamental consistency conditions, and we will generally want to
omit them entirely fi'om consideration. Therclbre, we designate certain
of the databasestates as well-Jbrmed. We assume that file initial state is
well-droned.

EgamMe:

Fly-by-Night Airlines is a little-known airline compauy
which has exactly one scheduled llight, Flight I. Flight I is
scheduled to take o11" next Jan. 1 and will take its lucky 100
passengers from Boston to an idyllic resort in the Caribbean.

A da~base state consists of the lbllowing objects:

- A S S I G N E I) - I,IST, a finite ordered list of people w h o
have been notified that they have seals on Flight 1, and

- W A I T - I , I S T , a finite ordered list of people who have
requested seals on Flight 1, but do not have assigned seals.

The initial state has both lists empty~ The wall-formed
states are dmse Milch satisfy the fimdamental consistency
condition that ASSI (JNI ! I) - lAST and W A I T - I,IST must
contain disjoint sets of people.

Integrity Constraint 1: Overbouking should not occur.

Formally, this says that AI, < 100. While this condition
is certainly desirable, we do not expect that it will always
hold. If Flight 1 is overbuokcd, the cost to Fly-by-Night
Airlines is approximately $900 per overbooked passenger.
(This cost cove~ the price of a first-class ticket on an
alternative flight, plus hotel accomodations fur a week in the
Caribbean.) Thus, we define cost(s, lL the cost of state s
which is attributed to violating constraint 1, to be 900 (AI ~s)

/ . lO0).

Integrity Constraint 2: Underbuoking should not occur,
if it is avoidable.

Formally, this says that either AI, > 100 or else Wl. =
0. That is, either all the seats on Flight 1 are assigned or else
there are no waitlisted passengers. If Flight 1 is
tmnecessarily underbookcd, the cost u~ the aidine company
is approximately $300 Ibr each waitlisted passenger who
could have been assigned a scat. (This is the missed profit.)
Thns, we deline cost(s,2), the cost of state s which is
attributed to violating constraint 2, t~'~ be 300 rain(100 / .
AI ,(s), Wl .(s)).

The assigument of costs to database states, fi,r violation of particular
inlegrity conslraints, is a part ofal)l)lication design. In practice, it might
not always be obvious how to assign such costs. It is possible that the
system could help tile application designers, by providing a fi'amework,
in which the designers could detcnnine appropriate cost fimctions]
Cost ftmcti,ms often summarize other inlbrmation which the
application designers might find it easier to think ahout. Ihw instance,
in many interesting cases (such as the airliae reservation system), the
data is ntnncrical, at!:d the cost Ihnctions have some simple (e.g., linear)
relationship to the data wdues. ,Perhaps patterns such as this one could
be incorporated into a language fbr describing cost assigmnents.
Systematizing cost assignments is a subject fi~r future research.

We use the notation AI .(s) as a shorthand fi,r
[ASSIGNI 'D-I . IST(s)I . the numher of people on the assigned list in
state s: similarly, we use Wl.(s) tbr IWAIT-I.IS'I '(s)]. We will
sometimes refi~r twAI. and WI. as if they were objects themselves; they
are similar .to objects, in that they have values in every database state.
I Iowevcr, those wdues are always derived fium tile values of the "real"
objects, A S S I G N E I) - I , I S T a n d W A r I ' - I , I S T .

2.3 . T r a n s a c t i o n s
In this subsectkm, we describe the structure of transactions. As noted

earlier, our transactions are composed of two parts, a "decision part"
and an "update". The decision part reads data and may interact with
the external world, but does not modify the database. "llle results
returned by the decision part determine an update, which can read and
write the da~base, but' does not directly interact with the external
world.

2.2 . Integrity Cons t ra in t s
I:or us, "integril~' constraints" represent desirable conditions, but we

do not assume that they are preserved at all limes. Since infegrity
constraints arc not always preserved, we find it uselid to me~lsure how
lhr a database st:de is from satisl3,ing the integrity constraints.. Ih order
to do this, we inlpose nonnegative rcal-vahled cost uae~lsures on die
states w.ith respect to each constraint, where a greater cost indicates that
the state is, fiwther from satisfying the c,u~straini. A cost of zero
indicates that the constraint is satislied. The to~tl cost.'of a slate is file
sum o f t h e costs associated with all the constraintg,. One goal of
S t lARI) is to minimize the cost of states that arise during an execution.

More precisely, we asstnnc a finite collection of integrity constraints.
indexed by the set I. I,ct ,'ost(.~O denote the cost of database state s
which is attributed to a violation of integrity constrhiut i. The.cost of s,
cqst(s), is then detincd as ZiElCOSt(S,i)

We use the notation X / . Y to denote max(X-Y,0)

Formally, a n update is any mapping fi'om S to S which preserves
well-fi}rmedness. I.el ~ denote the set of updates. I~et ~ denote the ,set
of external actions. A transalction T consists of a decision part I) T which
is a nmpping fiOlll the state set S to 3 X ~ g) . For any database stale s,
I)T(S) is a pair consisting of the ululate which is inw~ked when T is run
t?om s, and the set of external actions triggered by T when T is run
from s. Where no confusion is likely, we will sometimes write Dr(s) to
denote just the update, ignoring the external actions.

"A transaction is designed to execute nonatomically; it "observes"
some state of the database when it is initially run, but then later it
transforms other, possibly difl~-rcnt, slates. The observation of the
database takes place J'9 the decision part, and the state transfimnation in
the update part. b~n~h of these, two parLs is intended to be carried out
atomically. The state that-a transaction ubservcs is to be thought tffas
embodying partial inlbrmatlo.n a.bout past updates, such as file
infonnation known at the local .~ite. at the time the transaction is first
executed. This partial information is used to'decide on the new update
to bc generated.

14

Example:

The airline reservation system has only four transactions:
a REQUEST for a seat which puts the passenger on the
waiting list, a CANCEL transaction, a M O V E - U P
transaction which moves a waitlisted passenger to the
assigned list, and a corresponding M O V E - D O W N
transaction which moves an assigned passenger back to the
waiting list. Note that we are departing slightly from the
example discussed in the Introduction: the effects of the
booking transaction described there are achieved by a
combination of a REQUEST transaction and a M O V E - UP
transaction.

The four transactions are as follows:

(1) REQUEST(P), where P is a person

This transaction is described by the fi)llowing program.

Decision: TRUE
Action:

if P is not on WAIT--LIST and P is not on
ASSIGN El)--I .IST

then add P to end of WArlX-LIST

This program is to be interpreted as follows. For any
state s, the decision mapping D triggers no R [~QI.J]~S I (P)
external action and invokes the same update A. A operates
on any state s' by adding P to the WAIT-LIST provided
that P is not already on either the WAIT-LIST or the
ASSIGNEI)-I .IST, in s'. In case P is on either list in s', A
does nothing. We refer to the unique update A invoked by
the REQUEST(P) transaction, as the request(P)update.

(2) CANCEL(P), whele P is a person

This is described by the following program.

Decision: TRUE
Action:

~fP is on WAIT--LIST
then remove P from WAIT~LIST

if P is on ASSIGNED--LIST
then remove P from ASSIGNED--n-LIST

Again, from any state ~ the decision mapping always

yields the same update. This update, from any state s',
removes P from any list on which it happens to appear. I fP
is not on either list., the update does nothing. We refer to
the unique update invoked by the CANCEL(P).transaction.
as the cance~P) update.

The decision parts of the REQUEST and CANCEL
transactions do not perform any interesting work: they
always invoke the same update, and trigger no external
actions. On the other hand, the following-two transactions
have decision parts that invoke different updates in different
situations, and they sometimes trigger external actions.

(3) MOVE - UP

Decision: AL < 100 and WL > 0 and P is the first person
on WAIT--LIST

External event: inform P.that P is now assigned a seat
Action:

if P is on WAIT--LIST
then

[remove P from WAlT--LIST
add P to end of ASSIGNED--LIST]

Here, the decision part, running from state s, tests to see
whether there is room on the ASSIGNED-LIST and a
person waiting to be assigned. If not, no action is taken. I f
so, the decision part selects a particular person P (the first on
the WAlT-LIST in state s) to be moved up from the
W A H ' - L I S T to the ASSIGNED-LIST. A message is sent
to P, and the update is parametrized by P. From any state s',
the update moves P from the waiting list to the end of the
assigned list, provided that P is actually on the waiting list in
s'. Otherwise (i.e. if P is already on the assigned list, or P is
on neither list), no change occurs. We refer to the update
generated by the M O V E - U P transaction when it selects
person P as the move- up(P) update.

(4) M O V E - DOWN

Decision: AL > 100 and P is the last person on
ASSIGNED--LIST

External event: inform P that P is now waiflisted
Action:

if P is on ASSIGNED--LIST
then

[remove,P from ASSIGNED=LIST
add P to end of WAIT--LIST]

The meaning of this transaction is symmetric ,with the
preceding one. We refer to the update invoked by the

M O V E - DOWN transaction when it selects person P as the
move- down(P) update.

It is clear that all the updates, for all four transactions, preserve well-
formedness, as required.

Note that each of the last two transactions contains two conditionals.
The two conditionals play diffthrent roles. The first conditional in each
case is used to decide which update and external actions will occur. The
second is part of the execution of the update. Also note that the
transactions are designed to observe file database state more than once.
For example, in the M O V E - DOWN transaction, the transacti6n looks
at ASSIGNED-LIST in one state s in order to attempt to select a
person P to move down. Then whenever the move-down(P) update is
executed, ik looks at ASSIGNED-LIST in another state s' to
determine whether to actually move P.

We consider this aii-line reservation system to be a prototype of a
much more general class of resource allocation systems. It seems that
practically all resource allocation systems must have operations of the
four kinds described above: operations that request resources and
cancel those requests, as welt as operations that allocate and deallocate
the resources. Those operations will behave in somewhat different
ways for each application. Here, to be specific, we have made a
particular set of choices, but we expect that many of the ideas in this
paper will carry over to other resource allocation systems.

We introduce some additional notation which will be useful later f6r
describing transactions. If the first component of DT(S) is an update

15

which.maps state s' to state s", we will write T(s,s') = s ' . IfT(s,s') = s",
it means that if T is initially run from state s, it causes the system to
invoke an update which, if it is ever run from state s', will produce state
S ' ~ .

3. Conditions Guaranteed by the System
This section describes conditions that can be guaranteed by the

system alone• i.e. conditions on how the system will run the
transactions. Later, in Section 4, we describe conditions that can be
guaranteed by the transactions alone. Then in Section 5, we combine
these two kinds of conditions to prove properties of an application (the
l='ly-by-Night Airline Reservation System) running on the system.

