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1. INTRODUCTION 

1.1. Background 
Tile problem of reaching agreement among 

separated processors is of fundamental importance to 
dishibuted computing, and has provided a rich set of 
interesting mathematical problems. (See [F] for a 
survey. Also see [GLPT,Sc,G.DLPSW,LM], for 
example.) One version of this problem considers a 
collection of N processors, Pt . . . . .  PN' which 
communicate by sending messages to one another. 
Initially each processor pi has a value vi drawn from 
some domain V of vahJes, and the correct processors 
must all decide on the same value; moreover, if the 
initial values are all the sarne, say v, then v must be the 
common decision. In addition, the consensus protocol 
should operate correctly if some of the processors are 
faulty, e.g., crash (fail-stop faults), fail to send 
messages when they should (omission faults), or send 
erroneous messages (Byzantine faults). 

Given assumptions about the properties of the 
message system and the processors and given the 
types of faults which can occur, one would like to know 
the maximum number of faults that can be tolerated; 
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we call this number the resi l iency of the system. For 
example, it might be assumed that there is a fixed 
bound A on the time for messages to be delivered 
(communication is synchronous), and a fixed bound 
on the rate at which one processor's clock can run 
faster than another's (processors are synchronous), 
and that these bounds are known a pr ior i  and can be 
"built into" the protocol. In this case, N-resilient 
consensus protocols exist for Byzantine failures with 
authentication [LSP,DS] and, therefore, also for fail- 
stop and omission failures: in other words, any number 
of faults can be tolerated. For Byzantine faults without 
authentication, t-resilient consensus is possible iff N > 
3t [LSP,L1]. 

Hc'cent wo~k has shown that the existence el botll 
bounds A and ~1~ is necessaly to achieve any resiliency, 
even under the weakest type of faults. Dolor, Dwork 
arid Stockmeyer [DDS], building ,),~ earlier work of 
Fischer, Lynch and Paterson [FLP], prove that either if 
a fixed upper bound A on message delivery time does 
not exist (communication is asynchronous) or if a fixed 
[~ppdr bound {1~ on relative processor speeds does not 
exist (processors are asynchronous), then there is no 
consensus protocol resilient to even one fail-stop fault. 

In this paper, we define and study the consensus 
problem in practically motivated situations which lie 
between the completely synchronous and the 
completely asynchronous cases. 

1.2. Part ial ly Synchronous  Communicat ion 
We first consider the case in which processors are 

svnchronous ((t) exists and is known a prior i)  and 
cemmunication lies "between" synchronous and 
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asynchronous. There are several natural ways in 
which communication might be partially synchronous. 

One reasonable situation could be that an upper 
bound A on message delivery time exists but we do not 
know what it is a priori. On the one hand, the 
impossibility results of [FLP,DDS] do not apply since 
communication is, in fact, synchronous. On the other 
hand, participating processors in the known consensus 
protocols need to know '~ in order to know how long to 
wait during each round of message exchange (we are 
assuming a lower bound on processor step time). Of 
course, it is possible to pick some arbitrary A to use in 
designing the protocol, and say that whenever a 
message takes longer than this 5, then either the 
sender or the receiver is considered to be faulty. This 
is not an acceptable solution to the problem since if we 
picked & too small, all the processors could soon be 
considered faulty, and by definition the decisions of 
faulty processors do not have to be consistent with the 
decision of any other processor. What we would like is 
a protocol that does not have h "built in". Such a 
protocol would operate correctly whenever it is 
executed in a system where some fixed upper bound & 
exists. It should also be mentioned that we do not 
assume any probability distribution on message 
transmission time which would allow A to be estimated 
by doing experiments. 

Another situation could be that we know A, but the 
message system is sometimes unreliable, delivering 
messages late or not at all. As noted above, we do not 
want to consider a late or lost message as a fault. 
However, without any further constraint on the 
message system, this "unreliable" message system is 
at least as bad as a completely asynchronous one, and 
the impossiblity results of [DDS] apply. The additional 
constraint is that there is a sufficiently large number L 
such that if at any time during the execution, the 
message system respects the upper bound & for L 
units of time, then all correct processors will reach a 
common decision sometime before the end of this 
"reliable interval". Moreover, the protocol never 
produces an inconsistent decision (two correct 
processors deciding differently) during the "unreliable 
period" when & does not hold, 

The same argument as in the previous case shows 
one problem with treating lost or delayed messages in 
the same way as processor faults. There is also 
another problem with this idea. In typical systems, the 
loss or delay of a message is a much more likely event 
than a processor failure. Treating undesirable 
message behavior as processor faults tends to lead to 
a drastic overestimate of processor faults. Since 
consensus protocols introduce expensive mechanisms 
to cope with each additional processor fault, it seems 

better to separate consideration of the two kinds of 
events, and to try to use less costly mechanisms to 
cope with undesirable message behavior. 

A third situation we consider is a technical variant on 
the second, which strengthens it in two ways. In this 
model, messages are never lost and A must hold from 
some point on after some finite "unreliable period". 
We prove that this model is equivalent to the first 
model, in which A exists but is unknown. 

For succinctness, we say that communication is 
partially synchronous if one of these three situations 
holds: A exists but is not known a priori, or A is known 
but has to actually hold only for a sufficiently long 
period, or & is known and has to hold from some point 
on. 

Our results determine precisely the maximum 
resiliency possible in cases where communication is 
partially synchronous, for four interesting fault models. 
For fail-stop or omission faults, we show that t-resilient 
consensus is possible iff N > 2t. For Byzantine faults 
with authentication, we show that t-resilient consensus 
is possible iff N > 3t. Also, for Byzantine faults without 
authentication, we show that t-resilient consensus is 
possible iff N > 3t. (The lower bound follows 
immediately from the result for the completely 
synchronous case in [LSP].) For the first three types of 
faults, the number of bits of communication required is 
a polynomial in N, t, and either (1) GST (the global 
stabilization time, or time when the messages start 
observing their required bound) for the models in 
which A holds eventually or sufficiently long, or (2) A 
for the model in which A is unknown. On the other 
hand, our algorithm for the unauthenticated Byzantine 
case uses an exponential amount of communication. 
We also have a t-resilient consensus protocol for 
Byzantine faults without authentication, which uses a 
polynomial amount of communication, but which 
requires N > 4t. (We do not know whether it is possible 
to obtain such a protocol for 3t < N < 4t.) 

Table 1 shows the maximum resiliency in various 
cases and compares our results with previous work. In 
each case, the table gives the smallest value of N for 
which there is a t-resilient protocol (t > 1). Except 
where indicated {by "exp") the algorithms require 
communication polynomial in N, t, and either GST or A. 

It is interesting to note that for fail-stop, omission and 
Byzantine faults with authentication, the maximum 
resiliency for the partially synchronous case lies strictly 
between the maximum resiliency for the synchronous 
and asynchronous cases. It is also interesting to note 
that in the partially synchronous case, authentication 
does not improve resiliency. Results in the 
synchronous column are due to [LSP,DS,DFFLS], while 
those in the asynchronous column are due to 
[FLP,DDS]. 
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Of the new results, the more interesting and difficult 
are the protocols and associated upper bounds. Our 
protocols use variations on a common method: a 
processor p tries to get other processors to change to 
some value v which p has found to be "acceptable"; p 
decides v if it receives sufficiently many 
acknowledgements from others that they have 
changed their value to v, so that a value different from v 
will never be found acceptable at a later time. This 
general method and similar methods have already 
appeared in the literature, (cf. Skeen [Sk], Bracha and 
Toueg [BT]). Reischuk [R] and Pinter [P] have also 
obtained consensus results which treat message and 
processor faults separately. 

