MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LABORATORY FOR COMPUTER SCIENCE
CAMBRIDGE, MA.

PROGRAMMING METHODOLOGY GROUP MEMO 50

ON THE CORRECTNESS OF ORPHAN ELIMINATION ALGORITHMS

Maurice Herlihyl
Nancy Lynch
Michael Merritt?
William Weihl

1 . . ,
Carnegie Mellon University, Dept. of Computer Science, Pittsburgh, Pa.

2 .
AT & T Bell Laboratories, Murray Hill, N. J.

The work of the first author was supported by the Defense Advanced Research Pro-
jects Agency (DOD), ARPA order 4976, monitored by the Air Force Avionics Labor-
atory undexr Contract F33615-84-K-1520. The second author was supported in part by
by the Office of Army Research under Contract DAAG29-84-K-0058, by the National
Science Foundation under grants DCR-8611442 and DCR-8302391. The third author was
supported by AT & T Bell Laboratories. The fourth author was supported by the
National Science Foundation under grant DCR-8510014. In addition the second and
fourth authors were supported by the Defense Advanced Research Projects Agency
(DOD) , monitored by the Office of Naval Research under contracts N0O0O014-83-K-0125
and N00014-85-K-0168. :

DECEMBER 1986

On the Correctness of Orphan Elimination Algorithms

Maurice Herlihy’
Nancy Lynch2
Michael Merritt®
William Weihl*

Abstract

In a distributed system, node crashes and network delays can result in orphaned computations:
computations that are still running but whose results are no longer needed. Several algorithms have been
proposed to detect and eliminate such computations before they can see inconsistent states. In this paper
we analyze two orphan elimination algorithms that have been proposed for nested transaction systems.
We describe the algorithms formally, and present complete detailed proofs of correctness. Our proofs are
remarkably simple, and show that the fundamental concepts underlying the two algorithms are quite
similar. In addition, we show formally that the algorithms can be used in combination with any correct
concurrency control technique, thus providing formal justification for the informal claims made by the
algorithms’ designers. Our results are a significant advance over earlier work in the area, in which it was

extremely difficult to state and prove comparable results.

1. Introduction

Nested transaction systems are being explored in a number of projects (e.g., see [6, 18, 15, 1]) as a
means for organizing computations in a distributed system. Like ordinary transactions, nested
transactions provide a simple means for coping with concurrency and failures. In addition, nested
transactions extend the usual notion of transactions {2, 14| to permit concurrency within a single action

and to provide a greater degree of fault-tolerance, by isolating a transaction from a failure of one of its

descendants.

In a distributed system, however, various factors, including node crashes and network delays, can result
in orphaned computations: computations that are still running but whose results are no longer needed.
For example, in the Argus system [6], the node making a remote request may give up because a network
partition or some other problem makes it impossible to communicate with the other node. This may

leave a process running at the called node; this process is an orphan. The orphan runs as a descendant of

1CMU Department of Computer Science, Pittsburgh, PA
2MI’I‘ Laboratory for Computer Science, 545 Technology Sq., Cambridge, MA
3AT&T Bell Laboratories, Murray Hill, NJ

4MIT Laboratory for Computer Science, 545 Technology Sq., Cambridge, MA

the transaction that made the call. Since the caller gives up by aborting the transaction that made the

call, the orphan cannot have any permanent effects on the state of the system.

As discussed in (7, 11], however, orphans are still undesirable, for two reasons. First, they waste
resources: they use processor cycles, and may also hold locks, causing other computations to be delayed.
Second, they may see inconsistent information. For example, a transaction might be reading data at two
nodes, with some invariant relating the states of the data. If the transaction reads data at one of the
nodes and then becomes an orphan, another transaction could change the data at both nodes before the
orphan reads the data at the second node. This could happen, for example, because the first node learns
that the transaction has aborted and releases its locks. While the inconsistencies seen by an orphan
should not have any permanent effect on the internal state of the system, they can cause strange behavior

if the orphan is interacting with the external world, and can also make programs difficult to debug.

Several algorithms have been proposed to prevent orphans from seeing inconsistent information. Early
work in the area includes Nelson’s thesis [13], which describes algorithms for detecting and eliminating
orphans that arise because of crashes. Nelson’s work did not assume an underlying transaction
mechanism, so that it was difficult to assign a simple semantics to abandoned computations. Recent
work {19, 7, 11] has studied orphans in the context of a nested transaction system, in which an abandoned
computation can be aborted, preventing it from having any effect on the state of the system. The goal of
the algorithms in 19, 7, 11] is to detect and eliminate orphans before they can see inconsistent

information.

In this paper we give formal descriptions and correctness proofs for two orphan elimination algorithms
in {7] and {11]. The algorithm in (7] is currently in use in the Argus system. Our analysis covers only
orphans resulting from aborts of actions that leave running descendants; we are currently working on
modelling crashes and describing the parts of the algorithms that handle orphans that result from crashes.
Our proofs are completely rigorous, yet quite simple. In addition, both the presentations and the proofs |

follow the intuitions which the designers use in describing the algorithms.

Our proofs clarify the fundamental concepts underlying the algorithms. We define a single general
correctness condition for algorithms that eliminate orphans that result from aborts, and prove that both
algorithms ensure this coadition. While the algorithms seem quite different, our proofs show that the

underlying ideas are quite similar.

The designers of the algorithms have claimed that the algorithms work in combination with any
concurrency control protocol that ensures serializability of committed transactions. Our correctness
condition relates the behavior of a system containing an orphan elimination algorithm to a system with

no orphan elimination: the system with orphan elimination must “simulate* the system without orphan

elimination, in the sense that each transaction in the system with orphan elimination must see a view of
the system it could see in an execution of the other system in which it was not an orphan. (By 5 view of
the system, we mean the results of operations invoked by the transaction.) Thus, if the copcurrency
control protocol ensures that non-orphans see consistent views, our correctness condition implies that the
orphan elimination algorithm will guarantee that all transactions see consistent views, This provides

formal justification for the informal claims made by the algorithms’ designers.

The formalism used in this paper is based on that in [9]. In (9], Lynch and Merrist develop a rnodel for
‘nested transaction systems including aborts, and use the model to show that an exclusive locking
variation of Moss’s algorithm [12] ensures correctness for non-orphans. In this paper we use the model to

describe the orphan elimination algorithms, to state correctness properties, and to prove them correct.

Earlier work on verifying the Argus algorithm was done by Goree [4], who used 2 simaple trace-based
model for nested transaction systems [8]. While Goree was able to state and prove similar properties of
the algorithm, the correctness properties were difficult to state and the proofs were extremsly complex, In
contrast, the correctness property described below is simple and intuitive, and our proofs are
correspondingly simple. This provides strong evidence that the basic mode] from [9] is both simple and

powerful enough for modelling and analyzing nested transaction systems.

The remainder of the paper is organized as follows. We begin in Section 2 with a brief deszription of
I/O automata, which serve as the formal foundation for our work. Then, in Section 3, we review the
relevant material from [9]. The material in these two sections is largely abstracted from [9], except for

Section 3.5; the reader who is familiar with [9] is encouraged to skim these sections quickly.

In Section 4, we present some basic definitions and results that underlie the results to be presented in
the rest of the paper. In the following sections, we present a series of different systems. The first, called
a filtered system, abstracts the funda.menta.l property ensured by both orphan elimination algorithms; we
prove that a filtered system simulates the corresponding system without orphan elimination in the
appropriate way. We also show that filtered systems ensure correctness for all transactions when

combined with any concurrency control protocol that ensures correctness for non-orphans.

The second system, called an Argus system, provides a rigorous and detailed model for the Argus
orphan elimination algorithm. We show that Argus systems simulate filtered systems. The third system,
called a strictly filtered system, is a simple restriction of filtered systems that serves as an intermediate
step in the proof of the algorithm from (11]. The fourth system, called a clock system, models the
algorithm from [11]. We show that strictly filtered systems simulate filtered systems, and that clock
systems simulated strictly filtered systems. The simulation results compose in a simple way, showing that

both algorithms are correct, and that, like filtered systems, both algorithms can be used with any

concurrency control protocol that ensures correctness for non-orphans.

After presenting the descriptions and proofs of the algorithms, we conclude in Section 9 with a summary

of our results and some suggestions for further work.

2. Basic Model

We use the I/O automaton model [10], a simple model for concurrent systems, as the formal foundation
for our work. This model consists of (possibly infinite-state) nondeterministic automata that have
operation names associated with their state transitions. Communication among automata is described by
identifying their operations. In this paper, we only prove properties of finite behavior, so we only require
a simple special case of the general model. In this section, we give a concise review of the relevant

definitions.

2.1. I/O Automata

An I/O automaton A has components states(A), start(4), out(A), in(4), and steps(A). Here, states(A) is
a set of states, of which a subset start(A) is designated as the set of start states. The next two
components are disjoint sets: out(A) is the set of output operations, and in(A) is the set of input
operations. The union of these two sets is the set of operations of the automaton. Finally, steps(4) is
the transition relation of A, which is a set of triples of the form (s’,7,s), where s’ and s are states, and = is
an operation. This triple means that in state s’, the automaton can atomically do operation 7 and change
to state s. An element of the transition relation is called a step of A. If (s’,m,s) is a step of 4, we say that

7 is enabled in s’.

The output operations are intended to model the actions that are triggered by the automaton itself,
while the input operations model the actions that are triggered by the environment of the automaton.
We require the following condition, which says that an I/O automaton must be prepared to receive any

input operation at any time.

Input Condition: For each input operation 7 and each state s’, there exist a state s and a step

(s’,m,s).