This approach is roughly analogous to the usual approach in ordinary
concurrency control theory. There, the serializability condition (which
can be guaranteed by the system alone) is combined with the condition
that individual transactions preserve integrity (which can be guaranteed
by the transactions alone), to conclude that reachable database states all
satisfy the integrity constraints.

The first subsection formally describes the basic guarantees made by
SHARD about the way in which transactions are run. SHARD
guarantees that there is some serial order for the transactions which it
runs. The system does not guarantee serializability of the transactions
in this order, but it does guarantee that each transaction "sees" the
result of some subsequcnce of the preceding transactions. While this
condition is fundamental to the semantics of the system, it is too weak
to allow proof of interesting properties.

The second subsection contains refinements of the basic condition'.
Examples of these refinements are transitivity and some specific
requirements on the subsequences of transactions seen by certain other
transactions. The third subsection describes implementation issues. It
shows how SHARD and similar systems can guarantee the conditions
described in the other two subsections.

3.1. The Prefix Subsequence Condition
The system guarantees that there is some serial order for the

transactions which it runs, and that each transaction "sees" the result of
some subsequence of the preceding transactions in this serial order. We
state this condition more formally below.

If s is any sequence we write s. to denote the ith element of s. An
• • . . 1 . . . executton of a set of transactton mstances, consists of a serial ordenng T

for the transaction instances, together with a sequence-A of updates, a
sequence E of sets of external actions, a sequence ~ o f finite sequences
of integers, and two sequences, s and L of database states. An execution
is required to satisfy the following conditions.

1. For i _> 1, ~i is a subsequence of the prefix sequence
{1,...,i-i}.

2. For i > 0, t i is the state obtained by applying the sequence
of updates designated by '~ . to the initial database state s 0.

That is, t i = AikC..Ail(S0)),'wl~ere ~i+l = {il,...,ik}.

3. For i _> 1, (Ai,Ei) = DTi(ti.1).

4. For i > 0, each s i is the state obtained by applying the
sequence of updates A1,...,Ai, to s 0. That is, s i =
Ai(..-Ai(So)-

These conditions mean the following. (1) says that each transaction
T. has a corresponding subsequence ~ of its prefix of preceding

1 . • I • .

transacttons: these are the preceding transactions that ~t "sees". (2) says
that each state t i describes the effects of the updates of T . . ' s prefix

• . I A - I .

subsequence; it Is the state of the database whteh T i , 1 "sees' when Its
decision part is run. (3) says that the update and external actions
produced by T i are determined by its observed state t... Finally (4)
says that the states s~ describe the actual effect ~hbt n e c ~ r i l y
observable by any o f the transactions) of running the complete
sequence of updates generated by all transactions through T i.

The system guarantees to simulate (in some sense which we do not
specify here) executions of those transactions which are submitted to it.
In particular, it guarantees that the external actions described by
sequence E are actually performed.

We say that the apparent state before transaction Ti+ 1 is t r and that
the apparent state after transaction Ti.+l is state "ri+l(t~,ti). Also, the
actual state bejbre transaction T.+ 1 i~ s., and the acIual state a~er
transaction Ti+ 1 is state si+ l = "l~+;(t,si]~ We extend this notation to
nonempty consecutive sequences oJf [ransactions in place of single
transactions: the apparent and actual states before the sequence are just
the apparent and actual states, respectively, before the first transaction
in the sequence, while the apparent and actual states after the sequence
are just the apparent and actual states, respectively, after the last
transaction in the sequence. We say that each of the s i is reachable from
s n in the given execution. We call the state s i 1 the complete prefix state
f6r T i in the given execution.

Let ctt = {i,i+l,...} be a sequence of consecutive indices. Then °d, is
said to be atomic in an execution provided that the following hold. (a)
Each U~,j £ ctt• includes each of the other transactions Uv, k E °d,, k <j,
in its prefix subsequence, and (b) all transactions U., j E ct.t, have the
same subset of the transactions with indices less than i in their prefix
subsequences. Atomicity describes the running of several consecutive
transactions without allowing new information about the database to
intervene.

The prefix subsequence condition only guarantees that each
transaction sees the result of some subsequence of its prefix. This
condition does not rule out trivial solutions, such as every transaction
seeing the initial database state (the result of the empty subsequence).
In order to insure use fill behavior, we would like the system to allow
transactions to see prefixes which are as large as possible. Some
refinements of the prefix subsequence condition designed to insure
lai-ge prefixes are discussed in the following subsection.

Example"

This example shows an execution of the transactions
from the airline reservation system, acting non-setializably,
but according to the prefix subsequence condition specified
above. The left-hand column lists the successive T i, while
the right-hand column lists the corresponding A r

T A

REQUEST&l) request(P1)
MOVE--UP move--up(P1)
REQUEST(P2) request(P2)
MOVE--UP move---up(P2)

REQUEST(P102) request(Pl02)
MOVE--UP move---up(P102)
MOVE--DOWN move--down(P101)
CANCEL(PI) cancel(P1)

This execution can be obtained by having all the
requests, the first 100 M O V E - U P transactions, and the
cancellation operate seeing complete prefixes. The next two

M O V E - UP transactions operate with incomplete prefixes.
The first sees the results of tile first 99 REQUESTS and
MOVE-UPS , plus the REQUEST for P!01, while the
second sees the results of the first 99 REQUESTS and
MOVE-UPS. nlus the REQUEST for P10Z Since each
observes a state with only 99 people on the assigned list,
each chooses m move a person up. Similarly, the
M O V E - D O W N operates with an incomplete prefix. It
sees the results of the first 202 transactions only, but not the
results of the two transactions involving P102. Thus, it sees

16

the assigned list with 101 people, and moves PIOI, me
person it observes to be last, down.

Now consider the successive reachable states s r The
state aRer the first 204 transactions, s04, has 102 people on
the assigned: list, in numerical order, and no one on the
waiting list. After the MOVE-DOWN, s20 s has P101 on
the waiting list and P1,P2,...,P100,P102 in order on the
assigned list. The final cancellation then leaves the assigned
list with exactly 100 passengers: P2,...,Pt0O,P102.

This execution differs from a serializable execution in at
least two ways. First, there is a reachable state (s204) for
which the overbooking cost is nonzero. Second, the
execution is not entirely "fair" in that P102 requests a seat
after PI01 (and his request is processed aRer P101's), but
P102 is allowed to remain on the assigned list while P101 is
moved down.

Notice that there is a danger of "thrashing" in this system. If a
M O V E - U P transaction does not see a previous request and
corresponding M O V E - U P , say for person P, it may move another
person Q to the assigned list. A later MOVE-DOWN transaction
might operate with a complete prefix, observe an overbooking, and
move Q down. Another M O V E - U P might then execute, seeing the
move-down(Q) update, but Still not seeing the updates missed by the
previous M O V E-UP; it may then reassign Q. A later
MOVE- DOWN might then move Q back down, and so on. This kind
of thrashing is very"undesirabl¢, not just because of its obvious
inefficiency, but because of'.the external effects of the conflicting
transactions.

transaction in a high-finance banking system: tt mlglat-0e tieslm0'le for
audits to see die effects of all the preceding deposit, withdrawal and
transfer transactions. Although we have not done so in this paper, it
should be possible tceprove strong correctness results about transactions
running with complete prefixes.

Requiting a complete prefix is very restrictive. There are some
variants on this condition which are less restrictive but still lead to some
very useful properties. For example, we might limit the number of
previous transactions which arc not visible to a particular transaction.
Namely, transaction T is said to be k-complete in execution e provided
that, in e, T sees the results of all but at most k of the preceding
transactions. The k-completeness condition, for a particular k, does not
seem to be a natural requirement to impose on an implementation,
since in general, it seems difficult to guarantee a reliable value for k. (It
might be possible to obtain an esdmate of this value by considering
known characteristics of the message system together with the expected
rate of transaction processing.) However, k-completeness seems to be
more useful as a hypothesis for conditional claims which describe the
behavior of the system in different situations, for different values of k.

Another kind of condition which limits the amount of concurrency is
as follows. Let G be a group of transacuon instances. We say that
group G is centralized in execution e provided that, in e, each of the
uansactions in G includes in its prefix subsequence all the others from
G which precede it in the complete prefix. For example, it might be
useful to centralize all file transactions which could cause the cost of a
particular integrity constraint to become nonzero (e.g. all the
withdrawal tr/msactions, in a banking system). This strategy might be
used to guarantee that this cost can never become nonzertx
Alternatively, it might be useful to centralize all the transactions which
affect a particular object, or a particular portion of the database. This
strategy might be used to guarantee serializable execution for those
objects or portions of the database.

3.2. Additional Conditions
In this subsection, we suggest some" conditions which say that

particular transactions must include at least certain other transactions in
their prefix subsequences. The conditions presented here are meant to
6e examples only, and are not necessarily intended to hold for all
SHARD-like systems and all transactions. These restrictions are useful
in guaranteeing certain properties of executions, as we demonstrate in
Section 5. On the other hand, they reduce system availability. System
and application designers must weigh the correctness gained by
restricting the prefix subsequences against the reductions in availability.

First, we say that execution e is transitive provided that the'follOwing
condition holds. Let T, T and T" .M transactions (i.e. transaction
instances) occurring in e. If q" is in the prefix subsequence of T a n d T "
is in the prefix subsequence of'I", then T ' is in the prefix subsequenc¢
of T. Transitivity is a natural requirement, ensuring a basic sort of
consistency among the prefixes seen by related transactions.

Example"
The execution in the "previous example fails to be

transitive, but for a trivial reason. Namely, the
REQUEST(P101) and REQUEST(P102) transactions are
assumed to execute with complete prefixes. Since the
M O V E - U P which generates move-up(P101) sees the
effects of REQUEST(P101), transitivity would imply that
this M O V E - UP should also see a complete prefix, which is
not what happens. However, note that REQUEST and
CANCEL transactions have only trivial decision parts, so
they would cause the same updates to be generated no
matter what prefix they see. Therefore, we can .modify the
execution slightly, assigning each of REQUEST(P101) and
REQUEST(P102) the prefix subsequence consisting of the
first 198 transactions, without changing the updates
generated. The resulting modified execution-is transitive.

