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ABSTRACT 

A notion of log space Turing reducibility is introduced. It is used to define relative notions 
of log space, ~A, and nondeterministic log space, Jg'£~ A. These classes are compared with 
the classes ~a and JV'~ A which were originally defined by Baker, Gill, and Solovay [BGS]. 
It is shown that there exists a computable set A such that ~V'~ a ~ ~A. Furthermore, there 
exists a computable set A such that jff~A d: ~a and ~a 4= .Ar~A. Also a notion of log 
space truth table reducibility is defined and shown to be equivalent to the notion of log 
space Turing reducibility. 

Introduction. Reducibility in polynomial time has received wide attention, in 
references [C2], [K], [Lal], [LLS], [BGS] and in many other places. There are 
several considerations which support a similar examination of reducibility in lot 
space. First, unlike polynomial time reducibility, log space reducibility allows a 
meaningful classification of problems that are computable in polynomial time 
Second, notions of space bounded reducibility allow us to state relativizations ol 
open problems concerning both the relationship between deterministic and 
nondeterministic log space computability and the relationship between log space 
computability and polynomial time computability. 

In Section 1 we generalize the definition of log space reducibility used in 
references [JL] and [SM] to permit Turing-type reductions. We also generalize 
reducibility to allow arbitrary space bounds and to allow nondeterminism. 
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In Section 2 we relativize certain complexity classes inciuding 9 ~ (sets 
computable in polynomial time) and ~ (sets computable in log space), ~k (sets 
computable in log k space), and Y . ~  (sets computable in nondeterministic log 
space). For various sets ,4 we compare . / ~ a  and ~A. By an argument found in 
referer~ce [BGS] there are computable sets A such that XL, e A = ~A. We show 
that there is a computable set A with X S e  A ~ ~A. On the other hand there is also 
a computable set A with x L g A $  #A and #,A~: x~eA. This latter result is 
somewhat surprising since it is well known that X ~  ____ ~ [C1]. 

In Section 3 we try to explain why certain results in complexity theory 
uniformly relativize while others do not. Results that depend primarily on step- 
by-step simulations like the space hierarchy theorem of Stearns, Hartmanis, and 
Lewis [SHL] relativize uniformly. Results like X ~  ___ # [C1] and X.W ~ ~ 2  
[Sa] do not relativize because they depend on indirect rather than step-by-step 
simulations. 

In Section 4 we introduce a notion of log space truth table reducibility which is 
analogous to the notion of polynomial time truth table reducibility introduced by 
Ladner, Lynch and Selman ILLS]. Using the result of Lynch [Lyl], which 
establishes that a Boolean formula can be evaluated in log space, we argue that 
our definition is reasonable. We show the equivalence of log space Turing 
reducibility and log space truth table reducibility. 

1. Preliminaries. We consider sets of words over the alphabet {0, l}. Let Ix[ be 
the length of a word x and let 2 represent the empty word. 

Our models of computation are variations of Turing machines (see [HU2]). A 
Turin# machine acceptor is a Turing machine with a two-way read only input tape 
and a two-way read-write storage tape. A Turin# machine transducer is a Turing 
machine with a two-way read only input, a two-way read-write storage tape and a 
one-way write only output tape. An oracle Turin# machine is a Turing machine 
with a two-way read only input, a two-way read-write storage tape, and a one-way 
write only oracle tape. Each type of Turing machine may be deterministic or 
nondeterministic. All machines are deterministic unless otherwise specified. 

A nondeterministic Turing machine T runs in time t(n) if for all n and all x of 
length n, each computation path of T on input x halts within t(n) moves. A 
nondeterministic Turing machine T runs in space s(n) if for all n and all x of length 
n, each computation path halts with the storage tape head having visited no more 
than s(n) distinct tape cells. The tape cells visited on the input tape, output tape, 
and oracle tape are not counted. 

Turing machine acceptors have a special state ACC. A set A _~ {0, 1}* is 
accepted by a nondeterministic acceptor T if for all x e {0, 1}*, x e A if and only if 
there is some computation of T on input x which halts in the state ACC. Define 
TIME(t(n)) and SPACE(s(n)) to be the class of sets which are accepted by Turing 
machine acceptors which run respectively in time t(n) and space s(n). Define 
N TIME(t(n)) andNSPACE(s(n)) to be corresponding classes for nondeterministic 
Turing machine acceptors. Some special complexity classes we consider are 
defined: 

= U TIME(nk), 
k > l  
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~ / ~  = ~ NTIME(nk), 
k.>_ 1 

= SPACE(log n), 

~r q~ = NSPACE(log n), 

~k  = SPACE(Iogk n). 

