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1 I n t r o d u c t i o n  

Abstraction mappings are one of the major tools that  my colleagues and I use to construct correctness 
proofs for concurrent (including distributed) algorithms. In this paper, I will try to make one major 
point about such mappings: that  it is useful to allow them to be multivalued. That is, often when 
one maps a "low-level" algorithm L to a "high-level" algorithm H, one would like to allow several 
states of H to correspond to a single state of L. I believe that any useful framework for describing 
abstraction mappings should include the ability to describe multivalued mappings. 

I don't know if this point is especially controversial. I have been using multivalued mappings 
since I started carrying out such proofs in 1981, and the popular notion of bisimutation proposed by 
Milner [20] also permits multiple values (although bisimulation is a stronger notion than I advocate 
here, since it requires simulation relationships between L and H in both directions). However, work 
on history variables, tracing its roots to [22], takes pains to avoid the use of multiva]ued mappings 
by adding extra information to the state of L, and there are also some recent papers (e.g., [13, 12, 1]) 
that restrict the notion of mapping to be single-valued. 

I will describe some situations in which multivalued abstraction mappings are useful. The exam- 
ples I consider involve 

1. algorithm optimization, 

2. distribution, and 

3. proving time bounds. 

I wilt illustrate the first of these situations in some detail, using one familiar exaanple (the Alternating 
Bit Protocol) and two less familiar examples, just touch on the second, and spend the remaining 
time on the third - it 's the newest use I have found and possibly the most interesting. 

In my work, abstraction mapping seem most useful for proving safety properties; although I have 
been involved in some work that  proves liveness properties u.sing such mappings (e.g., [17, 27]), these 
efforts are still somewhat ad hoc. Note that timing properties are more like safety properties than 
like liveness properties; because of this, mappings are useful for proving timing properties as well. In 
this paper, I will restrict attention to safety and timing properties. 

2 A F o r m a l  F r a m e w o r k  

To be concrete, I will describe the work in terms of I /O automata [17, 18], since that is what I've 
actually used. The precise choice of model is not very important for most of what I will discuss here 
(timing proofs excepted); other state machine models would probably do as well. Here, t will review 
the definition of an I /O automaton and will give the usual notion of mapping, called a possibilities 
mapping, that  I use for defining a correspondence between I /O automata. 

Recall that an I /O automaton consists of states, start states, actions classified by a signature as 
output, input and internal, and steps, which are (state, action, state) triples. So far, that makes them 
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rather ordinary state machines. There is a fifth component that is not normally relevant to my work 
involving mappings (but that I will use in the timing example): a partition of the output and internal 
actions into classes indicatlng which are under the control of the same underlying component in the 
system being modeled by the automaton. Its main purpose is in describing fair executions of the 
automaton - executions that allow each component fair turns to continue taking steps. For now, I 
will ignore this partition. 

An extended step of an automaton describes a state change that can occur as a result of a finite 
sequence of actions. 

The important behavior of an I/O automaton is normally considered to be its interaction with 
its environment, in the form of its behaviors, i.e., its sequences of input and output actions (more 
precisely, its fair sequences). Problems to be solved by ] / 0  automata are specified as sets of sequences 
of such actions, and an automaton is said to solve a problem if its (fair) behaviors are a subset of 
the set of problem sequences. 

Let L and H be two I/O automata with the same external action signature (same inputs and 
outputs). Define a possibilities mapping from L to H to be a mapping f from states(L) to the power 
set of states(H) satisfying the following properties. 

1. For every start, state so of L, there is a start state uo of H such that uo E f(so). 

2. If s' is a reachable state of L, u' e f (s ' )  is a reachable state of H and (s', 7r, s) is a step of L, 
then there is an extended step (u ~, 7, u) of H such that: 

(a) Zlext(H) = ~1~xt(L), and 
(b) u e f (s) .  

The basic theorem about possibilities mappings is: 

T h e o r e m  1 I f  there is a possibilities mapping fi'om L to H, then all behaviors of L are also behaviors 
of H. 

This theorem suggests how a possibilities mapping can be used in proving safety properties 
(defined here to be nonempty, prefix-closed, limit-closed properties of external action sequences) for 
an automaton L. For example, a safety property P might be specified as the set of behaviors of an 
automaton H. Then a possibilities mapping from L to H shows that the behaviors of L all satisfy 
P. For another example, it might be possible to show that the behaviors of an automaton H all 
satisfy a safety property P; then a possibilities mapping from L to H shows that the behaviors of L 
all satisfy P. 

Concurrent systems are modeled by compositions of I/O automata, as defined in [17, 18]. In 
order to be composed, automata must be strongly compatible; this means that no action can be an 
output of more than one component, that input actions of one component are not shared by any 
other component, and that no action is shared by infinitely many components. The result of such a 
composition is another I/O automaton. 

3 A l g o r i t h m  O p t i m i z a t i o n  

An important use of a possibilities mapping is to decompose the correctness proof for an "optimized" 
algorithm L using an "unoptimized" variation H as an intermediate stage. Typically, H would be a 
simple and redundant algorithm that is easy to understand because it maintains a lot of intuitively 
meaningful information. The Mgorithm L would be less redundant, more efficient, and correspond- 
ingly more difficult to understand. The behavior of L would be very similar to that of H, but would 
be determined on the basis of less information. A good way to correspond the two algorithms is 
via a multivalued mapping from L to H. The mapping "puts back" the intbrmation that is lost in 
"optimizing" H; since there may not be a unique way to do this, the mapping must be multivalued. 
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In this section, I give three examples. The first is a version of the well-known Alternating Bit 
Protocol [4], the second an example from database concurrency control, and the third an example 
from highly avaiIable replicated data management. 

3.1 Alternat ing Bit P r o t o c o l  

I begin with the Alternating Bit Protocol (ABP), mostly because it is simple and should be familiar 
from other papers on verification. Although the main interest in this example is normally the liveness 
properties, here I will only consider safety. The key safety property to be proved is, roughly speaking, 
that the subsequence of messages delivered is a prefix of the subsequence sent. 

3.1.1 P r o b l e m  S t a t e m e n t  

More specifically, I define correctness at the external boundary of the ABP component (the data link 
boundary). The input actions are SEND(m),  where m E M, the message alphabet. The output 
actions are RECEIVE(m) ,  m E M. The correctness property P is the set of sequences fl of SEND 
and R E C E I V E  actions such that in any prefix ~' of ~, the sequence of messages received in ~' is a 
prefix of the sequence of messages send in ~'. 

SEND(m) , . . . ~ ~ >  RECEIVE(m) 

3.1.2 A r c h i t e c t u r e  

The architecture for an implementation consists of a sender automaton, a receiver automaton, and 
two FIFO physical channels, channel1 and channel2. Channell has input actions SENDI(m,  b) and 
output actions RECEIVEI (m ,  b), where m E M and b is a Boolean. Channel2 has input actions 
SEND2(b) and output actions RECEIVE2(b), where b is a Boolean. The system is modeled by 
the composition of these automata, with all actions except SEND(m)  and RECEIVE(m)  hidden. 

SEND(m ) 

¢fl,'~9~'L¢~'~ " Channell ~I(~, 6) 

The channels are fairly ordinary FIFO queues, except that the effect of a SEND1 or SEND2 
action might or might not be to put the data at the end of the queue. (The effect of a RECEIVE1 
or RECEIVE2  is always to remove it, however.) More specifically, consider channel1. Its state is a 
finite queue of pairs (m, b), where m E M and b is a Boolean. Initially, the queue is empty. 

