MATHEMATICAL SYSTEMS THEORY 10, 19-32 (1976)
© 1976 by Springer-Verlag New York Inc.

Relativization of Questions
About Log Space Computability

by

RicuarD E. LADNER*

Department of Computer Science
University of Washington
Seattle, Washington 98195

and

Nancy A. Lynca**

Department of Mathematics
University of Southern-California
Los Angeles, California 90007

ABSTRACT

A notion of log space Turing reducibility is introduced. It is used to define relative notions
of log space, £*, and nondeterministic log space, A4~ 4 These classes are compared with
the classes 24 and A #* which were originally defined by Baker, Gill, and Solovay [BGS].
1t is shown that there exists a computable set A such that & #* ¢ #*. Furthermore, there
exists a computable set 4 such that A’ PAEPrand PPEN %4, Also a notion of log
space truth table reducibility is defined and shown to be equivalent to the notion of log
space Turing reducibility. '

~ Introduction. Reducibility in polynomial time has received wide attention, in
references [C2], [K], [Lal], [LLS], [BGS] and in many other places. There are
several considerations which support a similar x amination of reducibility in log
space. First, unlike polynomial time reducibility, log space reducibility allows a
meaningful classification of problems that are computable in polynomial time.
Second, notions of space bounded reducibility allow us to state relativizations of
open problems concerning both the relationship between deterministic and
nondeterministic log space computability and the relationship between log space
computability and polynomial time computability. s
In Section 1 we generalize the definition of log space reducibility used in
references [JL] and [SM] to permit Turing-type reductions. We also generalize
reducibility to allow arbitrary space bounds and to allow nondeterminism.

*Research supported by NSF Grant No. GJ 43264.

**Research supported by NSF Grant No. DCR 92373. NGTICE: THIS MATERIAL MAY BE

PROTECTED BY COPYRIGHT LAW
{TITLE 17 U.S. CODE}

20 RicHARD E. LADNER AND Nancy A. Lynen

In Section 2 we relativize certain complexity classes including 2 (sets
computable in polynomial time) and & (sets computable in log space), #* (sets
computable in log* space), and 4”& (sets computable in nondeterministic log
space). For various sets 4 we compare A" #* and #*. By an argument found in
reference [BGS] there are computable sets 4 such that & %4 = 24 We show

- that there is a computable set A with N L4 < 2% On the other hand there is also
& computable set 4 with 4" %4 ¢ P4 and o4 & /%4 This latter result is
somewhat surprising since it is well known that N L < 2 [C1].

In Section 3 we try to explain why certain results in complexity theory
uniformly relativize while others do not. Results that depend primarily on step-
by-step simulations like the space hierarchy theorem of Stearns, Hartmanis, and
Lewis [SHL] relativize uniformly. Results like 4% < # [Cl]and &% < @2

“[Sa] do not relativize because they depend on indirect rather than step-by-step
simulations. '

In Section 4 we introduce a notion of log space truth table reducibility which is
analogous to the notion of polynomial time truth table reducibility introduced by
Ladner, Lynch and Selman [LLS]. Using the result of Lynch [Ly1], which
establishes that a Boolean formula can be evaluated in log space, we argue that
our definition is reasonable. We show the equivalence of log space Turing
reducibility and log space truth table reducibility.

L. Preliminaries. We consider sets of words over the alphabet {0, 1}. Let x| be
the length of a word x and let } represent the empty word.

Our models of computation are variations of Turing machines (see[HU2]). A
Turing machine acceptoris a Turing machine with a two-way read only input tape
and a two-way read-write storage tape. A Turing machine transducer is a Turing
machine with a two-way read only input, a two-way read-write storage tape and a

~one-way write only output tape. An oracle Turing machine is a'Turing machine
with a two-way read only input, a two-way read-write storage tape, and a one-way
write only oracle tape. Each type of Turing machine may be deterministic or
nondeterministic. All machines are deterministic unless otherwise specified.

A nondeterministic Turing machine T runs in time tn) if for all n and all x of
length n, each computation’ path of T on input x halts within #(n) moves. A
nondeterministic Turing machine T runs in space s(n)if for all n and all x of length
n, each computation path halts with the storage tape head having visited no more
than s(n) distinct tape cells. The tape cells visited on the input tape, output tape,
and oracle tape are not counted.

| Turing machine acceptors have a special state 4CC. A set A< {0, 1}*is
accepted by a nondeterministic acceptor T if for all x e {0, 1}* xe A if and only if
there is some computation of T on input x which halts in the state ACC. Define
TIME(t(n)) and SPACE(s(n)) to be the class of sets which are accepted by Turing
machine acceptors which run respectively in time t(n) and space s(n). Define
NTIME(t(n)) and NSPACE (s(n)) to be correspondin g classes for nondeterministic

Turing machine acceptors. Some special complexity classes we consider are
defined:

? =) TIME(n®),

k=1

T

A func
Turing m:
that for al

‘used notic

time and
We wi
function f
Wewr
computat
Oracle
state ACC
each state
state QUF
1s a memt
QUE to]
We wi
oracle Tu
oracle B.
We w!
Turing m
It is st
Several at
that < 7
a similar
easy to s¢
Two i
set S is log
is log spac
could be
mazes’ of
N &L [Sa
space cor
[J], [IL]
These
automate

LEMI
=ANZ.