21 

A function f :  {0, 1}* ~ {0, 1}* is computable in time t(n) (space s(n)) if there is a 
Turing machine transducer T that runs in time t(n) (space s(n)) with the property 
that for all x, T halts withf(x) written on the output tape. The most commonly 
used notions of polynomial time and log space reducibility are defined in terms of 
time and space bounded transducers. 

We write A <_ ~B (A is polynomial time many-one reducible to B) if there is a 
functionfcomputable in time n k for some k such that x ~ A if and only iff(x)eB. 

We write A <_ ~B (A is log space many-one reducible to B) if there is a functionf 
computable in space log n such that xEA if and only iff(x)~B. 

Oracle Turing machines have special states, ACC, QUE, YES, and NO. The 
state ACC is the accepting state while the state QUE is called the query state. In 
each state except QUE the machine may write a symbol onto the oracle tape. In 
state QUE the machine goes into state YES if the word written on the oracle tape 
is a member of the oracle set, otherwise it enters state NO. In moving from state 
QUE to YES or NO no other action is taken except to erase the oracle tape. 

We write A <_ ~rB (A is polynomial time Turin# reducible to B) if there is an 
oracle Turing machine M that runs in time n k for some k and M accepts A with 
oracle B. 

We write A < ~B (A is log space Turin# reducible to B) if there is an oracle 
Turing machine M that runs in space log n and A¢ accepts A with oracle B. 

It is straightforward to show that both < m ~' and < ff are transitive relations. 
Several authors including Jones [J] and Stockmeyer and Meyer [SM] have noted 
that _< m ~ is transitive. By a similar argument < ~ is also transitive [Lal] .  Also by 
a similar argument it can be shown that if A < ~B and B e f i g  then A e ~k.  It is 
easy to see that A _< ~B implies A < "~B. 

Two important classes of complete problems exist for log space reducibility. A 
set S is log space complete in JV Z~' ifS e JVA a and for all A ~ JV ~fl, A < m S. A set S 
is log space complete in ~ if S ~ ~ and for all A e ~ ,  A _< mS" The second definition 
could be extended to log space Turing reducibility. It appears that the 'threadable 
mazes' of Savitch is the first known example of a log space complete problem in 
X A  a [Sa]. The 'path systems' of Cook seem to be the first known example of a log 
space complete problem in ~ [C3]. Other examples can be found in references 
[J], [JL], [La2], and [Su]. 

These two classifications of problems are closely related to open problems in 
automata theory by the following lernmas. 

LEMMA 1.1. l f  S is lo 0 space complete in ~C.~ then S e .~ if and only if .~ 
= X ~ .  

LEMMA 1.2. I f  S is log space complete in ~ then for all k, S ~ .~k if and only if 
~c= ~k. 
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These lemmas follow immediately from the facts in the preceding two 
paragraphs. Proofs may be found in references [J] and [JL]. 

One might question introducing log space Turing reducibility when in 
practice log space many-one reducibility is used. We do so because we believe that 
Turing reducibility represents the most general form of effective reduction of one 
problem to another. In particular, we believe that our definition of log space 
Turing reducibility represents a very general form of effective reduction with a log 
n space bound of one problem to another. 

A more general notion is defined in terms of log space machines with multiple 
oracle tapes [Ly2]. This paper represents an initial attempt to understand log 
space Turing reducibility so that we shall restrict ourselves to Turing machines 
with a single oracle tape. 

We note that the log space reducibilities as we define them are much less 
machine invariant than are the corresponding polynomial time reducibilities. For 
instance, we could not restrict the input head to be one-way rather than two-way. 
Certain variations are possible; for example, the class of log space computable 
functions does not depend on the direction of motion of the output tape head. In 
fact, we could even allow the output tape head to be two-way, with the ability to 
write and rewrite (but not read) [M]. The loss of a certain degree of machine 
invariance is a penalty extracted in exchange for a gain in fineness of 
classification. 

Oracle Turing machines are used to relativize problems. We do it in the 
following way. Define TIMEa(t(n)) and SPACEA(s(n)) to be the class of sets which 
are accepted by oracle Turing machines using the oracle A and running 
respectively in time t(n) and space s(n). We may analogously defineNTIMEa(t(n)) 
and NSPACEA(s(n)). Special classes are 

~A = ~ TIMEA(nk), 
k>.l 

jV'~ ~ = ~ NTIMEa(nk), 
k > l  

.~q~A = SPACEA(Iog n), 

JI/'.~ A = NSPACEA(log n), 

(~k)A = SPACEA(logk n). 

