
Math. Systems Theory 12, 205-211 (1979) Mathematical 
Systems Theory 

A Difference in Expressive Power Between Flowcharts and 
Recursion Schemes 

Nancy A. Lynch ~ 2 

School of Information and Computer Science, Georgia Institute of Technology, Atlanta, Georgia 

Edward K. Blum l 

Department of Mathematics, University of Southern California, Los Angeles, California 

Abstract. We show the existence of a single interpretation for which no 
flowchart produces the same results as a particular recursion scheme. 

1. Introduction 

In [1], Paterson and Hewitt construct a recursion scheme not "strongly equiv- 
alent" to any flowchart scheme. That is, any flowchart scheme will produce 
results different from those of their recursion scheme, for some interpretation of 
the basic function and predicate symbols. The choice of interpretation witness- 
ing the difference, however, depends on the flowchart. In this paper, we prove a 
strengthened version of their result, for which the choice of interpretation is 
independent of the flowchart. In other words, we obtain a single interpretation 
for which no flowchart produces the same results as the recursion scheme of [1]. 

The recursion scheme under consideration has all of its basic functions 
either unary or 0-ary (constant). It is shown in [2] that for any recursion scheme 
with this restriction and for any interpretation "of sufficient power", there is a 
flowchart producing the same results for that interpretation. (The "sufficient 
power" requirement assures that flowcharts over the interpretation are capable 

~PartiaHy supported by NSF Grant DCR75-02373. 
2partially supported by NSF Grant MCS77-15628. 

0025/5661/79/0012-0205501.40 
©1979 Springer-Verlag New York Inc. 



206 N.A. Lynch and Edward K. Blum 

of simulating the partial recursive functions in some coding, and thereby are 
capable of simulating the control structure of recursion schemes.) Thus, the 
single interpretation we obtain will necessarily be of less than this power. We 
note that all of the interpretations produced in [1] are similarly of less than 
"sufficient power." 

The construction we use originates in [1] but becomes more comphcated, 
since we must patch together a single "diagonalizing interpretation" for all 
flowcharts. 

2. Notation and Definitions 

An algebra S =(Ds;Fs;Ps) is a set D s, the domain of S, together with finite 
(indexed) sets F s and Ps of partial functions (i.e. operations) and partial 
predicates (i.e. relations) on D s. Constants are 0-ary functions. 

If S is an algebra, a flowchart over ~ is composed in the usual way from a 
finite number of boxes of the types: 

Start: 

Input: [ x i : =  inputj } 

Assignment: IXi:=Xj] 

Function: [ Xi := f(xj?...,Xj.) ] 

Predicate: p(x , ,  . . . . .  xio) 

Function Output: [ Output :=  xi I 

Predicate Output: [ Output : = TRUE 1 

Output :=  FALSE I 

where f ~ F s and p ~ Ps. A flowchart is either a function flowchart, in which case 
all output boxes are function output boxes, or a predicate flowchart, in which 
case all output boxes are predicate output boxes. Semantics are assumed to be 
obvious. 

The flowcharts to be considered in this paper are all:predicate flowcharts, 
and the algebras $ all have Ds=  {0, 1)*, F s=  {~,Osucc, lsucc}, where ~ is the 
empty string, Osucc(x)= xO and lsucc(x)= x 1. Moreover, Ps = {P }, where p is a 
unary total recursive predicate. 



Flowcharts and Recursion Schemes 207 

We do not require a formal characterization of the class of recursion 
schemes, since any formulation broad enough to include the single recursion 
scheme we consider is sufficient. 

If S is an algebra, then an equivalence relation, R, on D s is a congruence on 
S if 

(a) 

and 
(b) 

for every f E Fs, if xiRyi, 1 < i <<. n, then either f ( x l , . . . ,  x~) and f ( y l  . . . . .  Yn) 
are both undefined, or f ( x l , . . . , x , ) R f ( y  1 . . . .  ,y~), 

for every p E Ps, if xiRyi, 1 < i <<. n, then either p(x l , . . . ,  xn) and P(Yl . . . . .  Yn) 
are both undefined or p(x l  . . . . .  x~) =P(Yl  . . . .  ,Y,). 