SENDI(m, b), m E M, b a Boolean 
:Effect: 
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Either add (m,b) to the queue or do nothing. 

RECEIVEI(m,  b), m E M, b a Boolean 
Precondition: 

(re, b) is first on the queue. 
Effect: 

Remove first element from queue. 

3.1.3 Alternating Bit Protocol  

The ABP uses the following sender. It has inputs SEND(m) ,  m E M and RECEIVE2(b) ,  b a 
Boolean, and outputs  S E N D I ( m ,  b),m E M,b a Boolean. Its state consists of the following compo- 
nents: QS~ (for "sender's queue"),  which holds a finite sequence of elements of M,  initially empty, 
and FS (for "sender's flag"), a Boolean, initially 1. The  actions are: 

SEND(m),m E M 
Effect: 

Add m to end of QS. 

SEN DI(m,b),m E M,b a Boolean 
Precondition: 

m is first on QS. 
b = FS 

Effect: 
None. 

RECEIVE2(b), b a Boolean 
Effect: 

if b = FS then 
[remove first element (if any) from QS; 
FS := FS + 1 mod2] 

The corresponding receiver has inputs R E C E I V E I ( m , b ) , m  E M, b a Boolean, and outputs 
R E C E I V E ( m ) ,  m E M and SEND2(b), b a Boolean. Its state consists of the following components. 
QR (for "receiver's queue"),  which holds a finite sequence of elements of M,  initially empty, and FR 
(for "receiver's flag"), a Boolean, initially 0. The  actions are: 

RECEIVE(m),  m E M 
Precondition: 

m is first on QR. 
Erie ct: 

Remove first element from QR. 

RECEIVEI(m,b) ,m E M,b a Boolean 
Effect: 

if b ~ FR then 
[add m to end of QR; 
FR := FR -k 1 rood2] 

SEND2(b), b a Boolean 
Precondition: 

b = F R  
Effect: 

None. 
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3.1.4 R e d u n d a n t  P r o t o c o l  

To prove the correctness of this protocol, I describe a redundant  but  much easier to understand 
variant of the protocol. In this variant, both the sender and receiver keep sequences of messages 
forever; furthermore, they tag the messages with positive integer sequence numbers and send them 
with those sequence numbers. The sender continues to send the same message just until  it receives 
an acknowledgement with that message's tag; then it goes on to the next message in sequence. The 
receiver, on the other hand, keeps acknowledging the last message it has received, just  unt i l  it gcts 
the next message. It should be easy to prove that  this works, using invariant assertions. Then the 
ABP can be proved to correspond to this protocol via a possibilities mapping, and so is correct as 
well. 

More specificaIly, the redundant  algorithm uses a slight modification of the channels used by the 
ABP - the only modification is that integer tags, rather than Boolean tags, are used. The redundant  
algorithm also has the same actions as the ABP (except that tag parameters are now positive 
integers). Its sender's state consists of the following components. SS (for "sender's sequence"), 
which holds an array of (MU J_) (where _1_ is a special "undefined" indicator, which is not an element 
of M),  indexed by the positive integers, initially identically equal to ± ,  IS  (for "sender's integer"), 
a positive integer, initially 1, and L S  (for "last message sent"), a nonnegative integer, initially 0. 

The actions are: 

S E N D ( m ) ,  m E M 
Effect: 

LS := LS + 1 
SS(LS)  := m 

S E N D I ( m ,  i), m E M, i a positive integer 
Precondition: 

SS(i) = m. 
/= IS '  

Effect: 
None. 

R E C E I V E 2 ( i ) ,  i a positive integer 
Effect: 

if i = IS then 
IS := IS + I 

The corresponding receiver has a state consisting of the following components. S R  (for "receiver's 
sequence"), which holds an array of (MU ±),  indexed by the positive integers, initially identically 
equal to _1_, I R  (for "receiver's integer"), an integer, initially 0, and L R  (for "last message received"), 
an integer, initially 0. The actions are: 

R E C E I V E ( m ) ,  m E M 
Precondition: 

m = S R ( L R  + 1) 
Effect: 

L R  := L R  + 1. 

R E C E I V E I ( m ,  i), m C M, i a positive integer 
Effect: 

i f i = I R + l t h e n  
[SR(i) := m; 
IR  := IR + I] 



SEND2(i), i a positive integer 
Precondition: 

i = I R  
Effect: 

None. 
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It should be very easy (if I have not made any stupid mistakes) to show that the resulting 
algorithm correctly delivers messages, i.e., that the messages received are a subsequence of those 
sent. The actual ABP is somewhat harder to understand because it does not keep all this information 
explicitly; it removes redundancies. For example, it does not keep the complete sequences forever, but 
removes elements after they are no longer needed. More interestingly, it does not tag the messages 
in the channels and on the remaining queues with the integer indices, but only with bits. 

For later use, I note here some basic invariants about the behavior of this redundant algorithm. 
(Call this algorithm H.) 

L e m m a  2 The following statements are true about every reachable state of  H.  

1. Consider the sequence consisting of the indices in channel2, followed by IR, followed by the in- 
dices in channel1, followed by IS. The indices in this sequence are nondecreasing; furthermore, 
the difference between the first and last index in this sequence is at most 1. 

2. I f  IS = IR, then LS >__ IS. 

3.1.5 Possibi l i t ies  Mapp ing  Proof  

Now let L denote the ABP. We will show that L is correct by demonstrating a possibilities mapping 
from L to H. Note that such a mapping needs to be multivalued - it must augment the partial 
information contained in each of the two queues by filling in all earlier messages, and must fill in the 
integer values of tags only working from bits. 

In particular, we say that a state u of H is in f ( s )  for state s of L provided that the following 
conditions hold. 

1. s.QS is exactly the sequence of values of u.SS corresponding to indices in the closed interval 
[u.IS, u.LS]. 

2. s.FS = u.ISmod 2. 

3. s .QR is exactly the sequence of values of u.SR corresponding to indices in the closed interval 
[u.LR + 1, u.IR]. 

4. s .FR = u.IRmod2. 

5. Channel1 has the same number of messages in s and u. Moreover, for any j ,  if (m, i) is the jth 
message in channel1 in u, then (m,i rood2) is the jth message in channell in s. 

6. Channel2 has the same number of messages in s and u. Moreover, for any j ,  if i is the jth 
message in channel2 in u, then i rood 2 is the jth message in channel2 in s. 

T h e o r e m  3 f above is a possibilities mapping. 
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3.1.6 Remarks  

Consider the structure of the possibilities mapping f of this example. In going from H to L, un- 
necessary entries are garbage-collected, and integer tags are condensed to their low-order bits. The 
multiple values of the mapping f essentially "replace" this information. In this example, the corre- 
spondence between L and H can be described in terms of a mapping in the opposite direction - a 
(single-valued) projection from the state of H to that of L that removes information. Then f maps 
a state s of L to the set of states of H whose projections are equal to s. While this formulation 
suffices to describe many interesting examples, it does not always work, as will be seen in some of 
the subsequent examples in this paper. 

Halpern and Zuck [10] outline a way of organizing the proof of the ABP that is similar to the 
organization I have described; their proofs are presented somewhat differently, however, using a 
formal theory of knowledge. 

3.2 Transaction Processing 

With Michael Merritt, Bill Weihl, Alan Fekete and Jim Aspnes [9, 2], I have done some work on 
describing and proving the correctness of locking- and timestamp-based algorithms for database 
concurrency control and recovery. Some of this work uses multivalued possibilities mappings in a 
way that is similar to their use for the ABP. That is, the proofs first show correctness of a simple and 
inefficient protocol that maintains a lot of extra information, and then shows that some particular 
protocols of interest implement the inefficient protocol in the formal sense of possibilities mappings. 