1.3. Part ia l ly  Synchronous Communicat ion 
and Processors 

It is easy to extend the models described in 1.2 to 
allow processors, as well as communication, to be 
partially synchronous. That is, ¢ (the upper bound on 
relative processor speed) can exist but be unknown, or 
¢ can be known but actually hold only for a sufficiently 
long period, or @ can be known and actually have to 
hold from some point onward. We obtain results which 
completely characterize the resiliency in cases where 
both communication and processors are partially 
synchronous, for all four of the classes of faults. In 
such cases, we assume that communication and 
processors possess the same type of partial synchrony, 
that is, either both ¢ and A are unknown, or both hold 
during the same sufficiently long period, or both hold 
from some point on. 

S'Jrp~isingly, the bounds we obtain are exactly the 
same as for the case where communication alone is 
p..qrtially synchronous. In the earlier case, the fact that 
q; w.3s kpown implied that each processor could 
maintain a local time that was guaranteed to be closely 
synchronized with the clocks of other processors. In 
this case, no such notion of time is available. We give 
two new protocols allowing processors to simulate 
disUibuted clocks. (These are fault tolerant variations 
on the cluck used by Lanlport in [I_2].) One uses 2t + 1 
processors and tolerates t fail-stop, omission, or 
au'.,henticated Byzantine taults, while the other uses 3t 
+ 1 processors and tolerates t unauthenticated 
Byzantine faults. When the appropriate clock is 
cornbinod with each of our protocols for the preceding 
case, the result is a new protocol for the new case. 

1.4. Part ia l ly  Synchronous Processors 
In complete analogy to our treatment of partial 

communication synchrony, it is easy to define models 
where processors are partially synchronous and 
communication is completely synchronous (A exists 
and is known a priori). In Table 2 we summarize our 

results about N, the smallest numeer of processors tor 
which t-resiliency is possible for each of the four fault 
models. 

Technical Remarks: 
Except where we have indicated otherwise, all of our 

protocols use only a polynomial amount of 
communication, that is, the number of bits of 
communication sent before all correct processors 
make a decision is polynomial in N, t, and either GST or 
@ and A, depending on the particular model of partial 
synchrony. 

Our protocols assume that an atomic step of a 
processor is to either receive a set of messages or 
send a message to a single processor, but not both; 
there is no atomic receive/sendl operation nor an 
atomic broadcast operation. We adopt this rather weak 
definition of a processor's atomic step in this paper 
because it is realistic in practice and seems consistent 
with assumptions made in much of the previous work 
on distributed agreernent. However, our lower bound 
arguments are still valid if a processor can receive and 
broadcast to all processors in a single atomic step. 

The strong unanimity condition requires that if all 
initial values are the same, say v, then v must be the 
common decision. Weak unanimity requires this 
condition to hold only if no processor is faulty. Unless 
noted otherwise, our consensus protocols achieve 
strong unanimity, and our lower bounds hold even for 
weak unanimity. 

Our consensus protocols are designed for an 
arbitrary value domain V, whereas our lower bounds 
hold even for the case IVl = 2. 

The remainder of this paper is organized as follows. 
Section 2 contains definitions. Section 3 contains our 
results for the model in which processors are 
synchronous and communication is partially 
synchronous. The distributed clocks are defined in 
Section 4, where we also discuss how to combine our 
results of Section 3 with the clocks to produce 
protocols for the model in which both processors and 
communication are partially synchronous. 

The results for the model in which communication is 
synchronous and processing is partially synchronous 
are omitted here for lack of space, as are the proofs of 
some of the results in Sections 3 and 4. All of the 
omitted material appears in [DLS], the complete 
version of the paper. 

2. DEFINITIONS 

2.1. Model of Computation 

Ou~ formal model of computation is based on tile 
models of [FLP,DDS]. I-k~re we review the basic 
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features of the model informally. The communication 
system is modeled as a collection of N sets of 
messages, called buffers, one for each processor. The 
buffer of Pi represents messages which have been sent 
to Pi but not yet received. Each processor follows a 
deterministic protocol involving the receipt and 
sending of messages. Each processor Pi can perform 
one of the following instructions in each step of its 
protocol: 

Send(rn.p ) - places message m in p,'s buffer; 
Receive(pi) j- removes some (possibly empty) set S of 
messages frorn Pi'S buffer and delivers them to Pi' 

In the Send(m,pj) instruction, p can be any 
processor, i.e., the communcation network is 
completely connected. A processor's state is 
determined by the contents of its memory, including 
any special registers (e.g., program counter). A 
processor's protocol is specified by a state transition 
diagram; the number of states can be infinite. The 
instruction to be executed next depends on the current 
state, and the execution causes a state transition. For 
a Receive instruction, the next state depends on the set 
S of delivered messages. The initial state of a 
processor Pi is determined by its initial value v i in V. At 
some point in its computation, a processor can 
irreversibly decide on a value in V. 

For subsequent definitions, it is useful to imagine that 
there is a "real-time clock" outside the system that 
measures time in discrete steps. At each tick of real 
time, some processors each take one step of their 
protocols. A run of the system is described by 
specifying for each real-time step: (1) the processors 
which take steps, (2) the instruction which each 
processor executes, and (3) for each Receive 
instruction, the set of messages delivered. Runs can 
be finite or infinite. Given an infinite run R, the 
message m is lost (in run R) if m is sent by some 
Send(m,pj), .pj executes infinitely many Receive 
instructions ~n R, and m is never delivered by any 
Rec;eive(Pi). 

2.2. Fai lures 
A processor executes correctly if it always performs 

i~,structions of its protocol (tra",sition diagram) 
correctly. A processor is correct ip. run R if it executes 
correctly in R and. if R is infinite, it takes infinitely many 
steps in R. We consider four types of increasingly 
destructive faulty behavior. 

l-all-stop: The r,~ocessor executes correctly but can 
stop al any time. Once stopped it cannot restart. 

Om~s.~.ion: The processor executes correctly except 
Ihat Send(m.f.)l) might not place m i l l  Pl'S buffer. 

Autt~cr',t,',',uted Byzaf]tm.,?: The processor exhibits 
arbitrary bc!~avior. However. messages can be signed 
with the [lLinlo Of tile sending prc~ce.,_'.sor in SUCh a way 
that tiffs signature cannot be fOtf, Od bv any ()tiler 

processor. 
Byzantine: The processor exhibits arbitrary behavior, 

and there is no mechanism for signatures. However, 
we assume that the receiver of a message knows the 
identity of the sender. 

2.3. Pa r t i a ISynch rony  
Let I = [t 1,t 2] be an interval of real time and let R be a 

run. We say that the communication bound ~ holds in I 
for run R provided that if message m is placed in Pi'S 
buffer by some Send(m,P i) at a time s 1 in I, and i fp j  
executes a Receive(pj) at a time s 2 in I with s 2 > s 1 + 
A, then m must be delivered to Pi at time s 2 or%arlier. 
This says intuitively that A is an upper bound on 
message transmission time in the interval I .The 
processor bound (I) holds in I for R provided that in any 
contiguous subinterval of I containing tl) steps, every 
correct processor takes at least one step. This implies 
that no correct processor can run more than (t, times 
slower than another in the interval I. 

The following conditions, which define varying 
degrees of communication synchrony, place 
constraints on the kinds of runs that are allowed. 

(1) delta is known: there is a fixed ~ which holds in 
[1,00) for every run R; this is the usual definition of 
synchronous communication. 

(2) delta is unknown: for every run R there is a A 
which holds in [1,00). 

(3) delta holds eventually: there is a fixed & such 
that, for every [-un R, there is a time tO such that ,_& holds 
in [tO,OO), and no messages are lost in Iq. 

(4) delta holds sufficiently long: them, is a fixed z~ and 
sufficiently large L such that, for every run R, there is a 
time tO such that ,3 holds in fro,to + L]. 