Another restriction which might be useful in some cases is to require
that some particular transaction T must run with the complete prefix.
This might be useful for very crucial transactions, say for art audit

If the system guarantees that transactions in G are centralized, it
might be useful for the application programmers and users to imagine
the existence of a centralized "agent" for G. For instance, it might be
useful for users of the airline system to think of a single agent who
manages all the MOVE-UPs and MOVE-DOWNs, i.e. all the
movement between WAIT-LIST and ASSIGNED-LIST. This
abstraction could be useful even if there is actually no such centralized
agent, but rather if (using some locking strategy, for example), the agent
is implemented in a distributed way.

Some specific groupings for the airline reservation system are
discussed in detail in Section 5, along with examples of correctness
conditions that result from this requirement.

The final condition presupposes a notion of time. A timed execution
is an execution, together with a nonnegative real number ("real timer')
for each transaction instance. These real times are intended to model
the times at which the transactions are initiated. In the event that the
transaction order is determined by timestamps, these real times need
not be the same as the timestamps, and in fact the real times need not
ev.en be ordered in the same way as the transaction sequence. However,
if the order of real times is monotonic, we say that the timed execution
is orderly. An execution is said to have t-bounded delay provided that
the prefix subsequence of each transaction T includes every transaction
in the prefix whose real time is at least t smaller than T's' real time.
Thus, each~transaction can see the effect of every other transaction that
precedes it in the transaction ordering and is not too recent.

3.3. Implementation Issues
It is very natural to use the conditions described in the preceding

subsections as tile correctness conditions for the distributed system
described in the Introduction. '['he system is able to assign timestamps
in some way so as to determine a total ordering of the transactions. The
,transactions are initially executed at one node, and then information
about the transactions is sent to the other nodes. The nodes can undo
and redo actions in order to ensure that as new updates are seen, each
succeeding update has the effect that it would if executed in a complete
prefix state. There are a number of optimizations which allow the
system to avoid undoing large numbers of transactions [BK], and
optimized storage structures make this process even more efficient
[SKS].

17

The updates only are sent around, and are undone and redone to
yield a sequential ordering. The fact that the decision parts are not
redone means that the system does not satisfy the usual notion of
serializability; however, the system does satisfy the prefix subsequence
property, i.e. that every transaction sees the effects o fa subsequence of
its prefix.

It should be clear that an appropriate distributed communication
protocol t;uuid guarmltec transitivity, perhaps by piggybacking
information about known transactions on messages.

There are a number of ways that a system could guarantee the
subsequence restrictions described in the previous subsection. For
instance, consider centralization of the transactions in G. It is possible
to force all the transactions in G to run at the same node of a
distributed system. Alternatively, a transaction in G with timestamp t
might have to wait till it receives messages from all nodes saying "I will
issue no more G transactions with timestamp earlier than t." This type
of concurrency control might significantly reduce system availability.
The probabilistic concurrency control methods of IS] provide other
techniques for obtaining centralization.

4. Conditions Guaranteed by the Transactions
This section describes conditions which might he guaranteed by the

transactions, analogous to preservation of integrity constraints in the
usual development. We do not intend to require that all of these
conditions hold for all sets of transactions; rather, we expect different
conditions to be useful in different applications. We attempt to
formulate the conditions in a general way, so that they might apply to
different resource allocation applications. We describe how the
conditions apply to the airline reservation system.

The first subsection defines some conditions involving costs of
database states. Update parts of transactions are analyzed to determine
whether or not they have the potential of increasing the cost, or are
guaranteed to decrease the cost, with respect to a particular integrity
constraint.

The second subsection discusses conditions involving fairness, a
propexty particularly important in applications in which certain entities
compete for access to some resource or service. We define priority
among competing entities, and prove that certain conditions ensure that
transactions preserve priority.

We define an application to consist of a collection of database states,
(including designation of initial and well-formed states), their integrity
constraint infbrrnation (including costs), and a set of transactions. The
properties we describe in this section are properties of applications.

4.1. Conditions Involving Costs
We say that an application is initially zero cost provided that Cost(s a)

= 0. That is, all the integrity constraints are satisfied in the inifi]il
database state. Clearly, the airline system is initially zero cost.

Another interesting property would be that a transaction T "preserves
integrity", just as it is required to do in the usual concurrency control
theory. A formal statement of this prupelty might be: "If s is a well-
formed state with cost(s) = 0, and if 'l~s,s) = s', then cost(s') = 0."
This says that ifT runs so that it changes the same state that it sees, then
it does not cause a violation of the integrity constraints if they were
previously satisfied. (We ntight say that T does not cause a violation of
the integrity constraints "on purpose".) In the present setting, a more
general kind of condition is appropriate, which also involves the

oenavlor ot transactions when the costs are nonzero.

We begin by describing a very strong property of a transaction T that
says that there is no possibility of T ever causing an increase in the cost
for constraint i. An update A is said to he increasing for constraint i
provided that there is some well-formed s for which cost(A(s),i) >
cost(s,i). That is. the update has the potential of increasing the cost of

constraint l, although it neea not actually do so m all cimumstances.
Otherwise, i.e. if the update could never increase the cost o f eonst(ain(i,
A is said to be non-increasing for constraint i. A trantsaction Tis ~jCe for
constraint i provided that the followit~gholds.' l f s i s a well-formed state
and D.,.(s) = A, then A is nonincreasing for constraiht ~. Otherwise i e
iftherd is some well-formed s for which DEs) is increasing, then .we~,
that T is unsafe for constraint i.

Example:

In the airline system, the request(P) update is
nonincreasing for the overbooking constraint, but is
increasing for the underbooking constraint, since in states
with fewer than 100 assigned people, and ~vith P not already
waitlisted or assigned, this request causes an increase in cost
(of $300). The cancel(P) update is also noninci'easingfor the
overbooking constraint, but is increasing for the
underbooking constraint, since in 'states with at most 100
assigned people (including l) a n d sufficiently many
waitlisted people, this cancellation causes an increase in cost
(of $300)• On the other hand, the move-up(P) update is
increasing for the overbooking constraint, since in states
with at least 100 assigned people, this move-up causes an
increase in cost (of $900)• However, it is nonincreasing for
the underbooking constraint. Finally, the move-down(P)
update is nonincreasing for the overbooking constraint, but
is increasing for the underbookirig constraint singe in states
with at most 100 assigned people, this move-down'causes an
increase in cost (of $300).

Example:

The only updates that are increasing for the o~, oooking
constraint are those of the form move-up(P). Since only
the M O V E - U P transaction can generate a move-up(P)
Update, the other transactions are all safe for the
overbooking constraipt. However, the M O V E - U P
transaction is unsafe for the overbooking constraint. On ~ e
other hand, the MOVE~-UP transaction is safe for the
underl~ooking constraint, but the other three transactions
are all unsafe for the underbooking constraint.

A le~ restrictive, interesting property to consider might be intuitively

described as: "Transaction T does not incfease the cost o f integrity
constraint i on purpose." One simple formal way of stating this
property is: " l f s is a well-formed state and if T(s,s) = s', then cost(s',i)
< cost(s,i)." For technical reasons, we define a slightly stronger
formulation, as follows.

We say that transaction T preserves the cost of constraint i provided
that the following holds, l f s is a well-formed state, T(s,s) = s', DT(s) =
A and A is increa.~ing for constraint i, then cost(s',i) = 0. "Ihat is, the
decision part of a transaction T will only invoke an update part that
(potentially) increases the cost of constraint i, when the state that T
believes will exist after the update runs, will have a cost of 0 for
constraint i. It is easy to see that this condition implies the simpler

• formulation described above. Also, it is obvious that if T is safe for
constraint i, then it preserves constraint i.

Example:

We show that all transactions prese~ v e the cost o f the.
overbooking constraint. Since all transacuons except for the
M O V E - U P transaction are safe for the overbooking
constraint, they preserve the overbooking constraint. The
M O V E - U P transaction is unsure ~ the overbooking
constraint, so more argument is required in this case. The
M O V E - U P transaction only generates a m o v e - u p (P)
update from a state s for which.AL(s) < 100 and WL~z) k0,
Then the state s' resulting from applying the move-up(P)

18

update to s has AL(s') < 100, and thus cost(s',l) = 0.

Now consider the underbooking constraint. The
M O V E - U P transaction is safe for the underbooking
constraint, and hence preserves the cost of the
underbooking constraint. We also show that the
M O V E - D O W N transaction preserves the cost of the
underbooking constraint. The MOVE-DOWN transaction
only generates an update which is incr.easing f o r the
underbooking constraint from a state s for which AL(s) >
100. Then the state.s' resulting from applying the update to
s has AL(s') ~],ll0. and thus cost(s',2) = 0.

On the other nano, it is easy to see that REQUEST(P)
and CANCEL(Pr transactions do not preserve the cost o f
the underbooking constramt~

Since we are working in a setting in which integrity constraints are
not alwayssatisfied, i.e. costs may be nonzero, another useful property
of transactions might be that they actually reduce the cost, not just
preserve it. A transaction which reduces the Cost for an integrity
constraint can be regarded as a "compensa!:ing. transaction" for
violations of that integrity constraint. One possible tbonulation is as
follows. We say that transaction T cbmpensate~ for constraint i
provided that the following holds. If s ib well-formed,:T(s,s) % s', and

¢ost(s,i) > 0, then cost(s',i) < cost(s,i).

Lemma I: Assume that all costs are integral. Assume that
T compensates for constraint i. Then for any well-formed s,
either cost(s,i) = 0, or there is ~ some integer k > 0 such that
Tts,s) = s 1, TOrS l) = s2,...,T(st.rSk.1) = s k and cost(svi) =
0.

Proof: By repeated application of the definition. |

This lemma implies that if compensating transactions are run
atomically from any point in an execution, using any available prefix
subsequence, they will eventually result in an apparent state in which
the cost of the constraint is 0. This idea can be stated formally as
follows.

Corollary 2: Assume that all costs are integral. Assume
that T compensates for constraint i. Let e be any finite
execution, q.l, any subscquenee of the indices of e, and t the
result of the updates indexed by 'M,, applied to s 0.

Then either cost(t,i) = 0, or else there is an extension o fe
to another execution, by an atomic suffix consisting o f ' F s
only, such that the prefix subsequence of the first T in the
suffix is q.l,, t' is the apparent state after the last transaction,
and cost(t',i) = 0.

Example:

It is easy to see that the M O V E - U P transaction
compensates for the underbooking constraint, and the
M O V E - DOWN transaction compensates for the
overbooking constraint. In fact, it is possible to show that
from any well-formed state, any atomic sequence of
intermingled M O V E - UP and M O V E - DOWN
transactions which contain sufficiently many of each will
eventually reach an apparent cost-of 0 for both integrity
constraints.

