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Abstract 

Easy proofs are given of the impossibility of solving several consensus problems (Byzantine 
agreement, weak agreement, Byzantine firing squad, approximate agreement and clock 
synchronization) in certain communication graphs. It is shown that, in the presence o f f  faults, 
no solution to these problems exists for communication graphs with fewer than 3f+1 nodes or 
less than 2f+1 connectivity. While some of these results had been proven previously, the new 
proofs are much simpler, provide considerably more insight, apply to more general models of 
computation, and (particularly in the case of clock synchronization) significantly strengthen the 
results. 

1. Introduction 
In this paper we present easy proofs for the impossibility of solving several consensus 

problems in particular communication graphs. We prove results for Byzantine agreement, weak 
agreement, the Byzantine f'~ing squad problem, approximate agreement and clock 
synchronization. The bounds are all the same: toleratingf faults requires at least 3m+l nodes 
and at least 2f+1 connectivity in the communication graph. (The connectivity of a graph is the 
minimum number of nodes whose removal disconnects the graph. Also, we assume throughout 
that graphs have at least three nodes.) For a given value of f ,  we call graphs with fewer than 
3f+1 nodes or less than 2f+1 connectivity inadequate graphs. 

Each of our proofs is an argument by contradiction. We assume that a given problem can be 

IEarlier versions of this paper appeared in the ACM Conference Proceedings of PODC 1985, 
and in Distributed Computing, volume I number 1, reprinted by permission. 
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solved in a system with an inadequate communication graph. We then construct a set of system 
behaviors all of which which cannot satisfy the correctness conditions for the given problem, 
even though they are required to do so. Versions of many of the results with proofs of this same 
general form were already known. Our proofs differ from the earlier proofs in the technique we 
use to construct the set of behaviors. Our technique is simpler and applies to more general 
models of distributed computation. 

For Byzantine agreement both bounds were already known [PSL,D]. The 3f+1 node lower 
bound in [PSL] was proved only for a particular synchronous model of computation. Although 
carefully done, the proof is somewhat complicated and not as intuitive as one might like. In 
contrast, our proof is simpte, transparent, and applies to general models of computation. A proof 
of the 2f+1 connectivity lower bound was presented informally in [D]; we prove that bound 
more formally and for more general models. 

For weak Byzantine agreement, the requirement of 3f+1 nodes was known [L], but it was 
proved using a complicated construction. The new proof is easy and extends to more general 
models (although not as general as those for Byzantine agreement and approximate agreement). 
The 2f+1 connectivity requirement was previously unknown. The result for the Byzantine fning 
squad problem follows from a reduction to weak agreement in [CDDS]. We provide a direct 
proof. For approximate agreement, the 3f+1 bound was noted, but not proved, in [DLPSW], 
while the 2f+1 connectivity requirement was previously unknown. 

For clock synchronization, the 3f+1 node bound was proved in [DHS] using a complicated 
proof. The authors of [DHS] claimed that they knew how to prove the corresponding 2f+1 
connectivity lower bound, but we presume that such a proof also would be complicated. We 
prove both the 3f+1 node and the 2f+ 1 connectivity bounds, for a much more general notion of 
clock synchronization than in [DHS]. These synchronization bounds assume that there is no 
direct method, other than by reading their inaccurate hardware clocks, for nodes to measure the 
passage of time. 

Since we obtain the same lower bounds for each problem, one might think that the problems 
are equivalent in some sense. This is not the case. The bounds for the different problems require 
different assumptions about the underlying model. For example, the lower bounds for Byzantine 
and approximate agreement work with virtually any reasonable computational model, while the 
lower bound for weak agreement requires a special assumption, placing a bound on the rate of 
propagation of information through the system. The bound for clock synchronization requires a 
different assumption, about how devices can measure time. Many of the results are sensitive to 
small perturbations of the underlying assumptions, about such factors as communication delay or 
the behaviors of faulty nodes. 
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2. A Model of Distributed Systems 
To make the impossibility results clear, concise, and general, we introduce a simple model of 

distributed systems. 

A communication graph is a directed graph G with node set nodes(G) and edge set edges(G), 
such that the directed edges occur in pairs; edge (u,v) ~ edges(G) if and only if (v,u) 
edges(G). (We consider a pair of directed edges rather than a single undirected edge to model 
the communication in each direction separately). We call the edge (u,v) an outedge of u, and an 
inedge of v. Let U be a subset of nodes(G). Then the subgraph G U induced by U is the graph 
containing all the nodes in U and all the edges between nodes in U. The inedge border of G U is 
the set of edges from nodes outside U into U; that is, edges(G) n ((nodes(G)\U) × U). 

A system G is a communication graph G with an assignment of a device and an input to each 
node of G. Devices are undefined primitive objects. The specific inputs we consider are either 
encodings of Booleans or real numbers or real-valued functions of time (e.g. local clocks). The 
particular type of input depends on the agreement problem addressed. If a node is assigned 
device A in system G, we say that the node runs A. A subsystem U of G is any subgraph G U of 
G with the associated devices and inputs. 

Every system G has a system behavior, E, which is a tuple containing a behavior of every node 
and edge in G. (We also describe E as a behavior of the communication graph G. Note that a 
system has exactly one behavior, while a graph may have several, depending on the devices and 
inputs assigned to the nodes.) The restriction of a system behavior E to the behaviors of the 
nodes and edges of a subgraph G U of G is the scenario E U of G U in E. 

For now, we take node and edge behaviors as primitives. In more concrete and familiar 
models, a node or edge behavior might be a finite or infinite sequence of states, or a mapping 
from the positive reals to some state set, denoting state as a function of time. (We use the latter 
interpretation for later results); Less familiar models might interpret behaviors as mappings from 
reals to states, or from transfirfite ordinals to states. To obtain our furst results, the precise 
interpretation of node and edge behaviors is unimportant. We need restrict our model only so 
that the following two axioms hold. (We assume these two axioms throughout the paper. Some 
of the later results require additional assumptions.) 