We repeat for emphasis that our definition of a machine running in time t(n) 
or space s(n) requires that all computation paths (for all inputs and oracle sets) 
eventually converge. Weakening this requirement leads to reasonable alternative 
definitions [Si]. All the above classes except N.~  A remain unchanged under the 
weaker definitions; however, the weaker definition for N.~  A leads to a set of 
results totally different from those in this paper. 

At this point we define precisely several concepts concerning oracle Toring 
machines that will be used later. Let T be a nondeterministic oracle Turing 
machine which runs in space s(n), has state set Q and storage tape alphabet F. Let 
x be an input. An instantaneous description (i.d.)for x and Thas the form (q, i,j, y) 
where q e Q indicates the state, 1 < i < n indicates the input head position, 
1 < j < s(n) + 1 indicates the storage head position, 7 E P(") indicates the contents 



Relativization of Questions About Log Space Computability 23 

of the storage tape. The initial i.d. is (qo, 1, 1, b~t"))where qo is the start state of T. A 
query i.d. has the form (QUE, i,j, 7). A yes i.d. has the form (YES, i,j, y) and a no i.d. 
has the form (NO, i,j, 7). An accepting i.d. has the form (ACC, i,j, 7). It is useful to 
lump the initial, yes and no i.d. together and call them begin i.d.'s. We sometimes 
say the query i.d. (QUE, i,j, 7) corresponds to the yes i.d. (YES, i,j, 7) and to the no 
i.d. (NO, i, j, 7). 

The i.d. graph for x and T is defined as follows. The nodes are all the i.d.'s. 
There is a directed edge from i.d. I to i.d. J if either (i) I is not a query i.d. and J 
follows in one move of T on input x from I or (ii) I = (QUE, i,j, 7) for some i,j, 7 
andJ  = (YES, i,j, 7) orJ  = (NO, i,j, 7). A simplepath is a path which does not pass 
through a query i.d. A complete simple path is a simple path from a begin i.d. to a 
query i.d. To each simple path we associate the partial query generated by it, the 
word written on the oracle tape during the sequence of moves indicated by the 
simple path. If the simple path is complete, then the partial query is simply called 
the query. Queries generated by complete simple paths in the i.d. graph ofx and T 
are called the queries generated by T on input x. 

Let A ~ {0, 1}* be any oracle set. The query graph for x, 7", and A is defined as 
follows. Its nodes are all the begin i.d.'s together with all the accepting i.d.'s. There 
is a directed edge from i.d. I to i.d.d if either (i)I is a begin i.d. a n d J  is a yes or no 
i.d., and there is a complete simple path from I to d' where J '  is the query i.d. 
corresponding to J, and the query generated by this path is in A just in case J is a 
yes i.d., or (ii) J is an accepting i.d. and there is a simple path from I to J. A word y 
supports an edge (I, J) in the query graph if y is generated by a complete simple 
path from I to the query i.d. corresponding toJ  and either (i) y e A andJ  is a yes i.d. 
or (ii) y e A  andJ  is a no i.d. Queries that support edges in the query graph for x, T 
and A are called queries generated by T on input x using oracle A. 

It should be clear that x is accepted by T with oracle A if and only if there is a 
path from the initial i.d. to an accepting i.d. in the query graph for x, 7", and A. 

2. Relativizations of JV£¢ and ~ .  It is well know that ~ ~ sVL¢ ~ ~ ___ sV~. 
It is as yet unknown whether any of the reverse inclusions hold. In this section we 
examine the possible relationships between the corresponding relativized classes, 
in the hope of shedding some light on the nonrelativized problems. The approach 
is similar to that used in the reference [-BGS]. 

To begin with, given any oracle A the following diagram holds. 

~A 

As we shall see, it is not always the case tha t  ~CLP A ~ ~A (Theorem 2.3). 

THEOREM 2.1. There is a computable set A ~_ {0, 1}* such that £¢A = s V ~ a  
= ~ = s V ~  ~. 

Proof. The construction in [BGS, Theorem 1] will suffice. Also, if A is log 
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space complete in polynomial space then following [BGS, Theorem 2], A satisfies 
the Theorem. 

We outline the argument of Baker, Gill and Solovay [BGS, Theorem 2]. 
There exists a set A which is log space complete in polynomial space [SM] ; that is, 
A is computable in polynomial space and every set B also computable in 
polynomial space is log space many-one reducible to A. 

Let B e J f f ~  A. Since A is computable in polynomial space then B is 
computable in nondeterministic polynomial space. By appealing to Savitch's 
Theorem [Sa] B is computable in polynomial space. Hence B _< ~A. Thus 
BeZP A. [] 

T H E O R E M  2.2. There is a computable set A ~= {0, 1}* such that ~U ~ A ~ ~a. 
Proof Let g be the fast growing function defined by g(0) = 1 and g(n+ 1) 

= 2 °("). Define G = {0 °tk) : k _> 0}. In what is to follow we use G as a set of 
diagonalization points. The set G has several nice properties including the 
property that it can be decided in space'log n whether or not a string x ~ {0, 1}* is 
in G. 