LEM
P < P

iding & (sets
sace), F* (sets
‘erministic log
ment found in
2*. We show
1d there is also
atter result is

- plexity theory
1arily on step-
artmanis, and
d NP = F?
n step-by-step

ibility which is
introduced by
[Ly1], which
we argue that
space Turing

), 1}. Let |x| be

see [HU2]). A
mly input tape
cer 1s a Turing
agetapeanda
1ring machine
and a one-way
‘terministic or
: specified.
{nand all x of
t(n) moves. A
all x of length
isited no more
;, output tape,

4<{0, 1}*is -

1 if and only if
2 ACC. Define
ted by Turing
e s(n). Define
adeterministic

consider are

]

SE—

Relativization of Questions About Log Space Computability 21

gmq=\jNﬂMﬂML

k=1
¥ = SPACE(log n),
N ¥ = NSPACE(log n),
#* = SPACE(log" n).

A functionf: {0, 1}* — {0, 1}* is computable in time t(n) (space s(n)) if there is a
Turing machine transducer T that runs in time t(n) (space s(n)) with the property
that for all x, T halts with f(x) written on the output tape. The most commonly
used notions of polynomial time and log space reducibility are defined in terms of
time and space bounded transducers.

We write 4 < 2B (4 is polynomial time many-one reducible to B) if there is a
function f computable in time n* for some k such that x eA if and only if f(x)eB.

Wewrite A < ZB (A is log space many-one reducible to B) if there is a function f
computable in space log n such that xe4 if and only if f(x)eB.

Oracle Turing machines have special states, ACC, QUE, YES, and NO. The
state ACC is the accepting state while the state QUE is called the query state. In
each state except QUE the machine may write a symbol onto the oracle tape. In
state QUE the machine goes into state YES if the word written on the oracle tape
is a member of the oracle set, otherwise it enters state NO. In moving from state
QUE to YES or NO no other action is taken except to erase the oracle tape.

We write A < 2B (A is polynomial time Turing reducible to B) if there is an
oracle Turing machine M that runs in time n* for some k and M accepts A with
oracle B.

We write A < 2B (4 is log space Turing reducible to B) if there is an oracle
Turing machine M that runs in space log n and M accepts A with oracle B.

Tt is straightforward to show that both < 7, and <7 are transitive relations.
Several authors including Jones [J] and Stockmeyer and Meyer [SM] have noted
that < ¥ is transitive. By a similar argument < < is also transitive [Lal]. Also by
a similar argument it can be shown thatif 4 < “B and Be ¥ then Ae #*. It is
easy to see that A < B implies A < 7B.

Two important classes of complete problems exist for log space reducibility. A
set S is log space completein /" L if Se /¥ and forall Ae /' &L, A < “S. AsetS
is log space completein if Se ? andforallAe #, A < #S. The second definition
could be extended to log space Turing reducibility. It appears that the ‘threadable
mazes’ of Savitch is the first known example of a log space complete problem in
N £ [Sa]. Thé ‘path systems’ of Cook seem to be the first known example of alog
space complete problem in 2 [C3]. Other examples can be found in references
[J], [JL], [La2], and [Su].

These two classifications of problems are closely related to open problems in
automata theory by the following lemmas. v

LEMMA 1.1. If S is log space complete in &% then Se & if and only if.,?
=NZ.

LEMMA 1.2.1IfS is log space complete in P then for all k, S e F*if and only if
P L~

22 RicHARD E. LADNER AND NANCY A. LyncH

These lemmas follow immediately from the facts in the preceding two
paragraphs. Proofs may be found in references [J] and [JL].

One might question introducing log space Turing reducibility when in
practice log space many-one reducibility is used. We do so because we believe that
Turing reducibility represents the most general form of effective reduction of one
problem to another. In particular, we believe that our definition of log space
Turing reducibility represents avery general form of effective reduction with a log
n space bound of one problem to another. '

A more general notion is defined in terms of log space machines with multiple
oracle tapes [Ly2]. This paper represents an initial attempt to understand log
space Turing reducibility so that we shall restrict ourselves to Turing machines
with a single oracle tape.

.We note that the log space reducibilities as we define them are much less
machine invariant than are the corresponding polynomial time reducibilities. For
instance, we could not restrict the input head to be one-way rather than two-way.
Certain variations are possible; for example, the class of log space computable
functions does not depend on the direction of motion of the output tape head. In
fact, we could even allow the output tape head to be two-way, with the ability to
write and rewrite (but not read) [M]. The loss of a certain degree of machine
invariance is a penalty extracted in exchange for a gain in fineness of
classification.

Oracle Turing machines are used to relativize problems. We do it in the
following way. Define T IME*(t(n)) and SPACE"(s(n)) to be the class of sets which
are accepted by oracle Turing machines using the oracle 4 and running

- respectively in time t(n) and space s(n). We may analogously define N TIME*(t(n))
and NSPACE*(s(n)). Special classes are

P* = |) TIMEA(n"),
k=1

NP =) NTIMEA(nb),

k>1

£* = SPACE*(log n),
N L* = NSPACE*(log n),
(L*Y = SPACE*(log* n).

We repeat for emphasis that our definition of a machine running in time t(n)
Or space s(n) requires that all computation paths (for all inputs and oracle sets)
eventually converge. Weakening this requirement leads to reasonable alternative
definitions [Si]. All the above classes except N.¥“ remain unchanged under the
weaker definitions; however, the weaker definition for N.%* leads to a set of
results totally different from those in this paper.