If (2), (3). or (4) hold. we say that communication is 
partially synchronous. In (3) and (4), tO is called the 
global stabilization time (GST). In (4), L will in general 
depend on 4, ¢ and N. By replacing 3 by ¢ above, (1) 
defines synchronous processors, and (2)-(4) define 
three types of partially synchronous processors. 

Fix any of the four possible fault models. In [DLS] we 
show results that can be paraphrased as (4) --> (3), (3) 
--> (2) and (2) --> (3). lhus, in a sense, (2) and (3) are 
equivalent, in that the existence of a consensus 
protocol in one of these models implies the existence 
of a consensus protocol in the other, while (4) is a 
weaker model. However, this strengtl~ens our results, 
since all our protocols work for the (4) variant, while all 
our lower bounds work for the (3) and (2) variants. 

2.4. Cor rec tness  of a Consensus Protocol  
Given assumptions A about processor and 

communication synchrony, given a fault mooe F, and 
given a number N of processors and an integer t with 0 
< t < N, correctness of a t.resilient c~nsensus 
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protocol is defined as follows. 
For any set C containing at least N-t processors and 

any run R satisfying A and in which the processors in C 
are correct and the behavior of the processors not in C 
is allowed by the fault mode F, the protocol achieves: 

Consistency. No two different processors in C decide 
differently. 

Eventual Agreement. If R is infinite then every 
processor in C makes a decision. 

Unanimity. There are two types: 
Strong Unanimity: if all initial values are v then if any 

processor in C decides, then it decides v. 
Weak Unanimity: if all initial values are v and C 

contains all processors, then if any processor decides, 
then it decides v. 

3. PARTIALLY SYNCHRONOUS 
COMMUNICATION AND SYNCHRONOUS 
PROCESSORS 

In this section we assume that processors are 
synchronous and communication is partially 
synchronous. Throughout most of this section we 
assume that the processor bound ~1~ = 1 to sirnplify the 
exposition of the main ideas. Remarks at the end of the 
section then indicate several ways to extend the results 
to the case ¢ > 1. Since processors operate in lock- 
step synchrony, it is useful to imagine that each 
(correct) processor has a clock which is perfectly 
synchronized with the clocks of other correct 
processors. Initially, the clock is O, and a processor 
increments its clock by 1 every time it takes a step. 1-he 
assumption ¢ = 1 implies that the clocks of all correct 
processors are exactly the same at any real time step. 

The next three subsections give consensus protocols 
and lower bounds for the four types of faults. 

3.1 Fail-Stop and Omission Faults 

The consensus protocols in the following three 
subsections are all designed for the model in which 
holds sufficiently long, and they handle arbitrary value 
domains V. In case (1~ = 1, as noted above, we can 
imagine that all (correct) processors have access to a 
common clock. Time. as measured by this clock, is 
divided into phases, and phases are subdivided into 
rounds o[ message exchange of length R each. The 
number R = N + ~ + 1 is chosen largo enough to allow 
processors to "broadcast" a n~essage to all N 
processors (including themselves), and for all these 
messages to be received. Since our model does not 
have an atomic broadcast operation, this is done by 
sending the message to al! processors, one at a time. 
Of course, our algorithms must allow for the possibility 
ttt&t ,3 faulty processor could fait in the middle of a 
"broadcast", and for ~he possibility that messages sent 

before GST could be lost or arrive late. It will be seen 
that these possibilities do not affect the correctness of 
our algorithms. A processor always attaches a phase 
identifier (number) to messages, and any message sent 
during a phase h which arrives late during some phase 
h' > h is ignored. Thus, one can imagine that 
communication during one phase is independent of 
communication during any other phase. 

To argue that our protocols achieve strong 
unanimity, we use the notion of a proper value defined 
as follows: if all processors start with the same value v, 
then v is the only proper value; if there are at least two 
different initial values, then all values in V are proper. 
In al! protocols, each processor will maintain a local 
variable PROPER, whictl contains a set of values which 
the processor" knows to be proper. Processors will 
always piggyback their current PROPER sets on all 
messages. The way of updating the PROPER sets will 
vary from algorithm to algorithm. 

The first algorithm is used for either fail-stop or 
omission faults. It achieves strong unanimity for an 
arbitrary value domain V. 

Algorithm 1: N >_ 2t + 1 

Initially, each processor's set PROPER contains just 
its own initial vslue. Each processor attaches its 
current value of PROPER to every message that it 
sends. Whenever a processor p receives a PROPER 
set from another processor that contains a particular 
value, v, then p puts v into its own PROPER set. It is 
easy to check that each PROPER set always contains 
only proper values. 

Processing is divided into alternating trying and lock 
release phases, with pairs of corresponding phases 
being numbered by consecutive integers starting with 
1, where each trying phase is of length 3R and each 
lock rele&sc phase is el length R. We say that trying 
phase i mod N belongs to processor i. 

At various times during the algorithm, a processor 
may lock a value v. A phase number is associated with 
every lock. If p locks v with associated phase number k 
_=: i mod N, it means that p thinks that processor i might 
decide v at phase k. Processor p only releases a lock if 
it learns that its supposition was false. A value v is 
acceptable to p if p does not have a lock on any value 
other than v. 

We now describe the processing during a particular 
trying phase k. Let s denote the time of the beginning 
of the first round in phase k, and assume k _= i mod 
N. At time s, each processor (including i) sends a list of 
all its acceptable values which are also in its PROPER 
set to processor i (in the form of a (list, k) message). (If 
V is very large or infinite, it is more efficient to send a 
list of proper values and a list of unacceptable values, 
Given these lists, the proper acceptable values are 
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easily deduced.) At time s + R, processor i attempts to 
choose a value to propose. In order for processor i to 
propose v, it must have heard that at least N - t 
processors (possibly including itself) find value v 
acceptable and proper at the beginning of phase k. It is 
possible that there might be more than one possible 
value which processor i might propose; in this case, 
processor i will choose one arbitrarily. Processor i 
then broadcasts a message (lock v,k). 

If any processor receives a (lock v,k) message by 
time s + 2R, it locks v, associating the phase number k 
with the lock, and sends an acl~nowledgement to 
processor i (in the form of an (ack, k) message). In this 
case, any earlier lock on v is released. (Any locks on 
other values are not released at this time.) 

If processor i receives acknowledgements from at 
least t + 1 processors by time s + 3R, then processor i 
decides v. After deciding v, processor i continues to 
participate in the algorithm. 

Lock release phase k begins at time s + 3R. At time 
s + 3R. processors broadcast messages of the form 
(v,h), indicating that the sender has a lock on v with 
associated phase h. If any processor has a lock on 
some value v with associated phase h, and receives a 
message (w,h') with w =~ v and h' > h, then the 
processor releases its lock on v. 

Lemma 1: It is impossible for two distinct 
values to acquire locks with the same 
associated phase. 

Proof: In order for two values v and w to 
acquire a lock at trying phase k, the 
processor to which phase k belongs must 
send conflicting (lock v,k) and (lock w,k) 
messages, which it will never do in this fault 
model. 

Lemma 2: Suppose that some processor 
decides v at phase k, and k is the smallest 
numbered phase at which a decision is 
made. Then at least t + 1 processors lock v 
at phase k. Moreover, each of the processors 
that locks v at phase k will, from that time 
onward, always have a lock on v with 
associated phase number at least k. 

Proof: 
It is clear that at least t + 1 processors lock 

v at phase k. Assume that the second 
conclusion is false. Then let I be the first 
phase at which one of the locks on v set at 
phase k is released without immediately 
being replaced by another, higher-numbered 
lock on v. 