We construct sets A and B satisfying: 

(i) W ~  A =c ~A, 

(ii) B ¢ yZpA, 

(iii) B E ~a. 

The sets A and B will have the following properties which imply (i) and (iii). 

(a) B~=G, 

(b) A = {O°(k'lx :Ix[ _< g(k)&k >_ 0}, 

(c) if O'lxeA and y is a prefix of x then (PlyeA,  

(d) if if ' lx and lYlyeA and [x I = [y[ then x = y, 

(e) OnCB if and only if either O'¢G or there is a y of length n such that 
Onl yeA. 

We show later how to construct A and B. Using properties (a)--(e) we show 
(iii), how to compute B in polynomial time using the oracle A. The following 
algorithm decides B. 

begin (Algorithm for B) 
read x ; 
if x ¢ G then REJECT else 
z ~ x l  ; 
while Izl < 2Ix I + 1 do 
begin 

if z l  EA then z , , -z l  else 
if zO~A then z , -zO else 
ACCEPT 

end ; 
REJECT; 
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end (Algorithm for B) 

We leave it to the reader to verify that the algorithm runs in polynomial time. 
We now proceed to show (i), A / '~  A ___ ~A. Let M be a nondeterministic oracle 

Turing machine that runs in space log n. There is a polynomial q depending on M 
such that if Ixl -- n then the number of i.d.'s for x and M is no more than q(n). 
Furthermore, on input x no query of length greater than or equal to q(n) is 
generated. We show how to decide in polynomial time whether x is accepted byM 
with oracle A by showing how to construct the query graph for x, M and ~1 in 
polynomial time using the oracle A. Once the query graph is constructed then its 
transitive closure can be computed in polynomial time. From the transitive 
closure it can be decided immediately whether x is accepted by M with oracle A. 

We proceed to construct the query graph in the following steps. 

1. Us ing  the oracle A compute the set Y = {yeA : [y[ < q(n)}. This can be done 
in polynomial time because A is so sparse and simple. The set Y has at most 
2q(n) members. 

2. Construct the sets Z and 3 defined by: 
= {(I,J, 6) :1 is a begin i.d., J is an i.d., 6e {0, 1}*, there is a simple path in 

the i.d. graph for x and M from I to J which generates the partial query tS, 
and 6 is a prefix of a member of Y} 

3 = {(I,J, 6a):I is a begin i.d., J is an i.d., fie{0, 1}*, ae{0, 1}, there is a 
simple path from I to J which generates the partial query ha, 6 is a prefix 
of a member of Y, and tSa is not a prefix of a member of Y}. 

Since Y has at most 2q(n) members each of length at most q(n) and there are 
at most q(n) i.d.'s then the cardinalities of Z and 3 are bounded by 2(q(n)) 4. 
The sets Z and ~ may be constructed in polynomial time by the following 
algorithm. 

begin (Construction of Z and 3) 
Z ~ - ~  ; ~ - Z  ; 

Z '~{(I ,  I, 2) :I is a begin i.d.} ; 
while Z # Z' do 
begin 

Z ~ Z ' ;  

for all (I, J, 3) e Z and all J '  which are not begin i.d.'s do 
i f J '  follows from J in one move and generates ae {0, 1, 2} 
then if 6a is a prefix of a member of Y 

then Z'~-Z' ~ {(I, J', ~a)} 
else ~ * - ~  w {(I, J', 6a)} ; 

end 
end (Construction of Z and 3) 

3. Finally we can compute the query graph for A. There is a directed edge from I 
to J i f / i s  a begin'i.d., J' is the query i.d. corresponding to J i fJ  is a yes or no 
i.d., and one of the following holds: 
(i) J is a yes i.d. and there is 6 e Y such that (I, J', 3) e Z, 
(ii) J is a no i.dl, there is a fie {0, 1}* and an i.d.K such that (I,K, ,~)e 3 and 

there is a simple path from K to J'. 
(iii) J is an accepting i.d. and there is a simple path from ! to J. 
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We now show how to construct A and B so that B ~ X A  aA and A and B satisfy 
(a)--(e). As we mentioned earlier, we will use members of G as diagonalization 
points. That is, if T is an arbitrary nondeterministic oracle Turing machine that 
runs in space log n then some member (P of G will have the property that On e B / f T  
does not accept (P with oracle A and On ¢ B if T does accept (P with oracle A. Before 
getting into the actual definition of A and B we need to prove a certain claim. 