At this point we define precisely several concepts concerning oracle Turing
machines that will be used later. Let T be a nondeterministic oracle Turing
machine which runs in space s(n), has state set Q and storage tape alphabet I". Let
x be an input. An instantaneous description (i.d.) for x and T has the form (g, i,,y)
where geQ indicates the state, 1 <i < n indicates the input head position,
1 <j < s(n)+1indicates the storage head position, y e ™™ indicates the contents

of the stora
queryid.h
has the for1
lump the ir
say the que
id. NO, i,
The i.d
Thereis a
follows 1n «
andJ = (Y
through a .
query id.”
word writt
simple pat
the query.
are called
Let A ¢
follows. Its
is a directe
id., and tl
correspon
yesid., or
SUpports a
pathfrom
or (i1) y ¢ A
and A are
It shot
path from

2. Rel:
It is as yet
examine t
in the hop
1s similar
To be

receding two

ility when in
/e believe that
uction of one

of log space
ionwith a log

with multiple
iderstand log
ing machines

ire much less
cibilities. For
han two-way.
: computable
tape head. In
the ability to
¢ of machine
. fineness of

do it in the
of sets which

and running
I TIME“(t(n))

g in time t(n)
1 oracle sets)
le alternative
ed under the
s to a set of

racle Turing
racle Turing
vhabet I, Let
orm (q: iaja ')))
ad position,
the contents

Relativization of Questions About Log Space Computability 23

of the storage tape. The initiali.d.is (qq, 1,1, b*™)where g, is the start state of T. A
query i.d. has the form (QUE, i,], 7). A yes i.d. has the form (YES, i,j,y)and ano i.d.
has the form (NO, i, j, y). An accepting i.d. has the form (ACC, i, j,). It is useful to
jump the initial, yes and no i.d. together and call them begin i.d.’s. We sometimes
say the queryid. (QUE, i,j,7) corresponds to the yesid. (YES, i,j,y) and to the no
id. (NO, 1,], y).

The i.d. graph for x and T is defined as follows. The nodes are all the i.d.’s.
There is a directed edge from i.d. I to i.d.J if either (i) I is not a query i.d. and J
follows in one move of T on input x from I or (ii) I = (QUE, i, j, y) for some i, j, 7
andJ = (YES,i,j,y)orJ = (NO,1i,j,7). Asimple pathis a path which does not pass
through a query i.d. A complete simple pathis a simple path from a begin i.d. to a
query i.d. To each simple path we associate the partial query generated by it, the
word written on the oracle tape during the sequence of moves indicated by the
simple path. If the simple path is complete, then the partial query is simply called
the query. Queries generated by complete simple pathsintheid. graphofxand T
are called the queries generated by T on input X.

Let A < {0, 1}* be any oracle set. The query graph for x, T, and A is defined as
follows. Its nodes are all the begini.d.’s together with all the accepting i.d.’s. There
is a directed edge from i.d. I to i.d.J if either (i)] is a begin i.d.andJ is a yes or no
i.d., and there is a complete simple path from I to J’ where J' is the query i.d.
corresponding to J, and the query generated by this pathis in 4 justin case J isa
yesid., or (ii)J is an accepting i.d. and there is a simple path from toJ. Aword y

“supports an edge (I, J) in the query graph if y is generated by a complete simple
path from to the query i.d. corresponding toJ and either (i) ye A andJisayesid.
or (ii) y ¢ 4 and J is a no i.d. Queries that support edges in the query graphfor x, T
and A are called queries generated by T on input x using oracle A.

It should be clear that x is accepted by T with oracle A if and only if there is a
path from the initial i.d. to an accepting i.d. in the query graph for x, T, and A.

2. Relativizations of 4% and 2. Itiswellknowthat ¥ s /' L € P = /' P.
It is as yet unknown whether any of the reverse inclusions hold. In this section we
examine the possible relationships between the corresponding relativized classes,
in the hope of shedding some light on the nonrelativized problems. The approach
is similar to that used in the reference [BGS].

To begin with, given any oracle A4 the following diagram holds.

9/4
F NP
$ <
N FA

As we shall see, it is not alWays the case that & #* < 2* (Theorem 2.3).

THEOREM 2.1. There is a computable set A < {0, 1}* suchthat £* = & %"
=P = NP
Proof. The construction in [BGS, Theorem 1] will suffice. Also, if 4 is log

24 RicHARD E. LADNER aND NancY A. LyneH

Space complete in polynomial space then following [BGS, Theorem 2], A satisfies
the Theorem.
We outline the argument of Baker, Gill and Solovay [BGS, Theorem 2].
- Thereexists a set 4 which is log space complete in polynomial space [SM];thatis,
A4 is computable in polynomial space and every set B also computable in
polynomial space is log space many-one reducible to 4.
Let Be /24 Since 4 is computable in polynomial Space then B is
computable in nondeterministic polynomial space. By appealing to Savitch’s
Theorem [Sa] B is computable in polynomial space. Hence B < ZA. Thus

Be ¥ R ‘
THEOREM 2.2. There is a computable set A < {0, 1}* such thar 4 A s 2
Proof. Let g be the fast growing function deﬁned by g(0) = 1 and g(n+ 1)

=2, Define G = {0® : f > 0f. In what is to follow we use G as a set of

diagonalization points. The set G has several nice properties including the
property that it can be decided in space'log n whether or not a string xe {0, 1}* is

in G.

We construct sets 4 and B satisfying:
1) VP P
(1) B¢ & 24,
(iii) Be 2",
- The sets A and B will have the following properties which imply (i) and (iii).
(a) BSG, |

(b) 4 <{0™1x:|x < g(k) & k > O,
(c) if 0"1xeA and y is a prefix of x then 0"lyeA,

(d) if 0"1x and 0"1ye 4 and x| = |y| then x = y,

(e) 0"¢B if and only if either 0"

¢G or there is a y of length n such that
0"1yeA.