Our last property involving costs,.bounds the increase in cost that can
~sul t from the execution of a bounded number of transactions. First,
we say that s < , t provided that there is a sequence of updates leading

l o from s o to s, ~ a subsequence of that seque.nce containino all but at
most k of the updates, such that the result of the subsequence applied
to s n is t. That is, state t contains all the information in state s, except
posglbly for the effects of at most k updates. Then we say that-function

r oounas the cost increase tbr imegrity constraint i provided that the
following holds. For well-formed states s and t, if s <k t, then cost(s,i)
_< cost(t,i) + f(k). Thus, f(k) bounds the incre~d in the cost of
integrity constraint i that can be incurred by k transactions.

Example:

in me airline resereauon systeml it is easy t o . e toa t

900k bounds the cost increase for the overbooking
constraint, while 300k bounds the cost increase for the
undcrbooking constraint,

Lemma 3: Let qL be an atomic subsequence in execution
e. Let s be the actual state before %, and s' the actual state
after cLt. Let t be the apparent state before %, and t' the
apparent state after °d,. Ifs <--t t, then s' <--k t'.

Proof: Straightforward, |

4.2. Conditions Involving Fairness
Another property of interest in some applications, i.e. those in which

certain entities compete for access to some resource or service, is
"fairness". In order to be able to state fairness conditions, we extend
our application model to include the competing entities. In each state,
we designate certain entities as "known" (i.e. currently competing).
Also, in each state, we assume that there is a partial order on the known
entities which describes priority.

We say that transaction T preserves priority provided that the
following condition holds. If s is a well-formed state and T(s,s) = s',
then: (a) If P and Q are both known in s and also in s', and if P
precedes Q in s, then P precedes Q in s'. (b) I fP is known in s and Q is
not, and P and Q are both known in s', then P precedes Q in s'.

Example:

In our example, the people are the competing entitles.
In any state s, the known people are those on the
WAlT-LIST or the ASSIGNED-LIST, in s. For P and Q
known in s, we define P < Q to mean that either P precede~
Q on the WAIT-LIST, or P precedeg Q on the
ASSIGNED-LIST, or else P is on the ASSIGNED-LIST
and Q is on the WAIT-LIST, Then all of the transactions
preserve priority.

A stronger property is also of interest. We say that transaction T
strongly preserves priority provided that the following condition holds.
If sand s' are well-formed states and T(s,s') = s", then: (a) I fP and Q
are both known in s' and also in s", and if P precedes Q in s', then P
precedes Q in s". (b) I fP is known in s' and Q is not, and P and Qare
both known in s", then P precedes Q in s".

Example:

It is easy to see that the REQUEST and CANCEL
transactions strongly preserve priority, but the MOVE- UP
or M O V E - D O W N transactions do not. For example,
consider the M O V E - UP transaction. Assume that in state
s, person P is first on the WAIT-LIST, and that transaction
q\ rub from state s, generates a move-up(P) update. In

state s', P is on the W A I T - LIST but is not the first person;
person Q is first. Then the move-up(P) action still moves P
to the end of the ASSIGN ED-LIST, in this case moving it
ahead of Q. We have P > Q in state s', but P < Q in state s'~.
Thus, the M O V E - U P transaction is capable of changing
the relative priorities of P and Q.

Similar remarks hold for the MOVE-DOWN
transaction.

19

5. Properties of the Airline Reservation System
This section illustrates how the ideas presented in the previous

sections can be used to prove interesting properties of executions of a
particular application, the Fly-by-Night Airline System. Where it is
possible, we state the results in a general way, so that they might later
be applied to other examples.

Proving properties of executions of SHARD-like systems is far more
difficult than for systems that preserve serializability. It is necessary to
consider how a transaction's updates will execute on arbitrary well-
formed database states, not just the database state seen by the decision
part. With current techniques, it is not easy to understand how
transactions and updates will behave in all possible situations, just by
examining the transaction code. Even some of the relatively simple-
sounding results in ~his sectionhave proofs that are somewhat delicate;
Our hope is that more experience with examples and proofs of this sort
will eventually make the task easier.

The first subsection gives a brief discussion of some polic~, decisions
affecting priority, that were embodied in the application design. The
second subsection proves upper bounds on the costs of database states
that could result from running the airline reservation system. All the
bounds in this subsection are proved using the assumption that
transactions see the effects of all but at most k of the preceding
transactions. The cost bounds are stated in terms of this k. The third
subsection refines the necessary conditions for obtaining these cost
bounds and sharpens the bounds. The results in this subsection require
only that &ansactions see the results of certain critical preceding
transactions;rather than arbitrary transactions.

The fourth subsection proves results which rely on "centralization"
assumptior~s, i.e. that some transactions see all of the preceding
transactions of a certain type. Using centralization, we prove that some
integrity constraints can never be violated. The final subsection proves
some fairness properties.

5.1. Policy Decisions
Transactions in every application embody certain policy decisions.

This subsection contains two examples which illustrate the policy
decisions embodied in the Fly-by-Night System.

Example:

Suppose that two REQUEST(P) transactions occur
without an intervening CANCEI~P). Both REQUEST(P)
transactions generate request(P) updates. At some point, it
might be necessary to determine the effect of a sequence of
updates including both of these request(P) updates. Then
the second request(P) would be applied to a state s which
reflects the previous occurrence of the earlier request(P).
Thus, P might be in W A I T - LIST(s) or
ASSIGNED- LIST(s); in this case, the update is defined to
have no effect. The policy embodied in this definition is
that if a person P is already on the WAIT-LIST or
ASSIGNED--LIST, and makes a duplicate request, the
new request does not change P's original priority.
Alternative policy decisions might cause the second request
to alter the priority somehow.

Example:

It is possible for two M O V E - U P transactions to occur
which invoke move-up(P) updates for the same P, without
an intervening CANCEL(P), or M O V E - D O W N which
invokes a m o v e - down(P) update. This could happen if the
second M O V E - UP transaction is initiated without the first
in its prefix subsequence. At some point, it might be
necessary to determine the effect of a sequence of updates
including both of these move-up(P) updates. Then the
second move-up{P) would be applied to a state s which

reflt.~s the previous occurrence of the earlier request(P).
Then P could be in ASSIGNED- LISq (s); in this case, the
update has no effect. The policy embodied in this definition
is that i fa person P is already on the ASSIGNED-LIST, a
new attempt to assign him a seat does not alter P's previous
priority. Alternative policy decisibns might cause the
second move-up(P) to alter the priority.

5.2. Cost Bounds Resulting from k-Completeness
In this subsection, we prove upper bounds on the costs of the states

reachable by running the airline system. All the bounds in this
subsection are proved using the k-completeness assumption, i.e. the
assumption that transactions see the effects of all but at most k of the
preceding transactions. We begin with some preliminary lemmas.

Lenuna 4: Let e be an execution, and T a k-complete
transaction instance in e. Let s be the actual state before T
and s" the actual state after T, in e. Let t be the apparent
state before T and t' the apparent state aRer T.

L Then s --<k t and s' <~ t'.

2. Let i be a constraint, and assume that f bounds the
cost of constraint i. Then cost(s,i) < cost(t,i) + f(k)
and cost(s',i) < cost(t',i) + f(k).

Proof: Straightforward. I

The following theorem shows that k-complete transactions that
preserve the cost of a constraint are guaranteed not to make the cost of
that constraint larger, (except in the special case that the cost is very
small).

Theorem 5: Let e be an execution, and T a k-complete
transaction instance in e. Let i be a constraint, and assume
that f bounds the cost for constraint i. Assume that T
preserves the cost of constraint i. Let s be the actual state
before T and s' the actual state after T, in e. Then either
cost(s',i) < cost(s,i) or else cost(s',i) < f(k).

Proof: Let t be the apparent state before T and t' the
apparent state after T. Then t' = T(t,t). Assume that T
invokes action A in execution e, i.e. that DT(t) = A.

Assume that cnst(s',i) > eost(s,i). Then A is increasing for
constraint i. Since T preserves the cost of constraint i, it
follows that cost(t',i) = 0. By Lcmma 4, cost(s ' , i)< cost(t',i)
+ f(k) = f(k). i

We can specialize the preccding results to obtain bounds for the
airline system.

Corollary 6: I.ct e be an execution of the airline system,
and T a k-complete transaction instance in e. Let s be the
actual state before T and s' the actual state after T, in e.

1. If T is any transaction, then either cost(s',1) <
cost(s,1) or else cost(s',l) < 900k.

2.1f T is a MOVE-UP or MOVE-DOWN
transaction, then either cost(s',2) < cost(s,2) or else
cost(s',2) <_ 30Ok.

Proof:

1. By Lemma 5, the fact that all transactions preserve
the overbooking constraint, and the fact that 900k
bounds the cost increase for the overbooking
constraint.

20

2. By Lemma 5, the fact that M O V E - U P and
M O V E - DOWN transactions preserve the
underbooking constraint, and the fact that 300k
bounds the cost increase for the underbooking
constraint.

The previous results are enough to yield an upper bound for the
overbonking cost (although not for the tuiderbooking cost) in all

reachable states. We obtain such an upper bound for the overbooki~
cost as a special case of the following more general theorem.

Theorem 7: Assume that the application has the property
that all transactions preserve the cost of constraint i. Let o
be an execution. Let f bound the cost of constraint i.
Assume that all occurrences of transactions that are unsafe
for constraint i, in e, are k-complete. Let s b e any state
reachable h, e. Then cost(s,i) .~ f(k).

Proof: The proof is by induction on the length of e. The
basis, length 0, is immediate. For the inductive step, assume
that the length of e is at least 1, and that T is the last
transaction in e. Let s be the actual state before T, and s' the
actual state after T.

The inductive assumption implies that cost(s,i) <_ f(k). I f
cost(s',i) _< cost(s,i), the claim is immediate. So assume that
cost(s',i)) cost(s,i); then T is unsafe for constraint i, and so T
is k-complete in e, by assumption. Then Theorem 5 implies
that cost(s',!) < f(k). as needed. |

Our invariant upper bound on the overbooking cost follows as a
corollary.

Corollary 8: Let e be an execution of the airline system.
Assume that all M O V E - U P transactions are k-complete in
e. Let g be any state reachable in e. Then cn~t.(s,1) < 900k.