Let C be a finite set, let n > Iz[ for all zeC, and let 2 n > c 2 where c = the 
number of i.d.'s for On and T. Define: 

! 
C y = C u {(plx : Ix[ < tyl and x is a prefix of y} 

t! C y = C u {(Plx : x is a prefix of y}. 
Claim. For some y of length n one of the following holds: 
(1) (P is rejected by T with oracle C'r, 
(2) (P is accepted by T with oracle C"y. 
Proof of Claim. Assume (1) fails so that (P is accepted by Twith oracle C'r for 

t t  each y oflength n. Let G'y be the query graph for (P, T, and C' r and let G y be the 
it query graph for On, T, and C r. All such query graphs share the same nodes. 

For each y of length n there is a path Py in G'y from the initial i.d. to an 
accepting i.d. If for some y, Pr is also a path in G"y then (2) holds. So assume Py is 
not a path in G"r for any y. Since _C"y is obtained from C'r by the addition of the 
one word (ply then (Ply supports an edge e r in G'r which is not supported by any 
other member of C'---~. Now, if Ix[ = lY[ = n a n d x  # y thene  x # er. For i fx  # yand  
e x = er then er is supported by at least two members of C'y, namely (Plx and (Ply, 
which is impossible. But there are at most c 2 possible edges in any query graph for 
(P and T and 2" words of the form (Ply where lyl = n. This is impossible because 
2 n > c 2. Hence (2) holds if (1) fails. 

Using the claim we now give the construction of A and B. We let T1,T 2 . . . .  be an 
effective enumeration of the nondeterministic oracle Turing machines that run in 
space log n. There is a parameter t which indicates the 'stage' of construction. 

begin (Construction of A and B) 
A ~  ; 
B~Z~ ;. 
i l l  ; 
for s ~ 0  until t do 
begin (stage s) 

n~g(s) ; 
c ~ t h e  number of i.d.'s for On and T~ ; 
if 2" _< C 2 then A ~ A  u {OhiO i :0 _< i _< n} else 
begin (diagonalization of Ti) 
if On is rejected by T~ with oracle A'r for some y of length n then 

begin 
choose y of length n such that On is rejected by T~ with oracle A'y ; 

{on} ; 
A ,--A' r 

end 
else 

begin 
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choose y of length n such that On is accepted by T~ with oracle A" r ; 
A ~ A "  

Y 

end ; 
i . - - i+l  

end (diagonalization of T~) 
end (stage s) 

end (Construction of A and B) 

To decide whether x is a member of A or of B run the construction of A and B 
with the parameter t where a(t) > Ixl On termination check the current values of 
A and B to determine if x is in the appropriate set. 

The construction succeeds if we can show that each T~ is successfully 
diagonalized, that is, B is not accepted by T~ with oracle A. This can be shown by 
induction on i. Assume this is true for allj  < i o. There is a polynomial p such that 
the number of i.d.'s for each x and T~ ° where N = n is at most p(n). By the 
induction hypothesis there is a least number s o such that if the value of s is s o then 
the value of i is i o. Since 2 n dominates p2(n) then there is an s 1 > s o when 
diagonalization begins on T~ o. Let n = #(sl). By the claim and the fact that words 
that are added to A after stage s 1 are of length greater than or equal to 2 ~, which is 
in turn greater than the length of any query generated by T, ° on input 0 r, we can 
conclude that 0" e B if and only if 0 n is rejected by T~ ° with oracle A. [] 

T H E O R E M  2.3. There is a computable set A ~ {0, 1}* such that JV'~ A f~ ~A 
and ~A d: jff.oq ~A. 

Proof. We omit the details of the proof. The basic idea is to interlace the 
diagonalization of Theorem 2.2 with the following simple diagonalization (which 
is used by [BGS] in showing there is an A such that ~A # jff~A). 

We construct A and C satisfying 
(i) C ¢ ~A, and 
(ii) C E YLP  A. 

To accomplish (ii) we force A and C to have the property that x ~ C if and only 
if x e G  and there is a y e A  of the same length as x. 

To demonstrate a typical diagonalization let T be an arbitrary oracle Turing 
machine that runs in time p(n) where p is a polynomial. Choose n and k such that 
n = g(k) and 2 ~ > p(n). Choose y of length n such that y is not a query generated in 
the computation of T on input On using the current oracle A. If T accepts On then 
do not add anything to A or C. If T rejects On then add On to C and y to A. In either 
case restrain all other words of length less than 2 ~ from entering A subsequently. 

The interlaced diagonalization will construct sets A, B, and C where B e ~A, 
B ¢ JC'L,e a, C e YZPa.and C ¢ ~A. The interlacing will be done by doing one kind of 
diagonalization on points 0 gCk) where k is even and the other kind of 
diagonalization on points 0 °¢k~ where k is odd. 