Locality Axiom Let G and G '  be systems with behaviors E and E' ,  respectively, and 
isomorphic subsystems U and U', (with vertex sets U and U'). If the 
corresponding behaviors of the inedge borders of U and U' in E and E '  are 
identical, then scenarios E v and E U, are identical. 

The Locality axiom says that communication takes place only over the edges of the 
communication graph. In particular, it expresses the following property: The only parameters 
affecting the behavior of any local portion of a system are the devices and inputs at each local 
node, together with any information incoming over edges from the remainder of the system. If 
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these parameters are the same in two behaviors, the local behaviors (scenarios) are the same. 
2Clearly, if some such locality property does not hold, then agreement is trivially achievable by 
having devices read other device's inputs directly. 

Fault  Ax iom Let A be any device. Let E 1 ..... E d be d edge behaviors, such that each E i is 
the behavior of the i'th outedge of a node running A in some system behavior 
E i. Let U be any node with d outedges (U,Vl) ..... (U,Vd). There is a device F 
such that in any system in which U runs F, the behavior of each outedge 
(u,vi) is E i. 

In this case, we write FA(E 1 ..... Ed) for F. This axiom expresses a powerful masquerading 
capability of failed devices. Any behavior exhibited by a device over different edges in different 
system behaviors can be exhibited by a failed device in a single system behavior. When this 
axiom is significantly weakened (say, by adding an unforgeable signature assumption), then 

consensus is possible [LSP,PSL]. 

For establishing the relevance of our impossibility results to more concrete models of 
distributed systems, it is sufficient to interpret our definitions in the particular model and then to 
demonstrate that the Locality and Fault axioms hold under the particular interpretation. 

Our proofs utilize the graph-theoretic notion of a covering. For any graph G, let neighbors = 

{(u,V) I U is a node of G and V is the set of all nodes v such that there is an edge from v to U in 
G}. A graph S covers G if there is a mapping ¢0 from the nodes of S to the nodes of G that 
preserves "neighbors." That is, if node U of S has d neighbors v I ..... v d, and O(u) = w for a node 
w of G, then w has d neighbors Xl,...,x d and O(vi) = x i for I < i < d. Under such a mapping, S 
looks locally like G. 

Graph coverings play an important role in our understanding of the interaction of network 
topology and distributed computation. A discussion appears in [A], and indeed, some of our 
proofs are surprisingly similar to Angluin's. Similar techniques also appear in [IR], [B] and 
elsewhere. 

3. Byzantine Agreement 
We say that Byzantine agreement is possible in a graph G (with n nodes) if there exist n 

devices A1,...,A n (which we call agreement devices), with the following properties. 

Each agreement device A u takes a Boolean input and chooses 1 or 0 as a result. (To model 
choosing a result, assume there is a function CHOOSE from behaviors of nodes running 
agreement devices to the set {0,1 }.) A node U of G is correct in a behavior E of G if node U 
runs A u in E. Any system behavior E of G in which at least n - f nodes are correct is a correct 

2For weak agreement and the firing squad problem, we need to extend this locality property to include time. 
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system behavior. Correct system behaviors must satisfy the following conditions. 

Agreement. Every correct node chooses the same value. 

Validity. ff all the correct nodes have the same input, that input must be the value chosen. 

Theorem 1: Byzantine agreement is not possible in inadequate graphs. 

3.1. Number of Nodes 
We begin with the lower bound of 3f+l for the number of nodes required for Byzantine 

agreement. First consider the case where IGI = n = 3 and f =  1. Assume that the problem can be 
solved for the communication graph G consisting of three nodes fully connected by 
communication edges. Let the three nodes of G be a, b and c, and assume that they run 
agreement devices A, B and C, respectively. We represent each pair of directed edges by a single 
undirected edge, and label the nodes with the devices they run. 

A 

/ \  
B C 

The covering graph S is as follows. 

U Z 

/ \ 
v y 

\ / 
W X 

This graph looks locally like G under the mapping t~ defined by ¢(u) = O(x) = a, O(v) = t~(y) = 

b and O(w) = O(z) = c. 
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Now specify the system by assigning devices and inputs for the nodes in S as follows. 

A C /0 ,\ 
B B o\ /1 

C A 
0 1 

By this we mean that node u runs device A with input 0, node v runs B with input 0, and so on. 
Let S denote the resulting behavior of the system; S includes a behavior for each of the six nodes 
and twelve directed edges in S. 

Now consider scenarios Svw, Swx and Sxy in S, where each consists of the behaviors of the two 
indicated nodes in S, along with the activity over the two connecting edges. We argue that each 
of these scenarios is identical to a scenario in a correct behavior of G. 

The first scenario Svw is shown below. 

S El 
A 
0 

B o\ 
Svw C 0 

C 1\ 
B 

/ 
A 
1 

F 

0 Svw 0 

This scenario is the behavior in S of nodes v and w, together with that of the communication 
edges between v and w. Now consider the behavior E 1 of G in which node b runs B on input 0, 
node c runs C on input 0, and node a runs a device that mimics node u in talking to b, and 
mimics node x in talking to c. Formally, if E(u,v ) and E(x,w ) are the indicated edge behaviors in 
S, node a runs device FA(E(u,v),E(x,w )) (we have written just F in the figure). This device exists, 
by the Fault axiom, and in the resulting behavior, edges from node a to node b and to node c 
have behaviors E(u,v ) and E(x,w ), respectively. By the Locality axiom, the scenario containing b 
and c 's  behaviors in E 1 is identical to Svw. Validity requirements insure that node b and node c 
must choose 0 in E 1. Since their behavior is identical in S, v and w choose 0 in S. 
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Next, consider scenario Swx. 

S 

A C /0 1\ 
B B 0\ ................................................ / !  

C A 
0 Swx 1 

This scenario includes the behavior of  nodes w and x in S. 

E2 

~A /1\  
F -  C 

S ~  0 
~'\.. . . . . . . . . . . .  J 

It is also the behavior of  nodes a 

and c in a behavior E 2 of  G which results when they run their devices A and C on inputs I and 0, 

respectively, and node b is faulty, exhibiting the same behavior to node x that v exhibits to w in 

S, and the same behavior to node a that y exhibits to x in S. The behavior of  node c in E 2 is 

identical to that of  node w in S, so node c chooses 0 in E 2, from the argument above. By 

agreement, node a decides 0 in E 2. Thus node x decides 0 in S. 