Proof: By Theorem 7, the fact that all transactions
preserve the overbooking constraint, the fact that" 900k
bounds the cost increase for the overbooking constraint, and
the fact that only M O V E - U P transactions are unsafe for
the overbookingconstraint- |

We would also like to obtain an analogous invariant upper bound for
the underbooking cost. Unfortunately, such a bound does not hold for
our airline system, since it can fail in an execution where many requests
or cancellations arrive in rapid succession without sufficient intervening
M O V E - UPs. In order to prove an upper bound on the underbooking
cost, it appears to be necessary' to assume something about the
M O V E - UP transactions occurring sufficiently frequently.

To be specific, we define a partition ~ of the indices ofe into groups
consisting of consecutive indices to be a grouping of e for constraint i
provided that each group satisfies one of the following.
(a) It consists of exactly one index j, and transaction '1~ preserves
constraint i.
(b) l f t is the apparent state after the group, then cost(O) = 0.
That is. we will consider instances of transactions that preserve the cost
of co,~straint i individually, but we will consider other transactions
together, paying special attention to points during the execution where
the transactions believe they have reduced the cost of the constraint to
0. Of course, not every execution will have such a grouping, but if the
application contains a compensating transaction for constraint i,
Lemma 2 implies that executions with such g~oupings are abundant.

The normal states of e, with respect to a particular grouping, are just
those states which are reachable after the groups, i.e. the actual states
after the groups.

The next theorem says that, if we restrict attention to non nal states
only, an invariant upper bound holds for the underbooking constraint.

Theorem 9: Let e be an execution and (~ a grouping of e
for constraint i. Assume that fbounds the cost of constraint
i. Assume that all transactions that preserve the cost of i, as
well as all transactions that occur at the ends ofgronps, are
k-complete in e. Let s be any normal state reachable in e.
Then cost(s,i) < f(k).

Proof: By induction on the length of e. The basis, length
0, is immediate. For the inductive step, assume that the
length o fe is at least 1, and that T is the last transaction in e.
Let s be the actual state before T, and s' the actual state after
T. Let t be the apparent state before T, and t' the apparent
state after T. There are only two cases that need to be
considered.

I f T is the last transaction in a group, then cost(t',i) = 0.
Since T is k-complete, Lemma 4 implies that cost(s',i)
eost(t',i) + f(k), = f(k), as needed.

Otherwise, T is a transaction that preserves the cost of
constraint i, and occurs alone in a group. Then s is a normal
state in e. '/'he inductive assumption implies that cost(s,i) <
f(k). If cost(s',i) < cost(s,i), the claim is immediate. So
assume that cost(s',i) > cost(s,i). Then Theorem 5 implies
that eost(s',i) < f(k), as needed. Ill

The preceding theorem specializes immediately to our example. The
REQUEST and CANCEL transactions are the ones that do not
preserve the underbooking constraint, while the M O V E - U P
transaction compensates for that constraint. Thus, executions which
have groupings for the underbooking constraint can be constructed by
including a sequence of M O V E - U P transactions immediately after
each REQUEST and after each CANCEL transaction.

Corollary 10: Let e be an execution and ~ a grouping o fe
for the underbooking constraint. Assume that. all
M O V E - U P and M O V E - D O W N transactions, as well as
all transactions that occur at the ends of groups, are k-
complete in e. Let s be any normal state reachable in e.
Then cost(s,2) < 300k.

Thus, under suitable k-completeness assumptions, combined with
assumptions about frequency of compensating transactions, we can
prove invariant upper bounds on the costs in all reachable states (or all
normal reachable states).

"l'he ideas used to prove the orecedin$, results can be used to say

more. Consider an execution e in which costs become very large
(because k-completeness or frequency asi;umptions fail). If there is ever
a time during the execution after which good completeness and
frequency properties begin to hold, it is easy to see that correspondingly
good upper botinds will be reestablished. For instance, we can get a
result of this type for the underbooking constraint, using the ideas of
Corollary 10. If we assume that the required transactions are k-
complete from some point on in the execution, then (once the' next
compensating group has occurred), the underbooking cost satisfies an
upper bound of 300k. On the.other hand, if we want tO obtain a similar
result for the overbooking cost, we carinot base it on the simple ideas of
Corollary 8. Rather, we would have to use ideas similar to those u/g"od
for the underbooking cost. At some point after k-completeness begins
to hold in the execution, we would hypothesize a group of
MOVE-DOWNs, bringing the apparent overbooking cost to 0, in
order to compensate for any excess overbooking cost. With such a
hypothesis, an eventual 900k bound on the overbooking cost could be
proved. We omit formal statements of these results here.

21

It is possible to combine the results of Corollaries 8 and 10 to get a
single invariant upper bound on the total cost for the airline system.
For example, we obtain the following.

Corollary 11: Let e be an execution and ~ a grouping o fe
for the underbooking 'constraint. Assume that all
M O V E - U P and M O V E - D O W N transactions, as well as
all transactions that occur at the ends of groups, are k-
complete in e. Let s be any normal state reachable in e.
Then cost(s) < 900k.

Proof: Immediate from Corollaries 8, 10 and the fact that
every weLl-formed state has either cost(s,1) = 0 or cost(s,2)
= 0 . |

We finish this subsection with a closer look at the kinds of
improvements that are guaranteed by compensating transactions. For
example, it would b¢ nice to have a temma which says that a k-complete
transaction Which Compensates for constraint i, is guaranteed to actually
improve the •cost of constraint i, unless that cost is small.
Unfortunately,'this is.not true. Although the compensating transaction
might "try" to improve matters, it is possible that, because of missing
information from its own prefix, it might not succeed in doing so, For
example, a MO~6E .-- DOWN transaction might observe too many
people o n the A:SSIGNED-LIST, and might therefore invoke a

.move-down update. BUt if it happens to invoke a move-down for a
person who.had actually cancelled in the interim, that move -down will
not improve the actual cost.

We do know, however, that running the transaction several t imesin
succession (atomically) can guarantee actual improvement. More
precisely, we obtain the following.

Lemma 12: Assume that all costs are integral. Let fbound
the cost of constraint i. Assume that T compensates for
constraint i. Let e be any finite execu t i~ q.l, any
subsequence of the indices of e, containing all but at mort k
of the indices in e, and let s be the actual state after e.

Then either cost(s,i) < ffk), or else there is an extension of
:e-to another execution, by an atomic suffix consisting of T ' s
onty, sucta tha t the prefix subsequence of the first T in the
suffix is ~ , s, is the actual state after the last transaction, and
cost(s',i) < f(k).

• Proof: Let t be the result o f % applied to s 0. Then s -<-k t.
By Corollary 2, either cosi(t,i) = 0, or else there is am
extension of e to another execution, by an. atomic sul'fiX
consisting of T's only, such that the prefix subsequence 6f
th6first T in the suffix is ct.t, t' is the apparent state after the
last transa¢tion, and cost(t',i) = 0. If cost(O) = 0, then
since s < k t, it follows that cost(s,i) < cost(O) + f(k) =
f(k), as needed. Otherwise, Lemma 3 implies that s' <--k t',
and so cost(s',i) < cost(t',i) + f(k) = f(k), as needed. |

This theorem specializes to the airline system as follows.

Corollary 13: Let e be any finite execution of the airline
system, q.l, any sunsequence of the indices of e, containing
all but at most k of the indices in e, and let s be the actual
state after e.

1. Either cost(s,l) < 900k, or else there is an extension
of e to another execut4on, by an atomic suffix
consisting of M O V E - D O W N s only, such that the
prefix subsequence of the first T in the suffix is q.i, s'
is the actual state after the last.transaction, and
cost(s',l) < 90Ok.

2. Either cost(s,2) < 300k, or else there is an extension
• Of e to another execution, by an atomic suffix

consisting of M O V E - UPs only, such that the prefix
subsequence of the first T in the suffix is q.t, s' is the
actual state after the last transaction, and cost(s',2) <
300k.

Thus, the cost bounds of this subsection limit the damage that can be
caused when transactions operate with a bounded amount of missing
information. As noted before, the bounds we obtain are intuitive rather
than surprising. However, we know of no way to prove these sorts of
intuitive statements in earlier frameworks

We note that it is possible to obtain more refined versions of the
results in this subsection. Generally, it is not actually necessary that the
indicated transactions see all but k of the entire set of preceding
transactions. Rather, only certain types of preceding transactions are
important in each case, since they suffice to deterinine the resu!~ of
critical decisions.• For instance, in Corollary 8, it is not necessary that
the M O V E - UPs be k-complete; for example, it would suffice f0t them
to see I .all but k 0f : the preceding M O V E - U P and. REQUEST
transaetfons. We examine this issue more closely in the next subsection.

5.3. More Refined Cost Bounds
In this subsection, we reconsider some of me results of the precedin{

subsection. We sharpen those results so that they only require tha
transactions see the results of certain critical preceding transactions,
rather than arbitrary preceding transactions. The results in this
subsection give detailed information that is specialized to our
application; thus, they are not stated in very general terms. However, it
seems that the general approach used in this subsection sho, fld extend
to other applications.

We begin by proving some basic lemmas about sequences ot updates.
It is helpful to think of these results in terms of an automaton whose
states represent (abstractions o0 the global states of the database, and
whose state-transitions represent the updates. (The decision parts of
transactions are not modelled by this automaton.) The sequence of
updates which occur in an execution is modelled by a path in the
automaton. We are interested in identifying subsequences of a
sequence of updates, which are guaranteed to lead to the same state in
the automaton as does the whole sequence. I f a transaction executes
seeing only such a subsequence as its prefix subsequence, it would be
guaranteed to have accurate information.

Let ...4. be a sequence of updates (of the Fly-by-Night airline system)
and P a person. As assignment witness for P in .X is an ordered pair of
updates, (A,B), from .X, satisfying the following conditions.
(a) A is a request(P) update, B is a move-up(P) update, and A
precedes B in .£.
(b) There are no cancel(P) updates after A in ...4..
(c) There are no m o v e - down(P) updates after B in ~.

A waiting witness for P in ~ is either of the following:
(1) An update A, from .X, satisfying the following conditions.

(a) A is a request(P) update.
(b) There are no cancel(P) or move-up(P) updates after A in ..4..

(2) A pair (A,B) of updates satisfying the following conditions.
(a) A is a request(P) update, B is a m o v e - down(P) update, and A

precedes B in ..,4..
(b) There are no cancel(P) updates after A in A.
(c) There are no m o v e - up(P) updates after B in £ .

Recall that a person is known in a given state s if he is either in
ASSIGNED- L1ST(s) or W A I T - LIST(s).