We should note that we must certainly lose the fact that ~rLPA ~ ~A when we 
combine the constructions. What happens is that we can no longer compute the 
set Y = {yeA :[y[ _< q(n)} in polynomial time using the oracle A. [ ]  

The reader may perhaps find it surprising that the easier half of Theorem 2.3 is 
producing a set A with J t rS  aa ~. ~ ,  in view of the fact that X.L~' __ ~ .  
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One interesting problem that remains open is whether or not there is a set A 
with #A ~ y.WA. 

3. Relativizations of Other Problems. As we saw in Section 2 the fact that 
JV.L~' ~ # does not relativize to arbitrary oracles. There are computable sets A 
with YL,¢ A ~ ~a. Results that do relativize uniformly seem to be those ~hat 
depend primarily on step-by-step simulations. An example of such a result is the 
space hierarchy theorem of Stearns, Hartmanis, and Lewis [SHL]. 

THEOREM 3.1. Let A be any subset of {0, 1}* and let s and r be natural 
number functions with s uniformly tape constructable, lim infn(s(n)/log n) > 0 and 
lim infn(r(n)/s(n)) = O. Then SPACEA(s(n))-SPACEA(r(n)) ~ ;g. 

(A function s is uniformly tape constructable if there is a Turing machine 
acceptor Twith the property that for all n and all x of length n, on input x, T scans 
exactly s(n) storage tape cells. This notion is a somewhat stronger notion of tape 
constructability than was used by Stearns, Hartmanis and Lewis.) 

Proof. We omit the details of the proof, since it is essentially the same as that in 
[SHL] with some minor modifications outlined below. 

A set B _  {0, 1}* is constructed with B~SPACEA(s(n))--SPACEA(r(n)). If 
xe {0, 1}* then x codes up an oracle Turing machine description in the initial 
nonzero portion of x; that is, if x = dl0 ~ then d describes an oracle Turing 
machine. 

To determine ifx = dl0 m is in B in space s(Ixl) using the oracle A, we simulate d 
on the input x, always bounding the space used in the simulation to s<lxl) and the 
time to 2 sllxll. The query generated by the simulation ofd is put onto the oracle tape 
which acts as an oracle tape to d. 

Should d accept the input in the allocated space and time, then x is rejected, 
otherwise x is accepted. 

It follows that B e SPACEA(s(n)) - SPACEA(r(n)). [] 
Other results that relativize uniformly include: (i) the characterization of Y #  

by polynomial length bounded quantifiers over relations in # [C2]; and (ii) 
equivalence of two-way multihead finite automata and Turing machines that run 
in space log n [H] [HY]. The former fact was pointed out to us by A. Selman. 

There are a wide variety of results in automata theory that depend on indirect 
rather than step-by-step simulations. Among them are Y A  ° c__ N [C1], 
X£~_c  ~ 2  [Sa], N is equal to the class of languages accepted by 
nondeterministic log space bounded auxiliary pushdown store machines [C1], 
and NSPACE(n 2) is equal to the class of languages accepted by nonerasing stack 
automata [HU 1]. These kinds of results in general do not relativize uniformly. As 
a paradigm we offer the following theorem. 

THEOREM 3.2. Let p be any polynomial. There is a computable set A 
{0, 1}* with the property that ~CZP A ~ SPACEA(p(n)). 

Proof  This is a diagonalization similar to that of Theorem 2.3. We outline the 
proof. Let k = the degree of p(n). We construct A and B so that B s JI/'LP A 
-SPACEA(p(n)). Define the fast growing function h by h(0)= 1 and h (n+ l )  
= 2 ~h~n)) . Further define H = {O h(") : n > 0}. We use the set H as a set of 
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diagonalization points. It should be noted that H can be decided in space log n. 
We achieve B e ~ C ~  A by defining x e B if and only if x e H and there is a word of 

length Ixl in A. 
We diagonalize in the following way. Let T be an arbitrary oracle Turing 

machine that runs in space ~+(n). Assume T has s states and t storage tape symbols. 
Choose 0"el l  such that 2" > snp(n)t plm so that 2 ~÷~ is greater than the total 
number of i.d.'s for 0 ~ and T. Choose a y of length n k÷ ~ which is not a query 
generated by T on input 0" using the current oracle A. Such a y exists because T 

k + l  . . 

must make less than 2" moves on input 0". If0" is accepted by Tthen do nothing 
to A and B. If0" is rejected by T then add 0" to B and y to A. In either case restrain 
all other words of length less than 2 "~+ ~ from entering A subsequently. [] 

COROLLARY 3.3. There is a computable set A ~= {0, 1}* such that 
X ~  ~ ffi ( ~ ) ~ .  