U R. It is straight- Rmax(g), the maximal congruence of g,  is R a congr, ence on g 

forward to check that Rmax(S ) is a congruence on S. 
Let N denote the nonnegative.integers. 
If x,y  ~ {0, 1}% t h e n y  is said to be an extension of x if x is a prefix o fy .  If 

x E {0, 1)*, Ix_Jdenotes the length of x. 

3. The Theorem 

We begin with two technical lemmas. 

Lemma 1. Let g----({0,1}*;)t,0succ, lsucc;p}, p a total unary predicate. Let 
s ~  {0, 1 }% g/> 1. Assume p has the following properties: 

(a) l f  x is an extension of s, then p ( x ) = T R U E  iff Ixl---lsl+g. 
(b) l f  x is not an extension of s and p ( x ) - - T R U E ,  then Ixl-<< Ist. 

Then R ~ x ( S  ) has at most 2 Isl + g + 1 congruence classes. 

Proof. Consider equivalence relation R whose classes are 
(a) {x} for each x of length < Isl-  1, 
(b) { x : x  is a length k extension of s) for each Isl < k <  tsl+g- 1, 
(c) {x :x  is an extension of s of length Isl +g} u 

{x:x s and Ixl =lsl a n d p ( x ) = T R U E ) ,  and 
(d) {x :x  is an extension of s of length greater than [s[ + g ) U  

{x:xg=s and Ixl = Isl a n d p ( x ) =  FALSE} U 
{x :x  is not an extension of s and [x I > Is[}. 

R is a congruence on g ,  having 2 Isl + g +  1 classes, so by definition, Rma x 
have no more classes. 

can 
[] 

Lemma 2. Let x ,y ,  z E (0, 1 }*, k ~ N. Then ]{ w E {0, 1 }* : I wl = k and some ex- 
tension of w is in xy* z } [ <~ k + 1. 

Proof Straightforward. []  

Theorem. There exists an algebra S =({0,1}*;~t,0succ, lsucc;p) (p a unary 
total recursive predicate) and a partial unary predicate q such that q is computed by 



208 N.A. Lynch and Edward K. Blum 

a recursion scheme interpreted over S,  but q is not computed by any flowchart over 
$.  

Proof Let (F,),E N be an enumeration of the unary predicate flowcharts with 
operation symbols in {X, 0succ, l succ, P }. (Here, we consider flowcharts which 
are identical up to renaming of variables to be the same.) We assume that Fn has 
at most n flowchart boxes and n locations. As [1], we consider the recursion 
scheme 

O(x) = if P(x) then TRUE else O(0succ(x))A O(lsucc(x)). 

When interpreted over g above, with the symbol P interpreted as the predicate 
p, this scheme computes a (parametrized) partial predicate qp. We assume 
semantics of recursion schemes are such that qp is always either TRUE or 
undefined. Assumingp is total, qp is TRUE for input x if and only i fp is true for 
all nodes in some frontier of the tree of extensions of x. 

We construct p in effective stages starting with stage 0 so that qp satisfies the 
needed conditions on q in the statement of the theorem. The effect of stage n 
will be to insure that flowchart F, does not compute qp. Let P0 denote the 
identically FALSE predicate. Let p,, n/> 1 denote the predicate defined by stages 
0 through n -  1. We will insure that pn(x)=TRUE implies p,÷ l (x)= TRUE for 
all n,x. The eventual p will be defined by p ( x ) = T R U E  iff Pn(x)=TRUE for 
some n. To make p recursive, we construct (simultaneously with the construction 
of p) a recursive s : N ~ ( 0 ,  1)* such that 
(a) s(0) =)t, 
(b) for all n, s(n) is a proper prefix of s(n + 1), 
(c) i fp , (x )=TRUE,  then Ixl ~< Is(n)l and x~s(n),  
and 
(d) if p, + l(x) = TRUE and p,(x) = FALSE, then x is a proper extension of s(n). 
The value of s(n) will be defined before stage n. 

