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Research Summary 

Abstract: In this paper we offer a formal, rigorous proof of the correctness of Awerbuch's 

algorithm for network synchronization. We specify both the algorithm and the correctness con- 

dition using the I /O automaton model, which has previously been used to describe and verify 

algorithms for concurrency control and resource allocation. We show that the model is also a 

powerful tool for reasoning about distributed graph algorithms. Our proof of correctness follows 

closely the intuitive arguments made by the designer of the algorithm by exploiting the model's 

natural  support for such important design techniques as stepwise refinement and modularity. In 

particular, since the algorithm uses simpler algorithms for synchronization within and between 

'clusters' of nodes, our proof can import as lemmas the correctness of these simpler algorithms. 

1 O v e r v i e w  

1.1 Verification methods  and models  

As computer science has matured as a discipline, its activity has broadened from writing programs 

to include reasoning about those programs: proving their correctness and efficiency, and proving 

bounds on the performance of any program that accomplishes the same task. Recently distributed 

computing has begun to broaden in this way (albeit a decade or two later than the part of 

computer science concerned with sequential, uniproeessor algorithms). There are several reasons 

why particular care is necessary to prove the correctness of algorithms when the algorithms 
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are distr ibuted.  First ,  human thought tends to operate sequentially, that  is, we usually focus 

our at tention on one aspect of a problem at a time. This leaves us vulnerable when examining 

distr ibuted protocols, where activity is happening concurrently in several places in a system~ since 

we can easily fail to consider the subtle interactions between different activities. For example, 

unexpected race conditions can lead to unexpected (and wrong) behavior. Second, distributed 

protocols are required to cope with a certain level of nondeterminism in the system, such as 

variable message delays, variable processor speeds, or even processor failures, and humans find it 

hard to deal with the exploding number of different possibilities. 

For these reasons one is not surprised tha t  there have been several cases where algorithms 

were published (and implemented) that  seemed reasonable, but  were later found to be flawed. 

A famous example is the ARPAnet routing algorithm. We believe that  rigorously proving the 

correctness of distr ibuted algorithms is an important  task, especially for algorithms that  are going 

to be used as building blocks of other protocols. For example, when a distr ibuted leader election 

protocol is used to choose a primary copy for a replicated relation in a distr ibuted database, any 

uncertainty about the behavior of the leader election will propagate to undermine confidence in 

the correctness of the entire database management system. 

Despite the reasons presented above, most work in distr ibuted algorithms contains only in- 

formal correctness arguments and still omits rigorous proofs of correctness for the algorithms 

described. The claim is often heard that  the formal techniques do not support  intuition and the 

proofs are too complex. Obviously, the complexity of the verification is related to the conceptual 

complexity of the algorithm but it may also be heavily influenced by the choice of the specific 

verification procedure. 

Good tools for distributed systems analysis have been sought by many researchers for a long 

time. Temporal logic (e.g. [MP], [HO]) and Floyd-Hoare-style methods (e.g. [OG]) are among the 

best known and indeed have been used successfully to verify a number of distributed algorithms. 

While the proofs using these methods do indeed demonstrate correctness of the algorithms, they 

often do not help the reader to understand why the algorithms are correct. The reader can be 

lost in the details of the step by step proof and lose the intuition and the global picture. 

Partially, the problem stems from the fact that  the reader faces the full gap between the low 

level implementation and the high level specification of the problem. The designer of the algo- 

r i thm, however, when conceiving the algorithm or explaining it, often first argues in terms of high 

level activities that  comprise the solution, and considers interaction between those. At subsequent 

design steps those activities are ' implemented'  by refining them in turn. Only at the final step 

are activities of each node in the system fully specified. The method allows each refinement to 
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remain manageably simple. To keep the designer's intuition, ideally, the verification procedure 

should follow closely the design process. That  is, the proof should follow the refinements. The 

verification procedure then would be structured so that the proof of each refinement could be sim- 

ple enough and the processes of design and verification would be brought together. To support 

the stepwise refinement described above, the verification method has to be hierarchical. 