4. Log Space Truth Table Reducibility. The motivation for studying log space 
truth table reducibility comes from the investigation of polynomial time truth 
table reducibility in [LLS]. The intuitive idea behind truth table reducibility is 
the following. A set A is truth table reducible to a set B if given x we can generate 
(independent of B) queries y 1, Y2 . . . . .  y,, and a Boolean function a such that x e A if 
and onlyifa(B(yl) , . . .  ,B(y,,)) = 1 (whereB(y) = 1 i f y eB  andB(y) = OifyeB). In 
ILLS] this notion is restricted to be polynomial time bounded, and it is shown 
that polynomial time truth table reducibility and polynomial time Turing 
reducibility are distinct notions. 

Our definition of log space truth table reducibility is analogous to the 
definition of polynomial time truth table reducibility in ILLS] with a slight 
modification. 

Let A = {a, b}. A tt-condition is a member of (A'c{0, 1}*c)*A*. A tt-eondition 
generator is a computable function mapping {0, 1}* into the set of tt-conditions. 
A tt-condition evaluator is a computable mapping of (A* {0, 1 })*A* into {0, 1 }. Let 
e be a tt-condition evaluator; a tt-condition C t l C Y l C C t 2 e Y 2 e  . . . C t k C Y l ~ e c t k ÷  1 (with 
a, eA* and yie{0, 1}*) is e-satisfied by B c_ {0, 1}* if e(alB(Yl)a2B(y2) . . .  
~ ( Y D ~ k +  1) = 1. 

Define A < ~B (A is Io9 space truth table reducible to B) if there exist a log 
space computable tt-condition generator 9 and a log space tt-condition evaluator 
e such that x e A if and only if g(x) is e-satisfied by B. We may also define A < ~B 
(A is polynomial time truth table reducible to B) if the generator and evaluator are 
computable in polynomial time. This definition is equivalent to the definition of 
_< ~ in ILLS]. 

If our abstract definition of < -~ is to be reasonable it should include as special 
- -  t t  

cases some of the common representations of Boolean functions. We list the three 
basic representations of Boolean functions in increasing order of efficiency of size: 
(i) truth tables, (ii) Boolean formulas in all binary and unary operations, (iii) 
Boolean circuits using all possible binary and unary gates. It turns out that truth 
tables and Boolean formulas can be used as truth table conditions, while it seems 
in general that Boolean circuits cannot. The trouble with Boolean circuits is that 
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the problem of evaluating them is log space complete in ~ [La2]. Hence they can 
be evaluated in log space if and only if ~ ~_ La. 

At this point we give an example of a log space truth table reduction 
procedure. Let A, B __q {0, 1}*. The sets A and B can be coded into one set A ~ B  
= {xO:x~A} u {xl:xeB}. It can be shown using techniques of [LLS] that 
there are computable sets A and B with A u B ~ ~A~B.  On the other hand, it is 
quite easy to show that A u B < ~A @B. Consider the following generator and 
evaluator. Let: 

g(x)  = cxOc v c x l c  

e(avz)  = {01 i f a = z = 0  
otherwise 

(Technically the symbol v is coded in the alphabet A.) 
Clearly, x EA u B if and only if g(x) is e-satisfied by A@B. 

Define a general Boolean formula (gB]) inductively as either: (i) a member of 
c{0, 1}*c or (ii) (P'Q) or (~p)where  *~ { ̂ ,  v ,  @ . . . .  } = all binary Boolean 
operation symbols and P and Q are gBfs. Define a Boolean formula in the same 
way as a gBfexcept replace the first condition with "a member of {0, 1}". I fP  is a 
Boolean formula then define v(P) to be the value of P in the usual way. If P is a 
general Boolean formula and B ___ {0, 1 }* then we know what it means for P to be 
v-satisfied by B. Define A <_ ~B  (A is log space Boolean formula reducible to B) if 
there is a log space computable general Boolean formula generator g such that 
x ~ A if and only ifg(x) is v-satisfied by B. We could also analogously define what it 
means for A to be polynomial time Boolean formula reducible to B. 

THEOREM 4.1. For all A, B c= {0, 1}*, if A <_s~ffB then A <_ ~B. 
Proof. The alphabet of Boolean formulas could be coded easily into a two 

letter alphabet like A. By Lynch, Boolean formulas can be evaluated in space log n 
[Lyl] .  Hence the function v is computable in space log n. [] 

We do not know whether or not < ~  and < ff are equivalent notions. 
Another closely related problem is whether or not <s~ and ___ ~ are equivalent. 
Both problems are closely related to the problem of whether or not there is a 
polynomial p such that given any Boolean circuit P there is an equivalent Boolean 
formula Q such that SIZE(Q) < p(SIZE(P)). 