We show later how to construct 4
(iii), how to compute B in
algorithm decides B.

and B. Using properties (a}—(e) we show
polynomial time using the .oracle 4. The following

begin (Algorithm for B)
: read x ;
if x¢ G then REJECT else
Zex1;
while [z| < 2|x|+1 do
gin
if z1e¢ A then z<z1 else
if z0e A then z«+ z0 else
ACCEPT
end ;
REJECT:

end (Algori
We leave it

We now
Turing mac
such that if
Furthermor
generated.
with oracle
polynomial
transitive cl
closure it ca

We proc

1. Usingt
in polyz
2g(n) m

2. Constrt
T ={

the

. an
&= {0
SIr

of
Since Y
at most
The set
algorit}
begin ((
T
T«
whil
begi

i

I

1

end

end (C

3. Finally
toJifI
_1.d., am
1 Ju

(i1) Jis

the

(ii1) J i

. 2], A satisfies

Theorem 2].
[SM];that s,
omputable in

e then B is

g to Savitch’s
} < ZA. Thus

t NP g P
~and g(n+1)

s

g S T

G as a set of

including the
gxe{0,1}*is

ly (1) and (iii).

h n such that

~—(é) we show
The following

Relativization of Questions About Log Space Computability 25

end (Algorithm for B)
We leave it to the reader to verify that the algorithm runs in polynomial time.

We now proceed to show (i), #/".¥* < #*. Let M be a nondeterministic oracle

Turing machine that runs in space log n. Thereis a polynomial g depending on M
such that if |x| = n then the number of i.ds for x and M is no more than g(n).
Furthermore, on input x no query of length greater than or equal to g(n) is
generated. We show how to decide in polynomial time whether x is accepted by M
with oracle A4 by showing how to construct the query graph for x, M and A in
polynomial time using the oracle A. Once the query graph is constructed then its
transitive closure can be computed in polynomial time. From the transitive
closure it can be decided immediately whether x is accepted by M with oracle A.

3.

We proceed to construct the query graph in the following steps.

Using the oracle 4 compute theset Y = {yeA: Y| < g(n)}. This can be done
in polynomial time because A is so sparse and simple. The set Y has at most
2¢q(n) members. :
Construct the sets T and § defined by:
I = {(,J,5):Iisabeginid.,Jisan i.d., 8¢ {0, 1}*, there is a simple path in
thei.d. graph for x and M from I toJ which generates the partial query 9,
~and ¢ is a prefix of a member of Y} '
& = {U, J, da):I is a begin i.d., J is an id., 6e{0, 1}*, ae{0, 1}, there is a
simple path from I toJ which generates the partial query da, ¢ is a prefix
of a member of ¥, and da is not a prefix of a member of Y}.
Since Y has at most 2¢q(n) members each of length at most g(n) and there are
at most g(n) i.d’s then the cardinalities of T and & are bounded by 2(g(n))*.
The sets T and § may be constructed in polynomial time by the following
algorithm.
begin (Construction of T and &)
2,85
T {(, I, 7):]is a begin i.d.} ;
while T # T’ do
begin
TT';
for all (I, J,)T and all J' which are not begin i.d.’s do
if J' follows from J in one move and generates ae {0, 1, 1}
then if da is a prefix of a member of Y
then T'«T U {(I,J, da)}
else F—Fu {l,J, da)};
end
end (Construction of T and %) ' ,
Finally we can compute the query graph for A. There is a directed edge from /
toJ if I is a begin‘i.d.,J' is the query i.d. corresponding to J if J is a yes or no
i.d., and one of the following holds:
(i) Jis a yes i.d. and there is e Y such that (I, J', §)e 3, .
(i) Jisanoid., thereisa de{0,1}* and an i.d. K such that (I,K, §)e § and
there is a simple path from K to J'.
(iii) J is an accepting i.d. and there is a simple path from I to J.

26 RICHARD E. LADNER AND NANCY A. Lyncy

We now show how to construct 4 and B so that B¢ 4" %4
(a)—(e). As we mentioned earlier, we will use members of G as diagonalization
points. That is, if Tis an arbitrary nondeterministic oracle Turing machine that
runs in space log n then some member 0" of G will have the property that 0" B if T
does not accept 0" with oracle 4 and 0" ¢ B1f T does accept 0" with oracle 4. Before
getting into the actual definition of 4 and B we need to prove a certain claim.

and 4 and B satisfy

Let C be a finite set, let n > |z| for all zeC, and let 2" > (2 whese ¢ = the

number of i.d.’s for 0" and T. Define:
Cy=Cu{0rix:|x < [¥] and x is a prefix of v}
C",=Cu{0"1x:x is a prefix of v}

Claim. For some y of length » one of the following holds:

(1) 0" is rejected by T with oracle c,

(2) 0" is accepted by T with oracle ..

Proof of Claim. Assume (1) fails so that 0" is accepted by T with oracle ¢, for
each y of length n. Let G', be the query graph for 0", T, and C’, and let G”, be the
query graph for 0", T, and C”,. All such query graphs share the same nodes.

For each y of length n there is a path P in G’, from the initial i.d. to an
accepting i.d. If for some y, P 1s also a path in G”, then (2) holds. So assume P is
not a path in G”| for any y. Since C ", 1s obtained from C’, by the addition of the
one word 0”1y then 0”1y supports an e
other member of (T’y Now, if [x| = |y| = nand x % ythene, # e Forifx # yand
e, = e, then e is supported by at least two members of ¢, namely 0"1x and 0”1 N

which is impossible. But there are at most ¢? possible edges in any query graph for
0" and T and 2" words of the form 0"

2" > ¢2. Hence (2) holds if (1) fails. _ _
Using the claim we now give the construction of 4 and B, We letT,,T,,...bean
effective enumeration of the nondeterministic oracle Turing ma

chines that run in
space log n. There is a parameter ¢ which indicates

the ‘stage’ of construction.