In this work, the advantage we gain from the mapping strategy is not only the decomposition of 
the proofs of particular algorithms; we also gain an advantage in generality. The high-level protocol 
is designed to work for arbitrary data types. The same high-level protocol can be used to prove the 
correctness of many specific low-level protocols that work (in more efficient ways) for particular data 
types such as read-write objects. (Halpern and Zuck [10] use mappings informally to get a similar 
generality for protocols related to the ABP.) 

Here, I will just describe what we do for locking; our treatment of timestamps is similar. We 
develop a locking algorithm for nested transactions; in this model, transactions can have subtrans- 
actions, and subtransactions can have further subtransactions, and so on until the leaves of the 
transaction structure, which actually access data objects. The transaction nesting structure is a 
forest; we augment it with a dummy "root" transaction representing the "outside world", so that 
it becomes a tree. Transactions can commit (relative to their parents) or abort, and correctness is 
defined in terms of serializability among each group of siblings. 

Our high-level algorithm allows objects of arbitrary data type. We describe this algorithm using 
a separate program (automaton) for each data object. The automaton for an object x does all 
the processing involving x. It receives invocations of acceises to x and decides on the appropriate 
responses to make. It maintains locks for x, together with any other necessary information such as 
temporary versions. It receives information about the commit and abort of transactions, in order 
to hetp it decide on the appropriate responses (and in order to help it decide when it can discard 
information and how to manipulate locks). 

The complete high-level algorithm can be described as the composition of these object automata 
with other automata, e.g., automata for transactions and a message system automaton. In [9], we 
prove the correctness of this composition, with a fairly complicated proof. However, once we have 
proved this correctness for our high-level algorithm, we have a much easier job for some data-type- 
specific variants, since we can use possibilities mappings. For example, one very popular kind of 
locking algorithm is read-write locking. (In [9], we actually handle the slightly different case of read- 
update locking rather than read-write locking; the difference is that write accesses are constrained 
only to write the object with a predefined value, whereas update accesses can make arbitrary changes, 
depending on the objeet's prior value.) We can describe read-write locking as a similar composition, 
but with different object automata; in particular, we can use a read-write object automaton for each 
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object x instead of a arbitrary data type object automaton for x. The read-write object automaton 
for x maintains less information than the corresponding arbitrary data type object automaton, but  
it can be shown to implement the former in terms of a possibilities mapping. 

To be specific, the interface of an object automaton for x consists of input actions INVOKE(T), 
INFORM_COMMIT(T), and INFORM_ABORT(T), and output action RESPOND(T, v). In- 
vocations and responses are for particular accesses to x (T locates the access within the transaction 
nesting structure); informs are for arbitrary transactions. 

~S 
INVOKE(T) 

INFORM_COMMIT(T) 
INFORM-ABORT(T) 

~ , , ~  RESPOND(T, v) 

Let H denote the arbitrary data type automaton for x. It maintains "intentions lists", which are 
sequences of operations (i.e., (access,return value) pairs), for each transaction in the entire nesting 
structure, initially empty everywhere. The intentions list for T describes all the operations that are 
known to have occurred at descendants of T, and have committed up to T but  not to its parent. It 
operates as follows. (Note: This is an informal paraphrase of the code in [9].) 

INVOKE(T) 
Effect: 

Record the invocation. 

INFORM_COMMIT(T) 
Effect: 

intentions(parent(T)) := intentions(parent(T))intentions(T) 
intentions(T) := empty 

INFORM..ABORT(T) 
Effect: 

intentions(U) := empty for all descendants U of T 

RESPOND(T, v) 
Precondition: 

T has been invoked and not yet responded to. 
(T,v) commutes with every (T',v') in intentions(U), where U is not an ancestor of T. 
total(T)(T,v) is a correct behavior of the underlying serial data object for x. 

Effect: 
intentions(T) := intentions(T) (T,v) 

Here, operations are said to "commute", roughly speaking, provided that in any situation in 
which both can be performed, they can be performed in sequence, in either order, and the result is 
the same in both cases.) Also, total(T) is defined to be the result of concatenating all the intentions 
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lists for ancestors of T,  in order from the root down. As I said earlier, our algorithm based on this 
object has a somewhat complicated proof. 

Note that H maintains a good deal of explicit history information in its intentions lists. Now 
suppose that  the underlying serial data  object is a read-write object. In this case, we can improve 
the efficiency of this algorithm by maintaining more condensed, specially-tailored data  structures in 
place of the intentions lists. In particular, we design a read-wrlte object automaton L that  keeps 
sets of read-lockholders and write-lockholders, plus a version of the underlying serial object for each 
write-lockholder. Initially, the root holds a write-lock, with the start  state of the serial object as the 
associated version. The steps of L are as follows. 

I N V O K E ( T )  
Effect: 

Record the invocation. 

I N F O R M _ C O M M I T ( T )  
Effect: 

if T is a read-lockholder, then read-lockholders := read-lockholders [3{parent(T)} - {T} 
if T is a write-lockholder, then 

[version(parent(T)) := version(T); 
write-lockholders := write-lockholders U{parent(T)} - {T}] 

I N F O R M _ A B O R T ( T )  
Effect: 

Remove all locks for descendants of T. 

R E S P O N D ( T ,  v), T a read 
Precondition: 

T has been invoked and not yet responded to. 
All write-lockholders are ancestors of T. 
v is the version associated with the least ancestor of T that is a write-lockholder. 

Effect: 
readJockholders := read-lockholders U{T). 

R E S P O N D ( T ,  v) ,T  a write 
Precondition: 

T has been invoked and not yet responded to. 
All read-lockholders and write-lockholders are ancestors of T. 
v = "nil" 

Effect: 
writeJockholders := write-lockholders [3{T} 
version(T) := v 

The correctness of the algorithm using L follows from that  of the algorithm Using H once we 
demonstrate a possibilities mapping f from L to H. The mapping says the following (paraphrased): 
u E f ( s )  exactly if 

1. u and s record that  the same set of transactions has been invoked. 

2. u and s record that  the  same set of transactions has been responded to. 

3. s.read-lockholders is exactly the set of transaction names T such that  u.intentions(T) contains 
a read access. 

4. s.write-lockholders is exactly the set of transaction names T such that  u.intentions(T) contains 
a write access (together with the root). 
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5. For every T, evaluating total(T) in u results in the value version(T'), where T' is the least 
ancestor of T in write-lockholders. 

Although a read-write serial object is a special case of an arbitrary data type serial object, 
note that the read-write object automaton L is not really a special case of the arbitrary data type 
object automaton: the data  structures are different, and f expresses a nontrivial correspondence 
between the different structures. However, the behaviors of the two objects correspond very closely, 
as shown by the fact that  there is a possibilities mapping between them. Note that  the mapping 
f is muttivalued, since the summary version and lock-holder information maintained by the read- 
write object automaton does not (in general) allow a unique reconstruction of the intentions list 
information in the arbitrary data type object automaton. 

For this example, as for the ABP, the possibilities mapping can be described as the inverse of a 
projection mapping states of H to states of L, but here that seems like a bit of an accident. For, 
the read-update objects described in [9] have a similar description and proof, but the mapping used 
there can associate more than one state of L to a state of H. (This is because the serial object state 
produced by a sequence of operations might not be uniquely determined.) 