An ezecution of A is a finite alternating sequence 8,7, 8,,7,,... of states and operations of A, ending
with a state. Furthermore, Sp is in start(4), and each triple (s’,7,s) which occurs as a consecutive
subsequence is a step of 4. From any execution, we can extract the schedule, which is the subsequence of
the execution consisting of operations only. Because transitions to different states may have the same

operation, different executions may have the same schedule.

If 8 is any set of schedules {or property of schedules), then A is said to preserve S provided that the
following holds. If @ = a’w is any schedule of A, where 7 is an output operation, and o’ is in S, then o is

in S. That is, the automaton is not the first to violate the property described by S.

2.2. Composition of Automats
We describe systems as consisting of interacting components, each of which is an I/O automaton. It is
convenient and natural to view systems as I/O automata, also. Thus, we define a composition operation

for I/O automata, to yield a new I/O automaton.

A set of I/O automats may be composed to create a system S, if the sets of output operations for the
automata are disjoint. (Thus, every output operation in S will be triggered by exactly one component.)
The system § is itself an I/O automaton. A state of the composed automaton is a tuple of states, one for
each component, and the start states are tuples consisting of start states of the components. The set of
operations of S, ops(S), is exactly the union of the sets of operations of the component automats. The set
of output operations of S, out(S), is likewise the union of the sets of output operations of the component
automata. Finally, the set of input operations of S, in(S), is ops(S) - out(S), the set of operations of S
that are not output operations of S. The output operations of a system are intended to be exactly those
that are triggered by components of the system, while the input operations of a system are those that are

triggered by the system’s environment.

The triple (s’,m,3) is in the transition relation of S if and only if for each compeonent automaton A, one
of the following two conditions holds. Either = is an operation of A, and the projection of the step onto 4
Is a step of A, or else 7 is not an operation of A, and the states corresponding to A in the twe tuples s’
and s are identical. Thus, each operation of the composed automaton is an operation of a subset of the
component automata. During an operation = of S, each of the components which has operation m carries
out the operation, while the remainder stay in the same state. Again, the operation = is an output
operation of the composition if it is the output operation of a component -— otherwise, » is an input

operation of the composition.

An ereculion of a system is defined to be an execution of the automaton composed of the individual
automata of the system. If o is a sequence of operations of a system S with component A, then we denote
by afA the subsequence of o containing all the operations of A. Clearly, if « is a schedule of 3, |4 is a

schedule of A.

The following lemma from [9] expresses formally the idea that an operation is under the control of the

component of which it is an output.
Lemma 1: Let o’ be a schedule of a system §, and let @ = o’w, where n Is an output
operation of component A. If a|A is a schedule of A, then « is a schedule of S.

3. Generic Systems

In this section, we define “generic systems*, which consist of transactions, generic objects, and a generic
controller. They are a generalization of the “weak concurrent systems” of [9]. Transactions and generic
objects describe user programs and data, respectively. The generic controller controls communication
between the other components, and thereby defines the allowable orders in which the transactions may

take steps. All three types of system components are modelled as I/0O automata.

We begin by defining a structure which describes the nesting of transactions. Namely, a system type is
a four-tuple {T,parent,0,V), where 7, the set of transaction names, is organized into a tree by the
mapping parent:7 — 7T, with To as the root. In referring to this tree, we use traditional terminology,
such as child, leaf, least common ancestor (lca), ancestor and descendant. {A transaction is its own
ancestor and descendant.) The leaves of this tree are called accesses. The set O denotes the set of
objects; formally, O is a partition of the set of accesses, where each element of the partition contains the
accesses to a particular object. The set V is a set of values, to be used as return values of transactions.
The tree structure can be thought of as a predefined naming scheme for all possible transactions that
might ever be invoked. In any particular execution, however, only some of these transactions will
actually take steps. We imagine that the tree structure is known in advance by all components of a

system. The tree will, in general, be an infinite structure.

The classical transactions of concurrency control theory (without nesting) appear in our model as the
children of a ™mythical* transaction, TO' the root of the transaction tree. It is very convenient to
introduce the new root transaction to model the environment in which the rest of the transaction system
runs. Transaction To has operations that describe the invocation and return of the classical transactions.

It is natural to reason about To in much the same way as about all of the other transactions.

The internal nodes of the tree model transactions whose function is to create and manage
subtransactions, but not to access data directly. The only transactions which actually access data are the
leaves of the transaction tree, and thus they are distinguished as "accesses®. The partition O simply

identifies those transactions which access the same object.

A generic system of a given system type is the composition of a set of I/O automata. This set contains
a transaction for each internal (i.e. non-leaf, non-access) node of the transaction tree, a generic object for
each element of O and a generic controller. These automata are described below. (If X is a generic object
associated with an element I of the partition O, and T is an access in X, we write T € accesses(X) and

say that *T is an access to X*.)

For the rest of this paper, we fix a particular system type (7,parent,0,V).

[=>}

3.1. Transactions

Transactions are modelled as I/O automata. In modelling transactions, we consider it very important
not to constrain them unnecessarily; thus, we do not want to require that they be expressible as programs
In any particular high-level programming language. Modelling the transactions as I/O automata allows
us to state exactly the properties that are needed, without introducing unnpecessary restrictions or

complicated semantics.

A non-access transaction T is modelled as an I/O automaton, with the following cperations:
Input operations:

CREATE(T)
COMMIT(T’,v), for T’ € children(T) and v € V
ABORT(T’), for T’ € children(T)

Output operations:

REQUEST _ CREATE(T’), for T’ € children(T)
REQUEST _ COMMIT(T,v), forve V

The CREATE input operation “wakes up® the transaction. The REQUEST _ CREATE output
operation is a request by T to create a particular child transaction.® The COMMIT input operation
reports to T the successful completion of one of its children, and returns a value recording the results of
that child’s execution. The ABORT input operation reports to T the unsuccessful completion of one of its
children, without returning any other information. We call COMMIT(T’,v), for any v, and ABORT(T)
return operations for transaction T’. The REQUEST _ COMMIT operation is an announcement by T

that it has finished its work, and includes a value recording the results of that work.

It is convenient to use two separate operations, REQUEST _ CREATE and CREATE, to describe what
takes place when a subtransaction is activated. The REQUEST _CREATE is an operation of the
transaction’s parent, while the actual CREATE takes place at the subtransaction itself. In actual -

distributed systems such as Argus [6], this separation does occur, and the distinction will be important in
our results and proofs. Similar remarks hold for the REQUEST _ COMMIT and COMMIT operations.

We leave the executions of particular transaction automata largely unspecified; the choice of which
children to create, and what value to return, will depend on the particular implementation. However. it
1s convenient to assume that schedules of transaction automata obey certain syntactic constraints. Thus.

transaction automata are required to preserve well-formedness, as defined below.

5'Not;e that there is no provision for T to pass information to its child in this request. In a programming language, T might b»
permitted to pass parameter values to a subtransaction. Although this may be a convenient descriptive aid, it is not necessary tn
include in it the underlying formal model. Instead, we consider transactions that have different input parameters to be differsnt
transactions.

We recursively define well-formedness for sequences of operations of transaction T. Namely, the empty
schedule is well-formed. Also, if @ = a’m is a sequence of operations of T, where 7 is a single operation,

then « is well-formed provided that a’ is well-formed, and the following hold:

e If v is CREATE(T), then
(i) there is no CREATE(T) in o’

o If 7 is COMMIT(T’,v) or ABORT(T") for a child T’ of T, then
(i) REQUEST _ CREATE(T’) appears in o’ and
(ii) there is no return operation for T’ in a’.

o If 7 is REQUEST _ CREATE(T’) for a child T’ of T, then
(i) there is no REQUEST _ CREATE(T’) in o’
(ii) there is no REQUEST _ COMMIT(T) in &’ and
(iii) CREATE(T) appears in o’.

o If v is a REQUEST _ COMMIT for T, then
(i) there is no REQUEST _ COMMIT for T in &’ and
(ii) CREATE(T) appears in o’.

These restrictions are very basic; they simply say that a transaction does not get created more than
once, does not receive repeated notification of the fates of its children, does not receive conflicting
information about the fates of its children, and does not receive infor;na.tion about the fate of any child
whose creation it has not requested; also, a transaction does not perform any output operations before it
has been created or after it has requested to commit, and does not request the creation of the same child
more than once. Except for these minimal conditions, there are no restrictions on allowable transaction
behavior. For example, the model allows a transaction to request to commit without discovering the fate
of all subtransactions whose creation it has requested. Also, a transaction can request creation of new
subtransactions at any time, without regard to its state of knowledge about subtransactions whose
creation it has previously requested. Particular programming languages may choose to impose additional
restrictions on transaction behavior. (An example is Argus, which suspends activity in transactions until

subtransactions complete.) However, our results do not require such restrictions.

3.2. Generic Objects

Generic objects are similar to the abstract objects of Argus and other “object-oriented* systems. A
generic object provides a set of soperations” (not to be confused with the operations of an 1 O
automaton) through which transactions can observe and change the object’s state. For uniformity and
ease of exposition, we model the “operations* as subtransactions, here called access transactions
Accesses can be invoked by concurrent transactions, and transactions can abort; thus, generic objects
must provide synchronization and recovery sufficient to ensure serializability of the transactions using
them. For example, the particular objects studied in (9], which use an exclusive locking variation of

Moss’s algorithm [12] for synchronization combined with version stacks for recovery, have been shown to

be correct for non-orphan transactions (9]. In section 3.5, we will discuss in more detail the various

possible notions of correctness and what properties are ensured by the locking objects studied in 19].