Lemrna 14: Let A be a sequence of updates, and s the
state resulting from applying A to s 0. Let P be a person.
(a) P is known in state s exactly if there is a request(P)
update in .X which is not followed by a cancel(P) update.
(b) P is in ASSIGNED-LIST(s) exactly if there is an
assignment witness for P in ..4..
(c) P is in WA1T-I.IST(s) exactly if there is a waiting
witness for P in .4..

22

Proof: By analysis ofthe possible state transitions. |

For the next several lemmas, we use the following notation. Let A b e
a finite sequence of updates and let ~B be a subsequence of A. Let s be
the state which results from applying .A to sn, and let t be the state
which results from applying • to s,. The next l;6mmas relate the states s
and t.

Lemma 15: Let P be a person. Assume that P is in
ASSIGNED-LIST(s), and let (A,B) be an assignment
witness for P in A. Assume that '~ contains both updates A
and B. Then P is in ASSIGNED-LIST(t).

Proof: By definition of an assignment witness, A is a
request(P) update, B is a move-up(P) update, and A
precedes B in A. Also, A contains no cancel(P) updates
after A and no move-down(P) updates after B. Now,
contains both A and B, in that order. Also, 9 cannot
contain any cancel(P) updates after A or move-down(P)
updates after B, since there are none in A. Thus, (A,B) is an
assignment witness for P in ~. Lemma 14 implies that P is
in ASSIGNED-LIST(t). II

t

1,erama 16: Let P be a person. Assume that P is In
WAIT-LIST(s). Assume that at least one of the following
holds.
(a) A is a waiting witness for P in A, and 9 contains update
A.
(b) (A,B) is a waiting witness for P in A and ~ contains both
updates A and B.
Then P is in WAIT- LIST(t).

Proof: Similar to the proof of Lemma 15. II

The preceding two lemmas will be applied in cases where A denotes
the entire sequence of updates preceding a particular transaction T,
while 9 denotes the subsequence of updates actually seen by T. The
lemmas imply that if T sees certain of the preceding transactions, and a
person P is actually on the ASSIGNED-LIST or WAIT-LIST, then
T is guaranteed to know it. On the other hand, the next several lemmas
deal with the opposite implication; they describe circumstances under
which a transaction that believes that a person P is actually on the
ASSIGNED- LIST or WAIT- LIST, is guaranteed to be correct:

Lemma 17: Let P be a person. Assume that ~ contains the
last cancel(P) update, if any, in A. I fP is known in t, then P
is known in s.

Proof: Assume P is known in t. Then Lemma 14 implies
that there is a request(P) update in 9 which is not followed
by a cancel(P) update in 9 . This request(P) update also
occurs in A, and there are no cancel(P) updates after the
request(P) in A, since 9 contains the last cancel(P) update
from A. Therefore, Lemma 14 implies that P is known in s.
|

Lemma 18: Let P be a person. Assume that ~ contains the
last move-down(P) update, if any, in A. Also assume that
9 contains the last cancel(P) update, if any, in A. If P is in
ASSIGNED- LIST(t), then P is in ASSIGNED- LIST(s):

Proof: Assume that P is in ASSIGNED-LIST(t). Then
Lemma 14 implies that there is an assignment witness (A,B),

for P in ~ . Thus, A is a request(P) upda~, c and B is:a
move-up(P) update, A precedes B in 9, there are no
cancel(P) updates in ~, after A and there are no
move-down(P) updates in 9 after B. Updates A and B also
appear in A, in that order. There are no cancc!~P) updates
after A in .A, since • contains the last cancel(P) update (it~
any) in .A. Similarly, there are no move-down(P) updates
after B in1.. Thus, (A,B) is an assignment witness for P in
A. Lemma 14 implies that P is in ASSIGNED- LIST(s). |

Lemma 19: Let P be a person. Assume tha t~ contains th~
last move-up(P) update, if any, in A. Also assume that
contains the last cancel(P).opdate, if any, in A. If P is in
W A I T - LIST(t), then P is r e W A I T - LIST(s).

Proof: Analogous to theproofofLemma 18. |

Again, we can apply the preceding three lemmas to the case where A
denotes the entire sequence of updates preceding a particular
transaction T, and 9 denotes'the secluence of updates actually seen by
T. qhe lemmas imp ly that if T sees certain of the preceding
transactions then T is gaaranteed to know that a particular P is not on
the ASSIGNED- LIS~I: or WAIq - LIST.

Now we can prove renneu versions of the results of the previous
subsection. Since the notation and details become somewhat unwieldy,
we present versions of Corollaries 6 and 13 only, and' omit the others.

Theorem 20: Let e be an execution of the airline system,
and T a transaction inst..nee in e. Let s be the actual state
before T and s' the actual state after T, in e.

1. Assume that there are at most k persons P such that P
is in ASSIGNED-LIS'I~s) but the prefix
subsequence seer~ by T fails tO include an assignment
witness tbr P. Then either cost(s',l) < cost(s,1) or
else cost(s',l) <_ 900k.

2. Assume that T is a MOVE- UP or M O V E - DOWN
transaction. Assume that there are at most k persons
P such that P is not in ASSIGNED- LIST(s) but the
prefix subsequence seen by T fails to include either
the last cancel(P) or the last move-down(P) from A~
Then either cost(s',2) < cost(s,2) or else cost(s',2) _<
300k.

Proof: Let t be the apparent state before T and t' the
apparent state after T. Then t' = T(t,t). Assume that T
invokes action A in execution e, i.e. that DT(0 = A.

1. Assume that cost(s',]:) > cost(s,1). Then T is a
M O V E - U P transaction, A is a m o v e - u p update,
and AL(t) < 100. For all persons P in
ASSIGNED-LIST(s), except for the k exceptions

described in the hypothesis, Lemma 15 implies mat P
is in ASSIGNED~LIST(t). Therefore, AL(s) <
AL(t) + k < 100 + k. It follows that AL(s') < 100
+ k, and so cost(s',l) ~ 900k.

2. Assume that cost(s',2) > cost(s,2). Then T is a.
M O V E - D O W N transaction, A is a move-down.-
update, and AL(t) > 100. For all persons P in
ASSIGNED-LIST(0, except for the k exceptions
described in the hypothesis, Lemma 18 implies that P
is in ASSIGNED-LIST(s). Therefore, AL(s) >
A(t) - k > 100 - k. It follows that AL(s') > 100 - k,.
and so cost(s',2) ~ 300k.

I
Theorem 21: Let e be any finite execution o f the airline

system, q.l, any subsequence of the indices of e, and let s be
the actual state aRer e.

1. Assume that there are at most k persons P such that P
is in ASSIGNED- LIST(s) but q..t fails to include an
assignment witness for P.
Then either cost(s,l) _< 900k, or else there is an
extension of e to another execution, by an atomic
suffix consisting of MOVE-DOWNs only, such that

23

the prefix ~ubsequence of the first T in the suffix is
°d., s' is the actual state after the iast transaction, and
cost(s',l) < 900k.

2. Assume that there are at most k persons P such that P
is in WAIT-LIST(s) but ctJ, fails to include a waiting
witness for P. Also assume that for all but at most k
persons P, i fP is not in ASSIGNED-LIST(s), then
q J, includes the last cancel(P) (if any) from e, and °d.
includes the last move-down(P) (if any) from e.
Then either cost(s,2) _< 300k, or else there is an
extension of e to another execution, by an atomic
suffix consisting of M O V E - UPs only, such that the
prefix subsequence of the first T in the suffix is ctt, s'
is the actual state after the last transaction, and
cost(s',2) _< 300k.

Proof: Let t be the result o f % applied to s 0.

]. By Corollary 2, either cost(t,1) = 0, or else there is an
extension of e to another execution, by an atomic suffix
consisting of MOVE-DOWNs only, such that the prefix
subsequence of the first T h,, the suffix is qt, such that t' is
the apparent state after the stiffix, and cost(t',l) = 0.

First assume cost(t,l) = 0. Then AL(t) < 100. Let P be
any person in ASSIGNED-LIST(s). l f P is not one of the
k exceptions described in the hypothesis, then Lemma 15
implies that P is in ASSIGNED-LIST(t). It follows that
hL(s) < AL.(t) + k < I00 + k, so cost(s,l) < 900k, as
needcd.

Second, assume that the extension exists. Then AL(t') <
100. Let the actual state affter the suffix be s'. Let P be any
person in ASSIGNED-LIST&). Then P is also in
ASSIGNED- LIST(s), since the suffix does not add anyone
to the assigned list. If P is not one of the k exceptions
described in the hypothesis, then Lemma 15 implies that P is
in ASSIGNED-LIST(t). None of the MOVE-DOWNs
in the suffix could have generated a move-down(P), since
if one did, then P would not be in ASSIGNED-LIST(s').
Therefore, P is in ASSiGNED-LIST(t ') . It follows that
AL(s') <_ AL(t') + k < 10O + k, so cost(s',l) < 900k.

2. By Corollary 2, either cost(t,2) = 0, or else there is an
extension of e to another execution, by an atomic suffix
consisting of M O V E - U P s only, such that the prefix
subsequence of the first T in the suffix is °d,, t' is the
apparent state after the suffix, and cost(t',2) = 0.

First assume cost(t,2) = 0. Then either AL(t) _> 100 or
else WL(t) = 0. Let P be any person in WAIT-LIST(s). If
P is not one of the k exceptions described in the hypothesis,
then I.emma 16 hnplies that P is in WAIT-LIST(t). It
follows that WL(s) < WL(t) + k. Let P be any person in
ASSIGNED- LIST(t). If P is not one of the k exceptions
described in the hypothesis, then Lemma 18 implies that P is
in ASSIGNED-LIST(s). It follows that AL(t) < AL(s) +
k. Thus, either WL(s) < k or else AL(s) _> 109 - k. Thus,
cost(s,2) < 300k.

Second, assume that the extension exists. Then either
AL(t') > 100 or else WL(t') = 0. Let the actual state after
the suffix be s'. Let P he any person in WAIT-LIST(s').

Then P is also in WAIT- LiST(s), since the suttlx noes ~ot
add anyone to the wait list. If P is not one of the k
exceptions described in the hypothesis, then Lemma 16
implies that P is in WAIT-LIST(t). None of the
M O V E - U P s in the suffix could have generated a
move-up(P) , since if one did, then P would not. be in
WAIT-LIST(s'). Therefore, P is in WAIT-LIST(t ') . So
WL(s') <_ w ~ e) + k.