Although we have not worked this out, it should be possible to describe optimized variants of 
our high-level algorithm for other specific data types besides read-write objects and read-update 
objects. I expect that such optimizations should also be verifiable using possibilities mappings to 
our high-level objects. 

Our treatment of timestamp-based concurrency control algorithms in [2] is analogous to our 
treatment of locking. Namely, we first present an algorithm for arbitrary data types (based on 
that of Herlihy [11], but extended to nested transactions); we present this using an automaton for 
each object. Then we present the specially-tailored algorithm of Reed [23] for read-write objects; 
correctness of this algorithm is proved using possibilities mappings to the algorithm for arbitrary 
data types. 

3.3 Garbage Collection 

With Paul Leach, Liza Martin and Joe Pato at Apollo Computer, I have made use of multivalued pos- 
sibilities mappings to design and prove correctness of an algorithm for replicated data  management. 
Again, the use involves decomposing the algorithm using a higher-level and less efficient algorithm. 
I'll just sketch the ideas very roughly and informally here. 

The setting we consider involves a replicated data management algorithm in which updates to 
data objects can be issued at arbitrary nodes. We assume a timestamp mechanism that totally 
orders all updates produced anywhere in the system. Here I assume for simplicity that all the 
updates are overwrites. In this setting, nodes exchange information about all the updates that have 
been generated, so (if the network stays connected), all nodes eventually find out about all updates. 
(Other transactions, which I will not discuss here, read the data produced by this algorithm and 
take actions based on it.) We assume that the network is dynamic, i.e., that nodes can be added 
to and removed from the system during execution. The setting is similar to those considered in 
[6, 24, 8]. In order to determine whether an incoming update should supersede an already-known 
update for the same object, a node must maintain some timestamp information for known updates. 
Because it would be inefficient to keep the complete history of known updates, nodes summarize 
this history information in a "checkpoint state" that contains summarized values (with associated 
timestamps) for all objects. But because of the way nodes exchange information about updates, they 
also maintain some incremental information; the data maintained by each node is thus a comhination 
of a checkpoint state and a log of recent updates. The complete algorithm can be proved correct by 
standard techniques (basically, the safety properties to be proved say that eanh node is as up-to-date 
about the updates originating at each other node as it thinks it is). 

Now, the actual system has another complication - we would like to garbage collect information 
about objects whose latest update is an "overwrite(x,nil)", i.e., a "delete(x)". It would be nice not to 
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have to record this update forever (with its associated timestamp). But it is necessary to record it for 
a while, in order to correctly determine its timestamp ordering with respect to incoming updates of 
x. We need a criterion that tells us when we may garbage collect such information without affecting 
the behavior of the algorithm. It is quite nontrivial to determine such a rule, espedally in the case 
we consider, where nodes can be added or removed during computation; e.g., one must. ensure that 
updates issued by newly-added nodes can never get ordered incorrectly with respect to the garbage 
collected updates. 

We have designed an Mgorithm, L, that includes a locM criterion that says when it is safe for a 
node to garbage collect a delete update. The final algorithm appears to be fairly complicated. It 
turns out that the best way to understaad it is by means of a possibilities mapping from L to the 
original non-garbage collected algorithm, H. Starting with a state s of L, this possibilities mapping 
obtains corresponding states of H by adding in information about the missing updates in all possible 
ways that are consistent with the current remaining state. Of course, there may be many ways to add 
in such information; thus, the mapping is multivalued. With this correspondence, the correctness 
proof for the algorithm with garbage collection seems fairly straightforward (although it seemed to 
us to be quite difficult otherwise). 

Note that unlike the two previous examples, this example uses a correspondence that is not 
expressible as a projection from H to L - here, several L states could also be related to a single 
H state. That is, given a state of the non-garbage collected algorithm, it is possible to choose the 
information to garbage collect in many different ways. (Choices of updates to garbage collect are 
made locally at individual nodes, and asynchronously with respect to the choices made at other 
nodes.) Thus, in this case, the correspondence is multivalued in both directions. 

3 . 4  R e m a r k s  

The idea of decomposing algorithms using unoptimized but 'simpler variants and possibilities map- 
pings seems to be a very generally useful technique. It is useful for algorithms that perform explicit 
garbage collection, and also for algorithms such as the ABP, that simply omit unused portions of the 
simpler information. I think that this idea can be pushed much further in the area of distributed 
algorithms; many clever and complicated algorithms should have decompositions using simpler vari- 
ants containing extra information. For example, I wonder whether the many complicated algorithms 
for implementing atomic registers (e.g., [25, 1.5]) can be verified in this way. It seems to me that at 
least Bloom's special-case algorithm [7] should have a nice proof in terms of integer tags rather than 
bits; perhaps a similar strategy will work for other atomic register algorithms. 

Note that all the proofs I have given in this section could be recast in terms of history variables 
added to the low-level algorithms and single-valued rather than multivalued mappings. Thus, al- 
though the proofs in terms of multivalued mappings seem more natural to me, there is no theorem 
that says that multivalued mappings are necessary. 

4 D i s t r i b u t i o n  

Another way that multivalued mappings arise is in describing algorithm distribution rather than 
optimization. In the setting I have in mind, a centralized algorithm H (one not explicitly decomposed 
into nodes and a message system) is first shown to solve the problem of interest. A related distributed 
algorithm (one that is described explicitly as the composition of a number of node automata and 
one or several automata representing the message system) L is then given; we want to show that L 
is correct by showing that it implements H (that is, that all its behaviors are behaviors of H). 

The basic strategy is again to define a mapping f from states of L to sets of states of H. However, 
in this case it may be helpful to define f in terms of a collection of "component mappings" fi, one 
for each component of L. Thus, each node i has an abstraction mapping that maps each of its states 
to a set of states of H, and likewise the message system M, (or each separate message channel M, 
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if there are several) has a mapping fM from its states to a set of states of H. 

L: 

These component mappings have an interesting interpretation - e.g., the mapping f~ for node i 
describes, in terms of i's state, the "possible states" of the centralized algorithm H, as far as i can 
tell. Thus, in a sense, this mapping can be thought of as giving the "local knowledge" that i has, of 
the state of the centralized algorithm. 

Under certain conditions ([19, 14]) these component mappings can be "composed" to yield a 
possibilities mapping from each entire state of L to a set of states of H, representing the "possible 
states" of H, as far as any of the components can tell. Formally, the value of f (s) ,  for a state s 
of L, is exactly the intersection of the values of fi(s~), where s~ is component i's state in s. That 
is, the states that are possible for all the components are just those that are in the intersection of 
the sets that are possible for all the individual components. In other words, the intersection of the 
local knowledge of all the components (including the message system) is the global knowledge of the 
system. 

Note that the mapping f might or might not be multivalued, but the individual fi almost certainly 
will be. This is because in a typical distributed system, no individual node knows everything about 
the global state. 

This decomposition can sometimes be used to simplify Mgorithm proofs (at least, it has worked 
in one substantial case I have tried). This case again arises in transaction processing. In [19], I 
describe a locking algorithm similar to the read-write locking algorithm I described earlier in this 
paper, by first giving a centralized description. The algorithm H keeps global information such as the 
sets of transactions that have been created, committed and aborted, plus certain "version mappings" 
that keep versions of various objects on behalf of various transactions. In the distributed algorithm, 
each node keeps part of this information: it knows some of the created, committed and aborted 
transactions, and some of the versions. The mapping f~ for a node i just adds in unspecified other 
transactions and versions to these sets, in addition to the ones locally known. I prove correctness 
of H directly, then combine the f~ as described above to get a possibilities mapping f and prove 
correctness of L using this mapping. 

