
Brief Announcement: Dynamic Input/Output Automata, a
Formal Model for Dynamic Systems

Paul C. Attie
Northeastern University

Boston, MA
attie@ccs.neu.edu

Nancy A. Lynch
MIT Laboratory for Computer Science

Cambridge, MA
lynch@theory.lcs.rnit.edu

ABSTRACT
We present a mathematical state-machine model, the Dy-
namic I / 0 Automaton (DIOA) model, for defining and an-
alyzing dynamic systems of interacting components. The
systems we consider are dynamic in two senses: (1) com-
ponents can be created and destroyed as computation pro-
ceeds, and (2) the set of events in which a component may
participate can change as computation proceeds. The new
model admits a notion of external system behavior, based on
sets of traces. It also features a parallel composition opera-
tor for dynamic systems, which satisfies standard execution
projection and pasting results, and a notion of simulation
from one dynamic system to another, which can be used to
prove that one system implements the other.

1. INTRODUCTION.
Many modern distributed systems are dynamic: they in-

volve changing sets of components, which get created and
destroyed as computation proceeds, and changing commu-
nications capabilities for existing components. For example,
mobile agent systems involve agents that create and destroy
other agents, travel to different network locations, and trans-
fer communication capabilities.

To describe and analyze such dynamic systems rigorously,
o n e needs an appropriate mathematical foundation: a state-
machine-based framework that enables modeling of individ-
ual components and their interactions and changes. The
framework should admit standard modeling methods such
as parallel composition and levels of abstraction, and stan-
dard proof methods such as invariants and simulation rela-
tions. The framework should also be simple enough to use
as a basis for distributed algorithm analysis.

Static mathematical models like I /O automata [4] could
be used for this purpose, with the addition of some extra
structure (special Boolean flags) for modeling dynamic as-
pects. For example, in [3], dynamically-created transac-
tions were modeled as if they existed all along, but were
"awakened" upon execution of special create actions. This

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PODC 01 Newport Rhode Island USA
Copyright ACM 2001 1-58113-383-9/01/08...$5.00

314

approach, however, makes it awkward to define notions of
composition, projection, and hiding. We therefore model
dynamic behavior more directly, by explicitly keeping track
of the processes that are currently "awake." The main chal-
lenge is to identify a small, simple set of constructs that can
form a basis for describing dynamic systems.

Our proposal for such a model, the Dynamic I / 0 Automa-
ton (DIOA) model, is a mathematical state-machine model
which extends the I /O automaton model by giving individ-
ual I /O automata the ability to create other I /O automata,
and also to change their own signatures (which is used, e.g.,
to model mobility). We defined the DIOA model initially
to support the analysis of mobile agent systems, in a joint
project with researchers at Nippon Telegraph and Telephone
[1]. The full version of this paper is available on-line [2].

2. DYNAMIC I/O AUTOMATA
To express dynamic aspects in DIOA, we augment the I /O

automaton model with:

1. Variable signatures: The signature of an automaton is
a function of its state, and so can change as the au-
tomaton makes state transitions. In particular, an au-
tomaton "dies" by changing its signature to the empty
set, after which it is incapable of performing any ac-
tion. We call this new class of automata signature
11/0 automata, henceforth referred to simply as "au-
tomata," or abbreviated as SIOA.

2. Create actions: An automaton A can "create" a new
automaton B by executing an action create(B)

3. Two-level semantics: Due to the introduction of create
actions, the semantics of an automaton is no longer ac-
curately given by its transition relation. The effect of
create actions must also be taken into account. Thus,
the semantics is given by a second class of automata,
called configuration automata. Each state of a config-
uration automaton consists of the set of signature I /O
automata that are currently "awake," together with
the current local state of each one.

2.1 Signature I/O Automata
We assume the existence of a set ,4 of unique SIOA identi-

fiers, an underlying universal set Auts of SIOA, and a map-
ping aut : .A ~-~ Auts. aut(A) is the SIOA with identifier A.
We usually use "the automaton A" to mean "the SIOA with
identifier A. We use the letters A, B, possibly subscripted
or primed, for SIOA identifiers.

In our model, each automaton A has a set of actions
usig(A), the universal signature of A. The actions that A
may execute (in any of its states) are drawn from usig(A).
In a particular state s, the executable actions axe drawn
from a fixed (but varying with s) subset of usig(A), denoted
by sig(A)(s), and called the state signature. Thus, the "cur-
rent" signature of A is a function of its current state, but is
always constrained to be a subset of A's universal signature.

As in the I /O atomaton model, the actions of a signa-
ture (either universal or state) are partitioned into input,
output, and internal actions. Thus, usig(A) = (uin(A),
uout(A), uint(A)). Additionally, the output actions are par-
titioned into regular outputs and c rea te outputs:
uout(A) = (uoutregular(A), ucreate(A)). Likewise,
sig(A)(s) = (in(A)(s) , out(A)(s), int(A)(s)) , and
out(A)(s) = (outregular(A)(s), create(A)(s)).

A crea te action a has a single attribute: target(a), the
identifier of the automaton that is to be created.