begin (Construction of 4 and B)
A ;
Beg;
i1;
for 50 until do
begin (stage s)
neg(s);
¢«the number of i.d.’s for 0" and 1
if 2" < c® then A4 L {0"10°:0 < i < n} else
begin (diagonalization of T))
if 0" is rejected by
begin
choose y of length # such that o is rejected by T; with oracle A
BBy {07} ;
A«——A’y
end
else
begin

1; with oracle A', for some y of length then

dge e,in G’, which is not supported by any

ly where |y| = n. This is impossible because -

o

€

[«

end (c

end (sta
end (Cons

To decic
with the pat
A and B to

The co:
diagonalize
mduction o
the number
induction h
the value ¢
diagonaliza
that are add
in turn grea
conciude th

THEOFE
and P* & .
~ Proof. V
diagonaliza
is used by.|
We con;

(i) C¢

(i) Ce
To acco

if xeG and
To dem
machine th:
n = g(k)an
the comput.
donot add :
case restrait
The inte
B¢ NP4 C
diagonaliza
diagonaliza
. We shot
combine the
set ¥ = {ye
The reac
producing

{ and B satisfy
agonalization
machine-that
“that0"eBif T
‘acle 4. Before
certain claim.
vhere ¢ = the

e

——

1 oracle C’y for

llet G, be the
same nodes.

itial i.d. to an
o assume P, is
idditien of the
ported by any
orif x # yand
0"1x and 0"1y,
uery graph for
»ssible because

1,,T,,...bean

nes that run in
" construction.

1 then

oracl_e A,

Relativization of Questions About Log Space Computability 27 -

choose y of length » such that 0" is accepted by T; with oracle A" ;
AeA",
end ; '
i—i+1
end (diagonalization of T))
end (stage s)
end (Construction of A and B)

To decide whether x is a member of 4 or of B run the construction of A and B
with the parameter t where g(t) > |x|. On termination check the current values of
A and B to determine if x is in the appropriate set.

The construction succeeds if we can show that each T; is successfully
diagonalized, that is, B is not accepted by T; with oracle A. This can be shown by
induction on i. Assume this is true for all j < i,. There is a polynomial p such that
the number of i.d.’s for each x and T, where |x| = n is at most p(n). By the

" induction hypothesis there is a least number s, such that if the value of s is s, then

the value of i is i, Since 2" dominates p?(n) then there is an s, > s, when
diagonalization begins on T; . Let n = g(s,). By the claim and the fact that words
that are added to A after stage s, are of length greater than or equal to 27, which is
in turn greater than the length of any query generated by 7; on input 0%, we can
conclude that 0"e B if and only if 0" is rejected by T, with oracle 4. X

THEOREM 2.3. There is a computable set A < {0, 1}* such that & £* & 2*
and P* & N L

Proof. We omit the details of the proof. The basic idea is to interlace the
diagonalization of Theorem 2.2 with the following simple diagonalization (which
is used by [BGS] in showing there is an A such that P # N PY).

We construct 4 and C satisfying

(i) C¢24 and
(i) Ce NV P

To accomplish (ii) we force A and C to have the property that xeC if and only
if xeG and there is a ye 4 of the same length as x. ’

To demonstrate a typical diagonalization let T be an arbitrary oracle Turing
machine that runs in time p(n) where p is a polynomial. Choose n and k such that
n = g(k)and 2" > p(n). Choose y of length n such that yis not a query generated in
the computation of T on input 0" using the current oracle A. If T accepts 0" then
do not add anything to 4 or C. If T rejects 0" then add 0" to C and y to A. In either
case restrain all other words of length less than 2" from entering 4 subsequently.

The interlaced diagonalization will construct sets A, B, and C where Be 27,
B¢ N P4, Ce & #* and C¢ 2. The interlacing will be done by doing one kind of
diagonalization on points 0°® where k is even and the other kind of
diagonalization on points 0°® where k is odd.

We should note that we must certainly lose the fact that A~ P4 < #*whenwe
combine the constructions. What happens is that we can no longer compute the
set Y = {ye4d :|y| < q(n)} in polynomial time using the oracle 4. [X

The reader may perhaps find it surprising that the easier half of Theorem 2.3 1s

* producing a set 4 with /" #* & 2, in view of the fact that /& < P..

28 ' RicHARD E. LADNER AND NANCY A. LYNCH

One interesting problem that remains open is whether or not there is a set A
with 24 ¢ & #4.

3. Relativizations of Other Problems. As we saw in Section 2 the fact that
N F < P does not relativize to arbitrary oracles. There are computable sets 4
with &/ L4 & 24 Results that do relativize uniformly seem to be those ‘that
depend primarily on step-by-step simulations. An example of such a result is the
space hierarchy theorem of Stearns, Hartmanis, and Lewis [SHL].

THEOREM 3.1. Let 4 be any subset of {0, 1}* and let s and r be natural

- number functions with s uniformly tape constructable, lim inf (s(n)/log n) > 0 and
lim inf (r(n)/s(n)) = 0. Then SPACE"(s(n)) — SPACE*(r(n)) # .

(A function s is uniformly tape constructable if there is a Turing machine
acceptor T'with the property that for all n and all x of length n, on input x, T scans
exactly s(n) storage tape cells. This notion is a somewhat stronger notion of tape
constructability than was used by Stearns, Hartmanis and Lewis.)

Proof. We omit the details of the proof, since it is essentially the same as that in
[SHL] with some minor modifications outlined below.

A set B< {0, 1}* is constructed with BeSPACE*(s(n))— SPACE*(r(n)). If
xe{0, 1}* then x codes up an oracle Turing machine description in the initial
nonzero portion of x; that is, if x = d10™ then d describes an oracle Turing
machine,

Todetermineif x = d10™isin Bin space s([x[) using the oracle 4, we simulate d
on the input x, always bounding the space used in the simulation to s(|x|) and the
time to 2’10 The query generated by the simulation of d is put onto the oracle tape
which acts as an oracle tape to d.