In this case the lock is released during lock 
release phase I. when it is learned that some 
processor has a lock on some w =~ v with 

associated phase h, where k .< h < I. Lemma 
1 irnplies that no processor has a lock on any 
w ~= v with associated phase k. Therefore, 
some processor has a lock on w with 
associated phase h, where k < h _< I. Thus, it 
must be that w is found acceptable to at least 
N - t processors at the first round of some 
phase numbered h, k < h < I, which means 
that at least N .  t processors do not have v 
locked at the beginning of that phase. Since 
t + 1 processors have v locked at least 
through the first round of I, this is impossible. 
B 

Lemma 3: Immediately after any lock 
release phase which occurs completely in 
the interval [GST,GST + L] the set of values 
locked by processors contains at most one 
value. 

Proof: Straightforward from the lock 
release rule. i 

Theorem 4: Assume the model with fail- 
stop or omission faults, where the processors 
are synchronous with @ = 1 and 
communication is partially synchronous (& 
holds sufficiently long). Assume N > 2t + 1. 
Then Algorithm 1 achieves strong unanimity 
for an arbitrary value domain. 

Proof: 
First, we show that disagreement cannot be 

reached. Suppose that some correct 
processor i decides v at phase k, and this is 
the smallest numbered phase at which a 
decision is made. Then Lemma 2 imples that 
at all times after phase k, at least t + 1 
processors have v locked. In consequence, 
at no later phase can any value other than v 
ever be acceptable to N - t processors, so no 
processor will ever decide any value other 
than v. 

Next, we argue eventual agreement. 
Consider any trying phase, k, belonging to a 
correct processor, i, which is executed after 
a lock rcle~tso phase, both occurring during 
[GST,GST + L]. We claim that processor i will 
reach a decision at trying phase k (if it has 
not done so already). By Lemma 3, there is 
at most one value locked by correct 
processors at the start of trying phase k. If 
there is such a value, v, then sufficient 
communication has occurred by the 
beginning of trying phase k so that v is in the 
PROPER set of each correct processor. 
Moreover, any initial value of a correct 
processor is ir~ the PROPER set of each 
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correct processor at the beginning of trying 
phase k. It follows that a proper, acceptable 
value will be found for processor i to 
propose, and that the proposed value will be 
decided upon by processor i at trying phase 
k.~l 

The following lower bound shows that the resiliency 
of Theorem 4 cannot be improved, even for weak 
unanimity and a binary value domain. 

Theorem 5: Assume the model with fail- 
stop or omission faults, where the processors 
are synchronous and communication is 
partially synchronous (A holds eventually 
and no messages are lost). Assume N < 2t. 
Then there is no t-resilient consensus 
protocol which achieves weak unanimity for 
binary values. 

Proof: 
Assume the contrary, that there is an 

algorithm immune to fail-stop faults satisfying 
the required properties. We will derive a 
contradiction, 

Divide tl~e processors into two groups, P 
and Q, each with at least 1 and at most t 
p:ocessors. First consider the following 
situation A: all initial values are O, the 
processors in Q are initially dead and all 
messages sent from processors in P to 
processors in P are do!ivered in exactly time 
1. By t4esiiiency, the processors in P must 
reach a decision; s:~:~ that this occurs after 
tirne t A. The decision must be O. For if it 
were 1, we could modify the situation to one 
where the processors in Q are alive, but all 
messages sent from Q to P take more than 
time t A to be delivered. In the modified 
situation, the processors in P still decide 1, 
contradicting weak unanimity. 

Consider situation B: all initial values are 1, 
the processors in P are initially dead, and 
messages sent from Q to Q are delivered in 
exactly time 1. By a similar argument, the 
processors in Q decide 1 after t B steps for 
some finite t B. 

Consider situation C (for Contradiction): 
processors in P have initial values O, 
processors in Q have initial values 1, all 
processors are alive, messages sent from P 
lo P or from Q to Q are delivered in exactly 
t~me 1. and messages sent from P to Q or 
from Q to P take more than max(tA,tB) steps 
to be delivered. The processors in group P 
(reap.. group Q) act exactly as they do in 
situation A Oesp., situation B). This yields a 
contradiction, la 

3.2. Byzantine Faults with Authentication 
The second algorithm achieves strong unanimity for 

an arbitrary value set V, in the case of Byzantine faults 
with authentication. 

Algor i thm 2: N ~ 3t + 1 

,Initially, each processor's PROPER set contains just 
its own initial value. Each processor altaches its 
PROPER set and its initial value to every message it 
sends. If a processor p ever receives 2t + 1 initial 
values from different processors, among which there 
are not t + 1 with the same value, then p puts all of V 
(the total value domain) into its set PROPER. (Of 
course, p would actually just set a bit indicating that 
PROPER contains all of V.) When a processor p 
receives claims from at least t + 1 other processors 
that a particular value v is in their PROPER sets, then p 
puts v into its own PROPER set. It is not difficult to 
check that each PROPER set for a correct processor 
indeed contains only proper values. 

Processing is again divided into alternating trying and 
lock release phases, with phases numbered as before 
and of the same length as before. 

As before, at various times during the algorithm, 
processors may lock values. In algorithm 2, not only is 
a phase number associated with every lock, but also a 
pro.of of acceptability of the locked value, in the form of 
a set of signed messages, sent by N - t processors, 
saying that the locked value is acceptable and in their 
PROPER sets at the begin~ing of the given phase. As 
before, a value v is acceptable to p if p does not have a 
lock on any value other than v. 

We now describe the processing during a particular 
trying phase k. Let s denote the time of the beginning 
of the first round in phase k, and assume k ~ i mod 
N. At time s, each processor j (including i) sends a list 
of all its acceptable values which are also in its 
PROPER set to processor i, in the form Ej(list, k), where 
E i is an at, thentication function. At time s +" R, 
processor i attct,~pts to choose a value to propose. In 
order for processor i to propose v, it must have heard 
that at least N - t processors find value v acceptable 
and proper at phase k. Again, if there is more than one 
possible value wMch processor i might propose, then it 
will choose one arbitrarily. Processor i then 
broadcasts a message Ei(Iock v,k,proof), where the 
proof consists of the set of signed messages Ej(list,k) 
received from the N - t processors which found v 
acceptable and proper. 

If any processor receives a E(Iock v,k,proof) 
message by time s + 2R, it decodes the proof to check 

z ,  "~|  that N-t processors find v a~.cept~,elc and proper at 
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phase k. It the proof is valid, it locks v, associating the 
phase number k and the message Ei(Iock v,k,proof) 
with the lock, and sends an acknowledgement to 
processor i. In this case, any earlier lock on v is 
released. (Any locks on other values are not released 
at this time.) If the processor should receive such 
messages for more than one value v, it handles each 
one similarly. The entire message Ei(Iock v,k,proof) is 
said to be a valid lock on v at phase k. 

If processor i receives acknowledgements from at 
least 2t + 1 processors, then processor i decides 
v. After deciding v, processor i continues to participate 
in the algorithm. 

Lock release phase k begins at time s + 3R. At time 
s + 3R, processors broadcast messages of the form 
Ei(Iock v,h,proof), indicating that the sender has a lock 
on v with associated phase h and the given associated 
proof, and processor i sent the message at phase h 
which caused the lock to be placed. If any processor 
has a lock on some value v with associated phase h, 
and receives a properly signed message Ej(Iock 
w,h',proof') with w =~ v and h' > h, then the processor 
releases its lock on v. 

The proofs for Lemmas 6 through 8 and of Theorem 
9 are analogous to the proofs of the corresponding 
results for Algorithm 1. 

Lemma 6: It is impossible for two distinct 
values to acquire valid locks at the same 
trying phase, if that phase belongs to a 
correct processor. II 

Lemma 7: Suppose that some correct 
processor decides v at phase k, and k is the 
smallest numbered phase at which a 
decision is made by a correct processor. 
Then at least t + 1 correct processors lock v 
at phase k. Moreover, each of the correct 
processors that locks v at phase k will, from 
that time onward, always have a lock on v 
with associated phase number at least k. i 

Lemma 8: Immediately after any lock 
release phase which occurs completely in 
the interval [GST,GST+ L] the set of values 
locked by correct processors contains at 
most one value. ! 