In this section, we define the aspects of generic objects that are relevant to our analysis of orphan
algorithms. It turns out that the details of how synchronization and recovery are implemented by a
generic object are largely irrelevant. Indeed, this is one of the important contributions of this paper: we
are able to state correctness conditions for and verify orphan elimination algorithms in a way that is

completely independent of the concurrency control and recovery method used.

A generic object X is modelled as an I/O automaton, with the following operations:
Input Operations:

CREATE(T), T an access to X
INFORM _ COMMIT _ AT(X)OF(T)
INFORM _ ABORT _ AT(X)OF(T)

Output Operations:
REQUEST _ COMMIT(T,v), T an access to X

The CREATE input operation starts an access transaction at the object. Similarly, the
REQUEST _ COMMIT output indicates that an access transaction has finished its work, and ifitliudes a
value recording the results. The INFORM__COMMIT and INFORM _ ABORT input operations tell X

that some transaction (not necessarily an access to X) has committed or aborted, respectively.

As for transaction automata, we leave the executions of particular generic objects largely unspecified.
However, we do assume, as for tranéactions, that schedules of generic objects obey certain syntactic
constraints. Thus, generic objects are required to preserve well- formedness, defined recursively as follows:
Flrst the empty schedule is well-formed. Second, if @ = a'r is a sequence of operations of X, then a is

well-formed provided that a’ is well-formed and the following hold:

o If .is CREATE(T), then
(i) there is no CREATE(T) in «’.

o If ris a REQUEST _ COMMIT for T, then
(i) there is no REQUEST _ COMMIT for T in «’, and
(if) CREATE(T) occurs in o’

o If mis INFORM__ COMMIT _ AT(X)OF(T), then
(i) there is no INFORM _ABORT _AT(X)OF(T) in o, and
(ii) if T is an access to X then a REQUEST _ COMMIT for T occurs in «’.

o If v is INFORM _ ABORT _ AT(X)OF(T), then
(i) there is no INFORM_ COMMIT _ AT(X)OF(T) in o’.

These restrictions are again quite basic. They state that a given access is created at most once. anid

requests to commit at most once, and then only if it has been created. In addition, an object should not
be given conflicting information about the fate of a transaction, i.e., it should not be told both that a
transaction committed and that it aborted. Finally, an object X should be told that an access to X has

committed only if the access actually requested to commit.

3.3. Generic Controller

The third kind of component in a generic system is the generic controller. The generic controller is also
modelled as an automaton. The transactions and generic objects have been specified to be any /O
automata whose operations and behavior satisfy simple syntactic restrictions. A generic controller,
however, is a fully specified automaton, particular to each system type. (Recall that we have assumed

that the system type is fixed; we describe the generic controller for the fixed system type.)

The generic controller has seven operations:
Input Operations:

REQUEST _ CREATE(T),
REQUEST _ COMMIT(T,v).

Output Operations:

CREATE(T),
COMMIT(T,v),
ABORT(T), ,
INFORM _ COMMIT __ AT(X)OF(T),
INFORM _ ABORT _ AT(X)OF(T).
The REQUEST _CREATE and REQUEST _COMMIT inputs are intended to be identified with the

corresponding outputs of transaction and object automata, and correspondingly for the output operations.

Each state s of the generic controller consists of five sets: create _requested(s), created(s),
commit__requested(s), committed(s), and aborted(s). = The set commit_requested(s) is a set of
(transaction,value) pairs, and the others are sets of transactions. The initial state of the generic controller
is denoted by 8y- All of the components of S, are empty except for create _requested, which is {To}. For

a state s, we define returned(s) = committed(s) U aborted(s).

The transition relation for the generic controller consists of exactly those triples (s’,7,s) satisfying the
pre- and postconditions below, where 7 is the indicated operation. For brevity, we include in the
postconditions only those conditions on the state s which may change with the operation. If a component
of s is not mentioned in the postcondition the component is taken to be the same in s as in s’.

« REQUEST _ CREATE(T)

Postcondition:
create _requested(s) = create _requested(s’) U {T}

10

¢ REQUEST _ COMMIT(T,v)
Postcondition:
commit _requested(s) = commit__requested(s’) U {(T,v)}

e CREATE(T)
Precondition:
T € create__requested(s’) - created(s’)
Postcondition:
created(s) = created(s’) U {T}

e COMMIT(T,v)
Precondition:
(Tw)e commit__requested(s’)
T & returned(s’)
children(T) N create _requested(s’) C returned(s’)
Postcondition: '
committed(s) = committed(s’) U {T}

¢ ABORT(T)
Precondition:
T € create-requested(s’) - returned(s’)
Postcondition:
aborted(s) = aborted(s’) U {T}

e INFORM _ COMMIT _ AT(X)OF(T):
Precondition:
T € committed(s’)

° INFORM_ABORT_AT(X)OF(T):
Precondition:
T € aborted(s’)

The controller assumes that its input operations, REQUEST_ CREATE and REQUEST _ COMMIT,
can occur at any time, and simply records them in the appropriate components of the state. Once the
creation of a transaction has been requested, the controller can create it by producing a CREATE
operation. The precondition of CREATE indicates that a given transaction will be created at most once;
the postcondition of CREATE records the fact that the creation has occurred. Similarly, the
postconditions for COMMIT and ABORT record that the operation has occurred. INFORM _ COMMIT
and INFORM _ ABORT operations can be generated at any time after the corresponding COMMIT and
ABORT operations have occurred.

The precondition for the COMMIT operation ensures that a transaction only commits if it has requested
to do so, and has not already returned (committed or aborted). In addition, the actual COMMIT
operation must be delayed until all children requested by the committing transaction have returned
Recall from the well-formedness conditions described earlier that a transaction, once created, can request

to commit at any time. However, once it has done so, it cannot request that any more children be

11

created.

The precondition for the ABORT operation ensures that a transaction will be aborted only if a
REQUEST _CREATE has occurred for it and it has not already returned. There are no other
constraints on when a transaction can be aborted, however. For example, a transaction can be aborted

while some of its descendants are still running.

The generic controller presented here is a slight generalization of the “weak concurrent controller*

in [9]. However, the results in [9] and their proofs are essentially unaffected by the generalization.)

The following lemma states some simple invariants relating schedules of the generic controller to the

states that result from applying them to the initial state.

Lemma 2: Let a be a schedule of the generic controller, and let s be a state which can
result from applying a to the initial state So- Then the following conditions are true.

1. T is in create _requested(s) exactly if o contains a REQUEST _ CREATE(T) operation.
2. T is in created(s) exactly if « contains a CREATE(T) operation.

3.(T,v) is in commit _requested(s) exactly if a contains a REQUEST_COMMIT(T,V)

operation.

4 Tisin committed(s) exactly if o contains a COMMIT operation for T.

(¥4}

. T is in aborted(s) exactly if o contains an ABORT(T) operation.

6. aborted(s) N committed(s) = @

Proof: Straightforward. O

3.4. Generic Systems
The composition of transactions with generic objects and the generic controller is called a generic .
system (of the given system type). The non-access transactions and generic objects are called the system

primitives. The schedules of a generic system are called generic schedules.

Define the generic operations to be those operations that occur in the generic system
REQUEST _ CREATES, REQUEST _ COMMITS, CREATES, COMMITS, ABORTS.
INFORM _ COMMITS and INFORM _ ABORTS. For any generic operation m, we define location(r) 1o

be the primitive at which r occurs.

A sequence of generic operations is called well- formed provided that its projection on each generic

primitive (transaction and generic object) is well-formed.
Lemma 3: Every generic schedule is well-formed.

12

Proof: By induction on the length of schedules. The basis, when the length of « is 0, is
trivial. Suppose that am is a generic schedule, where = is a single operation, and assume that
a is well-formed. It suffices to show that an|P is well-formed for all generic primitives P. Let
P be any fixed generic primitive. If 7 is not an operation of P, the result is immediate. so
assume that 7 is an operation of P. We consider cases.

1. 7 is an output of P
Since generic primitives preserve well-formedness, the result is immediate.

2. mis CREATE(T)

The generic controller preconditions and Lemma 2 imply that no CREATE(T) appears
in a.

3. mis COMMIT(T,v)
Then 7 is an input to the transaction parent(T). The generic controller preconditions
and Lemma 2 imply that REQUEST _ COMMIT(T,v) occurs in @. The well-formedness
of a implies that CREATE(T) occurs in @. The generic controller preconditions and
Lemma 2 imply that REQUEST _ CREATE(T) occurs in a. Also, the generic controller
preconditions and Lemma 2 ensure that o does not contain a return operation for T.

4. m is ABORT(T)
Then = is an input to the transaction parent{T). The generic controiler preconditions
and Lemma 2 imply that REQUEST __ CREATE(T) occurs in «, and also imply that no
return operation for T occurs in «.

5. 7 is INFORM _ COMMIT __ AT(X)OF(T)
By the generic controller preconditions and Lemma 2, there is no
INFORM __ ABORT _AT(X)OF(T) in «, and there is a COMMIT operation for T in .
Again by the generic controller preconditions and Lemma 2, a REQUEST _ COMMIT
for T occurs in a. If T is an access to X, this operation occurs at X.

6. mis INFORM _ ABORT _ AT(X)OF(T)
By the generic controller preconditions and Lemma 2, there is no

INFORM _ COMMIT _ AT(X)OF(T) in .

]

3.5. Correctness
In much of the database literature on transactions, serializability is taken as the definition of
correctness. To deal with nested transactions, and to handle aborts, the usual notion of serializability

must be generalized. This is done in {9] as follows.