Should d accept the input in the allocated space and time, then x is rejected,
otherwise x is accepted.

It follows that Be SPACE"(s(n))— SPACE*(r(n)). X

Other results that relativize uniformly include: (i) the characterization of 42
by polynomial length bounded quantifiers over relations in & [C2]; and (i)
equivalence of two-way multihead finite automata and Turing machines that run
in space log n [H] [HY]. The former fact was pointed out to us by A. Selman.

- There are a wide variety of results in automata theory that depend on indirect
rather than step-by-step simulations. Among them are &' ¥ < P [C1],
N L <P [Sa], 2 is equal to the class of languages accepted by
nondeterministic log space bounded auxiliary pushdown store machines [C1],
and NSPACE(n?)is equal to the class of languages accepted by nonerasing stack

automata [HU1]. These kinds of results in general do not relativize uniformly. As
a paradigm we offer the following theorem. '

THEOREM 3.2. Let p be any polynomial. There is a computable set A -
{0, 1}* with the property that 4 $* & SPACE*(p(n)).

Proof. This is a diagonalization similar to that of Theorem 2.3. We outline the
proof. Let k = the degree of p(n). We construct 4 and B so that Be 4 &4
—SPACE*(p(n)). Define the fast growing function % by h(0) = 1 and h(n+1)

= 200" "Further define H — {0 :n > 0}. We use the set H as a set of

.,ﬁ
P e

R —

diagonalizat

We achie
length |x[**

We diag
machine tha
Choose 0"e.
number of i
generated b,
must makel
to Aand B.1
all other wc

COROI
NL & (&

4. Log S
truth table
table reduc
the followin
(independe:
and only if ¢
[LLS] this
that polyn
reducibility

Our defi
definition ¢
modificatio

Let A =
generator i
A tt-conditi
e be a tt-cc
a;,e A* and
a By + 1
Define .
space comy
e such that
(A is polyn
computabl
< 2 in [L]
Ifoura
cases some
basic repre
(1) truth ta
Boolean ci1
tables and
in general :

thereisaset 4 .

2 the fact that |

iputable sets 4
be those ‘that

a a result is the

L].

id r be natural
flog n) > 0 and

uring machine |
nput x, T'scans
“notion of tape

s.)

same as that in

> ACEA(r(n)). 1f

n in the initial
oracle Turing

1, we simulate d

‘0 s(]x|) and the

the oracle tape

n X is rejected,

fizationof /P

[C2]; and (ii)

chines that run |
by A. Selman. |
end on indirect |
Yo [Cl],

accepted by
nachines [C1],

nerasing stack
e uniformly. As |

utable set A <

We outline the

that Be /%4 |
1 and h(n+1)
H as a set of .

g

AT

Relativization of Questions About Log Space Computability 29

diagonalization points. It should be noted that H can be decided in space log n.

We achieve Be A4 %" by defining x e Bif and only if x e H and there is aword of
length |x|***! in 4. ‘

We diagonalize in the following way. Let T be an arbitrary oracle Turing
machine that runs in space Q}). Assume T has s states gpd t storage tape symbols.
Choose 0" H such that 2" > snp(n)t"™ so that 2" is greater than the total
number of i.d.’s for 0" and T. Choose a y of length n**! which is not a query
generated by T'on inplgtl 0" using the current oracle 4. Such a y exists because T
must make lessthan2” moves oninput 0. If 0" is accepted by T then do nothing
to A and B.If 0" is rejected by T then eulzcig1 0" to B and y to A. In either case restrain
all other words of length less than 2" from entering 4 subsequently. X

COROLLARY 3.3. There is a computable set A < {0, 1}* such that
NP E (L

4. Log Space Truth Table Reducibility. The motivation for studying log space
truth table reducibility comes from the investigation of polynomial time truth
table reducibility in [LLS]. The intuitive idea behind truth table reducibility is
the following. A set A4 is truth table reducible to a set Bif given x we can generate
(independent of B) queries ¥y, y,, .-, y,and a Boolean function a such that xe A if
and only if a(B(y,), . - ., B(y,,)) = 1 (Where B(y) = 1 ifyeBand B(y) = 0if y¢B).In
[LLS] this notion is restricted to be polynomial time bounded, and it is shown
that polynomial time truth table reducibility and polynomial time Turing
reducibility are distinct notions.

Our definition of log space truth table reducibility is analogous to the
definition of polynomial time truth table reducibility in [LLS] with a slight
modification.

Let A = {a, b}. A tt-condition is a member of (A*c{0, 1}*c)*A*. A tt-condition
generator is a computable function mapping {0, 1}* into the set of tt-conditions.
A tt-condition evaluator is a computable mapping of (A* {0,1})*A*into {0, 1}. Let
e be a tt-condition evaluator; a tt-condition a,cy,Ca,Cy,C . - . 0;CYCay 4, (With
a,e A* and y,e{0, 1}*) is e-satisfied by B< {0, 1}* if e(a;B(y)a,B(y,) - - -
oB(yay 1) = 1.

