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ABSTRACT 
We present a mathematical  state-machine model, the Dy- 
namic I / 0  Automaton (DIOA) model, for defining and an- 
alyzing dynamic systems of interacting components. The 
systems we consider are dynamic in two senses: (1) com- 
ponents can be created and destroyed as computation pro- 
ceeds, and (2) the set of events in which a component may 
participate can change as computation proceeds. The new 
model admits a notion of external system behavior, based on 
sets of traces. It  also features a parallel composition opera- 
tor for dynamic systems, which satisfies standard execution 
projection and pasting results, and a notion of simulation 
from one dynamic system to another, which can be used to 
prove that  one system implements the other. 

1. INTRODUCTION. 
Many modern distributed systems are dynamic: they in- 

volve changing sets of components, which get created and 
destroyed as computation proceeds, and changing commu- 
nications capabilities for existing components. For example, 
mobile agent systems involve agents that  create and destroy 
other agents, travel to different network locations, and trans- 
fer communication capabilities. 

To describe and analyze such dynamic systems rigorously, 
o n e  needs an appropriate mathematical foundation: a state- 
machine-based framework that  enables modeling of individ- 
ual components and their interactions and changes. The 
framework should admit  standard modeling methods such 
as parallel composition and levels of abstraction, and stan- 
dard proof methods such as invariants and simulation rela- 
tions. The framework should also be simple enough to use 
as a basis for distributed algorithm analysis. 

Static mathematical models like I /O automata  [4] could 
be used for this purpose, with the addition of some extra 
structure (special Boolean flags) for modeling dynamic as- 
pects. For example, in [3], dynamically-created transac- 
tions were modeled as if they existed all along, but  were 
"awakened" upon execution of special create actions. This 
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approach, however, makes it awkward to define notions of 
composition, projection, and hiding. We therefore model 
dynamic behavior more directly, by explicitly keeping track 
of the processes that  are currently "awake." The main chal- 
lenge is to identify a small, simple set of constructs that  can 
form a basis for describing dynamic systems. 

Our proposal for such a model, the Dynamic I / 0  Automa- 
ton (DIOA) model, is a mathematical  state-machine model 
which extends the I /O  automaton model by giving individ- 
ual I /O  automata  the ability to create other I /O  automata,  
and also to change their own signatures (which is used, e.g., 
to model mobility). We defined the DIOA model initially 
to support the analysis of mobile agent systems, in a joint 
project with researchers at Nippon Telegraph and Telephone 
[1]. The full version of this paper is available on-line [2]. 

2. DYNAMIC I/O AUTOMATA 
To express dynamic aspects in DIOA, we augment the I /O 

automaton model with: 

1. Variable signatures: The signature of an automaton is 
a function of its state, and so can change as the au- 
tomaton makes state transitions. In particular, an au- 
tomaton "dies" by changing its signature to the empty 
set, after which it is incapable of performing any ac- 
tion. We call this new class of automata  signature 
11/0 automata, henceforth referred to simply as "au- 
tomata," or abbreviated as SIOA. 

2. Create actions: An automaton A can "create" a new 
automaton B by executing an action create(B) 

3. Two-level semantics: Due to the introduction of create 
actions, the semantics of an automaton is no longer ac- 
curately given by its transition relation. The effect of 
create actions must also be taken into account. Thus, 
the semantics is given by a second class of automata,  
called configuration automata. Each state of a config- 
uration automaton consists of the set of signature I /O 
automata  that  are currently "awake," together with 
the current local state of each one. 

2.1 Signature I/O Automata 
We assume the existence of a set ,4 of unique SIOA identi- 

fiers, an underlying universal set Auts of SIOA, and a map- 
ping aut : .A ~-~ Auts. aut(A) is the SIOA with identifier A. 
We usually use "the automaton A" to mean "the SIOA with 
identifier A. We use the letters A, B, possibly subscripted 
or primed, for SIOA identifiers. 



In our model, each automaton A has a set of actions 
usig(A), the universal signature of A. The actions that  A 
may execute (in any of its states) are drawn from usig(A). 
In a particular state s, the executable actions axe drawn 
from a fixed (but varying with s) subset of usig(A), denoted 
by sig(A)(s), and called the state signature. Thus, the "cur- 
rent" signature of A is a function of its current state, but  is 
always constrained to be a subset of A's universal signature. 

As in the I /O atomaton model, the actions of a signa- 
ture (either universal or state) are partitioned into input,  
output, and internal actions. Thus, usig(A) = (uin(A),  
uout(A), uint(A)).  Additionally, the output  actions are par- 
titioned into regular outputs and c rea te  outputs: 
uout(A) = (uoutregular(A), ucreate(A)). Likewise, 
sig(A)(s) = ( in(A)(s) ,  out(A)(s),  int(A)(s)) ,  and 
out(A)(s) = (outregular(A)(s), create(A)(s)). 

A crea te  action a has a single attribute: target(a), the 
identifier of the automaton that  is to be created. 