The idea is that a generic system is correct if every schedule of the generic system "looks like* a serial
schedule to each transaction. The permissible serial schedules are defined by another kind of system
called a "serial system". Serial systems are similar to generic systems in that they are composed of
transactions, a serial controller, and objects. The transactions are identical to those in generic systems

The serial controller, however, differs from the generic controller in two respects. First, the serial

13

controller permits only one child of a transaction to run at a time. Thus, sibling transactions execute
sequentially at every level in the transaction tree. Second, the serial controller aborts a transaction only
if it has not yet been created, and creates a transaction only if it has not been aborted. In other words,

aborted transactions never take any steps in a serial schedule.

Objects in a serial system are simpler than generic objects. Since the serial controller guarantees that
siblings execute sequentially, and that aborted transactions never take any steps, serial objects do not
have to deal with concurrency or with failures. The serial objects serve as a specification of how objects
should behave in the absence of concurrency and failures. (The serial objects in [9] serve the same

purpose as the "serial specifications® in [20].)

Serial schedules capture the notion that an aborted transaction has no effect, and that siblings execute
sequentially. Thus, they serve as the basis against which correctness is defined for more complicated

systems, such as generic systems.

Many possible notions of correctness can be defined. We consider two here. The first is quite simple: it
requires that every schedule look like a serial schedule to every transaction. More precisely, if o is a
generic schedule and T is a non-access transaction, we say that a is serially correct at T if there exists a
serial schedule 8 such that G|T = «|T. In other words, T sees the same thing in « that it could see in
some serial schedule. We say that « is serially correct if it is serially correct for all non-access

transactions.® We also say that a system is serially correct if every schedule of the system is serially

correct.

Requiring every transaction to see a serial view is a strong requirement. Without orphan elimination, in
fact, most systems do not meet this requirement. Instead, they provide a slightly weaker notion of
correctness, namely that non-orphan transactions see serial views. More precisely, if o is a sequence of
generic operations and T is a transaction, we say that T is an orphan in a if ABORT(T’) occurs in o for
some ancestor T’ of T. Systems without orphan elimination ensure that each schedule is serially correct

for all non-orphan transactions; orphan transactions, however, can see arbitrary views.

As mentioned above, one example of a generic object is the combination of a *resilient object* and
corresponding *lock manager®, as defined in [9]. The resilient object handles recovery processing. in
particular, the processing of information about the fate (commit or abort) of each transaction. The lock
manager implements an exclusive locking protocol based on that of Moss [12]. The combination can be

encapsulated in a "black box* called a generic object, which handles both concurrency control and

6As discussed in [9], this definition of correctness allows different transactions in a to ®see® different serial schedules. However
correctness applies to the root transaction as well, so the root must see the same results from the top-level transactions in a gener:
schedule that it could see in some serial schedule.

14

1'ecovery.7 In this paper, we call the combination of a resilient object and a lock manager a locking
object. We call a generic system built using locking objects a locking system. {(Such a system is called a

“weak concurrent system" in [9].) We call schedules of a locking system locking schedulea.

One of the main results proved in [9] is that locking schedules are serially correct for non-orphan

transaction primitives:

Theorem 4: Let a be a locking schedule and let T be a non-access transaction that is not
an orphan in . Then « is serially correct at T.

To ensure that every transaction sees a serial view, the orphan elimination algorithms described in the
remainder of this paper rely on the generic objects to ensure that non-orphans see serial views. However,
as we will describe in more detail later, it is not necessary to use a particular kind of generic object, such
as the locking objects from [9]. Instead, we will show that the orphan elimination algorithms work with
any objects that ensure serial correctness for non-orphans. In other words, the orphan elimination
algorithms and the concurrency control algorithms are essentially independent. We prove a result of the
following sort for each orphan elimination algorithm: if o is a schedule of the system with orphan
elimination and T is a transaction, then there exists a generic schedule 4 such that BT == «|T and T is
not an orphan in A. In other words, the orphan elimination algorithms prevent transactions [from
“knowing® that they are orphans — everything a transaction sees is consistent with what it could see in
some execution in which it is not an orphan. This result can be combined, for example, with a result such
as Theorem 4 to show that all transactions obtain serial views in a system with orphan elimination and

locking objects. We will make these ideas more precise later in the paper.

This modularity has important advantages in building systems. Objects can be constructed to ensure
serial correctness for non-orphans, without worrying about orphans at all. For example, it is shown in 3.
that objects that use read-write locking (as opposed to exclusive locking as used in the locking objects
of [9]) ensure serial correctness for non-orphans. We are also currently working on generalizing the results
in [20} to nested transaction systems. This will permit us to show that many other kinds of objects
ensure serial correctness, including objects that use timestamps for concurrency control [16], and objects
that use more general approaches to locking (5, 17, 20]. The results in this paper indicate that the orphan

elimination algorithms analyzed here can be combined with any of these objects.

7The only difference is that the CREATE input operation has another name in [9}.

4. Information Flow

The orphan elimination algorithms analyzed in this paper use quite. different techniques to detect and
eliminate orphans. However, the fundamental underlying structure is quite similar. In this section we
define a notion of a “dependency relation® that models the information flow among operations. These

definitions allow us to analyze both orphan elimination algorithms in a simple and straightforward

manner.

For a sequence o of generic operations, define the relation directly-affectsfox) to be the relation

8

containing the pairs (¢,) of operation instances® such that ¢ occurs before 7 in «, and at least one of the

following holds:

e location(¢) = location{r), and = is an output operation

e 4 = REQUEST _ CREATE(T) and m = CREATE(T)

e 4 = REQUEST _ COMMIT(T,v) and # = COMMIT(T)

e ¢ is a return operation for a child of T and # = COMMIT(T)

e ¢ = REQUEST _ CREATE(T) and r = ABORT{(T)

e ¢ = COMMIT(T) and » = INFORM _ COMMIT _ AT(X)OF(T)

e = ABORT(T) and 7 = INFORM_ ABORT _ AT(X)OF(T)

Define the relation affects(a) to be the transitive closure of directly-affects(a). If the pair (¢,7) is in
the relation directly-affects(a), we say that ¢ directly-affects 7 in a. Similarly, if (¢,7) is in the relation

affects(c), we say that ¢ affects 7 in a.

The idea is that ¢ directly-affects m if they both occur at the same primitive (and 7 is an output, since
inputs can always occur), or if they involve different primitives but the preconditions for the controller
require ¢ to occur before 7 can occur. This notion of one operation affecting another is “safe,” in the
sense that ¢ affects m if there is any way that the precondition for x could require ¢ to have occurred. If
the operations involve different primitives, the preconditions for 7 do require ¢ to occur if ¢ directly-
affects 7. If the operations occur at the same primitive, however, it might be ¢ happens to occur before
7, yet that the particular primitive does not require ¢ to occur before #. In the absence of more
information about the particular primitives used in a system, however, it is difficult to say more about

the ways in which one operation can affect another. Fortunately, the orphan elimination algorithms

Formally, an operation instance is a pair {i,7), where i is a positive integer and 7 is an operation. An operation instance (1.7 s
said to occur in « if the i-th element of @ is . To avoid introducing excessive and confusing notation, we will not be overly formai
in- distinguishing operations from operation instances. For example, we will write that an operation instance is CREATH(T
meaning formally that its second component is CREATE(T).

16

described later in this paper are essentially independent of the particular primitives used in a system, and

do not rely on more information about the particular primitives in the system.

The following lemmas follow directly from the definitions:

Lemma 8: Let o be a sequence of generic operations. If ¢ affects m in o, then there exists a
¥ 5% m such that ¢ directly-affects 7 in o, and either Y = ¢ or ¢ affects ¥ in «.

Lemma 8: Let o be a sequence of generic operations. If ¢ affects = in Aipha(), o’ is a prefix
of , and ¢ and m both occur in a’, then ¢ affects 7 in «’.

If o is a sequence of generic operations and G is a subsequence of a, we say that 8 s closed in o if,
whenever 3 contains an operation instance 7 in o, it also contains any ¢ that affects 7 in «. The
following lemma is immediate from the definitions:

Lemma 7: Let a be a sequence of generic operations, and let 8 be a closed subsequence of
a. If #7is a prefix of 3, then 2’ is closed in a.

The following lemma states that affects{(a) contains all dependencies that are relevant to the execution
of a generic system.

Lemma 8: If o is a generic schedule, then any closed subsequence of o is also a generic
schedule.

Proof: Fix a. We proceed by induction on the length of subsequences 8 of &, to show that,
if B is closed in o, then 3 is a generic schedule. The basis, when the length of 8 is 0, is trivial.
For the inductive step, assume that 8 is a closed subsequence of « of length at least 1. Then
let 3 = @'m, where n is a single operation. Let o’ be the prefix of « preceding n. By Lemma

7, B’ is closed in «. Thus, the inductive hypothesis implies that 3 is a generic schedule. We
consider cases.

1. mis an output operation of a primitive P
Since 8 is closed in a, it follows from the definition of affects(a) that 8 contains all
~operations of P that precede # in a. Thus, 8|P is a prefix of «|P, and since P is a
schedule of P, it must be that S|P is also a schedule of P. Then G is a generic schedule,
by Lemma 1.

2. r = CREATE(T)
Then Lemma 2 and the controller preconditions imply that REQUEST _ CREATE(T)
occurs in o', and no CREATE(T) occurs in o'. Since f is closed in a,
REQUEST _ CREATE(T) also occurs in 8. Since no CREATE(T) occurs in 8’, Lemma
2 implies that 7 is enabled in the (unique) generic controiler state resulting from 3.
Thus, 8 is a schedule of the generic controller, so Lemma 1 implies that 8 is a generic
schedule.