Define A < B (A is log space truth table reducible to B) if there exist a log
space computable tt-condition generator g and a log space tt-condition evaluator
e such that x e A if and only if g(x) is e-satisfied by B. We may also define 4 < 7B
(4 is polynomial time truth table reducible to B) if the generator and evaluator are
computable in polynomial time. This definition is equivalent to the definition of

<%in [LLS]. | |

If our abstract definition of < ¥ is to be reasonable it should include as special
cases some of the common representations of Boolean functions. We list the three
basic representations of Boolean functions in increasing order of efficiency of size:
(i) truth tables, (i) Boolean formulas in all binary and unary operations, (iti)
Boolean circuits using all possible binary and unary gates. It turns out that truth
tables and Boolean formulas can be used as truth table conditions, while it seems

- in general that Boolean circuits cannot. The trouble with Boolean circuits is that

30 RICHARD E. LADNER AND NaNCY A, Lyney

the problem of evaluating them is log space complete in & [La2]. Hence they can
be evaluated in log space if and only if # ¢ &,

At this point we give an example of a log space truth table reduction
procedure. Let 4, B < {0, 1}*. The sets 4 and B can be coded into one set A®B
= {x0:xed} U {x1:x eB}. It can be shown using techniques of [LLS] that
there are computable sets 4 and B with 4 VB X ZYA®B. On the other hand, it is

quite easy to show that 4 U B < ZA®B. Consider the following generator and
evaluator. Let:

g(x) = cx0c v exle

0 feo=1t=0
elove) = {1 otherwise
(Technically the symbol v is coded in the alphabet A.)
Clearly, xe A U B if and only if g(x) is e-satisfied by A@®B.

Define a general Boolean Jormula (gBf) inductively as either: (i) a member of
{0, 1}*c or (i) (P*Q) or (~P) where *e{ A, v, @, .. .4 = all binary Boolean
operation symbols and P and Q are gBf’s. Define a Boolean Jormula in the same
way as a gBf except replace the first condition with “a member of {0,1}". If Pisa
Boolean formula then define v(P) to be the value of P in the usual way. If P is a
general Boolean formula and B {0, 1}* then we know what it means for P to be
v-satisfied by B. Define 4 < B’?B (4 is log space Boolean Jormula reducible to B) if
there is a log space computable general Boolean formula generator g such that
xeAif and only if g(x)is v-satisfied by B. We could also analogously define what it
means for 4 to be polynomial time Boolean formula reducible to B.

THEOREM 4.1. For qll A, B {0,1}* if 4 <;7B then 4 < “B.

Proof. The alphabet of Boolean formulas cou—IZi be coded easily into a two
letter alphabet like A. By Lynch, Boolean formulas can be evaluated in space logn
[Ly1]. Hence the function v is computable in space logn 1

We do not know whether or not < 57 and < ¥ are equivalent notions.

Another closely related problem is whether or not < 57 and < 2 are equivalent.
Both problems are closely related to the problem of whether or not there is a
‘polynomial p such that given any Boolean circuit P there is an equivalent Boolean
formula Q such that SIZE(Q) < P(SIZE(P)).

We now show the equivalence of < “and < 7. Aswe mentioned earlier, this is
in contrast to the polynomial time analogue where < 2 is properly stronger than

P
<7

THEOREM 4.2. For all A and B < {0, 1}*, A <* B if and only if 4 < ZB.

—
Proof. Assume 4 < +B via a generator g and evaluator e. We outline the

e respectively.

Let xbe an input of length 7 and Jet g(x) = 21€Y1€a3CY,C.. . Caucy ca, , where
2, A* and y, e {0, 1}*. The Turing machine T'on input x will simulate E on input

e T

w = alB(y 1]
because g 1
polynomial.
simulation ¢
be stored in
To disco
A count cg,
symbol in /
decrementec
generated a
generated is
a ‘query’ is
output of E
the state QU
T enter stat
reader.
Now, as:
important tl
generated by
deterministic
number of b
The gene
the begin i.d
by the comp
lead by a sin
the o’s and {
space log n,
required by
The evalt

. 0,0,B, where

x, and o, ¢ {C
The Turing :

begin
I «the init
while I is i
begin
let I =
simul
if o, =
else I
end ;
if I is in tt
end

It should
and only if g

{ence they can !

ible reduction
> one set A@B
f [LLS] that
ther hand, it is

generator and ¢

{) a member of
inary Boolean
tla in the same
0,1}". IfPisa

lway If Pisa |

:ans for P to be
ducible to B) if
.or g such that

y define what it
B.

“B.
sily into a two
d in space logn

‘alent notions.

are-equivalent. |

not there is a

valent Boolean

d earlier, this is
7 stronger than

nly if A < ZB.
Ve outline the
that T accepts
compute g and

*ViCay . { Where
late E on input

TS

i et B

j

Relativization of Questions About Log Space Computability 31

w = a;B(y,)a;B(y;)as - .. 0 B(y)ay + . Of course T cannot write win log space, but
pecause g is computable in space log n then the length of w is bounded by a
polynomial. So T simply keeps a count cg of where the read head on w is in the
simulation of E. Because the count ¢ is bounded by a polynomial the count ¢ can
be stored in log »n storage tape cells.

To discover the c;-th letter of w, T simulates G on input x in the following way.
A count ¢, which is initially equal to cg, is maintained. Each time an output
symbol in A is generated and each odd time a ¢ is generated the count ¢; 1s
decremented by one. The count is not decremented when a member of {0, 1, A} is
generated as an output symbol. When ¢ = 0 then stop. If the last symbol
generated is in A then that symbol is the cg-th letter of w. If the last letteris a c then
a ‘query’ is about to be generated by E, so continue simulating E, entering the
output of E onto the oracle tape of T, until a ¢ again is output. Now, T enters
the state QUE. Should T enter state YES then the c,-th letter of wis 1 and should
T enter state NO then the c-th letter of w is 0. The details of T are left to the
reader. '

Now, assume A < ZB. Let T accept A with oracle B in space log n. The
important thing to notice is that given x the only potential queries by T are
generated by complete simple paths in the i.d. graph for x and T. Because T is
deterministic the number of complete simple paths is less than or equal to the
number of begin i.d.’s for x and T.