Another vital feature of verification procedures is exposed when the designer of the algorithm 

wishes to change an implementation of some activity, for example for optimization reasons. This 

obviously results in a new algorithm. Often though, the redesign of one activity does not affect 

others. In such cases, the verification method should be able to guarantee that only the changed 

part needs to be proved correct anew. That  is, the verification method should be modular or 

compositional. Compositionality in proofs would also naturally support the fundamental 'off the 

shelf building block' technique in algorithm design as it allows the use of the correctness proof 

of the 'building block' in the proof of the algorithm without the need to reexamine it. But we 

must be particularly careful when considering the intuitive notion of modularity as referred to 

by algorithm designers. It is too often discussed informally in terms of several pieces needed to 

solve 'subproblems' although the sense of 'subproblem' is not precise. It is not obvious th&t the 

pieces fit together in any precise sense, especially when concurrency is considered. And as the 

algorithms that one tries to build become more and more complex, the lack of formal notion of 

modularity becomes more and more of a problem. 

The commonly known verification methods do not seem to support both hierarchical and mod- 

ular reasoning in natural  ways. Thus the invariant assertion method allows hierarchical stepwise 

reasoning, but  offers poor support for modularity when distributed systems are concerned. The 

proofs in temporal logic on the other hand, are composable but leave a large gap between the 

implementation and the specification. 

In this paper we will prove the correctness of a network algorithm using the I/O automaton 

model. The model was introduced by Lynch, Merritt and Tuttle in [LM] and [LT], and it naturally 

supports both hierarchical and modular reasoning. From our experience with this model, we feel 

that it enables one to provide rigorous proofs of correctness that follow closely the informal 

arguments used by the designers of distributed algorithms to explain their work. We describe 

specifications, intermediate refinements and algorithm as I /O automata, and then show that 

one ' implements'  another. Also, the model includes a natural  notion of composition of two 

automata, that corresponds to the combined use of two algorithms, and its formal semantics are 

compositional, in that the behavior of the composition can be deduced from the behavior of all 

the component automata. 
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An example of hierarchical reasoning in the model can be found in [LT] where it was used to 

verify correctness of a distributed resource arbiter. The modularity property of the model was 

exploited in IWl] to deduce correctness of an n-processor mutual exclusion algorithm, from the 

correctness of an arbitrary 2-process mutual exclusion algorithm, which is used as a subroutine 

within the main algorithm. The model has also been successfully applied to describe and verify 

a number of algorithms for concurrency control, recovery and replication management in nested 

transaction systems, for example [LM],[FLMW],[GL],[HLMW]. In these, the model's features are 

used to capture formally some intuitions of system designers, such as ' the correctness of replication 

management only needs to proved in a serial system, as the correctness of concurrency control 

for the replicas will then ensure that the replication algorithm is correct in a concurrent system'. 

In this paper we demonstrate the ease with which the model allows one to prove the correctness 

of a network algorithm that uses a superposition of two different algorithms operating concurrently 

to accomplish almost independent subgoals, using claims that express formally the correctness of 

the subalgorithms. 

1 . 2  O u r  p r o o f  

The algorithm whose correctness we prove in this paper is a distributed protocol for network 

synchronization. In designing algorithms to solve problems in a distributed computing environ- 

ment, it is important to understand the assumptions being made about the processors and the 

network connecting them. If fewer assumptions are made, it is more likely that they will be 

satisfied by the hardware available, but it is harder to find algorithms that  work correctly when- 

ever the assumptions are satisfied. For example, most networks do not offer reliable bounds on 

the time a message takes to arrive, so it is important to find algorithms that work correctly in 

an asynchronous system, but it is very much easier to design algorithms if the network is syn- 

chronous. Awerbuch ([Awl) proposed the use of a synchronizer that would enable one to convert 

any synchronous graph algorithm into an algorithm that performs correctly in an asynchronous 

(but failure-free) network. Using a synchronizer in this way has proved a successful methodology 

for solving asynchronous problems in efficient ways ([Aw2]). 

In [Awl, a synchronizer (called ~ in that paper) is constructed for a network whose topology is 

any fixed connected graph provided with a spanning forest subgraph, and a distributed technique 

is given for finding a spanning forest subgraph for which the resulting algorithm has low time and 

message complexity. The synchronization algorithm given is, however, asserted to be correct for 

any spanning forest subgraph. The algorithm is derived as a superposition of a simple synchro- 
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nizer (called fl) executing within each 'cluster '  (a connected component of the spanning forest 

subgraph), and another simple synchronizer (called a) that  synchronizes between the clusters. 