More work is needed to determine how generally useful this proof structure is. 

5 Proving Time Bounds 

My final example arises in my very recent work (joint with Hagit Attiya) on timing-based algorithms. 
The idea is to use multivalued mappings for reasoning about upper and lower bounds on time for 
such algorithms. Although this work is still preliminary, I think that its use of multivalued mappings 
is quite interesting. 



532 

5 .1  O v e r v i e w  

So far, abstraction mappings (and assertional reasoning in general) have been used primarily to 
prove correctness properties of sequential algorithms and synchronous and asynchronous concurrent 
algorithms. It would also be nice to use these techniques to prove properties of concurrent algorithms 
whose operation depends on time, e.g., that have a clock that ticks at an approximately predictable 
rate. Also, the kinds of properties usually proved using mappings are "ordinary" safety properties; 
it would also be nice to use similar methods for proving timing properties (upper and lower bounds 
on time) for algorithms that have timing assumptions. 

Here, I show how abstraction mappings can be used to prove timing properties of timing- 
dependent concurrent algorithms. I'll focus on a trivia] example, an algorithm consisting of two 
concurrently-operating components, which we call a clock and a manager. The clock ticks at an 
approximately known rate. The manager monitors the clock ticks, and after a certain number have 
occurred, it issues a GRANT (of a resource). It then continues counting ticks; whenever sufficiently 
many have occurred since the previous GRANT event, the manager issues another GRANT. We 
wish to give a careful proof of upper and lower bounds on the amount of time prior to the first 
GRANT event and in between each successive pair of GRANT events. 

In order to state and prove such results, we need to extend the I/O automaton model to incorpo- 
rate time in the assumptions and in the conditions to be proved. Fortunately, this has been done for 
us: Modugno, Merritt and Tuttle [21] define a suitable extension call the timed automaton model. In 
that model, an algorithm with timing assumptions is described as an I/O automaton together with a 
boundmap (a construct used to give a formal description of the timing assumptions). This automaton 
and boundmap generate a set of timed executions and a corresponding set of timed behaviors. We 
use timed automata to define the basic assumptions about the underlying system, to describe the 
algorithm, and to carry out a correctness proof. 

In order to carry out an assertional proof about time, we need to reformulate some of the defini- 
tions of [21] so that information about time is explicitly included in the algorithm's state. In order 
to include assumptions about time in the state, we use the construction given in [3], of an automaton 
time(A) for a given timed automaton A. The automaton time(A) is an ordinary I/O automaton (not 
a timed automaton) whose state includes predictive information describing the first and la~st times 
at which various basic events can next occur; this information is derived from the given boundmap. 
The I/O automaton time(A) is related to the original timed automaton A in that a certain subset 
of the behaviors of time(A) is exactly equal to the set of timed behaviors of A. 

We also require a formal way of describing the timing requirements to be proved for our algorithm. 
In order to do this, we augment A to another I/O automaton B which we call the performance 
machine this time building in predictive information about the first and last times at which certain 
events of interest (e.g., GRANT events) can next occur. Then the problem of showing that the given 
algorithm satisfies the timing requirements is reduced to that of showing that any behavior of the 
automaton time(A) is also a behavior of B. We do this by "exhibiting a mapping from time(A) to B. 
This mapping turns out to be multivalued; in fact, it is in the form of a set of inequalities! 

In the remainder of this section, I give more details. 

5 .2  F o r m a l  M o d e l  

Here I describe timed automata and the construction of time(A). 

5.2.1 T i m e d  A u t o m a t a  

Recall that an I/O automaton consists of actions, states, start states, steps, and a fifth component 
that is a partition of the locally controlled (output and internal) actions into equivalence classes. The 
last is generally used for fairness and liveness, and so I have not used it so far in this paper, but I will 
need it now. The partition groups actions together that are to be thought of as under the control of 
the same underlying process. 
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In [21], the I /O  automaton model is augmented to include t iming properties as follows. A timed 
automaton is an I /O  automaton with an additional component called a boundmap. The boundmap 
associates a closed interval of the nonnegative reals (possibly including infinity, bu t  where the lower 
bound is not  infinity and the upper bound is not 0) with each class in the automaton 's  partition. 
This interval represents the range of possible lengths of t ime between successive times when the given 
class gets a chance to perform an action. Let be(C) and b~(C) denote the lower and upper bounds, 
respectively, assigned by the boundmap b to class C. 

Now I describe how a timed automaton executes. A timed sequence is a sequence of alternating 
states and (action,time) pairs; the times are required to be nondecreasing, and if the sequence is 
infinite then the times are also required to be unbounded.  Such a sequence is said to be a timed 
execution of a t imed automaton A provided that  the result of removing the t ime components is an 
execution of the ordinary I /O  automaton underlying A, and the following conditions hold, for each 
class C of the part i t ion of A and every i. 

1. Suppose b~(C) # co. If some action in C is enabled in al and either i = 0 or no action in C is 
enabled in a~-i or r i  is in C, then there exists j > i with t(j) <_ t(i) + b~(C) such that either 
~rj is in C or no action of C is enabled in aj. 

2. If some action in C is enabled in a~ and either i = 0 or no action in C is enabled in hi-1 or r~ 
is in C, then there does not exist j > i with t(j) < t(i) + bt(C) and ~rj in C. 

The first condition says that,  start ing from when an action in C occurs or first gets enabled, 
within t ime b~(C) either some action in C occurs or there is a point at which no such action is 
enabled. The second condition says that,  again starting from when an action in C occurs or first 
gets enabled, no action in C can occur before time be(C) has elapsed. 

Definitions for composition of timed automata  to yield another timed automaton are given in 
[21]. We model real-time systems as compositions of timed automata. 

5.2.2 T h e  A u t o m a t o n  time(A) 

Given any timed automaton A with boundmap b, we now show how to define the corresponding 
ordinary I /O automaton time(A). This new automaton has the timing restrictions of A built into 
its state, in the form of predictions about when the next event in each class will occur. 

The automaton time(A) has actions of the form (~r,t), where r is an action of A and t is a 
nonnegative real number. Each of its states consists of a state of A, augmented with a time called 
Crime and,  for each class C of the partition, two times, Ftime(C) and Ltime(C). Ctime, (the 
"current time") represents the t ime of the last preceding event, initially 0. The Ftime(C) and 
Ltime(C) components represent, respectively, the first and last times at which an action in class C is 
scheduled to be performed (assuming it stays enabled). (We use record notat ion to denote the various 
components of the state of time(A); for instance, s.automaton_state denotes the state of A included 
in state s of time(A).) More precisely, each initial state of time(A) consists of an initial s t a t e ,  of 
A, plus Ctime = 0, plus values of Ftime(C) and Ltime(C) with the following properties. If there is 
an action in C enabled in s, then s.Ftime(C) = s.Ctime + be(C) and Ltime(C) = s.Ctime + b~(C). 
Otherwise, Ftime(C) = 0 and Ltime(C) -- oo. 

Others have proposed building t iming information into the state (e.g., [26]); our work differs in 
the particular choice of information to use - predictive information, giving upper and lower bounds 
for each automaton class. 

The following definitions capture formally what it means for the given timing assumptions to be 
respected by time(A). If (~r, t) is an action of time(A), then (s', (r, t), s) is a step of time(A) exactly 
if the following conditions hold. 

1. (s'.automaton_state, r, s.automaton_state) is a step of A. 

2. s~.Ctime < t = s.Ctime. 
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3. If ~r is a locMly controlled action of A in class C, then 

(a) s'.Ftime < t < #.Ltime. 