DEFINITION 1 (SIGNATURE I / O  AUTOMATON). A signa- 
ture I /O automaton aut(A) consists of the following com- 
ponents and constraints on those components: 

• A fixed universal signature usig(A) as discussed above 

• A set states(A) of states 

• A nonempty set start(A) C_ states(A) of start states 

• A mapping sAg(A) : states(A) ~ 2 nAn(A) ×{2 u°utregular(A) x 
2 "crc"tc(A)} X 2 "i"t(A) 

• A transition relation steps(A) C_ states(A) x usig(A) x 
states ( A ) 

• The following constraints: 

1. V ( s , a , s ' )  e s t eps (A)  : a e sig(A)(s) 
e. Vs,Va 6 in(A)(s) ,Bs '  : (s ,a ,s ' )  6 steps(A) 
3. sig(A)(s) ~ 0 for any start state s 

Constraint I requires that any executed action be in the sig- 
nature of the start state. Constraint 2 is the input enabling 
requirement of I/O automata. 

Let At,... ,A,~ be SIOA. AI,... ,A,~ are compatible Aft, 
for all 1 _< i , j  < n , i  ~ j ,  (1) usig(Ai) N uint(Aj)  = 0 and 
uout(Ai)Nuout(Ay) = 0, and (2) uereate(A~)Nusig(Ai) = O. 
Thus, in addition to the usual I /O automaton compatibil- 
ity conditions [4], we require that  a c rea te  action of one 
automaton cannot be in the universal signature of another. 

2.2 Configuration Automata 
To model the effect of c rea te ' s ,  we keep track of the set 

of SIOA that  have been created but  not yet removed. Thus, 
we require a transition relation over configurations. 

DEFINITION 2 (CONFIGURATION). A configuration is a 
finite set {(A1, sl ), . . . , (A , ,  sn) } where Ai is an SIOA iden- 
tifier, si 6 states(Ai) for 1 < i < n, and Ai ~£ Aj  for 
1 < i , j  < n , i  ~ j .  A configuration { ( A l , s l ) , . . .  , ( A ~ , s , ) }  
is compatible iff A t , . . .  ,Am are compatible, 

If a configuration C executes a non-crea te  action a, then 
the effect is similar to that  in the I /O automaton model: 
each automaton involved in a undergoes a local state change, 
according to its transition relation. Additionally, these au- 
tomata may change their signature. Those automata whose 

signature is changed to the empty set are removed from the 
configuration. Automata  uninvolved in a remain in the same 
state. If C executes a create(B) action, then the automaton 
Ai executing create(B) undergoes a local state change. If 
Ai 's  new signature is empty, then Ai is removed. If B is not 
present in C, then B is added to C, with its local state being 
any of its start states. An empty configuration (one contain- 
ing no automata) cannot execute any transitions. We write 
C - ~  D when a finite sequence 7r of actions can be executed 
starting in configuration C and ending in configuration D. 

The entire behavior that  a given configuration is capable 
of is captured by the notion of configuration automaton. 

DEFINITION 3 (CONFIGURATION AUTOMATON). Given a 
set of configurations C, the configuration automaton config(C) 
corresponding to C is a state machine with three components: 

1. a set of start states, start( eonfig(C) ) = C 

2. a set of states, states(config(C)) = 
{DIBC6C, B=:C-~D} 

3. a transition relation, steps( config(C) ) = 
{(C,a,C') I C-2-~C ' and C,C' e states(config(C))} 

Thus, eonfig(C) is the automaton induced by all the con- 
figurations reachable from some configuration in C, and the 
transitions between them. If all reachable configurations 
of a configuration automaton X are compatible, then X is 
compatible. We assume (without further repetition) that  all 
configuration automata we deal with are compatible. 

An execution of configuration automaton X is a sequence 
C o a i C i . . . C i - l a i C i . . .  such that  Co E start(X) and 
(Ci- laiCi)  E steps(X) for all i >__ 0. The trace of an exe- 
cution is the sequence that  results from replacing each con- 
figuration by its external signature, and then removing all 
actions al such that  ai is an internal action of C i - i .  

2.3 Clone-freedom 
In our model, repeated executions of a create(B) action 

do not create additional copies (or "clones") of B. That  
is, only the first execution has the effect of creating a new 
automaton. The advantage of this semantics is that  ev- 
ery reachable configuration is "clone-free" in that all of its 
SIOA can be distinguished from each other by their identi- 
fiers. This significantly simplifies our techinical results. One 
problem however, is that  projection and pasting results are 
violated, since the effect of a c r ea t e  action depends on the 
system within which it is executed. Thus, we assume that  
every configuration automaton we deal with is clone-free. 

DEFINITION 4 (CLONE-FREE). A configuration automa- 
ton X is clone-free iff for all C E states(X),  there is no 
create action a such that target(a) is an automaton of C 
and 3C' : C - ~  C'. 