The generator g is defined by g(x) = a,cy ca,c... cacy,cfwhereay, ..., o, are
the begin i.d.’s that initialize the complete simple paths, y, is the query generated
by the complete simple path initialized by a; and 8 is a list of the begin i.d.’s that
lead by a simple path to accepting i.d’s, followed by the input x itself. Of course
the «.’s and B are coded into the alphabet A. The function g can be computed in
space log n, by cycling through all the i.d.’s for x and T and making output as
required by the definition of g.

The evaluator e is a simulator of T. Let a typical input to e be a;0,a,0, . ..
0,8, wherea,, . ..,a, arebeginid.’s, Bis a list of begin i.d.’s followed by the input
x, and ;e {0, 1}.

The Turing machine that computes e behaves as follows.

begin
I «the initial i.d. for x and T}
while I is in the list of i.d.’s a;, . .
begin
let I =a;;
simulate T from i.d. I until a query i.d. J is reached ;
if o, = 1 then I —the yes id. corresponding to J
else / —the no i.d. corresponding to J ;
end ;
if I is in the list of i.d.’s in 8 then write 1 else write O
end

s Oy do

It should be fairly clear that e can be computed in space log n and that xe 4 if

- and only if g(x) is e-satisfied by B. [

32 RICHARD E. LADNER AND NANCY A. LynCH

reducibility < 2.
Proof. Itis clear that if 4 < B then A4 < ?B. In [LLS] it is shown that there

COROLLARY 4.3. The reducibility < % is properly stronger than the

aresets A and Bwith 4 < 2Band 4 £ =B. These same two sets have the property
that A < 7B and 4 £ B. ¥ , .
Two problems related to this Corollary remain open: (i) are < “and < Z
distinct notions and (ii) are < = and < ? distinct notions. Both problems are
closely related to the open question, whether or not the class of functions

computable in polynomial time is different from the class of functions
computable in log space.

REFERENCES

[BGS] T. Baker, J. GiLL, and R. SoLovay, Relativizations of the @= 4 2 question. To appear in
SIAM Journal on Computing. _

[C1] S A. Cook, Characterizations of pushdown machines in terms of time-bounded compiiters,
Journal of the ACM, 18 (1971) 4-18.

[C2] S. A. Cook, The complexity of theorem proving procedures, Proc. Third Annual ACM
Symposium on Theory of Computing, 1971 pp. 151-158.

[C3] S.A. Cook, An observation on time-storage trade off, Proc.of Fifth Annual ACM Symposium
on Theory of Computing, 1973 pp. 29-33.

fH] J. HaARTMANIS, On nondeterminacy of simple computing devices, Acta Informatica, 1 (1972)
336-344.

[HUI]J. E. HopcroFT and J. D. ULLMaN, Nonerasing stack automata, Journal of Computer and
System Sciences, 1 (1967) 166-186. :

[HU2]J. E. HopcrorT and J. D. ULLMAN, Formal Languages and Their Relaiion to Automata,
Addison-Wesley, Reading, Ma. 1969.

[HY] P.Hsia and R. YEH, Finite automata with marks, in Automata, Languages and Programming,
M. Nivat, editor, American Elsevier, New York 1973.

] N. D. Jongs, Space-bounded reducibility among combinatorial problems, Jowrnal of
Computer and System Sciences, 11 (1975) 68-85.

L] N.D.Jonesand W. T, Laaser, Complete problems for deterministic polynomial time, Proc.
of Sixth Annual ACM Symposium on Theory of Computing, pp. 40-46 1974,

K] R. M. Karp, Reducibility among combinatorial problems, in Complexity of Computer
Computations, R. Miller and J. Thatcher, editors, Plenum Press, New York 1972.

[Lal] R.E. LADNER, On the structure of polynomial time reducibility, Journal of the ACM,22(1 975)
155-171.

[La2] R.E.LADNER, The circuit value problem is log space complete for P, SIGACT News, 7 (1975)
18-20.

[LLS} R. E. LADNER, N. A, LyNcH, and A. L. SELMAN, A comparison of polynomial time
reducibilities. To appear in Theoretical Computer Science.

[Lyl] N.A. Lynch, Log space recognition and translation of parenthesis languages, manuscript.

{Ly2] N. A. Lyncw, Log space machines with multiple oracle tapes, manuscript.

[M] A. R. MEYER, private communication.

[Sa] W.J. Savircn, Relationship between nondeterministic and deterministic tape complexities,
Journal of Computer and System Sciences, 4 (1970) 177-192.

[Si] SimMoN, IsTvan, Private communication (Ph.D. Thesis in preparation. Stanford).

[SHL]R. E. STEARNS, J. HarT™ANSS, and P. M. Lews II, Hierarchies of memory limited
computations, JEEE Conf. Record on Switching Circuit Theory and Logical Design, (1965)
191-202

[SM] L. StockMevER and A. R. MEyER, Word problems requiring exponential time Proc. of Fifth

' Annual ACM Symposium on Theory of Computing, (1973) pp. 1-9.
[Su] LH SUDBOROUGH, On tape-bounded complexity classes and multihead automata, Journg/ of
Computer and System Sciences, Vol, 10 (1975) 62-76.

(Received August 6, 1975 and in revised form February 10, 1976)

4 ooy

T N

0

g

T P ot TR N ST,

MATHEMATICA
4 1976 by Spring

On the

The comy
automata
 predicate
the recog
Moreover
such that
head 2-w:

1. Intrc
the comput
automata t
combinato;
several dec
Hunt and
studied fos
languages.
classes of fi
finite autor

Our re:
complexity
1. Can te

- comple
2. Whati
P?

3. Can su

require
4. What
determ
5. Whati
the nat
contex

" *This re
Cornell Univ
Contract No.