3. # = COMMIT(T,v)
Then Lemma 2 and the controller preconditions imply that «’ contains
REQUEST _ COMMIT(T,v) and contains no return operations for T. In addition, a
contains a return operation for each child T’ of T for which REQUEST _ CREATE(T’)
appears in o’. Since § is closed in «, 4 contains these operations (by the definition of
directly-affects); thus, so does @’. Since no return operations for T occur in fA’, Lemma
2 implies that = is enabled after 4°, so 3 is a generic schedule.

17

4. # = ABORT(T)
Then .o’ contains REQUEST __CREATE(T) and contains no return operations for
T. Since 4 is closed in «, ' also contains REQUEST _CREATE(T). Since no return
operations for T occur in @, 7 is enabled after §’, so § is a generic schedule.

5. # = INFORM _ COMMIT _ AT(X)OF(T)
Then «' contains a COMMIT operation for T. Since § is closed in «, so does #’. Thus,
7 is enabled after A7, so @ is a generic schedule.

6. m = INFORM _ ABORT _ AT(X)OF(T)
Then o’ contains an ABORT operation for T. Since 3 is closed in a, so does #’. Thus,
7 is enabled after 4, so 3 is a generic schedule.

0

This lemma shows that the relation affects{a) captures all ways in which one operation can depend on
another. If 7 is not affected by ¢ in some schedule a, then 7 cannot *know* that ¢ occurred, since r

could also have occurred in a different schedule in which ¢ did not occur.

The intuitive idea behind the orphan elimination algorithms is that they ensure that an operation of a
transaction T is never affected by the abort of an ancestor. Once we have shown this, Lemma 8 allows us
to show that every transaction gets a view it could get in an schedule in which it is not an orphan: we
simply take the subsequence of the schedule containing all operations of T and all operations that affect
them. The resulting sequence is a generic schedule, by Lemma 8, and does not contain an abort for an

ancestor of T, by construction.

5. Filtered Systems

One way of ensurihg that operations of a transaction T are never affected by the abort of an ancestor of
T is to add preconditions to the generic controller to permit operations of T to occur only if they would
not be affected in this way. It turns out, however, that this approach checks for orphans much more
frequently than necessary. In this section we define another kind of system, called 2 *filtered system".
that checks for orphans only when access transactions commit. We then show that this is sufficient to

ensure that transactions are never affected by the aborts of ancestors.

Filtered systems consist of transactions, generic objects, and a “filtered controller®. The filtered
controller is obtained by slightly modifying a genéric controller; it “filters* commits of access transactions
so that any non-access transaction, orphan or not, sees a view it could see as a non-orphan in the generic

system.

18

5.1. The Filtered Controller
The filtered controller is the same as the generic controller, except that it permits an access to commit

only if it is not affected by the abort of an ancestor.

The filtered controller has the same seven operations as the generic controller. Each state s of the
filtered controller consists of six components. The first five are the same as for the generic controller {i.e.,
create _requested(s), created(s), commit__requested(s), committed(s), and aborted(s)). The sixth,
history(s), is a sequence of generic operations. The initial state of the filtered controller is denoted by Sy
As in the generic controller, all sets are empty in s, except for create _requested, which is {To}‘

History(s) is the empty sequence. As before, we define returned(s) = committed(s) U aborted(s).

The transition relations for all operations except COMMIT(T,v), where T is an access, are defined as for
the generic controller, except that each operation 7 has an additional postcondition of the form history(s)
= history(s’)r. In other words, the history component of the state simply records the sequence of
operations that have occurred. The transition relation for the COMMIT(T,v) operation, where T is an

access, is defined as follows.
o COMMIT(T,v), T an access
Precondition:

(T,v) € commit _ requested(s’)
T & returned(s’)
if T is an ancestor of T,
then ABORT(T’) does not affect COMMIT(T,v) in history(s’)COMMIT(T,v)

Postcondition:

committed(s) = committed(s’) U {T}
history(s) == history(s’)COMMIT(T,v)

Thus, at the point where an access is about to commit to its parent, an explicit test is performed to
verify that the new COMMIT operation is not affected (in our formal sense) by the abort of any ancestor

of the access.

5.2. Filtered Systems
A filtered system is the composition of transactions, generic objects and the filtered controller

Schedules of a filtered system are called filtered schedules.

Lemma ¢: Every filtered schedule is a generic schedule.

Proof: First we note that if « is both a filtered schedule and a generic schedule, if Sp is the
(uniquely defined) state of the filtered controller after a and S is the (uniquely defined) state
of the generic schedule after o, then S is the same as Sp except for the omission of the history
component. This is easily seen by induction on the length of a.

19

Now we show the result by induction on the length of filtered schedules. The basis, length 0,
is trivial. Let o = a’m be a filtered schedule of length at least 1, where 7 is a single operation.
If = is an output of a transaction or generic object P, then a[P is a schedule of P, and so the
inductive hypothesis and Lemma 1 imply that o is a generic schedule. So assume that 7 is an
output of the filtered controller. Let s be the state of the filtered controller after a’, and let
s be the state of the generic controller after o’. By the inductive hypothesis and the claim
above, s is the same as s; except for the deletion of the history component. Since = is
enabled in Sp for the filtered controller, it is also enabled in Sq for the generic controller.

Thus, a is a schedule of the generic controller, and hence, by Lemma 1, is a generic schedule.
m}

As described above, the filtered controller performs an explicit test to ensure that the commit of an
access is not affected by the abort of any ancestor. The following key lemma shows that this test actually

guarantees more: that a similar property holds for all operations occurring at non-access transactions.

Lemma 10: Let o be a filtered schedule, and let T be a non-access transaction. Let x be an
operation in a, such that location(r) = T. Then there is no ABORT(T’) operation that affects
7 in a, for any ancestor T’ of T.

Proof: First note that Lemmas 9 and 3 imply that « is well-formed; we will use this fact in
the proof of the lemma. The proof is by induction on the length of . If « is empty, the
result clearly holds. Suppose @ = a’n, and that the lemma holds for a’. Obviously, affects(a)
C affects(a’) U {(¢,7) | ¢ is an operation in a’}. Thus, it suffices to show that the single
operation 7 is not affected, in «, by the abort of an ancestor. So assume the contrary, that ¢
= ABORT(T’) affects 7 in a, for some ancestor T’ of T.

By Lemma 5, there exists a ¥ % 7 such that ¢ directly-affects 7 in a, and either ¥ = ¢ or o
affects ¢ in . Since ¥ %% m, ¢ and ¢ must occur in a’. Thus, by Lemma 6, if ¢ P, 0
affects ¢ in o’.

Notice that location(¢) = parent(T’); since T’ is an ancestor of T, parent(T’) % T. Thus,
location(¢) & T.

We consider cases.

1. 7 is an output operation of T.
Then by the definition of directly-affects(a), location(¢) = T. Since location(¢) % T, ¢
5 1. Thus, ¢ affects ¢ in o’. But this contradicts the inductive hypothesis.

2. v is CREATE(T).
Then by the definition of directly-affects(a), ¥ = REQUEST _CREATE(T). Thus, ¢
s 1, so ¢ affects ¥ in o’. Since REQUEST _ CREATE(T) is an operation of parent(T),
the inductive hypothesis implies that T’ is not an ancestor of parent(T). The only

possibility is that T = T, which implies that ABORT(T) precedes
REQUEST _ CREATE(T) in «. But this implies that a|T is not well-formed, a
contradiction.

3. mis COMMIT(T”,v), where T" is a child of T and T”’ is an access.
Then the precondition for COMMIT(T”,v) in the filtered controller is violated, a
contradiction.

20

4. m is COMMIT(T",v), where T"" is a child of T and T”" is a non-access transaction.
Then T’ is an ancestor of T”, and by the definition of directly-affects(a), ¥ is either
REQUEST _ COMMIT(T”.v) or a return operation for a child of T”. Thus, ¢ 54y, 50
¢ affects ¢ in o’. But this contradicts the inductive hypothesis.

5. mis ABORT(T"), where T is a child of T.
Then by the definition of directly-affects(a), ¥ = REQUEST _ CREATE(T”). Thus, ¢
7 1, so ¢ affects ¥ in a’. Again, this contradicts the inductive hypothesis.

g

5.3. Simulation of Generic Systems by Filtered Systems

The following theorem is the key result of the paper. It shows that filtered systems ensure that every
transaction gets a view it could get when it is not an orphan. In other words, an orphan cannot discover
that it is an orphan, since the view it sees is consistent with it not being an orphan. This is the basic

correctness property for the orphan elimination algorithms.

Theorem 11: Let o be a filtered schedule and let T be a nom-access transaction. Then
there exists a generic schedule 3 such that T is not an orphan in 4 and BIT = o|T.

Proof: Let 3 be the subsequence of a containing all operations = such that location(s) = T,
and all other operations ¢ that affect, in «, some operation whose location is T. By Lemma 8,
@ is a generic schedule. It suffices to show that there is no ancestor T’ of T for which
ABORT(T’) occurs in A. Suppose not; i.e., there exists an ancestor T’ of T for which
ABORT(T’) occurs in 4. Then by the construction of §, & contains an operation = of T such
that ABORT(T’) affects 7 in . By Lemma 10, this is impossible. [

As discussed earlier, we can combine Theorem 11 with Theorem 4 to obtain an important corollary.
Define a filtered locking system to be a filtered system whose generxc objects are locking objects; its

schedules are called filtered locking schedules.
Corollary 12: Any filtered locking system is serially correct.