(b) if some action in C is enabled in s.automaton_state, then 

s.Ftime(C) = t + be(C) and s.ntime(C) = t + b~(C), and 

(c) if no action in C is enabled in s.automaton_state, then s.Ftime(C) = 0 and s.Ltime(C) = 
OO. 

4. For all classes D such that  r is not in class D,  

(a) t < s'.Ltime(D), 

(b) if some action in D is enabled in s.automaton_state and some action in D is enabled in 
#.automaton_state then s.Ftime( D) = #.Ftime( D) and s.Ltime( D) = s'.Ltime( D), and 

(c) if some action in D is enabled in s.automaton_state and no action in D is enabled in 
s'.automaton.state then s.Ftime(D) = t + b~(D) and s.Ltime(D) = t + b~(D), and 

(d) if no action in D is enabled in s.automaton_state, then s.Ftime(D) = 0 and s.Ltime(D) = 
(X). 

Property 3 describes the conditions on the particular class C (if any) containing the action ~r 
- basically, that  the t ime for the new action should be in the appropriate interval for the class. 
New scheduled times are Mso set. for C, in ease an action in C is enabled after this step. Property 
4 describes conditions involving each other class D. The most interesting is property 4(a), which 
ensures that the action in C does not occur if D has :an action that  must be scheduled first. 

Now I state how the behaviors of time(A) are related to the t imed behaviors of A. Define the 
complete executions of t ime(A) to be those executions a of time(A) that  satisfy one of the following 
conditions. 

1. c~ is infinite and the t ime components of the actions in c~ are unbounded, or 

2. cx is finite and no locally controlled action of time(A) is enabled in the final state of c~. 

The complete schedules and complete behaviors of time(A) are defined to be the schedules and 
behaviors, respectively, of complete executions of time(A). 

The timed executions of a timed automaton A are closely related to the complete executions of 
the corresponding I /O  automaton time(A). In particular, what we use is: 

T h e o r e m  4 The set of timed behaviors of A is the same as the set of complete behaviors of time(A). 

This theorem implies that  properties of timed behaviors of a t imed automaton A can be proved 
by proving them about the set of complete behaviors of the corresponding I /O  automaton time(A). 
The latter task is more amenable to t reatment  using assertional techniques, because of the fact that 
timing information is built into the state of time(A). 

We apply the time(A) construction to the t imed automaton A modeling the entire system. 

5.2.3 Strong Possibilities Mappings 

The work in this section requires a slightly strengthened notion of possibiities mapping - one that  
preserves the correspondence between all actions (internal as well as external). Let L and H be 
automata  with the same agtions, and let f be a mapping from states of L to sets of states of H.  
The mapping f is a strong possibilities mappings from L to H provided that  the following conditions 
hold: 

1. For every start state So of L, there is a start state u0 of H such that  Uo E f(so). 
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2. If s '  is a reachable state of A, u' E f (s ' )  is a reachable state of H,  and (s', ~r, s) is a step of L, 
then there is a step (u', 7~, u) of H such that  u e f (s ) .  

The difference between this definition and the ordinary definition for possibilities mappings is 
in the second condition, where the actions are required to correspond exactly. Now recall that  the 
schedules of an automaton include all its actions. 

L e m m a  5 I f  there is a strong possibilities mapping from L to H, then all schedules of L are also 
schedules of  H.  

5.3 The Algori thm 

The algorithm consists of two components,  a clock and a manager. The clock has only one action, 
the output  TICK, which is always enabled, and has no effect on the clock's state. It can be described 
as the particular one-state automaton with the following steps. 

TICK 
Precondition: 

true 
Effect: 

n o n e  

The boundmap associates the interval [ca, c2] with the single class of the partition. This means 
that  successive TICK events will occur with intervening times in the given interval. 

The manager has input action TICK, output  action G R A N T  and internal action ELSE. The 
manager waits a particular number k of clock ticks before issuing each GRANT,  counting from the 
beginning or from the last preceding GRANT.  The manager 's  state has one component: TIMER,  
holding an integer, initially k. 

The manager 's  algorithm is as follows: (We assume that  k > 0). 

TICK 
Effect: 

TIMER := TIMER -1 

GRANT 
Precondition: 

TIMER _< 0 
Effect: 

TIMER := k 

ELSE 
Precondition: 

TIMER > 0 
Effect: 

n o n e  

Notice that  ELSE is enabled exactly when GRANT is not enabled. The  effect of including the 
ELSE action is to ensure that  the automaton continues taking steps at its own pace, at approximately 
regular intervals. Thus, in the situation we are modeling, when the G R A N T  action's precondition 
becomes satisfied, the action doesn't  occur instantly - the action waits until the automaton 's  next 
local step occurs. 1 

1An alternative situation to model would be an interrupt-driven model in which the action is triggered to occur 
whenever its precondition becomes true; the action should then occur shortly thereafter; this situation could be 
modeled by omitting the ELSE action. The two automata have slightly different timing properties. In this paper, I 
only consider the first assumption. 
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The partit ion groups the GRANT and ELSE actions into a single equivalence class, with which 
the boundmap associates the interval [0, l]. We assume that cl > I. 2 Now we fix L to be the timed 
automaton which is the composition of the clock and manager. 

I now consider the automaton time(L), constructed as described in Section 5.2. In this case, the 
construction adds the following components to the state of L: Crime, Ft ime(TICK),  Lt ime(TICK),  
Ftime(LOCAL),  and Ltime(LOCAL). The latter two represent the times for the parti t ion class 
consisting of GRANT and ELSE. 

L e m m a  6 All complete executions (and therefore all complete schedules) of time(L) are infinite. 

This is essentially because the clock keeps ticking forever. This lemma tells us that  for this 
example we do not have to worry about the case where executions are finite - we can assume that we 
have infinite executions in which (because of the definition of completeness) the t iming component 
is unbounded. 

5.4 T h e  P e r f o r m a n c e  A u t o m a t o n  

We wish to show that  all the timed behaviors of L satisfy certain upper and lower bounds on the time 
for the first GRANT and the time between consecutive pairs of GRANT events. More precisely, we 
wish to show the following, for any timed behavior 3' of B: 

1. There are infinitely many GRANT events in 3'. 

2. If t is the time of the first GRANT event in 3', then k .  cl < t < k.  c2 + I. 

3. If tl and t2 are the times of any two consecutive GRANT events in 3`, then 

k . c l - l < _ t 2 - t l  <_k .c2+l .  

We let P denote the set of sequences of (action, time) pairs satisfying the above three conditions. 
By the earlier characterization, Theorem 4, it suffices to show that all complete behaviors of time(L) 
are in P.  

I have already shown how to describe t iming assumptions by building time information into the 
state. Now I show how to give a similar description for the timing properties to be proved. Thus, we 
specify P in terms of another I /O automaton,  which we call the performance automaton. Namely, 
define a new I /O automaton H by augmenting time(L) with two new components: Ft ime(GRANT)  
and Lt ime(GRANT).  These are designed to represent the first and last times, respectively, that a 
GRANT event might occur. They are maintained as follows. 

1. Initially, 

(a) F t ime(GRANT)  = k .cl, and 

(b) Lt ime(GRANT)  .=- k .c2 + I. 

2. For each step (s', (GRANT,  t), s) of H,  

(a) s ' .Ftime( GRANT)  < t < s'.Ltime( GRANT).  

(b) s .Ftime( GRANT)  = t + k . cl - I and s.Ltime( GRANT)  = t + k . c2 + I. 