This description helps to explain the detailed algorithm, but  no formal proof of correctness is 

offered in law]. We provide a formal account of an algorithm closely based on Awerbueh's,  and 

rigorously prove results about its correctness. The proof of correctness is modular  and hierar- 

chical. It closely follows the outline of the informal arguments of law], by building on claims 

that  express formally the correctness of algorithms a and 13. Since these results have also not 

been formally proved before, the full version of this paper includes such proofs for the sake of 

completeness. 

Our account of the synchronizer is given as follows. Firs t  we provide a top level specification 

for any network synchronizer by giving a single I /O  automaton S that  uses global information 

about the system. Then we present the ~/algorithm itself, as a system DistSysS of I /O  automata,  

including one for each node of the graph with access only to local information and communicating 

only along the edges of the graph. As this algorithm is a superposition of two algorithms a and 8, 

following Awerbuch's informal reasoning we divide each node-automaton into two automata ,  one 

containing the state and operations contributing to intercluster synchronization and the other 

containing the state and operations contributing to the intracluster synchronization. The two 

components do not interact at all, except when the node is the root ( ' leader') of its cluster. 

In the language of our model, to verify the correctness of the algorithm we need to prove that  

the system DistSysS of I /O  automata  implements the specification automaton S. We proceed in 

the proof by refining the global specification according to Awerbuch's intuitive construction and 

defining for each refinement the corresponding correctness claim that  needs to be proved, until 

the level of node algorithms is reached. We s tar t  with the global specification S (see Fig. 1) and 

refine it following the construction in law] by a system SysS that  consists of one automaton SL for 

each cluster, specifying the intracluster synchronization behavior, and also a single coordinator 

automaton CS that  specifies intercluster synchronization (see Fig. 2). The correctness claim for 

this refinement is that  all executions of the composed system SysS are acceptable behaviors of 

the global specification S. 

In the above refinement, automaton SL provides a specification for the intracluster synchro- 

nization. According to [Aw] the intracluster synchronization is implemented by algorithm 8. 

Thus, we further refine the intermediate specification SL by the distr ibuted specification SysSL 

(see Fig. 3), that  models the synchronizer fl (a simple synchronizer using communication over a 

tree). The specification includes a separate node automata  NDSL for each node in a cluster and 

a special automaton LESL for the leader, as well as an automaton LISL to represent each link. 
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I 

Figure 1: S(G) 

The correctness claim for this refinement is in fact established by the correctness proof for the 

algorithm 8. If it were already carried out in our model, we could use it here as is. 

Next, we consider the specification for the global intercluster synchronization coordinator CS. 

In lAw] it is implemented by a distributed algorithm ~x, in which each cluster is a participant.  

Thus we refine the global coordinator specification CS with a distr ibuted one SysCS (see Fig. 4), 

where clusters are modeled by automata  CLCS that  interact according to algorithm ~ (a simple 

synchronizer, using all the edges of the graph). Thus, the correctness claim of this refinement is 

established by the correctness proof of algorithm a.  Here again the proof could be imported if it 

were available in the model. 

Finally we consider the behavior of a cluster participating in a,  which is specified by automaton 

CLCS. Following law] we refine it by a distributed specification SysCLCS that  specifies for each 

node in a cluster its behavior contributing to the cluster 's part  in algorithm ~x. This is done by 

giving a node automaton NDCS for each non-leader node in a cluster and a leader automaton 

LECS for the leader node, as well as automata  LICS for the links (see Fig. 5). The correctness 

claim for this refinement then requires a proof that  the the composed system SysCLCS implements 

the cluster specification CLCS. This is the last claim for the correctness proof of the network 

synchronizer. It is due to the support  for modulari ty and hierarchical reasoning provided by the 

model of [LT], that  the results described are sufficient to establish tha t  the detailed node level 

specification DistSysS correctly implements the high level specification S. 

The above discussion has dealt with the safety properties of the algorithm. In the full paper 

we also give proofs of the liveness and complexity analysis of the algorithm, by reasoning directly 

about executions of the detailed system. 
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This paper shows how the properties of the I /O automaton model enable us to capture formally 

some of the important intuitions used in designing algorithms. We believe that with this model, 

it will not be difficult to prove the correctness of other algorithms whose design was guided by 

these principles of stepwise refinement and modularity. We also hope that the insights into the 

precise nature of modularity that are gained from this formalization will be useful to the algorithm 

designers themselves. 