Now let P be any person in ASSIGNED- L1ST(t'). Then
P must be known in t, since otherwise the m o v e - u p s in the
suffix could nut put P into ASSIGNED-LIST(t ') . I fP is in
ASSIGNED- LIST(t), and P is not one of the k exceptions
described in the hypothesis, then Lemma 18 implies that P is
in ASSIGNED- LIST(s) and hence in
ASSIGNED-LIST(s') . On the other hand, if P is in
WAIT-LIST(t), and P is not one of these same 1~
exceptions, then Lemma 17 implies that P is known in s.
Since P is in ASSIGNED- LIST(t'), a move-up(P) occurs
in the suffix. Then P is in ASS1GNED-LIST(s'). So
AL(s') > AL(t') - k. It follows that either WL(s') < k or
AL(s') _> 100- k. In either case, cost(s' ,2)< 300k.

It is also possible to give refined versions of Corollaries g, 10, and 11.
We omit the details.

5.4. Cost Bounds Resulting from Centralization
In this subsection, we give two results which describe conditions

under which overbooking cannot occur at all. These conditions involve
fairly strong centralization assumptions. The basic idea is that if all the
m o v e - u p decisions are made centrally, it should not be possible to
overbook. However, in order to prove this result, it is necessary for us
to make some technical restrictions involving the requests.

Theorem 22: Let e be a transitive execution. Assume that
the M O V E - U P transactions are centralized in e. Assume
that for each P, the transactions that generates updates
involving P are centralized in e. Let s be any state reachable
in e. Then cost(s,1) = 0.

Proof: The proof is by induction on the length of e. The
base case, where the length o fe is 0, is easy. So assume that
the length ofe is at least one. Let T be the last transaction in
e. Let t be the apparent state before T and t' the apparent
state after T. Let s be the actual state before T, and s' the
actual state after T. Let .A be the actual sequence of updates
preceding T, and let • be the sequence whose effects are
seen by T.

The inductive assumption says that cost(s,1) = 0. The
only way that cost(s',l) can be nonzero is if T is a
M O V E - U P transaction which gene~tes a m o v e - u p
update. Then Al~t) < 100.

We clan,, that ASSIGNED- LIST(s) C_
ASSIGNED-LIST(t). If this is so, then AI~s) < 100, so
AL(s') < 100 and cost(s',l) = 0, as needed.

So fix P in ASSIGNED-LIST(s). Then there is an
assignment witness for r in .£. The move-up(P) of the pair
also appears in ~ , since the M O V E - U P transactions are
centralized. The request(P) of the pair appears in the prefix
seen by the move-up(P), since the transactions generating

24

P updates are centralized. Therefore, the request(P) also
appears in ~ , by transitivity. Thus, • contains the
a.ssignment witness, and Lernma] 5 implies that P is in
ASSIGNED-LIST(t) . |

The second result of this subsection is just a minor variant of the first,
with an alternative technical restriction on the requests.

Theorem 23: Let e be a transitive execution. Assume that
the M O V E - U P transactions are centralized in e. Assume
that for each P, there is at most one REQUEST&)
transaction in e. Let s be any state reachable in e. Then
cost(s,1) = O.

Proof: The proof is nearly identical to the preceding one.
The only difference is in the argument that the request(P) is
in the subsequence seen by the move-up(P) . We know
that some request(P) appears in the subsequenee seen by the
move-up(P) action, for otherwise that action would not
have been invoked. Since there is only one such request(P),
the claim holds. I

Of course, it would be better if we could prove the same result only
assuming centralization of M O V E - U P transactions and transitivity.
and not making any assumptions about the transactions generating
updates for the same person. But this stronger statement is not true, as
is shown by the following example.

Example:

Consider an execution which consists of a succession of
blocks of 4 transactions each,

REQUEST(P1), CANCEL(P1), REQUEST(P1),
M O V E - UP,
REQUFST(P2), CANCELfP2), REQUEST(P2),
MOVE - UP
REQUEST(P101), CANCEL(P101), REQt~EST(P101),
MOVE - UP.

The successive M O V E - U P transactions produce
updates move-up(P1),..., move-up(P101). This execution
is possible if each of the first 100 M O V E - U P transactions
sees the first request in the same block, but not the cancel or
the second request. The last M O V E - U P sees all the
previous M O V E - UP's and the requests that they see, plus
the cancels. Then this last M O V E - U P will think that the
earlier M O V E - U P ' s acted erroneously, and that there is
really no one on the assigned list. It will therefore decide to
movePt01 up. The cost after this execution is nonzero.

Similar xesults to those in this section should" be provable, at least in
prm~i!~le, for the underbooking cost. However, the centralization
assumpttons that appear to be needed are so strong that the results do
not seem very interesting.

5.5. Fairness
In this subsection, we consider fairness properties of the airline

reservation system. As before, the results are stated in terms of the
specific example, but the techniques appear to generalize to other
applications.

For this section, we make the following very strong assumption; We
assume that all M O V E - U P and M O V E - D O W N transactions are
centralized; thus. there is essentially one "agent" making all decisions
about seat assignment. It remains to be seen whether this assumption
can be weakened, while still permitting proof of interesting fairness
claims.

Recall the definition of passenger priority from Section 4.2: we say P
< Q,. for known P and Q, to mean that either P precedes Q on the
W A I T - LIST, or P precedes Q on the ASSIGNED- LIST, or else P is
on the" ASS I G N E D - LIST and Q is on the WAIT-LIST.

Lemma 24: Let ...4 be a sequence of updates, and l e t s be a
subsequence of ..4. Let P and Q be people. Assume thali
contains all m o v e - u p and move -down updates from .A..
Also assume that ~, contains all the request and cancel
updates for P and Q, from .A.. Let s be the result of.X and t
the result of'~,, applied to s 0. Then P < Q in t if and only if
P< Qin.s.

Proof: The updates in ..4 which are not included in '~ are
only request and cancel updates for persons other than P
and Q. These cannot affect the relative priority of P and
Q . I

The following theorem says that, under certain restrictions, the
relative priority of two requests is determined at the time the "agent"
for M O V E - U P and M O V E - D O W N transactions first learns about
both requests. Thus, except for an initial period of uncertainty during
which the agent has not yet learned about the requests, their relative
priority is fixed.

Theorem 25: Let e be a transi~ve execution. Assume that
the M O V E - U P and M O V E - D O W N transactions are
centralized. Let P and Q be people each of whom has
exactly one REQUEST transaction, but no CANCEL
transactions, in eo Let T be a M O V E - U P or
M O V E - D O W N tran~,actiorl having both REOUF~T(P)
and REQUEST(Q) in its prefix suhsequence. Let t b e the
apparent state, and s the actual state, before T. l fP < Q in t.
then also P < Q in s and all other actual database states
occuring later in e.

Proof: First., we show that P < Q~in s. Let ..,4 be the
sequence.of upuates preceding T, and ~B the subsequence
actuall)/'seen by T. The centralization assumption implies
that ~B contains all m o v e - u p and move-down updates
from .A_ The other assumptions imply that $ contains all
the request and cancel updates for P and Q, from .,4. Then
Lcmma 24 tmplies that P < Q in s.

Assume that T 1 is the first transaction (T or later) aRer
which it is false that P < Q. Let t 1 be the apparent state
before T 1 and 12' the apparent state after T r Let s I be the
actual state before T 1 and s t' the actnal state after T r Then
P < Q in s I but not in Sl'. The only possibility is that T 1 is a
M O V E - U P or M O V E - D O W N transaction that causes
the order of P and Q to become interchanged; thus, Q < P in
sl'.

We claim that P < Q in I 2. Let .A be the sequence of
updates preceding T1, and let ~ be the subsequence actually
seen by T]. ~ contains all the moving updates from .A., by
the centralization assumption. Also, ~ contains the requests
for P and Q, since the subsequenee seen by T does, T is
either equal to T 1 or else is in Tt's subsequence, and
transitivity holds. Thus, applying Lemma 24, the orderings
in 12 and s t are the same, so P < Q in t 1.

Now we claim that Q < p in tl'. This follows using
Lemma 24, sinc,~ Q < P in st'. But i fP < Q in t I and Tl(tl,12)
= tl', then P < Q in t l ' , since all transactions preserve
priority. This yields a contradiction. |

25

We can interpret the preceding theorem as follows. We might
imagine that at the actual flight time, next January 1, the complete
execution becomes known to the check-in attendant. The people that
h e actually allows to proceed onto the airplane are the 100 people who
show tap, who have the highest priority in the final database state.
(CANCEL transactions can be run for the others, and then sufficiently
many M O V E - U P or MOVE-DOWN transactions to cause AL to
equal 100 or WL to equal 0.) I fP and Q had previously become known
to the "agent" for M O V E - U P and MOVE-DOWN transactions,
with P < Q, and if P and Q both show tap, if Q gets onto Flight 1, then
so does P

Example:

Our transaction definitions can lead to the following
behavior for passengers' relative priorities. Assume that
REQUEST(P) precedes REQUEST(Q), but the request(Q)
update becomes known to the "agent" before the reauestlP)

update. Then a move-up(Q) can occur, which moves Q up
past P. Later, a move-down(Q) can occur. When this
happens, our definitions say that Q gets put at the head of
the WArF-LIST, ahead of P. Subsequently, the mowng
agent can learn about the request(P) also. At that point, Q <
P, so by Theorem 25, Q remains ahead of P. This happens
even though there is sufficient information in the system to
allow for Q to be placed on the WAIT-LIST after P, which
is in keeping with their tlmestamp order for requests. Thus,
the order obtained in the final state is determined by the
order at the time a M O V E - U P or M O V E - D O W N
transaction first sees both requests, but is not necessarily
determined by the actual order in which the requests were
initially made.

It is possible to redesign the application to respect the
original request order in this situation. It suffices to include
request timestamps explicitly in the database. Each of the
two lists would always be kept sorted according to
timestamp order. Thus, when the request(P) becomes
known to the agent, he would insert P ahead of Q on the
waiting list. (More precisely, when the move-down(Q) is
nm from a state in which P is on the waiting list, Q is not
placed at the head of the waiting list, but rather is inserted in
timestamp order, after P.) This relative position would be
maintained from then on.

Theorem 25 makes a claim about relative priorities at times after a
conceptual "agent" learns about two requests. In orde,' for this
condition to be .meaningful as a correctness claim, the user must have a
fairly detailed 'and sophisticated conceptual model o f system operation,
including prefix subsequences and agents, it might also be interesting
to state fairness claims which involves a less detailed conceptual model.
For example , we might want to state a condition which could be
paraphrased aa follows. "If a REQUEST(p) is made sufficiently earlier
than a REQUEST(Q), then P must precede Q in the final state." The
following lemma can be used to infer such a property.