Proof: Let a be a filtered locking schedule and let T be a non-access transaction. Theorem
11 yields a locking schedule ~ such that T is not an orphan in ~ and 4T = «|T. Theorem 4
then yields a serial schedule § with 8|T = ~|T; this is equal to «|T, as needed. [

A similar corollary can be obtained for any generic system whose transactions and objects ensure serial
correctness for non-orphans. Namely, let S be a generic system whose schedules are serially correct non-
orphan non-access transactions. Define filter(S) to be the system obtained from S by replacing the
generic controller in § with the filtered controller. Then Theorem 11 implies that filter(S) is serially

correct,

At first it might seem somewhat surprising that it is enough to prevent the commits of orphaned
accesses to ensure serial correctness for all orphans. It is not necessary to filter operations of other
transactions because of the restricted communication patterns among the primitives in a system. The

execution of a transaction primitive T can be affected by an ancestor only through the CREATE(T)

21

operation, or through communication via shared objects. As long as T does not access any objects that
“know* that its ancestor has aborted, T cannot observe a state that depends on the abort. In effect, by
preventing the commits of orphaned accesses, we isolate orphaned transactions from the objects, ensuring

that an orphaned transaction never sees that it is an orphan.

6. Argus Systems

In this section we analyze the orphan elimination algorithm used in the Argus system 6,7]. We
describe the algorithm by defining an Argus controller that describes in formal terms the algorithm
discussed in [7]. We then define Argus systems, which are composed of transactions, generic objects, and
an Argus controller, and show that Argus systems "simulate® filtered systems. In other words, a schedule
of an Argus system looks like a schedule of a filtered system to each non-access transaction; since filtered

systems are serially correct, so are Argus systems.

8.1. The Argus Controller

The filtered controller uses global knowledge of the entire history of operations to filter the commits of
access transactions. This kind of global knowledge is not practical in a distributed system. Thus. the
Argus algorithm makes use of local knowledge about the aborts that have occurred. To ensure that the
commit of an access is not affected by the abort of an ancestor, the Argus algorithm keeps track of the
aborts "known® by each operation that occurs, and propagates this knowledge from an operation to any

later operations that it affects.

The Argus controller has the same seven operations as the generic controller. Each state s of the Argus
controller consists of six components. The first five are the same as for the generic controller (i.e..
create _requested(s), created(s), commit __requested(s), committed(s), and aborted(s)). The sixth, done(s),
is a mapping from operations® to sets of transactions. As before, the initial state is denoted by s, and all
sets are initially empty in s; except for create__requested, which is {To}- Done(s,) maps each operation

to the empty set. As before, we define returned(s) = committed(s) U aborted(s).

The transition relations for the operations of the Argus controller are defined as follows. (Note: The
postcondition for each operation 7 specifies the value of done(s)(n), but not of done(s)(¢) for any other
operation ¢; our intent is that done(s)($¢) = done(s’)(¢).)

¢ REQUEST _ CREATE(T)

Postcondition:
create__requested(s) = create _requested(s’) U {T}

Note that the domain of done(s) is the set of operations, not the set of operation instances. We could have used the set
instances instead, obtaining a slightly modified algorithm and prool. Using the set of operations, however, seems to result a
simpler and cleaner description of the algorithm.

]
(3]

for all 7 such that location(r) = parent(T),
done(s’)(w) C done(s)(REQUEST _ CREATE(T))

e REQUEST _ COMMIT(T,v)
Postcondition:
commit__requested(s) = commit__ requested(s’) U {(T,v)}
for all 7 such that location(r) = location(REQUEST _ COMMIT(T,v)),
done(s’)(r) C done(s)(REQUEST _ COMMIT(T,v))

e CREATE(T)
Precondition:
T € create _requested(s’) - created(s’)
Postcondition:
created(s) = created(s’) U {T}
done(s’)(REQUEST _ CREATE(T)) C done(s)

o COMMIT(T,v), T a non-access
Precondition:
(T,v) € commit_requested(s’)
T & returned(s’)
children(T) N create _requested(s’) C returned(s’)
Postcondition:
committed(s) = committed(s’} U {T}
for all m such that # = REQUEST _ COMMIT(T,v) or = is the return of a child of T
done(s’)(7) C done(s)(COMMIT(T,v))

e COMMIT(T,v), T an access
Precondition:
(T,v) € commit_ requested(s’)
T & returned(s’)
there is no ancestor of T in done(s’)(REQUEST _ COMMIT(T,v))
Postcondition:
committed(s) = committed(s’) U {T}
done(s’)(REQUEST _ COMMIT(T,v)) C done(s)(COMMIT(T,v))

o ABORT(T)
Precondition:
T € create _requested(s’) - returned(s’)
Postcondition:
aborted(s) = aborted(s’) U {T}
done(s’)(REQUEST _CREATE(T)) U {T} < done(s)(ABORT(T))

o INFORM _ COMMIT _ AT(X)OF(T):
Precondition:
T € committed(s’)
Postcondition:
for all v, done(s’)(COMMIT(T,v)) C done(s)(INFORM_ COMMIT _ AT(X)OF(T))

. INFORM__ABORT__AT(X)OF(T):
Precondition: :
T € aborted(s’)

Postcondition:

23

done(s’)(ABORT(T)) C done(s)(INFORM _ABORT _ AT(X)OF(T))

There are two differences between the Argus controller and the generic controller. First, the
postconditions for each operation 7 in the Argus controller require done(s)(7) to include done(s’)(¢) for
each @ that directly-affects .19 In addition, the postcondition for ABORT(T) requires T to be in
done(s)(ABORT(T)). As Lemma 14 below shows, these constraints are enough to ensure that done(s)(r)

contains T whenever ABORT(T) affects an instance of .

Second, the precondition for the commit of an access permits the commit to occur only if the access does
not “"know about" the abort of an ancestor, i.e., no ancestor is in done(s’(REQUEST _ COMMIT(T,v)).

As Lemma 15 below shows, this is enough to ensure that every Argus schedule is a filtered schedule.

Done(s) models the distributed information maintained by the Argus algorithm to keep track of actions
that abort. However, rather than modelling nodes directly and keeping the information on a per-node
basis as is done in the actual algorithm, we maintain the information for each operation, propagating it
whenever one operation directly-affects another. The rules in the postconditions above for propagating

done from one operation to another follow directly the rules used by the actual Argus algorithm.

Notice that the controller postconditions require a minimum amount of information to be propagated at
each step, i.e., the postcondition for an operation m requires certain entries to appear in done(s)(r). The
postconditions are stated to be quite non-deterministic, so that an implementation could propagate more
than the minimum required, perhaps by keeping track of done at a coarser granularity. In fact, the
implementation of the Argus algorithm in the current Argus prototype maintains done on a per-node
basis, so that much more information is propagated than is required by the formal description of the
algorithm above. In describing the algorithm, we hav'e tried to focus on the behavior necessary for

correctness, and to avoid constraining an implementation any more than necessary.

Notice also that the controller does not put any limit on what goes into done. For example, as
described above it is permissible for done(s)(r) to contain a transaction that has not aborted. It would be
easy to add a requirement that done(s)(r) C aborted(s), but this is not necessary to prove that the
algorithm eliminates all orphans. To prove other properties, such as that the algorithm only detects and
eliminates real orphans, we would need to add additional requirements such as the one just mentioned
We will not attempt to state or prove such properties in this paper; the property just described is a

special case of more general liveness properties, which are the subject of current research.

10The postcondition for the INFORM__ COMMIT operation may be a little confusing. Since the value returned in the COMMIT
operation is not part of the INFORM _ COMMIT, the postcondition requires done(s')(COMMIT(T,v)) to be included for all v F w s
given T, however, only ane COMMIT(T,v) will occur, so done(s’(COMMIT(T,v)) will be empty for all but one v.

6.2. Argus Systems
An Argus system is the composition of transactions, generic objects, and the Argus controller.

Schedules of the Argus system are called Argus schedules.
Lemms 13: Every Argus schedule is a generic schedule.
Proof: The proof is similar tc that of Lemma 9. O

The following lemma states the basic invariant about the information in done(s):

Lemma 14: Let o be an Argus schedule, let s be a state of the Argus controller after o, and
let ¥ be an operation instance in . If ¥ = ABORT(T) or there exists a ¢ = ABORT(T) such
that ¢ affects ¢ in «, then T € done(s){¢).

Proof: The proof proceeds by induction on the length of a. If o is of length O, there is
nothing to prove. So suppose o = o’m, where « is a single operation. Let s’ be a state of the
Argus controller after o’ such that (s’,m,s) is an element of the transition relation for the Argus
controller.

There are two cases: either ¢ appears in o’, or ¥ and = are the same operation instance.
First, suppose 1 appears in o’. If m and ¢ are instances of different operations, the result
follows immediately from the inductive hypothesis and the fact that done(s)(p) = done(s’){p)
for any p % m. Otherwise, # and ¥ must be different instances of the same operation. By
Lemmas 13 and 3, « is a generic schedule and is well-formed. The well-formedness conditions
described earlier and the definition of the generic controller imply that the only operations
that can occur more than once in a generic schedule are of the form
INFORM _ COMMIT _AT(X)OF(T’) or INFORM__ABORT _ AT(X)OF(T’) for some X and
T’. We consider these two cases:

1. If ¥ and 7 are both of the form INFORM _COMMIT _ AT(X)OF(T’) {for the same X
and T’), then by Lemma 5 and the definition of directly-affects(a), there must be a
COMMIT(T’,v) in a’ such that ¢ affects COMMIT(T’,v) in a’. Then the inductive
hypothesis implies that T € done(s’)(COMMIT(T’,v})). The postcondition for = implies
that T € done(s)(w), which is equal to done(s){z).