2 I /O Automata 

The following is a brief introduction to a model that  is proving useful for describing and reasoning 

about distributed systems. The model is developed at length, with extensions to express fairness 

properties, in [LT], where proofs can be found of many of the claims made here. 

All components in our system will be modeled by I /O automata. An I /O automaton ~ has 

a set of states, some of which are designated as initial states. It has operations, each classified 

as either an input operation or an output operation, or an internal operation. Finally, it has a 

transition relation, which is a set of triples of the form (s',r,s), where s' and s are states, and r 

is an operation. This triple means that in state s', the automaton can atomically do operation 

r and change to state s. An element of the transition relation is called a step of the automaton. 

The output operations are intended to model the actions that  are triggered by the automaton 

itself, while the input operations model the actions that  are triggered by the environment of 

the automaton. Internal operations are used to model communication within the automaton 

(when we form an automaton from components, this will include communication between pieces 

of the automaton). We will always give the transition relation of an automaton by giving pre- 

and postconditions for each operation r .  We give the preconditions as predicates depending on 

s', and the postconditions as predicates depending possibly on both s' and s. These are to be 

understood as saying that (s',r,s) is in the transition relationship exactly when the preconditions 

are true of state s' and the postconditions are true of s' and s. 

Given a state s' and an operation lr, we say that ~r is enabled in s' if there is a state s for which 

(s',~r,s) is a step. We require the following condition. 

I n p u t  C o n d i t i o n :  Each input operation ~r is enabled in each state s'. 

This condition says that  an I /O automaton must be prepared to receive any input operation at 

any time. This is reflected in the fact that  input operations have empty preconditions. 

An execution of A is a (finite or infinite) alternating sequence s0,~rl, Sl,~r2,...,rn,Sn,... of states 

and operations of 4, beginning with a state, and (if finite) ending with a state. Furthermore, s o 
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is a start state of ~{, and each triple (s',~r,s) that occurs as a consecutive subsequence is a step of 

A. From any execution, we can extract the schedule, which is the subsequence of the execution 

consisting of operations only. Because transitions to different states may have the same operation, 

different executions may have the same schedule. We say that a schedule ~ of ~ can leave ~ in 

state s if there is some execution of A with schedule a and final state s. We say that an operation 

~r is enabled after a schedule ~ of A if there exists a state s such that ~ can leave ~ in state s and 

is enabled in s. 

Given a schedule ~ of automaton A, we define the corresponding external schedule ext(~) to 

be the subsequence of ~ consisting of those events that are occurrences of output operations or 

input operations (that is, we form ext(c~) by removing from ~ the internal operations). We define 

the behavior of 4, beh(~), to be the set of all sequences that are external schedules of A. Formally, 

beh(~l) = {ext(c~) : ~ is a schedule of A). If ~ and B are I /O automata, we say that B implements 

A if .4 and B have the same output and input operations, and beh(B) c beh(A). The intuitive 

meaning of this is that B can be safely used for any task for which ~/is satisfactory. It is clear that 

implementation is transitive, that is, if B implements A and C implements B then C implements 

4. When B implements ~ and ~ implements B, then we say that ~ and B are equivalent. 

We describe systems as consisting of interacting components, each of which is an I /O automa- 

ton. It is convenient and natural to view a system itself as an I/O automaton. Thus, we define a 

composition operation for I /O automata, to yield a new I/O automaton. A set of I /O automata 

may be composed if, for each component ~ the set of internal operations of .~ is disjoint from 

the set of all operations of the other components, and in addition, the sets of output operations 

of the various automata are pairwise disjoint. A state of the composed automaton is a tuple of 

states, one for each component, and the start states are tuples consisting of start states of the 

components. The operations of the composed automaton are those of the component automata. 

Thus, each operation of the composed automaton is an operation of a subset of the set of compo- 

nent automata. An operation is an output of the composed automaton exactly if it is an output 

of some component. An operation of the composed automaton is an internal operation exactly 

if it is an internal operation of some component. An operation of the composed automaton is 

an input operation exactly if it is not an output or internal operation of any component. (The 

output operations of a system are intended to be exactly those that are triggered by components 

of the system, while the input operations of a system are those that are triggered by the system's 

environment.) During an operation r of a composed automaton, each of the components that has 

operation ~r carries out the operation, while the remainder stay in the same state. 