3. For each step (s', ( r ,  t), s) of H,  where 7r = TICK or ELSE, 

(a) t <_ s ' .Lt ime(GRANT).  

(b) s.Ltime( GRANT)  = s'.Ltime( GRANT)  and 

2Again, a different assumption would change the timing analysis. 
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(c) s.Ftime( GRANT)  -- s' .Ftime (GRANT).  

In addition, the other components of the state are maintained just as in the definitions of time(L). 
This automaton simply builds in explicitly the time bounds to be proved. The initial conditions 

buiId in the time bounds that are supposed to hold for the first GRANT,  and condition 2b builds 
in the time bounds that are supposed to hold for all the subsequent G R A N T  actions. Conditions 2a 
and 3a ensure that nothing happens strictly after the latest time at which a GRANT is supposed to 
occur. Condition 2a also ensures that the GRANT does not occur too soon. 

The following lemma gives the relationship we need between the behaviors of H and the condition 
P. (Note that the behaviors of H and the sequences in P both consist of elements that are pairs, an 
action of L together' with a time.) 

L e m m a  7 Let ~ be an infinite schedule of H in which the time component is unbounded. Then 
beh(~) • P. 

Note that the performance machine H is a somewhat ad hoc description of the particular timing 
properties to be proved for our particular algorithm. We are currently working on generalizing the 
treatment of performance machines. 

5.5  P r o o f  

Now we sketch how to prove that all timed behaviors of L are in P, as needed. First, we show that all 
behaviors of t ime(L) are also behaviors of the performance machine H, using a strong possibilities 
mapping. Namely, we define a mapping f so that a state u of H is in the image set f (s)  exactly if 
the following conditions hold. 

I. If s . T I M E R  > 0 then 

(a) u.Lt ime(GRANT)  > s.Ltime(TICK) + ( s . T I M E R  - 1)c2 + l, and 

(b) u .Ft ime(GRANT)  <_ s .Ftime(TICK) + ( s . T I M E R  - 1)cl. 

2. If s . T I M E R  = 0 then 

(a) u.Ltime( GRANT)  > s.Ltime(LOCAL), and 

(b) u.Ftime( GRANT)  <_ s.Ctime. 

Thus, in this case the mapping takes the form of inequalities giving upper and lower bounds for the 
time of the next G R A N T  event~ in terms of the values of the variables in the state of time(L). For 
example, condition la  says that (in case the timer is positive), the upper bound that is being proved 
on the time for the next GRANT is any value that is at least as great as the latest time for the next 
TICK, plus the number of remaining TICK events that will be counted times the maximum time 
they might take, plus the maximum time for a local step. This makes sense because the quantity on 
the right-hand side of the inequality is itself an upper bound on the time until the next GRANT; if 
the performance machine designates anything at least as great as this expression as the upper bound 
to be proved, then it should be possible to prove that the algorithm simulates the performance 
machine (i.e., that it respects the upper bound described by that machine). 

Symanetrically, condition lb says that (in case the timer is positive) the lower bound that is being 
proved on the time for the next GRANT is any value that is at most as great as the earliest time for 
the next TICK, plus the number of remaining ticks that will be counted times the minimum time 
they might take, (plus the minimum time for a local step, which is 0). This makes sense because 
the quantity on the right-hand side of the inequality is itself a lower bound on the time until the 
next GRANT; if the performance machine designates anything at most as great as this expression 
as the lower bound to be proved, then it should be possible to prove that the algorithm simulates 
the performance machine (i.e., that it respects the lower bound described by that machine). 
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In case the t imer is 0, the upper bound that  is being proved on the t ime for the next GRANT is 
any value that is at least as great as the latest t ime for the next local step. Again, the quanti ty on 
the right-hand side of the inequality is an upper bound on the t ime until the next GRANT, so that 
if the performance machine designates anything at least that large~ it should be possible to prove 
that the algorithm simulates the performance machine. Also for this case~ the lower bound that  is 
being proved is any value that  is at most as great as the earliest t ime for the next local step, which 
is the current time. 

This mapping is obviously multivalued, because it is described in terms of inequalities. The 
inequalities express the fact that  any sufficiently large number (with respect to the values of the 
variables in the state of time(L)) should be provable as an upper bound for the t ime for the next 
GRANT, and any sufficiently small number should be provable as a lower bound. 3 4 We can now 
show: 

L e m m a  8 The mapping f is a strong possibilities mapping. 

Lemmas 5 and 8 yield the following corollary. 

C o r o l l a r y  9 All schedules of time(L) are schedules of H. 

Now I can put the pieces together. 

T h e o r e m  10 All timed behaviors of L are in P. 

P r o o f :  Let ~/be a t imed behavior of L. Then by Theorem 4, V is a complete behavior of time(L). 
Let fl be a complete schedule of time(L) such that  3 ~ = beh(fl). By Lemma 6, fl is infinite, and 
by the definition of completeness for infinite executions, the time components of fl are unbounded: 
Lemma 9 implies that  fl is also a schedule of H.  Since fl is an infinite schedule of H in which the 
time components are unbounded, Lemma 7 implies that  beh(fl) = "~ is in P .  • 

Note that  in this case, the possibilities mapping technique yields all the correctness properties 
we require - including both safety and liveness properties. Certain t iming properties are safety 
properties~ e .g ,  lower bounds, and upper bounds of the form "if t ime grows sufficiently large, then 
certain events must occur". These can be proved using possibilities mappings in much the same 
way as any other safety properties. But  when such conditions are combined with the property that, 
all complete executions are infinite and our assumption that  the t ime in infinite t imed executions 
is unbounded (so that  "t ime continues to increase without bound"),  they actually imply that  the 
events in question must eventually occur. Thus, liveness properties of the kind that  say "certain 
events must occur" also follow from the mapping technique. 

6 C o n c l u s i o n s  

In this paper, I have tried to illustrate several situations in which multivalued abstraction mappings 
are useful in algori thm correctness proofs. Muttivalued mappings are useful in cases where one 
algorithm can be described as an optimized (e.g., garbage collected) version of another algorithm, or 
where a single high-level algorithm admits several specialized implementations tailored for different 

sIf we simply replaced the inequalities with equations, the resulting mapping would not be a possibilities mapping. 
For example, suppose that a clock tick occurs within less than the maximum c2. Then the right-hand side expression 
in la would evaluate after the step to an earlier time than before the step. On the other hand, the corresponding step 
in the performance machine would not change the value of Ltime(GRANT); the correspondence thus would not be 
preserved. 

4It seems possible to use a single-valued mapping for this example by complicating the definition of the performance 
machine; however, since the performance machine is serving as the problem specification, that does not seem like a 
good idea. 
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situations. They are also useful in relating distributed algorithms to centralized variants, and in 
proving time bounds. 

Work remains to be done in exploiting these techniques further. I believe it will be possible to 
decompose the proofs of many other complicated concurrent algorithms by expressing the algorithms 
as optimized versions of simpler algorithms, or as special cases of more general algorithms, or as 
distributed versions of centralized algorithms. It remains to discover such structure and express it 
in terms of mappings. 

The use of mappings, for time analysis is new, and should be tried on more (and larger) examples. 
It remains to see how this technique combines with other methods for time analysis such as methods 
based on bounded temporal logic [5] or recurrence equations [16]. I hope I have made the point I have 
tried to make: that multivalued mappings are sufficiently useful that any useful formal framework 
incorporating abstraction mappings should permit them to be multivalued. 
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A P r o o f  

P r o o f :  By induction. For the base, let s be the start state of L and u the start  state of H.  First,  
s. QS is empty. Also, [u.IS, u.LS] = [1,0], which implies that s. QS is equal to the appropriate (empty) 
portion of u.SS. Second, s .FS = 1 = u.IS rood 2. Third,  s .QR is empty, and [u.LR + 1, u.IR] = [1,0], 
which implies that  s .QR is equal to the appropriate portion of u.SR. Fourth, s .FR = 0 and u.IR = O, 
which is as needed. Fifth and sixth, both channels are empty. 