Theorem 9: Assume the model with 
Byzantine faults and authentication where 
the processors are synchronous with ~1~ = 1 
and comrnunication is partially synchronous 
(delta holds sufficiently long). Assume N > 
3t + 1. Then Atgodthm 2 acilioves strong 
unanimity for an ar bitrary value domain, l 

The following lower bound result again applies in the 
case of weak unanimity and a binary value domain. 

Theorem 10: Assume the model with 
Byzantine faults and authentication, where 
the processors are synchronous and 
communication is partially synchronous 
(delta holds eventually and no messages are 
lost). Assume N _< 3t. Then there is no t- 
resilient consensus protocol which achieves 
weak unanimity for binary values. I 

3 .3 .  B y z a n t i n e  Fau l ts  w i t h o u t  A u t h e n t i c a t i o n  
Here, we will describe two protocols. The first, 

simpler, protocol, is t-resilient and uses 4t + 1 
processors. It uses a polynomial amount of 
communication. The second protocol needs only 3t + 
1 processors, thereby achieving the maximum possible 
resiliency (as implied by the lower bound result of the 
previous section), but it uses more than a polynomial 
amount of communication. 

Both algorithms are designed for the model in which 
.~ holds sufficiently long and for arbitrary value 
domains. 

In both algorithms, the processors' PROPER sets are 
handled exactly as in Algorithm 2. 

Algor i thm 3: N >_ 4t + 1 
Processing is again divided into alternating trying and 

lock release phases, with phases numbered as before. 
Now, however, the trying phases are of length 4R. 

As before, at various times during tl~e algorithm, 
processors may lock values. In algorithm 3, only a 
phase number is associated with every lock. As before, 
a value v is acceptable to p if p does not have a lock on 
any value other than v. 

We now describe the processing during a particular 
trying phase k. Let s denote the time of the beginning 
of the first round in phase k, and assume k ---- i rood 
N. At time s, each processor broadcasts a list of all its 
acceptable values which are also in its PROPER set, in 
the form (list, k). At time s + R, each processor p 
broadcasts a vector which says, for each processor q, 
which values q sent to p at the preceding round. At 
time s + 2R, processor i attempts to choose a value to 
propose. In order for processor i to propose v, it must 
have heard that each of at least N - 2t processors 
claims that at least N - 2t processors find value v 
acceptable and proper at phase k. As before, 
ambiguities are resolved arbitrarily. Processor i then 
broadcasts a message (lock v,k). 

If any processor receives a (lock v,k) message by 
time s + 3R, and also has heard that each of at least N 

3t processors claims that at least N - 2t processors 
find value v acceptable and proper at phase k, it locks 
v, associating the phase number k with the lock, and 
sends an acknowledgement to processor i. Release of 
other locks on v is handled as before. 
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If processor i receives acknowledgements from at 
least 3t + 1 processors, then processor i decides 
v. After deciding v, processor i continues to participate 
in the algorithm. 

Lock release phase k begins at time s + 4R. At time 
s + 4R, processors broadcast messages of the form 
(v,h), indicating that the sender has a lock on v with 
associated phase h. If any processor has a lock on 
some value v with associated phase h, and receives t + 
1 messages indicating that t + 1 distinct processors all 
have locks of the form (w,h') with w ~= v and h' > h, 
then the processor releases its lock on v. (The values 
of w and h' need not be the same in all of these locks.) 

Lemma 1 1 : It is ~mpossible for two distinct 
values to acquire locks by correct 
processors at the same trying phase, if that 
phase belongs to a correct processor. 

P~oof: The proof is similar to previous 
proofs and is left to the complete paper. I 

Lernma 12: Suppose that some correct 
processor decides v at phase k, and k is the 
smallest numbered phase at which a 
decision is made by a correct processor. 
Then at least 2t + 1 correct processors lock 
v at phase k. Moreover, each of the correct 
processors that locks v at phase k will, from 
that time onward, a!ways have a lock on v 
'with associated phase number at least k. 

P roof: 
It is clear that at least 2t + 1 correct 

processors lock v at phase k. Assume that 
the second conclusion is false. Then let I be 
the first phase at which one of the locks on v 
set at phase k is released without 
immediately being replaced by another, 
higher numbered lock on v. 

Then the lock is released during lock 
release phase I, ;.A~en it is learned that at 
least t + 1 processors have locks on values 
w =~ v with .... ~ ; .~  assL. c,,,.,.d phases h, where k < h 
<: I. TherJor~, at least one correct 
processor, say j, h&s such a lock. Lemma 
11 implies that no correct processor has a 
lock on any w .= v with associated phase 
k. Therefore, the correct processor j has a 
lock on w ~ v with associated phase h, 
where k < h <: I. In order for j to place this 
lock on w. at least N-3t processors each 
claim that at least N-2t processors find w 
acceptable at the first round of phase 
h. Su~ce N-3t >_ t + l ,  at least one correct 
processor makes this claim, so at least N-2t 
processors actually find w acceptable. Since 
2t + 1 correct processors have v locked at 

least through the first round of I, this is 
impossible. II 

Lemma 13: Immediately after any lock 
release phase which occurs completely in 
the interval [GST,GST + L] either no value is 
locked or there exists some locked value v 
such that at most t correct processors hold 
locks on values other than v. 

Proof: Straightforward from the lock 
release rule. (Consider some v whose lock is 
from the earliest phase from which any lock 
persists.) II 

Theorem 14: Assume the model with 
Byzantine faults without authentication, 
where the processors are synchronous with 
@=1 and communication is partially 
synchronous (..& holds sufficiently long). 
Assume N > 4t + 1. Then Algorithm 3 
achieves strong unanimity for an arbitrary 
value domain. 

Proof: 
The proof that disagreement cannot be 

reached follows easily from Lemma 12 as in 
the proof of Algorithm 1. 

Next, we argue eventual agreement. 
Consider any trying phase, k, belonging to a 
correct processor, i. which is executed after 
a lock release phase, both occurring during 
[GST.GST + L]. We claim that processor i will 
reach a decision at trying phase k (if it has 
not done so already). There are two cases. 
if some value v is locked at the beginning of 
trying phase k, then by Lemma 13, there is 
some locked value v such that at most t 
correct processors have values other than v 
locked at the start of trying phase 
k. Therefore, v is acceptable to at least N-2t 

2t+ 1 correct processors. Thus, by the 
beginning of trying phase k, these 2t+ 1 
correct processors have communicated to all 
correct processors that v is proper, so every 
correct processor will have v in its PROPER 
set. In the second case, no va!ue is locked, 
so all values are acceptable. If there are at 
least t+ 1 processors with the same initial 
value v, then v is in the PROPER set of each 
correct processor at the beginning of trying 
phase k. On the other hand, if this is not the 
case, then all values in the value set are in 
the PROPER set of all correct processors at 
the beginning of trying phase k. It follows in 
either case that a proper, acceptable value 
will be found for processor i to propose. 
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Moreover~ any va!ue v which is proposed by 
processor i must have had N - 2t processors 
tell i that N - 2t processors found v to be 
acceptable and proper. Then at least N - 3t 
processors must tell all other processors that 
N - 2t processors found v to be acceptable 
and proper, so that all the correct processors 
will acknowledge the proposal. Thus, the 
proposed value will be decided upon by 
processor i at trying phase k. | 

]he  second protocol of this section uses only N > 3t 
+ 1 processors, but the amount of communication and 
the time to reach a decision after GST grows roughly 
like N t in the worst case. 

Algor i thm 4: N > 3t + 1 
Instead of rotating processors in successive phases, 

we rotate pairs (S,i), where S is a size N - t subset of the 
set of processors and i is a distinguished processor in 
that set. Each phase k is owned by the corresponding 
S, and the distinguished processor i plays the role of 
the coordinator. 