An execution or schedule of a system is defined to be an execution or schedule of the automaton 
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composed of the individual automata of the system. If a is a schedule of a system with component 

4, then we denote by ~[.~ the subsequence of a containing all the operations of 4. Clearly, a l~ 

is a schedule of .~. The following temma expresses formally the idea that  an operation is under 

the control of the component of which it is an output. 

L e m m a  1 Let a t be a schedule of a system $, and let a = ~tTr, where ~r is an output operation 

of component 4 .  f f  a I ~ is a schedule of 4,  then c~ is a schedule of S. 

We now give the lemma that states that implementation is a compositional property. This is 

a major reason why modeling algorithms by I /O automata permits modular proofs of correctness. 

L e m m a  2 Suppose the automaton ~ is the result of eompoMng ~i ,  and B is the result of com- 

posing B i. I f  B i implements A i for each index i, then B implements 4. 

When we consider a system composed of several components, we are often not interested in the 

internal working of the system, and so we wish to ignore the operations that  model communication 

between the components. We therefore introduce the hiding transformation. If ~I is an automaton 

and ~r an output operation of .4, then the result of hiding r in .~ is the automaton with the same 

states, operations and transition relation as .~, but with r classified as an internal operation 

instead of an output operation. Note that the schedules of the automaton after hiding are exactly 

the same as the schedules of the original automaton, but the behavior, which is involved in 

proving implementation, has changed. Clearly if r is an operation of exactly one component of 

a system, the Yesult of hiding ~r in that  component and then composing the automata, is the 

same as composing the automata and then hiding r in the composition. We also introduce the 

transformation that  renames an operation of an automaton. So long as the renaming is done 

consistently throughout a system of automata,  and the new name is not already used for any 

operation of any component, then the result of renaming an operation and then composing is the 

same as the result of composing and then renaming. Finally we observe that  renaming an internal 

operation of an automaton, as long as the new name is not already used for an operation of the 

automaton, does not alter the behavior of the automaton. 

2.1 D i s t r i b u t e d  So lut ions  

We will use I /O automata to model both a global specification of the synchronizer, and the local 

components of the distributed solution that  we will give. Since the fundamental composition 

mechanism described above is the simultaneous occurrence at several automata of an operation, 

we have to be careful when modeling asynchronous communication. For example, it would not 
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be appropriate to have message passing as a single operation, shared by sender and receiver. 

Instead we give explicit automata to represent the communication links~ just  as we give an explicit 

automaton to represent each node. Sending a message is an operation that occurs simultaneously 

at the sender and the link. Similarly, receipt of a message is a shared operation between the 

link and the recipient. We use nondeterminism within the automaton for the link to capture the 

asynchrony of the communication network. Thus, we model an asynchronous unidirectional link 

from p to q, conveying messages from the set ~ ,  by the following automaton. 

Link Automaton: LIA{ (p,q) 

Inputs: 

send(p,q)M for M E Ai 

Outputs: 

rec(p,q)M for M E At 

state: 

multiset contents, initially empty 

transitions: 

send(p,q) M 

Postconditions 

s.contents -- s'.contents U M 

rec(p,q) M 

Preconditions 

M E s'.contents 

Postconditions 

s.contents -- s'.contents - M 

Suppose we are given a distributed problem. This will be specified by an automaton whose 

schedules are acceptable behaviors for a solution, together with a graph G describing the topology 

of the network on which a solution has to run, and an assignment loeale~ that gives for each 

operation of the specification automaton the node of the network at which it occurs. We now 

define what it means to say that a system of automata provides a distributed solution to this 

problem. This means that the automaton that results from composing the members of the system 
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and then hiding all operations that are not operations of the specification, is an implementation 

of the specification in the sense of the previous section, and in addition, the system satisfies the 

following conditions: 

1. The system consists of an automaton NODE(p) for each node p of the graph, together with, 

for each edge (p,q) of the graph G, two link automata LI(p,q) and LI(q,p) as given above 

for a suitable choice of message set. 

2. For each operation ~r of the system, either there is a node p such that ~r is an operation 

of the node automaton NODE(p) (and no other component), or there are nodes p and q 

so that  ~" is an input of NODE(p) and an output of LI(q,p) (and an operation of no other 

component), or there are nodes p and q so that r is an output of NODE(p) and an input 

of LI(p,q) (and an operation of no other component). 

3. Each operation ~r of the specification automaton is an operation of NODE(p), where p=locale(~r) 

is the node to which the operation is assigned, and of no other component. 