Stage n. Choose any g so that 2 g >/(2 Is(")l + g + 1)n(n) + 2 and 2 g + 1 > (21s(,)l + g + 
1)n(n2)(2n + 1 + n(ls(n)[ + g + 2)). Let p '  be the total predicate defined by p'(x) = 
TRUE iff either p , ( x ) = T R U E  or x=s(n)y for some y with lYl--g. There are 
two possibilities: 

Case 1. F n on input s(n) with X, 0succ and lsucc interpreted in the usual way 
and with P interpreted as p' halts (with either TRUE or FALSE as output) 
within (2 I'(n)l + g + 1)n(n) steps. 

Because of the bound on g, there exist y., z., Yn ~z .  with lY.] = Iz l = g  such 
that no extension of s(n)y n or of s(n)z, was generated in any location during the 
computation of F. on s(n) with p'. Let p . + I ( x ) = T R U E  iff p ' ( x ) = T R U E  and 
xq~{s(n)yn,s(n)z.}. Let s(n+l)--s(n)y. .  Now F. on s(n) with P.+I behaves 
exactly as F. on s(n) with p', as far as location contents, predicate answers and 
output are concerned. Moreover, since only extensions of s(n)y, will be added to 
the set of TRUE arguments at later stages, F n on s(n) with p will behave in 
exactly the same way, halting with output TRUE or FALSE. However, q (s(n)) 
is undefined since p(x) is not TRUE for any extension x of s(n)z.. "I~us F. 
cannot compute qp. 



Flowcharts and Recursion Schemes 209 

Case 2. F n on s(n) with p'  fails to halt within (2[s(n)l+g+ 1)"(n) steps. 
In this case, Fn on s(n) with p'  fails to halt at all. For there are at most 

2 Is(n)l + g +  I classes in the maximal congruence Rm~x(({0, 1}*;h, 0succ, 
lsucc;p')), by Lemma 1. Since there must be two times during the computation 
when all locations have congruent contents and control is at the same flowchart 
box, the computation is in a loop. 

Claim. There is an extension s' of s(n), [s'l=ls(n)[ + g +  1 such that no exten- 
sion of s' is generated during the (non-halting) computation of F n on s(n) with 
pP. 

Assuming this claim is true, we can let s(n+ 1)=s', pn+l=p'. Then F, on 
s(n) with p will not halt, but qp(S(n))=TRUE, so F, cannot compute qp. 

It remains to verify the claim by analyzing the set of values that can be 
generated by F, on s(n) with p'. Two of the first (2 Is(~)l + g + 1)"(n)+ 1 steps must 
take control to the same box in F, with all corresponding location contents 
congruent (in Rmax(({0, 1 )*; A, 0suet, lsucc;p'))). Thereafter, the computation is 
in a loop, repeating a sequence of flowchart boxes and n-tuples of congruence 
classes with period ~r <(21"(")t+g+ 1)"(n). (We assume for simplicity that there 
are exactly n locations.) 

We require notation for location contents. For 1 <i <n, 1 <j ,  1 <k  <~r, let 
c(i,j, k) denote the contents of location i after j entrances into the loop and k 
steps into ~a t  iteration of the loop. For consistency, let c(i,O,~r) denote the 
contents of location i at the first entrance to the loop. More precisely, c(i,O,~r) 
and c(i,l,,r) are congruent for all i, and the associated pair of steps of the 
computation is the first-completed pair of steps at which all corresponding 
location contents are congruent. 

Different values of c(i,j, k) are closely related. In particular, for every (i, k), 
there exist w(i, k) E {0, 1 }* and h(i, k) E ( 1 . . . . .  n ) with either 

(a) c(i,j,k)=w(i,k) for allj~> I, or 
(b) c(i , j ,k)= c(h( i ,k)d-1 , tr )w( i ,k)  for a l l j  > 1. 

Intuitively, for fixed (i, k), either c(i,j, k) is always built up in the same way from 
(so case (a) applies) or else c(i,j, k) is always built up in the same way from the 

contents of the same location at the end of the last iteration (so case (b) applies). 
Case (b) may be further subdivided as follows: 

(bl) There exists/, 1 <l<n,  with 

c(h(h(h(. . ,  h(h(i, k), ~r)...), ~r), ~r),j, ~r) = 

lh" s 

w(h(h(h(. :.h(h(i,k),~r)...),~r),~r),rr) for aUj/> 1. 

lh '  s 

Intuitively, this subcase occurs if when we trace a chain of dependencies 
backwards from (i, k) (seeing whether c(h(i, k ) , j -  1, ~r) is built up from ~ or from 
the contents of a- location at the end of the last iteration, and so on), that chain 



210 N.A. Lynch and Edward K. Blurn 

will eventually terminate in a location whose value is built up from ?~. I may be 
chosen to be at most n, since there are only n locations. 