Processing is again divided into alternating trying and 
lock release phases. We first describe the processing 
during a particular trying phase k. Assume that phase k 
is owned by the set S of N-t processors and that i is the 
distinguished processor. Each trying phase has four 
rounds. During the first round each processor in S 
broadcasts a list of all its acceptable values which are 
also in its PROPER set, in the form (list, k). Based on 
this information, processor i attempts to choose a value 
to propose. In order for processor i to propose v, it 
must have heard that all processors in S find v to be 
acceptable and proper. As before, ambiguities are 
resolved arbitrarily. During the second round, 
processor i broadcasts a message (propose v,k). If a 
processor j in S receives a message (propose v,k) from 
i and if j heard from all processors in S during the first 
round that v is acceptable and proper, then j 
broadcasts (lock v,k) during the third round. If a 
processor in S receives (lock v.k) messages from all in 
S, then it locks v and sends an acknowledgement to 
processor i. If processor i receives acknowledgemnts 
from all in S, then i decides v. After deciding, processor 
i continues to participate in the algorithm. 

Each lock release pi~.qse has three rounds. During 
the first round, processors broadcast messages of tile 
form (v.h) indicating th,~t the sender has a lock on v at 
associated phase h. It a processor receives a message 
(v,h), tllen during the next two rounds it checks if (v,h) 
is val/d by determining the set S of processors that 
owns phase h, and asking each processor in S whether 
it sent a message (lock v.h} at phase h. If at least N-2t 
processors in S respond affirmatively by the end of the 

third round then (v.h) ~s valid: otherwise it is not valid. 
If a processor has a lock on v with associated phase h 
and it receives a valid message (w.h') with w * v and h' 
>_ h, then it releases the lock on v. 

Lernma 15: Suppose that some correct 
processor decides v at phase k, and k is the 
smallest numbered phase at which a 
decision is made by a correct processor. 
Then at least t + 1 correct processors lock v 
at phase k. Moreover, each of the correct 
processors that locks v at phase k will, from 
that time onward, always have a lock on v 
with associated phase number at least k. 

Proof: 
It is clear that at least t + 1 correct 

processors lock v at phase k. Assume that 
the second conclusion is false. As before, let 
I be the first phase at which one of the locks 
on v set at phase k is released without 
immediately being replaced by another, 
higher-numbered lock on v. 

Therefore, some correct processor 
received a valid message (w,h) during lock 
release phase I. where w ~ v and k < h < 
I. Since (w.h) is valid, at least N-2t > t+ 1 
processors said that they sent a message 
(lock w.h) at phase h. Therefore, at least one 
correct processor j actually sent (lock w,h). 
If h = k, then j would have sent both (lock 
w,k) and (lock v,k), which is impossible. 
Therefore, k < h ~ I. Since j sent (lock w,h), j 
heard during phase h that N-t processors 
(namely. the set that owns phase tl) found w 
to be acceptable at phase h. But since at 
least t + 1 correct processors have v locked 
at least through the first round of trying 
phase I, this is impossible. § 

Lemma 16: Immediately after any lock 
release phase which occurs after GST, the 
set of values locked by correct processors 
contains at most one value. 

Proof: Say that processor i has a lock on v 
with associated phase h and processor j has 
a lock on w with associated phase h' where v 
=~ w. Say that h' > h. During the lock release 
phase, i will receive the message (w,h') from 
j. Since j received the message (lock w,h') 
from at least N-t processors during trying 
phase h' and since at least N-2t of these are 
correct, i will determine that (w,h') is valid. 
Therefore i will release the lock on v. | 
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Theorem 17: Assume the model with 
Byzantine faults without authentication, 
where the processors are synchronous with 

=1 and communication is partially 
synchronous (delta holds sufficiently long). 
Assume N > 3t + 1. Then Algorithm 4 
achieves strong unanimity for an arbitrary 
value domain. 

Proof: 
The argument that disagreement cannot be 

reached is similar to before. 

Next, we argue eventual agreement. 
Consider any trying phase, k, belonging to a 
set S consisting entirely ot correct 
processors. Assume i is tile disting.uished 
processor at phase k. We claim that 
processor i will reach a decision at trying 
phase k (if it has not done so already). By 
Lemma 16, it follows as in previous proofs 
that a proper, acceptable value will be found 
for processor i to propose. Moreover, since 
all processors in S are correct, it is obvious 
that the entire trying phase k will complete 
successfully, and processor i will make a 
decision at the end. ~1 

Our lower bound is tight for the case of 
unauthenticated Byzantine faults with no further 
restrictions. If we consider the problem with the 
requirement that communication be bounded by a 
polynomial, or that time be bounded by something 
linear in N after GST, then we do not know how to close 
the gap. 

Remarks 

1. Algorithms 1, 2 and 3 have tile property that all 
correct processors make a decision witMn O(N) rounds 
after GST. The time to ,each agreement after GST can 
be .improved to O(t) rounds by some simple 
modifications. The bound O(t) is optimal to within a 
constant factor since [!4, FLa] show that t + 1 rounds 
are necessary even in case communication and 
processors are both synchronous and failures are fail- 
stop. A modification to all the algorithms is to have a 
processor broadcast the message "Decide v" 
whenever it decides v. This message is not tagged with 
a phase number, and other processors should accept a 
"Decide v" message at any time. For Algorithm 1 (fail- 
stop and omission faults) a processor can decide v 
when it receives any "Decide v" message. For 
Algorithms 2 and 3 (Byzantine faults), a processor can 
decide v when it receives t + 1 "Decide v" messages 
from different sources. Easy arguments show that the 
modified algorithms are still correct and that all correct 
processors make a decision within O(t) rounds after 

GST, and these arguments are left to the reader. 
These modifications also give termination conditions 
for the processors, in models where no messages are 
lost. For fail-stop or omission faults, a processor can 
terminate after it broadcasts a "Decide v" message. 
For Byzantine faults, a processor can terminate after it 
has broadcast a "Decide v" message and has received 
"Decide v" messages fiom 2t other processors. In the 
model where messages can be lost before GST, it is not 
hard to argue that in any consensus protocol resilient 
to one fail-stop fault, at least one correct processor 
must continue sending messages forever. The 
argument is similar to Theorems 5 and 10. 

2. We have described our algorithrns for the model in 
which delta hotds sufficiently long. We can then apply 
the model reductions mentioned at the beginning of 
section 2 to show that the same resiliency is possible in 
the rnodel where delta is unknown. Although this is 
theoretically convenient, it may not give the most 
efficient protocols for the model where delta is 
unknown. An alternative is to modify the algorithms. 
Instead of using a fixed ~ to determine the length R of a 
round, A 0s increased as time progresses. For 
exampie, one might use A = 2 L h / N J  during phase 
number h. If &' is the "actual" ~ that holds in the 
particular run that the the algorithm is executing, then 
the effective GST (the time when the increasing z~ 
reaches the actual & will be polynomial in N and ,&'). 

3. If ,1~ > 1, we can again imagine that the processors 
have internal clocks, but that the clocks drift apart at a 
rate bounded above by q~. One approach to designing 
a protocol for this model is to use one of the clock 
synchronization algorithms of [HSS, DHS, LL]. There 
are clock synchronization algorithms resilient to 
several Byzantine failures, even without authentication, 
and which have two properties: (1) the clocks of 
correct processors never differ by more than a fixed 
additive constant, and (2) the clocks of correct 
processors never run slower or faster than real time by 
more than some fixed multiplicative constant. Property 
(1) permits time to be divided into rounds so that no 
two correct processors are in different rounds at the 
same real time. Property (2) ensures that the 
algorithms run no slower than some constant times real 
time. Together. these two properties allow us to run 
the consensus protocols of this section, with 
processors reading their internal (private) clocks 
instead of a shared clock. 