3 The  A l g o r i t h m  

The algorithm will run on a network whose topology is given as a connected graph G, described 

by giving for each node p a set of nodes neighbors(p). The nodes are partitioned into clusters, 

so that each cluster is connected. Each cluster's subgraph has a distinguished rooted spanning 

tree. This data is given as follows: for each cluster C there is a node leader(C), and for each node 

p E C there is another node parent(p), which is the next node on the path to leader(C). If p = 

leader(C) then parent(p) = nil. We let children(p) denote the set of nodes q such that parent(q) 

= p. We say that cluster D is a neighbor of cluster C, written D E Neighbors(C), if there are 

nodes p and q with p E C, q E D, and q E neighbors(p). For each pair of neighboring clusters, 

a single distinguished 'preferred' edge is chosen between them. This is indicated by giving for 

each node p a set preferred(p) of nodes that are neighbors of p along preferred edges. We say 

that a node is special if any of its descendants in the tree (that is, itself, or its children, or its 

children's children, etc.) have neighbors along preferred edges. We let specialchildren(p) denote 

the subset of children(p) containing special nodes. Thus when there are at least two clusters, the 

special nodes form the least subtree of a cluster's tree that has the same root and contains all the 

endpoints of preferred edges. 
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3 . 1  T h e  U s e  o f  t h e  S y n c h r o n i z e r  

We briefly discuss the architecture of the context in which the synchronizer is placed, and show 

how I/O automata can be used to model all the pieces of such a system. At each node of the 

asynchronous network is a proccess that executes the code for a graph algorithm in a synchronous 

system. We model the process at node p by an I /O automaton CLIENT(p), whose operations 

are synch-receive(p,i)~/ and synch-send(p,i)~, where 3/ is a collection of messages tagged with 

source or destination information. Round i of the synchronous algorithm at node p is begun when 

the automaton CLIENT(p) receives an input operation synch-receive(p,i))7, where the messages 

in the set M are those that were included with destination p in the sets of messages in preceding 

synch-send(q,i-1) operations. When the node has finished local processing of these messages, 

it performs an output operation synch-send(p,i)~V I for a new set of messages and destinations. 

Different synchronous algorithms will be described by different I /O automata, and we do not 

constrain the choice except by simple syntactic conditions, such as requiring each p not to perform 

a synch-send(p,i) operation unless a synch-receive(p,i) operation had occurred earlier, and not to 

perform a synch-send(p,i) operation if a synch-send(p,i) operation had already occurred. 

At each node of the network there is also a process that uses the asynchronous communication 

system to transmit the messages of the client algorithm, and also to send and receive acknowl- 

edgements for such messages. This process has the responsibility of notifying the synchronizer 

when all the round i messages of the client algorithm have been acknowledged, and it must also 

delay delivering the collected client algorithm round i messages until the synchronizer has given 

permission for the start of round i + l  at that node. We model this process at node p by an 

I /O automaton FRONT-END(p). The operations of CLIENT(p) include synch-send(p,i)~V and 

synch-receive(p,i)~/, which are shared with CLIENT(p). FRONT-END(p) also has operations 

send(p,q)M(i), rec(q,p)M'(i), send(p,q)ACK-M'(i), and ree(q,p)ACK-M(i), where M and M' are 

round i messages of the client algorithm. These operations are shared with link automata between 

p and q. Finally the interaction with the synchronizer is modelled by input operations GO(p,i), 

which indicate that all round i-1 messages being sent to p have already arrived (and that therefore 

they can be bundled into a set and delivered to the client algorithm at any time once the client 

has finished round i-l), and by output operations OK (p,i), which indicate to the synchronizer that 

acknowledgements have been received at p for all round i messages of the client algorithm that 

were sent from p. The full version of the paper includes a complete definition for the front-end 

automata. 