Now show the inductive step. Suppose (s', ~r, s) is a step of L and u' E f (s ' ) .  We consider cases 
based on r .  

1. ~r = S E N D ( m )  

Choose u to be the unique state such that  (u', rr, u) is a step of H.  We must show that  
u E f (s) .  The only condition that is affected by the step is the first; thus, we must show that 
s.QS is exactly the sequence of values of u.SS corresponding to indices in t he  closed interval 
[u.IS, u.LS]. But s.QS = s' .QSm. Since u' E f ( s ' ) ,  s' .QS is just the sequence of values from 
uCSS, from indices uqIS to uqLS. Since the step of H increases LS by 1 and puts m in the 
new position, we have the needed equation. 

2. Ir = R E C E I V E ( m )  

Since rr is enabled in s', m is the first value on s'.QR. Since u' E f ( s ' ) ,  m = u' .SR(u' .LR + 1), 
which implies that  ~r is enabled in u'. Now choose u to be the unique state such that  (u ~, ~r, u) 
is a step of H.  All conditions are unaffected except for the third, that  s .QR is exactly the 
sequence of values of u.SR corresponding to indices in the closed interval [u.LR + 1,u.IR]. 
Now, s .QR is the same as s ' .QR with the first element removed. Since u' E f (s ' ) ,  we have that  
sLQR is just the sequence of values from uqSR, fi'om indices uCLR+ 1 to uqlR. Since the step 
of H increases LR by 1, we have the needed equation. 

3. ~r = S E N D I ( m ,  b) 

Since ~r is enabled in s ~, b = sqFS and m is the first element on sr.QS. Let i be the integer 
u'.IS. Since u' E f ( s ' ) ,  the first element in sqQS is the same as the uqlS entry in ur.SS; that  
is, u'.SS(i) = m. It follows that  "~ = S E N D I ( m , i )  is enabled in u'. 

Now choose u so that  (u ~, ~ ,u)  is a step of H and such that  this step puts a message in channel1 
exactly if the step (s', 7r, s) does. We must show that  u E f (s ) .  The only interesting condition 
is the fifth; that  is, we must show that  channetl  has the same number of messages in s and 
u. Moreover, for any j ,  if (m, k) is the jth message in channel] in u, then (m, kmod2)  is the 
jth message in channell  in s. The only interesting case is where both steps cause a message 
to be put into the channel. Then the message value in both cases is m, but the tag is b for 
algorithm L and i for H.  It remains to show that  b = imod2. But b = s'.FS and i = uqIS. 
Since u ~ E f(s~), we have sqFS = uqISmod2,  which implies the result. 

4. ~r = R E C E I V E I ( m , b )  

Since 7r is enabled in J ,  (m, b) is the first element in channell  in s'. Since u' E f (s ' ) ,  (re, i) is the 
first element in channell  in u ~, for some integer i with b = imod2. Let ~r = R E C E I V E I ( m , i ) ;  
then ~ is enabled in uq Let u be the unique state such that  (u ~, ~, u) is a step of H.  We must 
show that  u E f ( s ) .  

All conditions except for the third, fourth and fifth are unchanged. It is easy to see that  the 
fifth is preserved, since each of ~- and ~- simply removes the first message from channell .  

Suppose first that  b = sCFR. Then the effects of ~r imply that  the receiver state in s is identical 
to that  in J .  Now, since u t E f (s ' ) ,  sqFR = uLIRmod2; since b = imod2, this case must have 
i ~ u'.IR + 1. Then the effects of ~ imply that  the receiver state in u is identical to that  in u'. 
It is immediate  that  the third and fourth conditions hold. 
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So now suppose that  b # sqFR. The invariant above for H implies that  either i = uqIR or 
i = u q I R +  1. Since b = i m o d 2  and (since u' E f (s ' ) )  s ' .FR = u'.IRrnod2, this case must 
have i = uqIR + 1. Then u. IR = u'.IR + 1 and s .FR = s ' .FR + 1 mod2,  preserving the fourth 
condition. Also, u.SR is the same as u' .SR except that  the entry with index u.IR is set equal 
to ra; moreover, s .QR is the same as sqQR except that  m is added to the end. It follows that 
the third condition is preserved. 

5. 7r = S E N D 2 ( b )  

Since ~r is enabled in s t, b = sqFR. Let i be the integer uqlR. Let ~ = S E N D 2 ( i ) ;  clearly, 
is enabled in uq 

Now choose u so that  (u ~, ~, u) is a step of H and such that  this step puts a message in channel2 
exactly if the step (s ~, ~r, s) does. We must show that  u E f (s ) .  The only interesting condition 
is the sixth; that  is, we must show that  channel2 has the same number of messages in s and u. 
Moreover, for any j~ if k is the j~h message in channel2 in u, then lcmod 2 is the j th message in 
channel2 in s. The only interesting case is where both steps cause a message to be put into the 
channel. Then the tag is b for algorithm L and i for H. It remains to show that  b = imod2. 
But b = J . F R  and i = uqlR.  Since u ~ C f(8~), we have sqFR = uqlRmod2,  which implies the 
result. 

6. ~r = R E C E I V E 2 ( b )  

Since r is enabled in s', b is the first element in channel2 in s I. Since u ~ E f(s~), i is the first 
element in channel2 in u ~, for some integer i with b = imod2. Let yv = R E C E I V E 2 ( i ) ;  then 

is enabled in u'. Let u be  the unique state such that  (u ~, ~-, u) is a step of H.  We must show 
that  u c f ( s ) .  

All conditions except for the first, second and sixth are unchanged. It is easy to see that  the 
sixth is preserved, since each of ~r and ~ simply removes the first message from channel2. 

Suppose first that  b ~ s' .FS. Then the effects of ~r imply that  the sender state in s is identical 
to that  in s'. Now, since u' E f (s ' ) ,  sqFS = uqISmod2;  since b = imocl2, this case must have 
i ~ uqIS. Then the effects of ~ imply that  the sender state in u is identical to that  in uq It is 
immediate  that  the first and second conditions hold for this situation. 

So now suppose that  b -- sqFS. The invariant above for H implies that  either i = uqlS - 1 
or i = u'.IS. Since b = i m o d 2  and (since u' E f (s ' ) )  s ' .FS = u ' . ISmod2,  this case must have 
i = u'.IS. Then u.IS = uqIS + 1 and s .FS = s' .FS + 1 rood2, preserving the second condition. 
Also, u.SS is unchanged; moreover, 8.QS is the same as same as sqQS except that  the first 
entry (if any) is removed. 

Now, the invariant for H and the fact that  the first entry in channel2 in u t has index uqIS 
implies that  uqlS = uqIR. Again by the invariant for H,  this implies that  u q L S  > uqIS. Then 
the fact that  u t E f ( s ' )  implies that  sqQS is nonempty. Therefore, the first entry" in sqQS 
really is removed by the step. Since s ' .QS consists of the entries in uqSS, from indices uqIS 
to uqLS,  since the first entry in sr.QS is removed to yield s .QS and since u.IS = uqIS + 1, it 
follows that  the first condition is preserved. 
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