In Section 4 we show that the resiliency achieved by 
the protocols of this section can also be achieved if 
both processors and communication are partially 
synchronous. Of course, these stronger results imply 
that the same resiliency is achievable if communication 
is partially synchronous and processors are 
synchronous with some ¢ > 1, and this provides an 
alternate way of handling the case @ > 1. 
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4. PARTIALLY SYNCHRONOUS 
COMMUNICATION AND PROCESSORS 

In this section we show that the protocols of the 
previous section can be modified to work, with the 
same resiliencies, in models where both 
communication and processors are partially 
synchronous. Moreover, algorithms 1, 2, and 3 will still 
use a polynomial amount of communication. We 
describe the modified protocols in detail for the case 
where ¢ and A both hold sufficiently long; that is, there 
are fixed constants ¢ and z~, such that for any run, 
there is a time GST such that both ¢ and z~ hold in the 
interval [GST,GST+L] for a sufficiently large L 
depending polynomially on N, ¢, and &. As described 
in Remark 2 at the end of the previous section, the 
protocols can be modified for the model where both @ 
and A are unknown by letting the "built in" ¢ and A 
increase as time progresses. 

In the previous section, the processors had a 
common notion of time which allowed time to be 
divided into phases. If ,:I~ does not always hold, no such 
common notion of time is available. Therefore, the first 
step is to describe a protocol which gives the 
processors some approximately common notion of 
time, at least during the reliable interval [GST,GST + L]. 
We call such a protocol a distributed clock. Each 
processor has a private (software) clock. Before GST, 
the private clocks of correct processors could be very 
far apart. However, during the reliable interval 
[GST,GST+ L] there are two correctness conditions 
which the private clocks of all correct processors must 
satisfy: within some constant amount of real time after 
GST (1) tile private clocks must grow at a rate within 
some constant factor of real time, and (2) at any. real 
time the difference in the values of any two private 
clocks is bounded above by an additive constant 
known to the processors. The three "constants" here 
depend polynomially on N, @ and A. 

Once we have defined the distributed clocks, the 
prolccols of the previous section are modified by 
letting each processor use its private clock to 
determine which round (and therefore, wMch phase) it 
is in. For convenience, processors alternate receiving 
and sending operations. Alternate pairs of receive- 
send operations are used to maintain the distributed 
clock, with the other receive-send pairs being used by 
the consensus protocol. We first describe what 
happens during the clock mcintenance steps for two 
different distributed clocks. The first handles 
Byzantine faults without authentication and requires N 
> 3t + 1. The second handles Byzantine faults with 
authentication and requires N > 2t + 1. (In [DLS] we 
define anothes distributed clock which handles only 
fail-stop faults, but is N-resilient. This cleck is not 
needed for the results presented in this paper.) 

4.1. A Distributed Clock for Byzantine Faults 
wi thout  Authent ica t ion  

Throughout this section we assume that N :> 3t + 1. 
The term step refers to a real-time step; real-time steps 
are numbered O, 1, 2 .... Processors participate in our 
distributed clock protocols by sending ticks to one 
another. For convenience, we define a master clock 
whose value at any step s depends on the past global 
behavior of the system and is a function of the ticks 
that have been sent before s. Even approximating the 
value of the master clock requires global information 
about what ticks have been sent to which processors. 
We therefore introduce a second type of message, 
called a claim, in which processors make assertions 
about the ticks they have sent. 

An i-tick is the message 'T'. A >i-tick is a j-tick for 
any j > i. We say p has broadcast an i-tick if it has sent 
a >_i-tick to all N processors. 

An i-claim is the message "1 have broadcast an i- 
tick". A ~i-claim is a j-claim for anyj ~ i. We say p has 
broadcast an i-claim if it has sent a >i-claim to all N 
processors. 

We adopt the conver~tion that all processors have 
exchanged ticks and claims of size 0 before step 0. 
-lhese messages are not actually sent, but they are 
considered to have been sent and received. 

The master clock, C: N -. N, is defined at any real- 
time step s by 

C{s) = maximum j such that t + 1 correct processors 
have broadcast a j-tick by the beginning of step s. 

Since all processors are assumcd by convention to 
have broadcast a 0-tick before step 0, C(0) = 0. 

For each processor Pi the private clock, cj: N , N, is 
defined by 

ci(s ) = maximum j such tt~at at the beginning of step 
s Pi has received either (1) 2t+ 1 ~j-claims or (2) 
messages from t + 1 processors, where each message 
is either a ).z'(J + 1)-tick or a _>(j + 1).claim. 

Since Pi is assumed to have received 0-claims from 
all N processors by step 0, ci(0 ) = 0. 

Let Pi be a correct processor. In sending ticks, Pi'S 
goal is to increment the master clock, so ideally we 
would like Pi to send a (C(s)+l)- t ick at step 
s. However, knowing C(s) requires global information. 
Instead, Pi uses c i, its view of C, to compute its next 
tick, sending a (ci(s) + 1)-tick at step s. We will show in 
Lemma 18 that ci(s ) < C(s), so Pi will never force the 
master clock to skip a value. We will also show that 
"soon" after GST the value of the master clock 
exceeds tt~ose of the private clocks by only a constant 
amount, so during the reliable interval Pi will not be 
pusMng the master clock fat ahead of the private 
clocks of the other processors. 
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Each processor Pi repeatedly cycles through all N 
processors, broadcasting, in diHerent cycles, ticks and 
claims. The private clock of Pi is stored in a local 
variable ci. Processor Pi updates its private clock every 
time it executes a receiving clock maintenance 
operation by considering all the ticks and claims it has 
received and updating its private clock according to 
the definition of the private clock given above (thus, the 
private clock is updated every fourth step that Pi takes). 
The following two programs describe the tick and claim 
broadcasting procedures. A processor begins the 
distributed clock protocol by setting ci to 0 and calling 
TICK(O), where TICK(b) is the protocol shown in Figure 
1. Note that the value of ci may change during an 
execution of TICK(b), but the claim is made only for a 
(b+ 1)-tick. This is consistent with our definition of 
what it means to have broadcast a (b + 1)-tick. 

TICK(b): 
j<--0; 
while j < N do 
begin 

j< - - j+  1; 
send (ci + 1)-tick to pj; 

end; 
call CLAIM(b). 

CLAIM(b): 
send (b + 1)-claim to all processors; 
if ci > b then call TICK(ci); else call CLAIM(b). 

Figu re 1: Procedure TICK 

The proofs of Lemmas 18 and 19 are fairly 
straightforward from the definitions and the protocol. 
Lemma 20 is proved by a simple induction, using 
Lemma 19. 

Lemma 18: For all s >- 0 and for all i such 
that Pi is correct, ci(s ) _ C(s). II 

Lemma 19: For all s >- 0 the largest tick 
sent by a correct processor at step s has size 
at most C(s) + 1. II 

Lemma 20: For all s,x > 0, C(s+ x) < C(s) 
+x .  II 

The above lemmas are independent of both 
communication and processor synchrony. 

Tile next r'ew lemmas discuss the behavior of the 
clocks during the reliable interval I = [GST,GST + L]. 
Lemma 2~1 says lhat the private clocks increase at most 
a constant factor more slowly than real time. Lemma 
23 has two parts. The first says that the master cloak 
exceeds the value of the private clocks by at most an 
additive constant. This, together with Lemma 18, 
bounds the difference between any two private clocks 
at any instant of real time. The second part of Lemma 

23 says that, at least during the reliable interval, the 
master clock runs at a rate at most a a constant factor 
more slowly than real time. Let D = z~ + 4~I~. Note that 
if a message is sent to a correct processor p at step s 
>- GST and s + D is in I, then p will receive the message 
by step s+ D; the message will be delivered by step 
s+z~ and within 4~b more steps p will execute a 
receiving clock maintenance operation. 