Now consider the third scenario, Sxy. 

S 
A /0 

B 
0 ~  

C 
0 

C 

B / '  B 
1 

E 2  

F 
Sxy 

This scenario is the behavior of  nodes x and y in S. It is also the behavior of  nodes a and b in a 

correct behavior E 3 of  G which results when they both run their devices on input t ,  and node c is 

faulty, exhibiting the same behavior to node a that w exhibits to x in S, and the same behavior to 

node b that z exhibits to y in S. Validity requirements insure that nodes a and b must choose 1. 

Thus nodes x and y choose 1. But we have already established that node x must choose 0, a 

contradiction. 

Now consider the general case of  IGt = n < 3f. Partition the nodes of  G into three sets, a, b 
and c, so that a, b and c have at least 1 and at most f nodes. This means that any two sets 
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together contain at least n-f nodes. The nodes in each set are running agreement devices, and we 

denote by A the set of  devices running at the nodes in a, and similarly for B and C. Now 

construct the covering graph S in the obvious way. Briefly, take two copies of G, and label the 

sets a, b and c in each copy by u, v and w, respectively, in one copy, and x, y and z in the other. 

Now replace the edges between nodes in u and w and between nodes in x and z by corresponding 

edges between u and z and between x and w. Assign devices to nodes of  S according to their 

corresponding node in G. We represent the covering graph S and assigned devices exactly as 

above, so that the edges depicted between two sets of  nodes in S, say sets u and v, are now a 

shorthand representation for all the edges in S between nodes in set u and nodes in set v. The 

inputs depicted for the sets of  devices A, B and C are assigned to all the devices in the respective 
sets. The arguments proceed exactly as in the preceding pictures. We consider only one in 
detail. 3 

S 
A 

7/o- 
B o\ 

Sv C ' 
0 

E1 

C 1\  r 

/ 1  I 1 
k . . . .  s z_  . . . . .  ; 

A 
1 

This scenario is now the behavior of  the sets of nodes in v and w in the behavior S. It is the 

same as the behavior of  the sets b and c in a behavior E 1 of G in which all nodes in both sets run 
their devices with input 0 and the nodes in set a exhibit the same behavior to members of  b that 

the corresponding nodes in set u exhibit to the members of  v in S, and the same behavior to 

nodes in c that the corresponding nodes in y exhibit to the members o f x  in S. Since sets b and c 

together contain at least n-f correct nodes, E 1 is a correct behavior of  G. Thus, all the nodes in b 

and c must decide 0, by the validity condition, and c contains at least one node, by construction. 

3An alternative proof of the general bound may be obtained by a direct reductin to the casef=l. Given a system S 
and a partitioning of its communication graph G into subgraphs, there is a natural construction of a new system S', 
obtained by collapsing the subgraphs into single nodes. The devices in S' are the (indexed) sets of devices running 
in each subgraph of G, the node behaviors of S' are the subsystem behaviors of the corresponding subgraphs in G, 
and the edge behaviors in S' are the corresponding sets of edge behaviors in S. Then the devices and behaviors in $' 
satisfy the Locality and Fault axioms if the underlying devices and behaviors in S do. Now, if Byzantine agreement 
were possible in a graph G with IGI < 3f for some value o f f  > 1, this construction would imply that Byzantine 
agreement is possible forf -- I in a subgraph of the triangle graph, contradicting Theorem 1. This is essentially the 
proof strategy for the general bound given in [PSL]. 
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3.2. Connectivity 
Now we carry out the 2f+1 connectivity lower bound proof. Let c(G) = connectivity of G. We 

assume we can achieve Byzantine agreement in a graph G with c(G) < 2f, and derive a 

contradiction. 
For now, we consider the case f = l  and the communication graph G of four nodes a, b, c and d, 

running devices A, B, C and D, as indicated below. 

B 

A / \  
D 

\ /  
C 

The connectivity of G is two; the two nodes b and d disconnect G into two pieces, the nodes a 

and c. 
We consider the following system, with the eight-node graph S and devices and inputs as 

indicated. 

/ f \  
D ~ B  

/ I  ] \  
A A 
ON /1 

B r a D  
oN / o  

C 
0 

The resulting behavior of the system is S. We consider three scenarios in S: S I, S 2 and S 3. 



156 

The first scenario, S 1, is shown below. 

S 

/ c \  
D ~ B  

" B ~ D  \ , o  \ 

",,,0// 

\ 
A 

/ ]  

A / 0 \  
B ~ F 0 \  y 

C 
,._ Oy 

This is also a scenario in a correct behavior E 1 of G. In El, nodes a, b and c are correct. Node 
d is faulty, exhibiting the same behavior to node a as one node running D in the covering graph, 
and the same behavior to b and c as the other node running D exhibits in the covering graph. 

Then nodes a, b and c must choose 0 in E l, and so must the nodes running A, B and C in S 1. 
Now consider the second scenario, S 2. 

S 

D ~ B  
/ 1  1 X",. 

A-- / /  A~\, 
o,, / / 1 /  

B ~ D  ~ /o /  
",,,,0// 

E 2 

A 
/ / 1 ~  

, , , , , ,  , 

N\ 
C 
0 

This scenario in S is also a scenario in a correct behavior E 2 of G in which nodes c, d and a are 
correct. This time, node b is faulty, exhibiting the same behavior to nodes c and d as one node 
running B in the covering, and the same behavior to node a as the other node running B. So 
nodes a, c and d must agree in E 2, and so do the corresponding nodes in S 2. Since the node 
running C chooses 0 from the argument above, the nodes running D and A in S 2 choose 0, too. 
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Finally, consider the last scenario S 3. 