In the next section we wilt give a specification synchronizer automaton S(G), which uses 
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Figure 6: The whole system 



236 

global information about the OK(q,i) operations at all nodes to determine when to perform 

GO(p , i+ l ) .  In particular,  S(G) does not perform GO(p , i+ l )  until OK(q,i) has occurred for 

all q E neighbors(p). When S(G) performs GO(p , i+ l ) ,  every neighbor of p has received an 

acknowledgement for every round i message sent. In particular,  acknowledgements have been 

received for every round i message sent to p, and therefore every such message must have arrived 

at p. Thus FRONT-END(p)  will correctly deliver to CLIENT(p) all the round i messages in 

the synch-receive(p,i+l)  operation. It is straightforward to use the techniques of [LM] to turn 

this argument into a formal proof that  the system illustrated behaves (as far as each CLIENT 

automaton can tell) just  like a synchronous system, that  is, one in which the clients share their 

operations with a single communication system automaton, that  accepts collections of messages in 

synch-send input operations from all nodes, sorts out the destinations appropriately, and bundles 

the messages and delivers them in synch-receive output  operations after all client nodes have 

finished the previous round. In this paper,  we concentrate on the problem of showing that  

a complicated but  distr ibuted synchronizer implements the simple but  centralized specification 

synchronizer, where we illustrate the I /O automata  model 's  support  for compositional modularity. 

3 . 2  S p e c i f i c a t i o n  

We give a single specification automaton S(G), called a synchronizer for the graph G. This has an 

input operation OK(p,i),  which is an indication from the front-end at  node p that  every message 

it sent in round i has arrived at its destination. When every neighbor q of a node p has issued 

its OK(q,i-1) operation, the synchronizer can issue an output  operation GO(p,i),  which indicates 

to the front-end at node p that  it can commence round i of the synchronous algorithm as soon 

as the client has finished its local processing for round i- l ,  since there can be no more round i-1 

messages in transit  to p. 

Synchronizer: S(G) 

Inputs: 

OK(p,i) for p E G, i positive 

Outputs:  

GO(p,i) for p E G, i positive 

State: 

array OKrec[p,i], initially all false 

array GOsentIp,i], initially all false 



237 

transitions: 

OK(p,i) 

Postconditions 

s.OKrec[p,i] -- true 

CO(p,i) 

Preconditions 

i = 1 or (s'.OKrec[q,i-1] = true for all q E neighbors(p)) 

i = 1 or s'.GOsent[p,i-1] = true 

s'.GOsent[p,i] = false 

Postconditions 

s.GOsent[p,i] = true 

3 .3  T h e  D e t a i l e d  D i s t r i b u t e d  A l g o r i t h m  

We now give the distributed solution that is closely based on Awerbuch's algorithm "7, translated 

into the I /O automaton model. We give an automaton ND(p) for each node p of the graph that 

is not a leader of a cluster, and an automaton LE(C) for the leader of each cluster C. We also give 

link automata for each edge of the graph G. The detailed code is given in Appendix I, together 

with an account of the relationship between it and the code in [AwI. 

To help the reader understand the algorithm, we give an informal account, paraphrasing lAw], 

of the low level working of the system. Once a node p that is a leaf of its duster 's  tree has received 

the OK(p,i) input operation (indicating that the node is safe, that  is, every message that node 

sent in the i-th round has been received) p sends a SAFE(p,i) message to its parent in the tree. 

Any node p that is not a leaf nor the leader sends a SAFE(p,i) message to its parent only after it 

has both received the OK(p,i) input and also received SAFE(q,i) messages from all its children. 

Thus SAFE(p,i) is not sent until every node in the tree that is a descendant of p is safe. This 

pattern of communication, with a node passing a message to its parent only after receiving it from 

all its children, is a common paradigm in distributed graph algorithms, and is called convergecast. 

When the leader of cluster C has received SAFE(q,i) messages from all its children q, and also is 

known to be safe itself (that is, has received OK(p,i)), it issues the CLUSTEROK(C,i) operation. 

Once CLUSTEROK(C,i) has occurred, intercluster synchronization begins. The leader sends 
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each of its special children a CLUSTERSAFE(p,i)  message. In addit ion it sends CLUSTER- 

SAFE(p,i)  messages over any preferred edges that  originate at the leader. Each node p in the 

tree, after receiving a CLUSTERSAFE(q,i)  message from its parent q, sends CLUSTERSAFE(p,i)  

to its special children, and also along any preferred edges. Thus the CLUSTERSAFE messages 

are broadcast over the subtree of special nodes (this is another s tandard  communication pat- 

tern), and are also sent to neighboring trees. The cluster C uses a convergecast of READY(p,i) 

messages (over the subtree containing only special children) to detect the fact that  CLUSTER- 

SAFE(q,i)  messages have been received from all neighboring trees along preferred edges. When 

the leader of the cluster has received READY(q,i) from each of its children, and also has received 

CLUSTERSAFE(q' , i )  along any preferred edges that  go directly from the leader to neighboring 

trees, it issues the CLUSTERGO(C, i+I )  operation, which indicates the completion of intercluster 

synchronization for cluster C. 