Lemma 21: Let s and j be such that s >- 
GST, s+ 16N~I~ + D is in I, and ci(s ) _> j for all 
correct Pi" Then ci(s + 16N,,b + D) >- j + 1 for 
all correct Pr II 

Lemma 22: Let T = C(GST). Then 
C(GST + 52Nci) + 4D) >- T + 2. II 

Lemma 23: Let s o be the minimum s such 
that C(s) = C(GST)+ 2 (s o exists by Lemma 
22). 

(1) For all x in I such that x >- So+ D and for 
all correct processors i, ci(x ) >- C(x)-D-1. 

(2) For all y >- s o such that y + 32N£b + 3D 
is in I C(v + 32N~ + 3D) >- C(y) + 1. II 

Lemmas 18, 20, 21, and 23 yield the correctness 
conditions which must be satisfied by the private 
clocks of all correct processors. Specifically, Lemma 
21 says that the private clocks do not grow too slowly, 
while Lemmas 18 and 20 say they do not grow too 
quickly. That is, within a constant amount of time after 
GST the private clocks grow within a constant factor of 
real time. As pointed out above. Lemmas 18 and 23 (1) 
say that soon after GST the private clocks of any two 
correct processors differ by at most a known, additive 
constant, at least during the reliable interval. 

4.2. A Dis t r ibu ted Clock for Byzant ine Faults 
wi th Authent ica t ion  

The new clock is very similar to the one just 
described. We only explain the differences. Here we 
assume N >- 2t + 1. 

An i-claim is a signed message "1 have broadcast an 
i-tick". A >-i-claim is a j-claim for any j >- i. For i > 1, 
an i-tick is the message "<i,i-proof>" where a l -proof is 
the empty string and where an i-proof (i > 1) is a list of 
t+ 1 >(i-1)-clairns each signed by a different 
processor. 

A >i-t ick is a j-tick for any j > i. The definitions of 
broadcast an i-tick and broadcast an i-claim are the 
same as before. 

Tile master clock C: N -, N is defined by 
C(s) = maximum j such that some correct processor 

has broadcast a j-tick by the beginning of step s. 
The private clock ci: N ---, N is defined by 
cj(s) = maximum j such that Pi has received t + l  

>-j-claims (from different sources), either directly, or 
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indirectly as part of a tick, by the beginning of step s. 
The definition of the clock protocol is the same as 

before with the addition that whenever a processor 
sends a (b+l)-c laim in the procedure CLAIM(b), it 
attaches the largest size tick which it can construct 
(this will always be a >(b+ l ) - t i ck ) .  A correct 
processor will ignore any received j-claim if it does not 
come with an attached >_j-tick. 

Lemma 24: Lemmas 18, 19, 20, 21, 22, 
and 23 hold for the authenticated Byzantine 
clock, il 

In addition, we need one more lemma to support our 
claim of a polynomial amount of communication. The 
proof is immediate from the definitions. 

Lemma 25: Any tick or claim sent by a 
correct processor at step s can be 
represented by O(t Iog(C(s))) bits. II 

4.3. Using the Clocks 
As desceibed above, alternate pairs of receive-send 

operations are used to maintain a distributed clock, 
and the other receive-send pairs are used to run one of 
the protocols of Section 3. For Algorithm 1 (fail.stop 
and omission faults) we use the authenticated 
Byzantine clock, simplified appropriately because the 
signatures are not needed and because we cannot 
assume the authentication capablity. Note that the 
consensus protocol and the distributed clock protocol 
have the same constraint on the number of processors, 
N > 2t+ 1. For Algorithms 3 and 4 (unauthenticated 
Byzantine faults), we use the unauthenticated 
Byzan!ine clock. For Algorithm 2 (authenticated 
Byzantine faults) either clock could be used. For all 
four cigorithms L, the length of the reliable period, is 
somewhat larger in the new model. 

Processing is divided into alternating rounds and 
waiting periods of length R and W respectively. 
Specifically, R = 4N4) + ~ + 44) is the time required for 
N processors to broadcast a message and for this 
message to be received, and W = 52N(b + 4(A + 44)) is 
the maximum difference between the private clocks of 
any two correct processors during [GST + Sl, GST + L], 
where s 1 = 52N¢ +5(~ +4q~) (see Lemmas 18, 22, and 
23). When running the consensus protocol, a 
processor uses its private clock to determine its 
current phase and round. In addition to labelling 
messages with phase numbers, processors label 
messages with round numbers. During any given 
round, only messages labelled with the same round 
number are accepted: other messages are ignored. 
During any given waiting period, only messages from 
either of the two adjacent rounds are accepted. No 
messages are sent during waiting periods. 

For all four of the co,]sensus protocols, the proofs 
that no two correct processors decide differently are 
identical to the proofs given in Section 3, since at no 
point in those proofs did we use the fact that different 
processors are executing the sarne phase at the same 
real time. For example, in Algorithm 1, if a processor i 
decides v at its phase k, then at least t + 1 processors 
lock v at their phase k. and one argues as in Lemma 
2 that these locks will never be released at any higher 
numbered phase. 

To argue eventual ag~cement after GST, note that by 
choice of W no two correct processors are 
simultaneously .executing. different rounds at the same 
time x, lor any x in the interval [GST+s 1, GST+L].  
Further, any message labelled with a given round, say 
k, and sent to a correct processor during 
[GST+sl ,GST+L.D] ,  will be received and accepted 
before that processor begins round k+ 1. We now 
choose tile lengths T T and T R of phases large enough 
so that all required communication during a phase will 
have time to complete, at least for all phases which 
take place entirely within [GST + s 1 ,GST + L]. 

Theorern 26: Assume the model where 
communication and processors are both 
partially synchronous (delta and phi both 
hold sutficiently long). If Algorithms 1, 2, 3 
and 4 are modified as decribed above, 
Theorems 4, 9, 14, 17 still hold. II 

Our claims that the modified algorithms 1, 2 and 3 
use a polynomial amount of communication and that 
agreement is reached within a polynomial amount of 
real time after GST follow from the fact that the master 
clock, during [GST + sl,GST + L], is running at a rate no 
slower than 1/(32N*@ +3(3 + 4~D)) times real time (see 
Lemma 23). 

The results for the case in which processors are 
partially synchrenous and communication is 
synchronous are deferred to the complete paper. 

Acknowledgment. Joe Halpern asked whether the 
impossibility results of [FLP,DDS] would continue to 
hold in case the parameters 4) or ,k exist but are not 
known a priori, and this led to th,9 formulation of the 
version of partial synchrony where 4) or & are 
unknown. 
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F a i l u r e  mode Synchronous Asynchronous 

Fai l -stop t oo 

Omission t oo 

Byzantine with 
Authentication t oo 

Byzantine without 
Authentication 3t+I oO 

P a r t i a l l y  
Synchronous 

2 t + I  

2t+1 

3 t + I  

3 t + I  ( exp )  
3 t  ~ N ~ 4 t + I  

Tab le  1 : Smallest number of processors N (N > 2) for which 
there exists a t-resilient consensus protocol (t >_ 1). 

F a i l - s t o p :  N = t 

Omiss ion :  t ~ N ~ 2 t  + I 

B y z a n t i n e  w i t h  N = 3 t  + I 
A u t h e n t i c a t i o n :  2 t  ~ N ~ 2 t  + I f o r  the  

case o f  "weak u n a n i m i t y "  I F ]  

B y z a n t i n e  w i t h o u t  N = 3 t  + I ( e x p o n e n t i a l  commun ica t i on )  
A u t l l e n t i c a t i o n :  3 t  < N ~ 4 t  + ] ( p o l y n o m i a l  commun ica t i on )  

Tab le  2: The smallest number of processors N for which t-resiliency 
!s possible in the model with synchronous communication and 

partially synchronous processors. 
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