/ 1 ",, 1 \ ",, 
A \,, A ") 

B D 
oN / o  

C 
0 

A 
/ 1 N  N 

B r F  

C 

This scenario is again the same as a scenario in a behavior E 3 of G in which nodes a, b and c 
are correct, but have input 1. Node d is faulty, exhibiting the same behavior to node a that one 
node running D in the covering graph exhibits, and the same behavior to nodes b and c as the 
other D in the covering exhibits. Then nodes a, b and c choose 1 in E 3, and so must the nodes 
running A, B and C in S 3, contradicting the argument above that the node running A chooses 0. 

The general case for arbitrary c(G) < 2 f i s  an easy generalization of the case f o r f  = 1. The 
same picutres are used. Just choose b and d to be sets consisting of at m o s t f  nodes each, such 
that removing the nodes in b and d from G disconnects two nodes u and v of G. Let G' be the 
graph obtained by removing b and d from G, let the set a contains those nodes connected to u, 
and the set c contains the remaining nodes of G' (c contains at least one node, v). Construct S as 
before, by taking two copies of G and rearranging edges between the ' a '  sets and their neighbors. 
The nodes and edges in our figures are now a shorthand for the actual nodes and edges of G and 

S. 

This completes the proof of Theorem 1. 

The succeeding impossibility results for other consensus problems follow the same general 
form as the two arguments above. We assume a problem can be solved by specific devices in an 
inadequate graph, G, install the devices in a graph S that covers G, and provide appropriate 
inputs. Using the Locality and Fault axioms, we argue the existence of a sequence of correct 
behaviors of  G that have node and edge behaviors identical to some of those in the behavior of S. 
(This sequence was (E 1, E 2, E3)), in the arguments above.) By the agreement condition, correct 
nodes in each of the behaviors of G have to agree. Because each successive pair of system 
behaviors has a correct node behavior in common, all of the correct nodes in all the behaviors in 
the sequence have to agree. But by the validity condition, correct nodes in the first behavior in 
the sequence must choose different values than those in the last behavior, a contradiction. 



158 

As we indicated in the introduction, a less general version of Theorem 1 was previously 
known, and the structure of our proof is very similar to that of earlier proofs [PSL], [D]. Our 
proof differs in the construction of the system behaviors E 1, E 2 and E 3. Earlier results construct 
these behaviors inductively using less general models of distributed systems. The detailed 
assumptions of the models are necessary to carry out the tedious and involved constructions. 

Rather than construct the behaviors explicitly, we build them from pieces (node and edge 
behaviors) extracted from actual runs of the devices in a covering graph. The Locality and Fault 
axioms imply that scenarios in the covering graph are found in correct behaviors of the original 

inadequate graph. 

The model used to obtain these results is an extremely general one, but it does assume that 
systems behave deterministically. (For every set of inputs, a system has a single behavior). By 
considering a system and inputs as determining a set of behaviors, nondeterminism may be 
introduced in a straightforward manner. One changes the Locality axiom to express the 
following. If there exist behaviors of two systems in which the inedge borders of two 
isomorphic subsystems are identical, there exist such behaviors in which the behaviors of the 
subsystems are also identical. Using this axiom, the same proofs suffice to show that 
nondeterministic algorithms cannot guarantee Byzantine agreement. 

4. Weak Agreement 
Now we give our impossibility results for the weak agreement problem. As in the Byzantine 

agreement case, nodes have Boolean inputs and must choose a Boolean output. The agreement 
condition is the same as for Byzantine agreement--all correct nodes must choose the same 
output. The validity condition, however, is weaker. 

Agreement. Every correct node chooses the same value. 

Validity. If all nodes are correct and have the same input, that input must be the value chosen. 

The weaker validity condition has an interesting impact on the agreement problem. If  any 
correct node observes disagreement or faulty behavior, then all are free to choose a default value, 
so long as they still agree. 

Lamport notes that there are devices for reaching a form of approximate weak consensus 
which work when IGI < 3f. Running these for an infinite time produces exact consensus (at the 
limit) [L]. In such infinite behaviors any correct node observing disagreement or faulty behavior 
has plenty of time to notify the others before they choose a value. Thus, strengthening the choice 
condition by prohibiting such infinite solutions is necessary to obtain the lower bound. 

If  the communication delays are not bounded away from zero, a similar type of infinite 
behavior is possible. In fact, if there is no lower bound on transmission delay, and if devices can 
control the delay and have synchronized clocks, then we can construct an algorithm for reaching 
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weak consensus. This algorithm requires at most two broadcasts per node, each having non-zero 

transmission delay, and works with any number of  faults. Again, this is because any correct 

node which observes disagreement or faulty behavior has plenty of  time to notify the others 

before they choose a value. 4 In more realistic models it is impossible to reach weak consensus in 
inadequate graphs. To show this, the minimal semantics introduced in the previous sections 
must be extended to exclude infinitary solutions. We do this as follows. Previously, behaviors 
of  nodes and edges were elements of  some arbitrary set. Henceforth, we consider them to be 
mappings t~om [0,oo) (our definition of  time), to arbitrary state sets. Thus, if E u is a behavior of  

node u, then u is in state Eu(t) at time t. 

We add the following condition to the weak agreement problem. 

Choice. A correct node must choose 0 or 1 after a finite amount of  time. 

This means there is a function CHOOSE from behaviors of  nodes running weak agreement 
devices to {0,1 }, with the following property: Every such behavior E has a finite prefix E t (E 
restricted to the interval [0,t]) such that all beha~,iors E' extending E t have CHOOSE(E) = 

CHOOSE(E').  

This choice condition prohibits Lamport 's infinite solution. To prohibit the second solution, 
we bound the rate at which information can traverse the network. To do so, we add the 
following stronger locality axiom to our model. 

Bounded-Delay Locality Axiom. 
There exists a positive constant 8 such that the following is true. Let G and 
G '  be systems with behaviors E and E' ,  respectively, and isomorphic 
subsystems U and U' ,  (with vertex sets U and U'). ff the corresponding 
behaviors o f  the inedge borders of  U and U' in E and E '  are identical 
through time t, then scenarios E U and E U, are identical through time t+8. 