DEFINITION 1 (SIGNATURE I / O AUTOMATON). A signa-
ture I /O automaton aut(A) consists of the following com-
ponents and constraints on those components:

• A fixed universal signature usig(A) as discussed above

• A set states(A) of states

• A nonempty set start(A) C_ states(A) of start states

• A mapping sAg(A) : states(A) ~ 2 nAn(A) ×{2 u°utregular(A) x
2 "crc"tc(A)} X 2 "i"t(A)

• A transition relation steps(A) C_ states(A) x usig(A) x
states (A)

• The following constraints:

1. V (s , a , s ') e s t eps (A) : a e sig(A)(s)
e. Vs,Va 6 in(A)(s) ,Bs ' : (s ,a ,s ') 6 steps(A)
3. sig(A)(s) ~ 0 for any start state s

Constraint I requires that any executed action be in the sig-
nature of the start state. Constraint 2 is the input enabling
requirement of I/O automata.

Let At,... ,A,~ be SIOA. AI,... ,A,~ are compatible Aft,
for all 1 _< i , j < n , i ~ j , (1) usig(Ai) N uint(Aj) = 0 and
uout(Ai)Nuout(Ay) = 0, and (2) uereate(A~)Nusig(Ai) = O.
Thus, in addition to the usual I /O automaton compatibil-
ity conditions [4], we require that a c rea te action of one
automaton cannot be in the universal signature of another.

2.2 Configuration Automata
To model the effect of c rea te ' s , we keep track of the set

of SIOA that have been created but not yet removed. Thus,
we require a transition relation over configurations.

DEFINITION 2 (CONFIGURATION). A configuration is a
finite set {(A1, sl), . . . , (A , , sn) } where Ai is an SIOA iden-
tifier, si 6 states(Ai) for 1 < i < n, and Ai ~£ Aj for
1 < i , j < n , i ~ j . A configuration { (A l , s l) , . . . , (A ~ , s ,) }
is compatible iff A t , . . . ,Am are compatible,

If a configuration C executes a non-crea te action a, then
the effect is similar to that in the I /O automaton model:
each automaton involved in a undergoes a local state change,
according to its transition relation. Additionally, these au-
tomata may change their signature. Those automata whose

signature is changed to the empty set are removed from the
configuration. Automata uninvolved in a remain in the same
state. If C executes a create(B) action, then the automaton
Ai executing create(B) undergoes a local state change. If
Ai 's new signature is empty, then Ai is removed. If B is not
present in C, then B is added to C, with its local state being
any of its start states. An empty configuration (one contain-
ing no automata) cannot execute any transitions. We write
C - ~ D when a finite sequence 7r of actions can be executed
starting in configuration C and ending in configuration D.

The entire behavior that a given configuration is capable
of is captured by the notion of configuration automaton.

DEFINITION 3 (CONFIGURATION AUTOMATON). Given a
set of configurations C, the configuration automaton config(C)
corresponding to C is a state machine with three components:

1. a set of start states, start(eonfig(C)) = C

2. a set of states, states(config(C)) =
{DIBC6C, B=:C-~D}

3. a transition relation, steps(config(C)) =
{(C,a,C') I C-2-~C ' and C,C' e states(config(C))}

Thus, eonfig(C) is the automaton induced by all the con-
figurations reachable from some configuration in C, and the
transitions between them. If all reachable configurations
of a configuration automaton X are compatible, then X is
compatible. We assume (without further repetition) that all
configuration automata we deal with are compatible.

An execution of configuration automaton X is a sequence
C o a i C i . . . C i - l a i C i . . . such that Co E start(X) and
(Ci- laiCi) E steps(X) for all i >__ 0. The trace of an exe-
cution is the sequence that results from replacing each con-
figuration by its external signature, and then removing all
actions al such that ai is an internal action of C i - i .

2.3 Clone-freedom
In our model, repeated executions of a create(B) action

do not create additional copies (or "clones") of B. That
is, only the first execution has the effect of creating a new
automaton. The advantage of this semantics is that ev-
ery reachable configuration is "clone-free" in that all of its
SIOA can be distinguished from each other by their identi-
fiers. This significantly simplifies our techinical results. One
problem however, is that projection and pasting results are
violated, since the effect of a c r ea t e action depends on the
system within which it is executed. Thus, we assume that
every configuration automaton we deal with is clone-free.

DEFINITION 4 (CLONE-FREE). A configuration automa-
ton X is clone-free iff for all C E states(X), there is no
create action a such that target(a) is an automaton of C
and 3C' : C - ~ C'.

This does not preclude modeling and reasoning about e.g.,
two SIOA that are indistinguishable to the other SIOA au-
tomata in the system, and so are "clones" in that sense. To
reason, we must distinguish these "clones," which we do by
means of their identifiers, which are not necessarily available
to the other SIOA in the system.

315

3. COMPOSITION
If two configurations C, D have no au tomata in common,

then they are eomposable, and their composition C [[D is
their set union, i.e., C I[D = C U D. Since a configuration
automaton is uniquely determined by its s tar t states, we
define the composition of two configuration au tomata X, Y,
as the configuration automaton determined by the set of
compositions of the s tar t configurations of X and Y. If X, Y
are configuration au toma ta such tha t for 'al l C E start(X),
D E start(Y) : C, D are composable, then we say tha t X
and Y are composable.