We now show the equivalence of _< ff and _< ~r. Aswe mentioned earlier, this is 
in contrast to the polynomial time analogue where < ~ is properly stronger than 

--<~r. 

THEOREM 4.2. For all A and B ~_ {0, 1}*, A <_~ B if and only if A <_ ~B. 
Proof. Assume A _< ~B via a generator g and evaluator e. We outline the 

action of an oracle Turing machine Tthat runs in space log n such that T accepts 
A with B as its oracle. Let G and E be the log space transducers that compute g and 
e respectively. 

Let x be an input of length n and let g(x) = alCYlCa2¢Y2C... CakCYkCa k + 1 where 
a i ~ A* and Yi e (0, 1}*. The Turing machine Ton input x will simulate E on input 
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W = a tB(y  1)a2B(y2)0`3...  akn(yk)a k + 1" Of course Tcannot write w in log space, but 
because g is computable in space log n then the length of w is bounded by a 
polynomial. So T simply keeps a count cE of where the read head on w is in the 
simulation of E. Because the count cE is bounded by a polynomial the count ce can 
be stored in log n storage tape cells. 

To discover the ce-th letter of w, T simulates G on input x in the following way. 
A count cG, which is initially equal to ce, is maintained. Each time an output 
symbol in A is generated and each odd time a c is generated the count CG is 
decremented by one. The count is not  decremented when a member of {0, i, 2} is 
generated as an output symbol. When c~ = 0 then stop. If the last symbol 
generated is in A then that symbol is the cE-th letter ofw. If the last letter is a c then 
a 'query' is about to be generated by E, so continue simulating E, entering the 
output of E onto the oracle tape of T, until a c again is output. Now, T enters 
the state QUE.  Should T enter state Y E S  then the ce-th letter of w is 1 and should 
T enter state N O  then the cE-th letter of w is 0. The details of T are left to the 
reader. 

Now, assume A < ~B. Let T accept A with oracle B in space log n. The 
important thing to notice is that given x the only potential queries by T are 
generated by complete simple paths in the i.d. graph for x and T. Because T is 
deterministic the number of complete simple paths is less than or equal to the 
number of begin i.d.'s for x and T. 

The generator g is defined by g(x)  = a l C y l c a 2 c . . .  CakCYkC/3 where al, .  •., O'k are 
the begin i.d.'s that initialize the complete simple paths, yi is the query generated 
by the complete simple path initialized by a~ and fl is a list of the begin i.d.'s that 
lead by a simple path to accepting i.d.'s, followed by the input x itself. Of course 
the a~'s and/3 are coded into the alphabet A. The function g can be computed in 
space log n, by cycling through all the i.d.'s for x and T and making output as 
required by the definition of g. 

The evaluator e is a simulator of T. Let a typical input to e be (/.lOlO.2O2 . . . 

0.k0"k/3' where a 1 . . . .  ,0.k are begin i.d.'s,/3 is a list of begin i.d.'s followed by the input 
x, and 0"1e {0, 1}. 
The Turing machine that computes e behaves as follows. 

begin 
/<--the initial i.d. for x and T; 
while I is in the list of i.d.'s a l , . . . . ,  0̀ k do 

begin 
let I = a~ ; 
simulate T from i.d. I until a query i.d. J is reached ; 
if 0-i = 1 then/.--the yes i.d. corresponding to J 
else/.--the no i.d. corresponding to J ; 

end ; 
if I is in the list of i.d.'s in/3 then write 1 else write 0 

end 

It should be fairly clear that e can be computed in space log n and that x eA if 
and only if g(x) is e-satisfied by B. [] 
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C O R O L L A R Y  4.3. The reducibility < "~ is properly stronger than the 
- T 

reducibility < ~. 

Proof. It  is clear  tha t  i fA  < ~T B then A < ~B. In [ L L S ]  it is shown tha t  there  
are sets A and  B with A < ~B and  A ;g ~B. These same two sets have the p rope r ty  
tha t  A < ~B and  A ~: -~B. [ ]  

Two p rob lems  rela ted to this Coro l l a ry  remain  open:  (i) are  _< ~ and < 
dis t inct  no t ions  and (ii) are < ~e and  < ~ dis t inct  not ions .  Both  p rob l ems  are  

- -  m - -  n l  

closely re la ted to the open quest ion,  whether  or  not  the class of funct ions 
c o m p u t a b l e  in po lynomia l  t ime is different from the class of  funct ions 

c o m p u t a b l e  in log space. 
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