Thus, news of events k edges away from some subgraph G' takes time at least k8 to arrive at 
G' .  In a model with explicit messages, this axiom would hold if the transmission delay is at least 

8; the edge behaviors in our model would correspond to state descriptions of  the transmitting end 
of  each communications link. 

Theorem 2: Weak agreement is not possible in inadequate graphs for models 
satisfying the Bounded-Delay Locality axiom. 

Again, we first sketch the 3f+l node bound. In this case the previously published proof [L] 

4Nodes start at time 0, and decide at time 1. They broadcast their value at time 0, specifying it to arrive at time 
1/2. If a node first detects disagreement or failure (at time 1-0, it broadcasts a "failure detected, ehoosa default 
value" message, specifying it to arrive at time 1-t/2. The obvious decision is made by everyone at time 1. 
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was very difficult. As before, we restrict our attention to the case IGI = n = 3 , f=  I. (l'he case 
for generalf follows immediately, just as above.) 

Assume there are weak agreement devices A, B and C, for the triangle graph G containing 
nodes a, b and c. Consider the two behaviors of G in which all nodes are correct, and all have 
input 0 or all have input 1. Let t' be an upper bound on the time it takes all nodes to choose 0 or 
1 in both behaviors. Choose k > t'/8 to be a multiple of 3. 

The covering graph S consists of 4k nodes, arranged in a ring and assigned devices and inputs 
as follows: 

C - - B - A  A - - C - - B - - A - C  . . . . .  C - - B - - ~ -  1 
1 1 1 1 1 1 1 1 1 1 

A - - B - - C  B - - C - - A - B - C  . . . . .  A - - B - C  
0 0 0 0 0 0 0 0 0 0 0 
Consider the resulting behavior S, and each pair of successive two-node scenarios, such as the 

two below. 

. . . .  4a÷  CtA 
q i\ol ~,,+./~, 1 

As before, each scenario is identical to a scenario in a behavior in G of the appropriate two 
weak consensus devices. Since each pair of successive scenarios overlaps in one node behavior 
(here, that of the node running B), the agreement condition requires that all the nodes in both 
scenarios must choose the same value in G and in S. Thus, every node in S must choose the 
same value. Without loss of generality, assume they choose 1. 

Consider the k scenarios indicated below. 

C - - B - - A  A - - C - - B - - A  . . . . .  C - - B - - A  
~~1 I 1 1 1 1 1 1 1 1 ~  

J C 
o i  o o i o l  o¢olo  o o l  o 

I 
S l i  S 2  • " .................................... 

Let E be the behavior of G in which a, b and c are correct and each has input 0, and denote the 
resulting behaviors of  a, b and c by E a, E b and E c, respectively. 
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Lemma 3: The behavior in scenario S i of a node running device A (or B or C) is 
identical to E a (or E b or E c) through time i8. 

Proof: An easy induction using the Bounded-Delay Locality axiom, essentially arguing that no 
device in S i can hear from a device with input 1 until after time i5. 

By Lemma 3, the nodes running devices C and A in scenario S k have behaviors identical to E c 
and E a through time k8 > t'. Since nodes c and a in G have chosen output 0 by this time, so 
have the corresponding nodes in S k, a contradiction. 

The general case of IGI < 3fand the connectivity bound follow as for Byzantine agreement. 

There are strong similarities between this argument and a proof by Angluin, concerning leader 
elections in rings and arbitrarily long lines of processors [A]. Both results depend crucially on 
the existence of a lower bound on the rate of information flow. Under this assumption, devices 
in different communication networks can be shown to observe the same local behavior for some 
fixed time. 

5. Byzantine Firing Squad 
The Byzantine f'wing squad problem addresses a form of synchronization in the presence of 

Byzantine failures. The problem is" given an input stimulus, "synchronize the response of 
entering a designated FIRE state. This problem was studied originally in [BL]. In [CDDS], a 
reduction of weak agreement to the Byzantine firing squad problem demonstrates that the latter 
is impossible to solve in inadequate graphs. We provide a direct proof that a simple variant of 
the original problem is impossible to solve in inadequate graphs. (In the original version, the 
stimulus can arrive at any time. We require that it arrive either at time 0, or not at all. Our 
validity condition is slightly different.) The proof is very similar to that for weak agreement. 

One or more devices may receive a stimulus at time 0. We model the stimulus as an input of 
1, and the absence of the stimulus as an input of 0. Correct executions must satisfy the following 
conditions. 

Agreement. If a correct node enters the FIRE state at time t, every correct node enters the 
FIRE state at time t. 

Validity. If all nodes are correct and the stimulus occurs at any node, all nodes enter the FIRE 
state after some finite delay. If the stimulus does not occur and all nodes are correct, no node 
ever enters the FIRE state. 

As in the case of weak agreement, solutions to the Byzantine firing squad problem exist in 
models in which there is no minimum communication delay. Thus, the following result requires 
the Bounded-Delay Locality axiom, in addition to the Fault axiom. 
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Theorem 4: The Byzantine firing squad problem cannot be solved in inadequate 
graphs for models satisfying the Bounded-Delay Locality axiom. 

We sketch the 3f+1 node bound. As before, we examine the case IGI = n = 3,f = 1. 

Assume there are Byzantine firing squad devices A, B and C for the triangle graph G 
containing nodes a, b and c. Consider the two behaviors of G in which all nodes are correct, and 
all have input 0 or all have input 1. Let t be the time at which the correct devices enter the FIRE 
state in the case that the stimulus occurred (the input i case). Choose k >- t/~ to be a multiple of 
3. (Recall that 5 is the minimum transmission delay defined in the Bounded-Delay l.x~ality 
axiom). 