(b2) There exist 1 ~< l ~< m ~< n + 1 with 

h(h(h!..:.h(h(i,k),~) .. . .  ~),~),~) = 

l h's 

h(h(h(..,  h(h(i, k), ~r) . . . .  ~r), ~r), 7r). 

m h's 

Intuitively, this subcase occurs if when we trace the above chain of dependencies 
backwards from (i, k), the dependent locations eventually repeat. Again, l and m 
may be chosen to be at most n +  1, since there are only n locations. 

Now we classify the values c(i,j, k) produced for (i, k) satisfying each of (a), 
(b 1) and Co2). For (i, k) satisfying (a), there is exactly one string c(i,j, k) for j/> 1. 
For (i,k) satisfying (bl), there are at most n + l  strings c(i,j ,k) for j>~l .  
(Sufficiently large j allow enough steps in the dependency chain for termination 
to occur.) For (i,k) satisfying (b2), there are strings x I . . . . .  xn,y,z such that all 

c(i,j,k),j>~n, are in (_J XrY*Z. (Sufficiently large j allow enough steps in the 
r = l  

dependency chain for repeating of locations to occur.) 
Now we can analyze the complete set of values that can be generated by Fn 

on s(n) with p'. At most (21s(~)l+g+l)~(n 2) values are produced up to and 
including the first entrance to the loop. (i,k) satisfying (a) or (bl)  cause a total 
of at most (2 Is(n)l + g + 1)n(n2)(n + 1) values of c(i,j, k ) , j  >/1, to be produced. (i, k) 
satisfying Co2) cause a total of at most (2 Is(~)l + g + 1)n(n2)(n- 1) values of c(i,j, k) 
to be produced f o r j  < n. And finally, (i, k) satisfying (b2) yield a total of at most 
(21s(~)l+g+ 1)~(n2)(n) choices of x ,y , z  with arbitrarily many values of c(i,j,k), 
j>~n, in xy*z. In summary, the values generated by F~ on s(n) with p '  are at 
most (21'(~)l+g+ 1)"(n2)(2n+l) "sporadic" values, plus elements of at most 
(21'(")l+g+l)~(n) sets of the form xy*z. By Lemma 2, there are at most 
(2 I'(")1 + g + 1)~(n2)(2n + 1 + n(ls(n)l + g + 2)) strings of length [s(n)l + g + 1 with 
extensions in this set of generated values. But since there are 2 g+l extensions of 
s(n) of length Is(n)[ + g + 1, the bound on g suffices to justify the claim. [ ]  

4. Conclusions 

In [2], the beginning of a theory of relative complexity (and computability) of 
algebras is presented. For definiteness, flowcharts and their runtimes are used as 
a programming language and complexity measure. The present theorem warns 
that the restriction to flowcharts is of some significance, even for computability. 
That is, for some algebras "computability by flowcharts" is not the same 
concept as "computability by recursive programs." For others, of course, they 
are the same. 

One would expect similar distinctions among algebras to exist for complex- 
ity. Namely, over some algebras, flowcharts should be able to compute about as 



Flowcharts and Recursion Schemes 211 

efficiently as recursion schemes, whereas over others there should be a complex- 
ity difference. Different algebras have the power to simulate the control struc- 
ture of recursion schemes with different overhead costs. Work remains to be 
done in establishing these distinctions. 

Expressiveness results similar to the theorem of this paper and analogous 
complexity results should be obtainable for other commonly-studied scheme 
classes. 

References 

1. M. Paterson and C. Hewitt, Comparative Schematology, MIT A I L a b M e m o  No. 201, Nov., 
1970. 

2. N. Lynch and E.K. Blum, Re~tiveComplexi~ofAlgebras, Submitted for pubfication. 

Received February 9, 1978 and in revised form July 24, 1978 and November 6, 1978 and in final form 
January 8, 1979 