DEFINITION 5 (COMPOSITION). Let X , Y be compos-
able configuration automata. Then X [[Y , the composition
of X and Y , is defined to be config(E), where E = {C [[D :
C e star~(X), D E start(Y)}.

The projection C [D of a configuration C onto a configu-
rat ion D is their set intersection, i.e., C[D = C N D. If r
is an execution of X [[Y, then the projection of lr onto X
(~r[X) is defined by keeping track of the evolving structure
of X and Y along lr: any automaton B created by some
automaton A in X is also considered to "belong" to X. Any
automaton of X tha t changes its signature to ~} is removed
from X. For each transi t ion Ei - la iE i along It, the projec-
tion of this t ransi t ion is included in ~r IX iff some par t ic ipant
in action ai is an automaton tha t belongs to X in config-
uration E~-I. Note tha t this "belongs to" relationship can
change dynamically, so tha t an automaton B tha t belongs
to X at some point can "die", and then be (re)created later
by some automaton in Y.

To confirm tha t DIOA provides a basis for compositional
reasoning, we have established "projection" and "pasting"
results for compositions: if lr is an execution of X I[Y,
then lr~X is an execution of X (projection). Also, if ~r is an
al ternating sequence of states and actions of X I[Y, and if
Ir[X, ~r[Y are executions of X, Y, respectively, then ~r is an
execution of X II Y (pasting).

4. SIMULATION
We define a notion of forward simulation from one con-

figuration au tomaton to another. Our notion requires the
usual s tar t s ta te condition, and the matching of every tran-
sition of the implementat ion by an execution fragment of
the specification which has the same trace. I t also requires
tha t corresponding configurations have the same external
signature. This gives us a reasonable notion of refinement,
in tha t an implementat ion presents to its environment only
those interfaces (i.e., external signatures) tha t are allowed
by the specification.

In the full paper , we present an example design of a sim-
ple flight ticket purchase system, which includes a "request
agent" tha t visits a (fixed) set of databases containing infor-
mat ion about available flights for purchase, until it finds a
ticket tha t satisfies the customers requirements. We present
a global specification automaton and an implementat ion.
The implementat ion we give refines the specification by us-
ing a part icular search strategy for the request agent. Thus,
no reasonable bisimulation notion could be established be-
tween the specification (which allows any search pa t te rn of
the databases) and the implementation. Hence, the use of a
simulation, ra ther than a bisimulation, allows us much more
la t i tude in refining a specification into an implementation.

5. MODELING DYNAMIC CONNECTION
AND LOCATIONS

We model both the dynamic creat ion/moving of connec-
tions, and the mobil i ty of agents, by using dynamical ly chang-
ing external interfaces. The guiding principle here is tha t
an agent should only interact directly with either (1) an-
other co-located agent, or (2) a channel one of whose ends
is co-located with the agent. Thus, we restrict interaction
according to the current locations of the agents.

We adopt a logical notion of location: a location is a value
from the domain of "all locations." To codify our guiding
principle, we par t i t ion the set of SIOA into two subsets,
namely the set of agent SIOA, and the set of channel SIOA.
Agent SIOA have a single location, and represent agents,
and channel SIOA have two locations, namely their current
endpoints. We codify the guiding principle as follows: for
any configuration, the following conditions all hold, (1) two
agent SIOA have a common external action only if they have
the same location, (2) an agent SIOA and a channel SIOA
have a common external action only if one of the channel
endpoints has the same location as the agent SIOA, and (3)
two channel SIOA have no common external actions.

6. FURTHER RESEARCH
Our main research agenda in the near te rm is to (1) es-

tablish tha t forward simulation implies trace inclusion: if a
forward simulation from X to Y exists, then every trace of
X is also a trace of Y, and (2) establish trace projection and
past ing results, analogous to the projection and past ing re-
sults we have already established for executions. This may
require an extension of our current notion of trace.

7. REFERENCES
[1] T. Araragi, P. Attie, I. Keidar, K. Kogure,

V. Luchangco, N. Lynch, and K. Mano. On formal
modeling of agent computations. In NASA Workshop
on Formal Approaches to Agent-Based Systems, Apr.
2000. To appear in Springer LNCS.

[2] P. Att ie and N. Lynch. Dynamic inpu t /ou tpu t
automata: a formal model for dynamic systems.
Technical report , Northeastern University, Boston,
Mass., 2001. Available at
h t tp : / /www.ccs .neu .edu/home/a t t i e /pubs .h tml .

[3] N. Lynch, M. Merrit t , W. Weihl, and A. Fekete.
Atomic Transactions. Morgan Kaufmann, 1994.

[4] N. Lynch and M. Tuttle. An introduction to
inpu t /ou tpu t automata . Technical Report
CWI-Quaxterly, 2(3):219-246, Centrum voor Wiskunde
en Informatica, Amsterdam, The Netherlands, Sept.
1989.

316