The covering graph S consists of 4k nodes, arranged in a ring and assigned devices and inputs 
as follows: 

C - - B - - A  . . . . .  A - - C - - B - - A - C  C - - B - - A  
( 1 1 1  1 1 1 1 1  1 1 1  1 

A _ B _ C  . . . . .  B - - C - - A - - B - C  . . . . .  A - - B - - C  
0 0 0 0 0 0 0 0 0 0 0 
Similarly to the proof for weak agreement, the middle two devices receiving the stimulus enter 

the FIRE state at time t, as their behavior through time t is the same as that of the correct nodes 
in G which have received the stimulus and fire at time t. Because of the communication delay, 
there is not enough time for "news" from the distant nodes to reach these devices. By repeated 
use of the agreement property, all the devices in S must f'tre at time t. But through time t, the 
middle two devices not receiving the stimulus behave exactly as correct nodes in G which do not 
receive the stimulus (the input 0 case). Thus, they do not fn'e at time t, a contradiction. 

6. Approximate Agreement 
Next, we turn to two versions of the approximate agreement problem [DLPSW,MS]. We call 

them simple approximate agreement and (~,5,y)-agreement. In these problems nodes have real 
values as inputs and choose real numbers as a result. The goal is to have the results close to each 
other and to the inputs. To obtain the strongest possible impossibility result, we formulate very 
weak versions of the problems. 

For the following two theorems we use only the Locality and Fault axioms. We do not need 
the Bounded-Delay Locality axiom used for the weak agreement and firing squad results. 

6.1. Simple Approximate Agreement 
First, examine a version of the simple approximate agreement problem [DLPSW]. Each 

correct node has a real value from the interval [0,1] as input, runs its device, and chooses a real 
value. Correct behaviors (those in which at least n - f  nodes are correct) must satisfy the 
following conditions. 
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Agreement. The maximum difference between values chosen by correct nodes must be strictly 
smaller than the maximum difference between the inputs, or be equal to the latter difference if it 

is zero. 

Validity. Each correct node chooses a value within the range of the inputs of the nodes. 

Theorem 5: Simple approximate agreement is not possible in inadequate graphs. 

The proof is almost exactly that for Byzantine agreement. Here, we consider devices which 
take as inputs numbers from the interval [0,1], and choose a value from [0,1] to output. (Outputs 
are modeled by a function CHOOSE from behaviors of nodes running the devices to the interval 
[0,113 As before, assume simple approximate agreement can be reached in the triangle graph G. 
Consider the following three scenarios from the indicated behavior in the covering graph S. 

A C 
-/0 1 

B B 

,': : 

iC -Ai 1 1  

Again, each scenario is also a scenario in a correct behavior of G. In the f'n'st scenario, the 
only value C can choose is 0. In the third, the only value A can choose is 1. This means the 
values chosen by A and C in the the second scenario are 0 and 1, so that the outputs are no closer 
than the inputs, violating the agreement condition. 

The general case of IGI < 3f and the connectivity bounds follow as for Byzantine agreement. 

6.2. (e,~,7)-Agreement 
This version of approximate agreement is based on that in [MS]. Let e, ~ and "/be positive real 

numbers. The correct nodes receive real numbers as inputs, with rmi n and rma x the smallest and 
largest such inputs, respectively. These inputs are all at most ~ apart (i.e. the interval of inputs 
[rmi n, rma x] has length at most 5). They must choose a real number as output, such that correct 
behaviors (those in which at least n - f  nodes are correct) satisfy the following conditions. 

Agreement. The values chosen by correct nodes are all at most E apart. 

Validity. Each correct node chooses a value in the interval [rmin-7,rmax+'y]. 
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Note that if e -> 8, (e,8,y)-agreement can be achieved trivially by choosing the input value as 
output. 

Theorem 6: I f  e < 8, (e,8,~l)-agreement is not possible in inadequate graphs. 

Proof." Let e, 8 and y be positive real numbers with e < 8. We prove only the 3f+1 bound on 
the number of nodes. Assume that devices A, B and C exist which solve the (e,8,y)-approximate 
agreement problem in the complete graph G on three nodes for particular values of e, 8 and y, 

where e < 8. 

Choose k sufficiently large that 8 > 2y/(k-1) + e, and k+2 is divisible by three. The covering 
graph S contains k+2 nodes arranged in a ring, with devices and inputs assigned to create the 

following system. 

fa_, 
node index 0 1 . k k+l  

input 0 2 .  

Let Si, for 0 _< i < k, denote the two-node scenario in S containing the behaviors of nodes i and 
i+l. By the Fault Axiom, each scenario S i is a scenario of a correct behavior of G, in which the 

largest input value to a correct node is (i+1)8. 

Lemma 7: For 0 < i < k, the value chosen by the device at node i+1 is at most 8 + y 
+ie. 

Proof: The proof is a simple induction. By validity applied to scenario S 0, the device at node 
1 chooses at most 8 + y. Assume inductively that the device at node i chooses at most 8 + y + 
(i-1)e, for 0 < i < k+l. By agreement applied to scenario S i, the device at node i+1 chooses at 

most 8 + y + ie. 

In particular, Lemma 7 implies the device at node k chooses at most 8 + y + (k-1)E. But 
validity applied to scenario S k implies the device at node k chooses at least k8 - y. So k8 - y < 8 
+ y + (k-1)e. This implies 8 < 27/(k-1) + e, a contradiction. 

The general case of IGI < 3f and the connectivity bounds follow as in previous proofs. 

7. Clock Synchronization 
Each node has a hardware clock and maintains a logical clock. The hardware clocks are real- 

valued, invertible and increasing functions of time. Since different hardware clocks run at 
different rates, it may be necessary to synchronize the logical clocks more closely than the 
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hardware clocks. In addition, logical clocks should be reasonably close to real time--setting 

them to be constantly zero, for example, should be forbidden. Thus, we require the logical 
clocks to stay within some envelope of the hardware clocks. [See the paper by Lundelius, Lynch 
and Simons in this volume.] 

This problem was studied in [DHS] for the case of linear clock and envelope functions, where 
it was shown that it is impossible to synchronize to within a constant in inadequate graphs. 
Some more general synchronization issues were raised, such as that diverging linear clocks can 
be synchronized to within a constant if nodes can run their logical clocks as the logarithm of 
their hardware clocks. For a large class of clock and envelope functions (increasing and 
invertible clocks, non-decreasing envelopes), we can characterize the best synchronization 
possible in inadequate graphs. This synchronization requires no communication whatsoever. 