2. If ¢ and 7 are both of the form INFORM _ ABORT _ AT(X)OF(T’) (for the same X and
T’), then by Lemma 5 and the definition of directly-affects{a), either T = T or there is
an ABORT(T’) in o’ such that ¢ affects ABORT(T’) in ¢’. In either case, the inductive
hypothesis implies that T € done(s’)(ABORT(T")). The postcondition for = implies that
T € done(s)(rn), which is equal to done(s){%).

Second, 7 and ¢ can be the same operation instance. We consider cases:

1. = is an output of a primitive P.

Then 7 7% ABORT(T), so assume ¢ = ABORT(T) affects = in «. There are two
possibilities, depending on whether or not P = parent(T). If P = parent(T), then P =
location(¢). The inductive hypothesis implies that T € done{s’)(¢). Then the
postconditions for the REQUEST__CREATE and REQUEST_COMMIT operations
imply that T € done(s){n). If P £ parent{T), then by Lemma 5 and the definition of
directly-affects(a), ¢ affects some operation p in «’, where location(p) = P. The
inductive hypothesis implies that T & done(s’){p), and the postconditions imply that T
€ done(s)(x).

2. r = CREATE(T’).

25

Then 7 2 ABORT(T), so assume ¢ = ABORT(T) affects 7 in . By Lemma 5 and the
definition of directly-affects(ar), ¢ affects REQUEST _CREATE(T’) in «’. The
inductive hypothesis implies that T € done(s’(REQUEST _CREATE(T")), and the
postcondition of the CREATE operation implies that T’ € done(s)(n).

3. # = COMMIT(T’,v).

Then m 2 ABORT(T), so assume ¢ = ABORT(T) affects 7 in o. By Lemma 5 and the
definition of directly-affects(c), either T is a child of T, or ¢ affects some operation p
in a’, where p is either REQUEST _ COMMIT(T",v) or a return operation for a child of
T'. If T is a child of T’, ¢ is a return operation for a child of T’, and the inductive
hypothesis implies that T € done(s’}(¢). Furthermore, since T° has a child, T’ is not an
access, and the postcondition for 7 implies that T € done(s){w}). If T is not a child of
T’, the inductive hypothesis implies that T € done(s')(p) and the postconditions of the
COMMIT operation imply that T € done(s)(n).

4. # = ABORT(T’)
If T = T’, the postcondition for 7 implies that T € done(s)(w). Otherwise, assume that
¢ = ABORT(T) affects = in a. Then by Lemma 5 and the definition of
directly-affects(ar), ¢ affects REQUEST __CREATE(T’) in «'. Then the inductive
hypothesis implies that T € done(s’(REQUEST _ CREATE(T")), and the postcondition
of the ABORT operation implies that T € done(s)().

8.3. Simulation of Generic Systems by Argus Systems

Lemma 14 shows that the Argus controller propagates enough information about aborts so that every
operation 7 "knows about® (in done(s)(r)) every abort that affects it. The following lemma shows that
the information in done(s), combined with the precondition on commits of accesses, is enough to ensure

that Argus systems simulate filtered systems.
Lemma 15: Every Argus schedule is a filtered schedule.

Proof: The proof is by induction on the lengths of Argus schedules. The basis, length 0, is
trivial. For the inductive step, let a be an Argus schedule of the form a’r, where r is a single
operation. Let s, be a state of the Argus controller after a’, and let Sp be the state of the

filtered controller after a’. (Notice that the state of the filtered controller is uniquely defined
by a’, while the state of the Argus controller is not.) The only case that is not immediate is
where 7 = COMMIT(T,v) and T is an access. So assume that this is the case.

We must show that 7 is enabled in Sp- This amounts to showing that if T’ is an ancestor of

T, then ABORT(T’) does not affect m in . Suppose the contrary: that ¢ = ABORT(T’), for
some ancestor T’ of T, and that ¢ affects = in «. Since T has no children, ¢ affects ¢y =
REQUEST _COMMIT(T,v) in o’. By Lemma 14, T’ € done(s,)(¢). But this violates the

precondition for 7 in the Argus controller. O

The following theorem shows that Argus systems, like filtered systems, ensure that every non-access

transaction gets a view it could get in an execution in which it is not an orphan.

Theorem 18: . Let o be an Argus schedule and let T be a non-access transaction. Then
there exists a generic schedule @ such that T is not an orphan in 8 and §8|T = «|T.

26
Proof: Immediate by Lemma 15 and Theorem 11. [

As for the filtered controller, if we define an Argus locking system to be an Argus system with locking
objects, and Argus locking schedules to be schedules of Argus locking systerns, then we obtain the
following corollary.

Corollary 17: Any Argus locking system is serially correct.

Proof: Let o be an Argus locking schedule and let T be a non-access transaction. Theorem
16 yields a locking schedule ~ such that T is not an orphan in ¥ and 4|T = a|T. Theorem 4
then yields the required serial schedule £ 0

Similarly, we can use the Argus controller with any collection of objects that ensures serial correctness

for non-orphans, and obtain serial correctness for all non-access transactions.

7. Strictly Filtered Systems

As it turns out, the orphan elimination algorithm described in (11] ensures a stronger property than
does the Argus algorithm. In this section we define a “strictly filtered controller®, which allows an access
to commit only if no ancester has aborted. (Compare this to the filtered controller, which allows an
access to commit if an ancestor has aborted as long as the access is not affected by the abort.) We then
define strictly filtered systems, which are composed of transactions, generic objects, and the strictly
filtered controller, and show that strictly filtered systems simulate filtered systems. In the next section we

will describe formally the algorithm from [11] and show that it simulates strictly filtered systems.

7.1. Strictly Filtered Controller
The strictly filtered controller is similar to the generic controller: it has the same operations, and the
same states. The transition relations associated with the operations are also identical to those for the

generic controller, except for the COMMIT operation for accesses, which is defined as follows:

o COMMIT(T,v), T an access

Precondition:

(T,v) € commit__requested(s’)
T & returned(s’)
ancestors(T) N aborted(s’) = 9

Postcondition:

committed(s) = committed(s’) U {T}

The COMMIT operation for an access has an additional precondition, which permits the transaction to

commit only if none of its ancestors has already aborted.

7.2. Strictly Filtered Systems

A strictly filtered system is the composition of transactions, generic objects and the strictly filtered

controller. Schedules of the strictly filtered system are strictly filtered schedules.
Lemma 18: Every strictly filtered schedule is a generic schedule.
Proof: Immediate. O

7.3. Simulation of Generic Systems by Strictly Filtered Systems
Lemma 19: Every strictly filtered schedule is a filtered schedule.

Proof: By induction on the length of strictly filtered schedules. The basis, when the length
of the schedule is 0, is easy. For the inductive step, let @ = a’r be a strictly filtered schedule,
with 7 a single operation. Let Sg be the state of the strictly filtered controller after «’, and let

Sp be the state of the filtered controller after a’. The only difference between sg and Sp is that
Sp includes o’ as its history component.

The only interesting case is where = is a COMMIT(T,v), for T an access, so assume this is so.
Since 7 is enabled in sg, ancestors(T) N aborted(sg) = @, so that there is no ABORT(T’) in a’,

for T' an ancestor of T. Then no such ABORT(T’) can affect 7 in «, so 7 is enabled in s;. O
Like filtered systems and Argus systems, strictly filtered systems prevent orphans from discovering that
they are orphans:

Theorem 20: Let o be a strictly filtered schedule and let T be a non-access transaction.
Then there exists a generic schedule 8 such that T is not an orphan in 8 and 8|T = ajT.

Proof: Immediate by Lemma 19 and Theorem 11. O

As before, we can define a strictly filtered locking system to be a strictly filtered system with locking
objects, and strictly filtered locking schedules to be schedules of strictly filtered locking systems. We
then obtain the following corollary.

Corollary 21: Any strictly filtered locking system is serially correct.

Proof: Let o be a strictly filtered locking schedule and let T be a non-access transaction.
Theorem 20 yields a locking schedule 4 such that T is not an orphan in v and AT = «o|T.
Theorem 4 then yields the required serial schedule 4. O

As before, we can use the strictly filtered controller with any collection of objects that ensures serial

correctness for non-orphans, and obtain serial correctness for all non-access transactions.

8. Clock Systems

In this section we describe formally the orphan elimination algorithm from [11]. (More precisely. two
algorithms are described in [11}, an "eager® algorithm based on physical clocks, and a *lazy* algorithm
based on logical clocks. Here we describe the eager algorithm. The lazy algorithm can be described and
analyzed in a manner similar to that used for the Argus algorithm.) We do this by defining a “"clock
controller,” which uses a global clock to ensure that transactions do not abort until all their descendant

accesses have stopped running. We then define clock systems, which are composed of transactions

generic objects, and the clock controller. Finally, we show that clock systems simulate strictly filtered

systems, and thus generic systems as well,

8.1. The Clock Controller

The clock controller maintains a quiesce time for each access transaction and a release time for every
transaction. An access transaction is allowed to commit only if its quiesce time has not passed. Release
times are chosen so that once 3 transaction’s release time is reached, all its descendant accesses have
quiesced. A transaction is allowed to abort only if its release time has passed. This ensures that, after a

transaction aborts, none of its descendant accesses will commit.

If quiesce and release times are fixed in advance, some transactions may be forced to abort unnecessarily
as their quiesce times expire. It is possible to obtain extra flexibility by providing operations in the clock

controller for adjusting quiesce and release times.