Lenuna 26: Let e be a transitive execution. Assume that
the M O V E - U P and M O V E - D O W N transactions are
centralized. Let P and Q be people each of whom has
exactly one REQUEST transaction, but no CANCEL
transactions, m e . Assume that REQUEST(P) precedes
REQUEST(Q) in e. Further assume that any M O V E - U P
or M O V E - D O W N ~.ransaction that has REQUEST(Q) in
its prefix also has REQUEST(P) in its prefix. Then P < Q in
any actual state reached during e in which both P and Q are
known.

Proof: Assume the contrary, and let T be the first
transaction in e such that Q < P in the actual database state
after T. Let t be the apparent state before and t' the apparent
state after T. Let s be the actual state before and s' the actual

state after T. TheaQ < P in s' but not in s.

First,, we claim that T must be a moving transaction. I~T
were a REQUEST(P) transaction, men the REQUEST(Q)'
cannot be reflected in s' since it occurs after RFQUEST(P)
All other cases can be ruled out by similar trivial argument.
So T is a moving transaction; thus, 1-" and Q are known in s,
so that P < Q in s. The only possibilities are that T is a

• " L

M O V E - UP transactmn that moves Q up past P, or that T Is
a M O V E - D O W N transaction th~it moves P down past
Q. For either of these to happen, at least one of request(P)
and request(Q) must be in the prefix subsequence ofT.

Case 1: T has both request(P) and request(Q) in its prefi~
subsequence.
Then both P and Q are known an t. If P < Q in t, then
Theorem 25 implies that P (Q in s', a contradiction. On the
other hand, ifQ < P in t, then Theorem 25 implies that Q < P
in s, again a contradiction.

Case 2: T has only request(P), but not request(Q), m its
prefix subsequence.
Then T must be a M O V E - D O W N which moves. P down
past Q. Therefore, Q must be in ASSIGNED- LIST(s). But
in order for this to occur, there must be some M O V E - U P
transaction T' appearing earlier than T in e, which moves Q
up; dearly, request(Q) must be in the prefix subsequence of
T'. T' is in the prefix subsequence ofT, since the moving
transactions are centralized. By transitivity, request(Q) is in
the prefix subsequence ofT. This is a contradiction. I

We can use this lemma to obtain a theorem of the form we described
earlier, i.e. that if REQUEST(P) occurs sufficiently long before
REQUEST(Q) (and other suitable conditions hold), then P retains
priority over Q. All that is needed is an additional assumption that if
REQUEST(P) occurs sufficiently long before REQUEST(Q), then any
M O V E - UP or M O V E - DOWN transaction that has request(Q) in its
prefix also has request(P) in its prefix.

Theorem 27: Let e be a transitive, orderly timed execution
having t-bounded delay. Assume that the M O V E - UP and
M O V E - D O W N transactions are centralized. Let P and Q
be people each of whom has exactly one REQUEST
transaction, but no CANCEL transactions, in e. Assume

• that REQUEST(P) precedes REQUEST(Q) by at least time
L in e. Then P < Q in any actual state reached during e.in
which both P and Q are known.

Proof: The t-bounded delay assumption and orderdine~s
imply that any M O V E - U P or M O V E - D O W N that has
REQUEST(Q) in its prefix also has REQUFST(P)in its
prefix. The previous lemma then yields the result. I

26

6. Conclusions
In this paper, we have given precise correctness conditions for,;a

highly available replicated database system such as CCA's SHARD.
First. we gave basic definitions for the SHARD database and.
transaction model. We then described assumptions about how file
system runs the transactions, followed by assumptions about
applications. Finally, these two types of assumptions were combined to
prove some interesting properties of a particular running application

." ' . t . '
an atrhne reservaUon system. Although the example ~s snnple, ~t
illustrative of a large class of important resource-allocation problems.

The assumptions about how the system must run the transactions (in
particular, the prefix subsequence condition) have been described in a
very general way. They embody a new modal for data processing,
which is quite different from, and imposes new structure on, ~ e
traditional models used in concurrency control theory. We expect tliat
this model will prove very fruitful for future research and for
application design.

In describing our assumptions about the airline reservation
application, we have tried to be as general as possible. The types of
assumptions we have listed seem to be very appropriate for resource
allocation applications, but we do not believe that they comprise a
complete set of interesting application assumptions. It is likely that
study of additional examples will yield other interesting types of
assumptions as well.

The particular properties proved for our application involve bounds
on the costs attributable to violations of integrity constraints, and
fairness. For other resource allocation applications, similar cost bound
and fairness results should be provable.

"['he system exhibits nonserializable behavior, so that being able to
prove interesting conditions is an accomplishment. In the u~a l
development, no guarantees at all can be proved in case information
about any preceding transaction is missing. In contrast, we can prove
interesting properties even with incomplete information. Moreover,
small changes in available information lead to small changes in costs for
integrity constraints.

The analysis required to obtain some of our results has been very
delicate. This is because it is necessary to consider how updates will
execute in many possible situations, not just from the database state
seen by the decision parts of their transactions. Another difficulty is
that SHARD does not impose any a priori restrictions on the kinds and
orders of transactions that are submitted and processed, qhe need to
consider the behavior of transactions in the presence of arbitrary
preceding transactions, and arbitrary partial knowledge about the past,
makes the analysis of SHARD transactions more difficult than for
ordinary (serializable) transactions. But this kind of analysis seems
unavoidable; whether or not a formal, mathematical analysis is carried
out for a particular application, application programmers do need to
consider, at least informally, how transactions will behave in the
presence of arbitrary preceding transactions and arbitrary partial
knowledge about the past. We provide a J~amework for this kind of
analysis, but more needs to be done to develop appropriate styles of
.programming and methods of analysis.

A next step in this research should b e t he consideration of other
example applications. Additional resource allocation examples should
be examined, such as exatiiples from banking and inventory control.
Other, non-resource-allocation, examples should be studied. Some
examples appropriate for SHARI) might involve "distributed data
structures". The highly-available distributed dictionary studied in ~ M]
is one example that fits the SHARD framework, and there should be
others. Also, it has been claimed that name servers such as Grapevine
[B] have interesting but nonserializable behavior; it seems likely that
they can be described within our framework. Still other appropriate
examples might arise from real-time control.

For each of these examples, simple prototypes could be defined,
capturing the essential behavior of the example. Study of these:
prototypes should determine the appropriate properties to prove
each case. Cost bounds and fairness should reappear, but other,
properties should also be of interest. It is important to look for general,
methods of programming and analysis.

Other theoretical work also seems posfibte. For instance, we hay6
described some interesting automaton structure in Section 5.3. Thi~
structure could be studied and generalized. Also, it should be possible
to obtain complexity results. Particular examples of desirable
application behavior could be studied individually, and costs (e.g,
amount of communication, or local storage) determined for achieving
correct behavior.

On the systems design side, SHARD itself needs to be generalized in
at least two tmportant ways. First., the inessential full replication
assumption needs to be removed. Even with only partial replication, it
should be possible to continue to nmintain the correctness conditions
we describe in this paper, by judicious assignment of data and
transactions to nodes, (i.e. in such a way that each transaction will have
copies of all the data it requires). It should even be possible to allow
some of the data which transactions read to be present in summary
form, rather than in its full detail. Second, the SHARD work needs to
be integrated with earlier work on serializability. It should be possible
to build an application system in which certain critical transactions mn
serializably, while the others run in a highly available manner. The
application designer should be able to specify the modes of operatioa
for different transactions. As the system design gets extended, the
theory also needs to be extended to incorporate these two
generalizations.

It is apparent to us that there is an interesting theory to be developed,
for proving properties of nonserializable highly available replicated
database systems. We believe that this paper gives some useful ideas on
how to begin.

7. References

[AM] Allchin, J. E. and McKendry, M . S.,
"Synchronization and Recovery of Actions," Proc. of
the Second Annual/ICM Symposium on Principles of
Distributed Comput?ag, Montreal, Quebec, Canada.,
August 17-19, 1983, pp. 31-44.

Ia/ Birrell, A. D., Levin, R., Needham, R. M., and
Schroeder, M. D., "Grapevine: An Exercise in
Distributed Computing," Comm. of the ACM 25, 4
(April 1982), pp. 260-274,

03ol Bernstein, P. A., and Goodman, N., "Concurrency
Control in Distributed Database Systems," ACM
Computing Surveys] 3,2 (June 1981), pp. 185-221.

tBrq BIaustein, B. T. and Kaufman, C. W., "Updating
Replicated Data During Communication Failures,"
Proc. of the Eleventh Intl. Conf. on Very Large
Databases, Stockholm, Sweden, August 1985, pp.
49-58.

~M] Fischer, M. J. and Michael, A. , "Sacrificing
Serializability to Attain High Availability of Data in
an Unreliable Network," Proc. of the Symposium on
Principles of Database Systems, Los Angeles,
California, March 29-31, 1982, pp. 70-75.

Garcia-Molina, 1-1., "Using Semantic Knowledge for
Transaction Processing in a Disiributed Database,"
Tech. Rep. 285, Princeton Univ. Dept. of Electrical
Engineering and Computer Science, Ap/-il 1981.
Also appeared in Transactions on Database Systems,
8, 2 (June, 1983), pp. 186-213.

27

[GLBKSSI

01

[Sl

[S,BK]

[SKSl

[SL!

Garcia-Molina, H., Lynch, N. A., Blaustein, B. T.,
Kaufman, C. W., Sarin, S. K., and Shmueli, O.,
"Notes on a Reliable Broadcast Protocol," CCA
technical report, 1985.

Jefferson, D., "Virtual Time," Transactions on
Programming Languages and Systemg (July 1985), 7,
3, pp. 404-425.

Sarin, S. K., "Robust Application Design in Highly
Available Distributed Databases", Prec. Fifth Syrap.
Reliability in Distributed Software and Database
Systems, January 1986, pp. 87-94.

Sarin, S. K., Blaustein, B. T., and Kaufman, C. W.,
"System Architecture for Partition-Tolerant
Distributed Databases," IEEE Transactions on
Computers C-34, 12 (December 1985), pp.
1158-1163.

Sarin, S. K., Kaufman, C. W., and Seiners, J. E,
"Using History Information to Process Delayed
Database Updates," CCA, 1986, submitted for
publication.

Sarin, S. K., and Lynch, N. A., "Discarding Obsolete
Information in a Replicated Database System,"
CCA, 1986, submitted for publication.

28