We model node i 's hardware clock, D i, as an input to the device at node i that has value Di(t) 
at time t. The value of the hardware clock at time t is assumed to be part of the state of the node 
at time t, The time on node i 's logical clock at real time t is given by a function of the entire 
state of node i. Thus, if E i is a behavior of node i (such that node i is in state Ei(t) at time t), then 
we express i 's logical clock value at time t as Ci(Ei(t)). 

We assume that any aspect of the system which is dependent upon time (such as transmission 
delay, minimum step time, maximum rate of message transmission) is a function of the states of 
the hardware clocks. Having made this assumption, it is clear that speeding up or slowing down 
the hardware clocks uniformly in a behavior E cannot be observable to the nodes, so that the 
only impact on a E should be to change the (unobserved) real times at which events occur. 

To formalize this assumption, we need to talk about scaling clocks and behaviors. Let h be 
any invertible function of time. If E is a behavior (of a edge or node), then Eh, the behavior E 
scaled by h, is such that Eh(t)=E(h(t)), for all times t. Similarly, Dh is the hardware clock D 
scaled by h: Dh(O=D(h(t)). If E is a system behavior or scenario, Eh is the system behavior or 
scenario obtained by scaling every node and edge behavior in E by h. Similarly, if S is a system, 
then Sh is the system obtained by scaling every clock in S by h. Intuitively, a scaled clock or 
behavior is in the state at time t that the corresponding unsealed clock or behavior is in at time 
h(t). 

Scaling Axiom If E is the behavior of system S, then Eh is the behavior of system Sh. 

If this axiom is significantly weakened, as by bounding the transmission delay, clock 
synchronization may be possible in inadequate graphs. 

In the following we use the Locality, Fault and Scaling axioms. We do not need the Bounded- 
Delay Locality axiom used for the weak agreement and fitting squad results. 

The synchronization problem can be stated as follows. Let correct hardware clocks run either 
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at p(t) or q(t), where p and q are increasing, invertible functions, with p(t) <. q(O~ for all t. Let 
the envelope functions l and u be non-decreasing functions such that l(O < u(t), for all t. 

Consider what happens if all logical clocks are run at the lower envelope, C(E(t))=t(D(t)). 
Then the logical clocks are synchronized to within l(q(t))-l(p(t)). The goal then, is to improve 
this trivial synchronization. We show that logical clocks cannot be synchronized to within 
l(q(t))-l(p(t))-t~, for any positive ~. That is, nontrivial synchronization is achieved by 
synchronization devices in G if there exist positive constant ct and time t' such that every correct 
system behavior E satisfies the following conditions. 

Agreement. For any two correct nodes i and ) in E, ICi(Ei(t))- Cj(Eft))l  < l(q(t))-  l(p(t)) - o~, 
for all times t > t'. 

Validity. For any correct node i in E, with hardware clock D i and resulting behavior E i, t(p(t)) 

<- Ct~(E~4t)) <- u(q(O). 

Theorem 8: Nontrivial synchronization is not possible in inadequate graphs for  
models satisfying the Scaling axiom. 

The argument is very similar to the proof of Theorem 6. We construct a covering graph and 
assign hardware clocks in such a way that each node seems to be running slow relative to one 
neighbor, and fast relative to the other. As usual, the Fault axiom allows us to draw conclusions 
about behaviors in the covering system from required behavior in the original graph. The 
Agreement condition requires the nodes to be synchronized with their faster neighbor. An 
induction shows that the slowest node (whose fast neighbor is synchronized with a faster 
neighbor, in turn synchronized with an even faster neighbor...) must run so fast as to violate the 
upper envelope condition. 

Specifically, we show that for every integer k>2, there is a behavior E of G in which node i is 
correct, has hardware clock D i = p (that is, Di(t) = p(t)), and in which C~(E~(t')) > l(p(t')) + k ~  
For k big enough, this violates the upper envelope condition, C~(Ei( f ) )< u(q(t')).  

Define h = p .lq. (That is, h(t) = p "l(q(t)).) Then h "1 = q-lp. Note that h(t) > t for all t, since 
p(t) <_. q(t). 

We begin with the three node, one fault case. 

Assume the existence of devices A, B and C, time t' and positive constant e~ such that logical 
clocks of correct nodes obey the agreement and validity conditions: 

lCi(Ei(O) - Cj4Ej4t))I < l(q(t)) - l(p(t)) - t~, for all times t _ t'. 

t(p(t)) <_ C(E,40) <- u(q(O), for all times t. 

Choose an integer k > 2, such that k+2 is a multiple of three, and such that l(p(t')) + kct > 
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u(q(r)). 
inputs assigned to create the following system. 

The covering graph S contains k+2 nodes arranged in a ring, with devices and clock 

A --  B 

node index 0 1 

-1 
hardware  c lock g gh 

8__c) 
. k  k+l 

• gh~ gt~ (k+~) 

behavior  E o E 1 . E  k Ek+ 1 

Let S be the behavior of this system. An initially troubling concern is that the hardware clocks 
in S are much slower in most of the devices in S than they would be in a correct behavior in G. 
But consider S i, the two-node scenario containing the behaviors of nodes i and i+1, where 0 -< i 

<k .  

. . . .  A - - B  . . . .  

node index i i+1 

hardware  c lock ph 4 p h  "(i+1) 

behavior  E i E i+l 

Now consider Sihi, the scenario S i scaled by h i. 

. . . .  A - - B  . . . .  

node index i i+1 

hardware  clock p q 

i i 
behavior  Eih E+lh 

In this scenario, the hardware clocks have values within the constraints for correct behaviors of 
G. Thus we have the following. 

Lemma 9: Scenario Sihi, for 0 < i < k, is a scenario containing the behaviors of  
two correct nodes in a correct behavior of  G. 
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Lemma 10: For all i, 0 < i < k, and all t > hi(t'), ICi+l(Ei+l(t)) - Ci(Ei(t))l < 
l(q(h'i(t))) - l(p(h'i(t))) - o~. 