The clock controller has ten operations:
Input Operations:

REQUEST _ CREATE(T),
REQUEST _ COMMIT(T,).

Output Operations:

CREATE(T),
COMMIT(T,v)

ABORT(T)

INFORM _ COMMIT _ AT(X)OF(T)
INFORM_ ABORT _ AT(X)OF(T)
TICK

ADJUST _ QUIESCE(T)

ADJUST_ RELEASE(T)

These are the same as for the generic controller, with the addition of three new output operations:
TICK, ADJUST - QUIESCE and ADJUST _RELEASE. These output operations are to be. thought of as
“internal® to the clock controller, in that they will not be used as inputs to any other components of the
clock system. The TICK operation advances the clock, while the two ADJUST operations adjust quiesce
and release times. By adjusting the quiesce time for a transaction to be later than its current value. we
can extend the time during which a transaction is allowed to run. Similarly, by adjusting the release time
for a transaction to be earlier than its current value, we can allow a transaction to abort without walting

as long as would otherwise be necessary.

The state of the clock controller consists of eight components. The first five are as in the generic

controller, and are initialized in the same way. The other three are clock(s), quiesce(s), and release(s) A«

29

before, we denote the initial state of the controller by s,. Clock(s) is a real number, initialized arbitrarily.
Quiesce(s) is a total mapping from access transactions to real numbers, and release(s) is a total mapping
from all transactions to real numbers. The initial values of quiesce and release are arbitrary, subject to
the following condition: for all transactions T and T°, where T’ is an ancestor of T, quiesce(s }(T) <

release(s;)(T"). We define returned(s) as usual.

The transition relations associated with the clock controller operations are as for the generic controller,
except for COMMIT(T,v) for access trgnsactions T, ABORT(T), TICK, ADJUST _QUIESCE(T) and
ADJUST _RELEASE(T). These are definéd below.

o COMMIT(T,v), where T is an access
Precondition:
(T,v) € commit _ requested(s’)
T @ returned(s’)
clock(s’) < quiesce(T)(s’)
Postcondition:
committed(s) = committed(s’) U {T}

¢ ABORT(T)
Precondition:
T € create _requested(s’) - returned(s’)
release(s’)(T) < clock(s’)
Postcondition:
aborted(s) = aborted(s’) U {T}

e TICK
Postcondition:
clock(s’) < clock(s)

e ADJUST _RELEASE(T)
Precondition:
if T € aborted(s’), then r < clock(s’)
quiesce(s’}(T’) < r for all T’ € descendants(T)
Postcondition:

release(s)(T) =r

e ADJUST _ QUIESCE(T)
Precondition:
q < release(s’)(T’) for all T’ € ancestors(T)
Postcondition:
quiesce(s)(T) = q

8.2. Clock Systems

A clock system is the composition of transactions, generic objects, and the clock controller. Operations
of a clock system are called clock operations. Schedules of a clock system are called clock schedules. I o
is any sequence of clock operations, define genericfa) to be the subsequence of a containing exactly the

generic operations in a.

30

Lemma 22: If o is a clock schedule, then generic(ay is a generic schedule:

Proof: Straightforward by induction. o

Lemma 23: Let o be a clock schédule, and let s be the state of the clock.controller after .
(2) If T" € aborted(s), then release(s)(T) < ‘clock(s). (b) For all access transactions T and: all
ancestors T’ of T, quiesce(s)(T) < release(s)(T").

Proof: Straightforward by induction. [}

8.3. Clock Systems Simulate Generic Systems:

The following lemma shows that clock. systems simulate strictly filtered systems.
Lemma 24: If « is a clock schedule, then generic(a) is a strictly filtered schedule.
Proof: The proof is by induction on the length of a. The basis; when the.length of « is 0, is.
easy. For the inductive step, let @ = a'n, where 7 is a single operation:. Let S be a state of
the clock controller after alpha()’, and sy the state of the strictly filtered: controller after

generic(a’). The only interesting case is where 7 = COMMIT(T,v) for T an access, so. suppose
this is so.

Since w is enabled in $c» we know that clock(sc)' < quiesce(s)(T). Let T" be an ancestor of
T. If T’ € aborted(s), then T’ € aborted(s,). Then Lemma 23 implies that release(s, J(T") <
clock(s,). Lemma 23 also implies that quiesce(s)(T) < release(s.)(T’). Thus, quiesce(s,)(T)
< clock(sy), a contradiction. It follows that no ancestor of T is in aborted(sg), so: that r is

enabled in sg- O

Clock systems also prevent orphans from discovering that they are orphans:

Theorem 25: Let o be a clock schedule and T a non-access transaction. Then there exists
a generic schedule 8 such that T is not an orphan in 3 and BIT = «|T.

Proof: Lemma 24 and Theorem 20 imply the existence.of a.generic schedule @ such that T is
not an orphan in § in B|T = generic(a)|T. But generic(a){T = |T, so: the:result follows.]

We define a clock locking system to be a clock system with locking objects, and clock locking schedules

to be schedules of clock locking systems. The following ‘corollary is immediate.
Corollary 26: Any clock locking system is serially correct,.
Proof: By Theorems 25 and 4. O

9. Conclusions

We have defined correctness properties for orphan elimination algorithms, and have presented precise
descriptions and' proofs for two algorithms from (7] and [11]. Our proofs are quite simple, and show that
the systems exhibit a substantial degree of modularity: the orphan elimination algorithms can be used in
combination with any concurrency control protocol that ensures correctness for non-orphans. The
stmplicity of our proofs is a direct result of this modularity, and is in:sharp contrast to earlier work '4 . n

which the orphan elimination algorithm and the concurrency control protocel were not cleanly separated

In this-paper we have analyzed only orphans that result from aborts of transactions. We are currently

31

‘
studying orphans that result from crashes. The algorithms for detecting and eliminating such orphans
described in {7, 11] are quite interesting, but also more complicated than the algorithms for handling
aborts. We would like to find a similar separation of concerns for the crash-orphan algorithms, showing,
for example, that the crash-orphan algorithms are independent of the concurrency control protocol and

the abort-orphan algorithm used in the system. Whether this will be possible is still open.

10. Acknowledgements i\

We thank Alan Fekete and Sharon Perl for their comments on earlier versions of this work.

32

References

(1] Allchin, J. E.
An architecture for reliable decentralized systems.
PhD thesis, Georgia Institute of Technology, September, 1983.
Available as Technical Report GIT-ICS-83/23.

2] Bernstein, P. A., and Goodman, N.
Concurrency control in distributed database systems.
ACM Computing Surveys 13(2):185-221, June, 1981.

(3] Fekete, A., N. Lynch, M. Merritt, and W. Weihl.
Nested transactions and read/write locking.
In Proceedings of the Symposium on Principles of Database Systems. 1987.
To appear.

4] Goree, J. A.
Internal consistency of a distributed transaction system with orphan detection.
Master’s thesis, MIT, January, 1983.
Available as MIT/L.CS/TR-288.

[5] Korth, H. F.
Locking protocols: general lock classes and deadlock freedom.
PhD thesis, Princeton University, 1981.

(6] Liskov, B., and Scheifler, R.
Guardians and actions: linguistic support for robust, distributed programs.
ACM Transactions on Programming Languages and Systems 5(3):381-404, July, 1983.

[7] Liskov, B., R. Scheifler, W. Walker, and W. Weihl.
Orphan Detection.
1986
Submitted to FTCS.

8] Lynch, N.
Concurrency control for resilient nested transactions.
Advances in Computing Research 3:335-373, 1986.

(9] Lynch, N., and M. Merritt.
Introduction to the theory of nested transactions.
Technical Report, Massachusetts Institute of Technology, 1988.
Appeared in 1986 Rome Conference on Database Theory.

[10] Lynch, N., and M. Tuttle.
Correctness proofs for distributed algorithms.
In progress.

{11] McKendry, M., and M. Herlihy.
Time-driven orphan elimination.
In Proceedings of the 5th Symposium on Reliability in Distributed Software and Database
Systems, pages 42-48. IEEE, January, 1986.

(12] Moss, JEB.
Nested transactions: an approach to reliable distributed computing.
PhD thesis, Massachusetts Institute of Technology, 1981.
Available as Technical Report MIT/LCS/TR-260.

3

[14]

[15]

33

Nelson, B. J.
Remote procedure call.

PhD thesis, Carnegie-Mellon University Department of Computer Science, May, 1981.
Available as CMU-CS-81-119.

Papadimitriou, C.H.
The serializability of concurrent database updates.
Journal of the ACM 26(4):631-653, October, 1979.

Pu, C., and J. D. Noe.
Nested transactions for general objects: the Eden implementation.

Technical Report TR-85-12-03, University of Washington Department of Computer Science
December, 1985.

Reed, D.P.

Naming and synchronization in a decentralized computer system.
PhD thesis, Massachusetts Institute of Technology, 1978.

Available as Technical Report MIT/LCS/TR-205.

’

Schwarz, P., and Spector, A.
Synchronizing shared abstract types.
ACM Transactions on Computer Systems 2(3), August, 1984.

Spector, A. Z., et al.
Support for distributed transactions in the TABS prototype.
Technical Report CMU-CS-84-132, Carnegie-Mellon University, July, 1984.

Walker, Edward Franklin.
Orphan Detection in the Argus System.
Master’s thesis, MIT, May, 1984.

Weihl, W. E.

Speci fication and implementation of atomic data types.
PhD thesis, Massachusetts Institute of Technology, 1984.
Available as Technical Report MIT/LCS/TR-314.