This does not preclude modeling and reasoning about e.g., 
two SIOA that are indistinguishable to the other SIOA au- 
tomata in the system, and so are "clones" in that sense. To 
reason, we must distinguish these "clones," which we do by 
means of their identifiers, which are not necessarily available 
to the other SIOA in the system. 
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3. COMPOSITION 
If two configurations C, D have no au tomata  in common, 

then they are eomposable, and their composition C [[ D is 
their set union, i.e., C I[ D = C U D. Since a configuration 
automaton is uniquely determined by its s tar t  states, we 
define the composition of two configuration au tomata  X, Y, 
as the configuration automaton determined by the set of 
compositions of the  s tar t  configurations of X and Y. If X, Y 
are configuration au toma ta  such tha t  for 'al l  C E start(X),  
D E start(Y) : C, D are composable, then we say tha t  X 
and Y are composable. 

DEFINITION 5 (COMPOSITION). Let X ,  Y be compos- 
able configuration automata. Then X [[ Y ,  the composition 
of X and Y ,  is defined to be config(E), where E = {C [[ D :  
C e star~(X), D E start(Y)}.  

The projection C [D of a configuration C onto a configu- 
rat ion D is their  set intersection, i.e., C[D = C N D. If r 
is an execution of X [[ Y, then the projection of lr onto X 
(~r[X) is defined by keeping track of the evolving structure 
of X and Y along lr: any automaton B created by some 
automaton A in X is also considered to "belong" to X.  Any 
automaton of X tha t  changes its signature to ~} is removed 
from X.  For each transi t ion Ei - la iE i  along It, the  projec- 
tion of this t ransi t ion is included in ~r IX iff some par t ic ipant  
in action ai is an automaton tha t  belongs to X in config- 
uration E~-I. Note tha t  this "belongs to" relationship can 
change dynamically,  so tha t  an automaton B tha t  belongs 
to X at  some point  can "die", and then be (re)created later  
by some automaton in Y. 

To confirm tha t  DIOA provides a basis for compositional 
reasoning, we have established "projection" and "pasting" 
results for compositions: if lr is an execution of X I[ Y, 
then lr~X is an execution of X (projection). Also, if ~r is an 
al ternating sequence of states and actions of X I[ Y, and if 
Ir[X, ~r[Y are executions of X, Y, respectively, then ~r is an 
execution of X II Y (pasting). 

4. SIMULATION 
We define a notion of forward simulation from one con- 

figuration au tomaton  to another. Our notion requires the  
usual s tar t  s ta te  condition, and the matching of every tran- 
sition of the  implementat ion by an execution fragment of 
the specification which has the same trace. I t  also requires 
tha t  corresponding configurations have the same external  
signature. This gives us a reasonable notion of refinement, 
in tha t  an implementat ion presents to its environment only 
those interfaces (i.e., external signatures) tha t  are allowed 
by the specification. 

In the  full paper ,  we present an example design of a sim- 
ple flight ticket purchase system, which includes a "request 
agent" tha t  visits a (fixed) set of databases containing infor- 
mat ion about  available flights for purchase, until it  finds a 
ticket tha t  satisfies the customers requirements. We present 
a global specification automaton and an implementat ion.  
The implementat ion we give refines the specification by us- 
ing a part icular  search strategy for the request agent. Thus, 
no reasonable bisimulation notion could be established be- 
tween the specification (which allows any search pa t te rn  of 
the  databases) and the implementation. Hence, the use of a 
simulation, ra ther  than a bisimulation, allows us much more 
la t i tude in refining a specification into an implementation.  

5. MODELING DYNAMIC CONNECTION 
AND LOCATIONS 

We model both  the dynamic creat ion/moving of connec- 
tions, and the mobil i ty of agents, by using dynamical ly chang- 
ing external interfaces. The guiding principle here is tha t  
an agent should only interact directly with either (1) an- 
other co-located agent, or (2) a channel one of whose ends 
is co-located with the agent. Thus, we restrict interaction 
according to the current locations of the agents. 

We adopt  a logical notion of location: a location is a value 
from the domain of "all locations." To codify our guiding 
principle, we par t i t ion the set of SIOA into two subsets, 
namely the set of agent SIOA, and the set of channel SIOA. 
Agent SIOA have a single location, and represent agents, 
and channel SIOA have two locations, namely their  current 
endpoints. We codify the guiding principle as follows: for 
any configuration, the following conditions all hold, (1) two 
agent SIOA have a common external  action only if they have 
the same location, (2) an agent SIOA and a channel SIOA 
have a common external action only if one of the channel 
endpoints has the same location as the agent SIOA, and (3) 
two channel SIOA have no common external actions. 

6. FURTHER RESEARCH 
Our main research agenda in the  near te rm is to (1) es- 

tablish tha t  forward simulation implies trace inclusion: if a 
forward simulation from X to Y exists, then every trace of 
X is also a trace of Y, and (2) establish trace projection and 
past ing results, analogous to the projection and past ing re- 
sults we have already established for executions. This may 
require an extension of our current notion of trace. 
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