Proof." Fix t > hi(t'). Then h'i(t) > t'. By Lemma 9, i and i+1 are correct in Si hi, so by the 

agreement assumption ICi+l(Ei+lhi(h'i(t)))- Ci(Eihi(h-i(t)))l < l(q(h'i(t))) - l(p(h'i(t))) - cx. The 
result is immediate. 

Let t ime t" = hk(t' ). Note that t" >_ hi(t' ), for i < k. 

Lemma 11: For alt i, 1 <_ i < k+ l ,  Ci(Ez(t")) > l(qh'i(t")) + (i-1)¢~. 

Proof: The proof is by induction on i. By Lemma 9, scenario S O is a scenario in G of correct 
nodes a and b with hardware clocks q and p, respectively. From the validity condition, for all t, 
CI(EI(t))  >_ l(p(t)). Setting t = t", and substituting qh "1 forp, we have the basis step: CI(EI(t")) 
>_ l(qh'l(t")). 

Now make the inductive assumption Ci(Ei(t")) >_ l(qh'i(t")) + (i-1)cz, for I < i < k. 

Since t" >_ hi(t'), from Lemma I0, we know ICi+l(Ei+l(t")) - Ci(Ei(t"))l < l(qh'i(t")) - 
l(ph-i(t")) - or. 

This implies Ci+l(Ei+l(t")) >_ C~(Ei(t"))- l(qh'i(t")) + l(ph'i(t")) + ct. } 

Substituting for C~Ei(t")) using the inductive assumption gives us Ci+l(Ei+l(t")) >- l(qh-i(t")) - 
l(qh-i(t")) + l(ph-i(t")) + ict = l(ph'i(t")) + ion. Noting that p = qh "1, we have the result, 

Ci+l(Ei+l(t") ) >_ l(qh-(i+l)(t")) + iot. 

Proof of Theorem 8: 
Lemma 11 implies Ck+l(Ek+l(t")) > l(qh'(k+1)(t")) + kot. Since t" = hk(t'), we have 
Ck+l(Ek+l(t") ) = Ck+l(Ek+l(hk(r ))) = Ck+l(ek+lhk(t')) > l(qh-(k+l)hk(t')) + ktx = l(p(t')) + kot. 

But the upper envelope constraint for the scaled scenario Sk hk (in which k+l  is correct and has 

hardware clock p(t)) implies that Ck+l(Ek+lhk(t')) < u(q(t')). Thus, l(p(t')) + kcx < u(q(t')). 
This violates the assumed bound on k, l(p(t' )) + k(x > u(q(t' )). 

Once again, the general case of IGI _< 3f  is a simple extension of this argument. The 
connectivity bound also follows easily, as with the earlier results. 

7.1. Linear Envelope Synchronization and other Corollaries 
Linear envelope synchronization, as defined in [DHS], examines the synchronization problem 

when the clocks and envelope functions arc linear functions (q(t)=rt, p(t)=t, l(O=at+b and 
u(t)=ct+d). It requires correct logical clocks to remain within a constant of each other, so that 
the agreement condition is ICi(Et~t)) - Cj(Ej(t))l < a,  for all times t, instead of our weaker 



169 

condition ICi(Ei(t)) - CJEJt))I < art - at - t~, for all times t > t'. Our validity condition is 
slightly weaker, as well. Thus, the proof of [DHS] shows that logical clocks cannot be 
synchronized to within a constant; we show that that the synchronization of logical clocks cannot 
be improved by a constant over the synchronization (art - at) that can be achieved trivially. Thus 
the following corollary follows immediately from Theorem 8. (Each of the four corollaries 
below holds for models satisfying the Scaling axiom.) 

Corollary 12: Linear envelope synchronization is not possible in inadequate graphs. 

By choosing specific values for the clock and lower envelope functions, we get the following 
additional results immediately from Theorem 8. Note that the particular choice of the upper 
envelope :function does not affect the minimal synchronization possible in inadequate graphs, 
although the existence of some upper envelope function is necessary to obtain our impossibility 
proofs. 

Corollary 13: I f  p(t)=t, q(t)=rt, and l(t)=at+b, no devices can synchronize a 
constant closer than art-at in inadequate graphs. 

Corollary 14: I f  p(t)=t, q(t)=t+c and l(t)=at+b, no devices can synchronize a 
constant closer than ac in inadequate graphs. 

Corollary 15: I f  p(t)=t, q(t)=rt and l(O=log2(O, no devices can synchronize a 
constant closer than log2(r ) in inadequate graphs. 

In general, the best possible synchronization in inadequate graphs can be achieved without any 
communication at all. The best that nodes can do is run their logical clocks as slowly as they are 
permitted, C(E(t)) = l(D(t)). 

8. Conclusion 
Most of the results we have presented were previously known. While our proofs are both 

simpler than earlier proofs, and apply to more general models, these are not the main 
contributions. The simplicity and generality are welcome byproducts of our attempt to identify 
the fundamental issues and assumptions behind a collection of similar results. 

One important contribution is to elucidate the relationship between the unrestricted or 
Byzantine failure assumption and inadequate graphs. As is clear from our proofs, this fault 
assumptio~a permits faulty nodes to mimic executions of disparate network topologies. If the 
network is inadequate, a covering graph can be constructed so that correct devices cannot 
distinguish the execution in the original graph from one in the covering graph. 

A second contribution is related to the generality of our results. Nowhere do we restrict state 
sets or transitions to be finite, or even to reflect the outcome of effective computations. The 
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inability to solve consensus problems in inadequate graphs has nothing to do with computation 
per se, but rather with distribution. It is the distinction between local and global state, and the 
uncertainty introduced by the presence of Byzantine faults, which result in this limitation. 

Finally, we have identified a small, natural set of assumptions upon which the impossibility 
results depend. For example, in the case of weak agreement and the firing squad problem, the 
correcmess conditions are sensitive to the actions of faulty nodes. Instantaneous notification of 
the detection of fault events would allow one to solve these problems. An assumption that there 
are minimum delays in discovering and relaying information about faults is sufficient to make 
these problems unsolvable. 
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