Once the CLUSTERGO(C, i+I)  operation has occurred, and also the whole cluster is known 

to be safe (because the leader has received SAFE(q,i) messages from all its children, and also it 

has received OK(p,i) itself) the leader p can issue GO(p , i+ l )  (informing node p tha t  the next 

round can begin) and it can also send PULSE(p, i+I)  messages to each of its children. The 

PULSE(p , i+I )  messages are broadcast over the tree, and when they arrive at each node, that 

node is able to issue the GO(p , i+ l )  operation. 

We claim tha t  the collection of automata,  consisting of all the automata  LE(C) for all C, 

ND(p) for all non-leader nodes p, and LI(p,q) for all p and q such that  (p,q) is an edge of G, 

is a distr ibuted solution to the problem specified by the automaton S(G), the graph G, and the 

requirement that  the operations GO(p,i) and OK(p,i) be assigned to node p. Since it is clear that 

the system is properly distr ibuted,  all that  remains is to show tha t  the automaton DistSysS(G), 

the result of composing the automata  and then hiding all operations except GO(p,i) and OK(p,i), 

implements S(G). This will be done in Theorem 10. 

4 T h e  Ver i f i cat ion  

We now begin the process of verifying that the algorithm given implements the specification. First 

we divide the code at each node into two pieces, containing the operations and state relevant to 

inter- and intracluster synchronization, respectively. Then we give the specification SL for an 

intracluster synchronizer, and remark that the actual code gives an implementation of this using 

algorithm ft. Similarly we note that the collection of automata doing intercluster synchronization 

in one cluster implements the representative CLCS. In turn, CLCS acts as the whole cluster 
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should, as a piece contributing to intercluster synchronization using algorithm a. Then we give 

the specification of the coordinator CS, which represents intercluster synchronization, and note 

that algorithm a is a correct implementation of this. We prove formally that the combination of 

CS with the automata SL(C} implements the specification S, that  is, that  synchronization can 

be achieved by combining intra- and intercluster synchronization. Finally we combine all these 

results to see that the distributed algorithm ~ as described by the detailed code implements the 

global specification S. 

Although the subsidiary claims are given here in a particular bottom-up order, we note that 

these results are independent, and could be carried out separately and in any order, or even 

imported from other work (if available). 

4 . 1  T h e  D i v i s i o n  b e t w e e n  I n t e r -  a n d  I n t r a c l u s t e r  A l g o r i t h m s  

Following Awerbuch's informal correctness arguments, we will regard the activity of the system 

as consisting of both inter- and intracluster synchronization. The messages CLUSTERSAFE(p,i) 

and READY(p,i) are used for intercluster synchronization, while the messages SAFE(p,i) and 

PULSE(p,i), as well as the operations OK(p,i) and GO(p,i) are part of intracluster synchroniza- 

tion. The operation CLUSTEROK(C,i) serves to communicate from the intracluster synchronizer 

to the intercluster synchronizer, while CLUSTERGO(C,i) communicates the other way. Thus we 

give two sets of automata: NDCS(p), LECS(C) and LICS(p,q) to represent the intercluster syn- 

chronization, NDSL(p), LESL(C) and LISL(p,q) to represent the intracluster synchronization. 

The detailed code can be found in the full version of this paper, as it is extremely similar to the 

code of the full algorithm. Essentially we divide the operations, state variables and transition 

relationships of ND(p) between NDCS(p) and NDSL(p) so that each gets the operations, state 

variables and transitions relevant to its own part of the synchronization. Similarly we divide 

LE(C) into LECS(C) and LESL(C), and LI(p,q) into LICS(p,q) and LISL(p,q). 

It is clear that the composition of the automata NDCS(p) and NDSL(p) is equivalent to the 

automaton ND(p). The only difference, in fact, is that  the composition has two multisets for out- 

going messages, while ND(p) has only one multiset buffer. Similarly the composition of LECS(C) 

and LESL(C) is equivalent to LE(C), and the composition of LICS(p,q) and LISL(p,q) is equiv- 

alent to LI(p,q). Therefore DistSysS(G) is equivalent to DistSysS(G)', the result of composing 

all the automata mentioned in this subsection, and then hiding all the operations except GO(p,i) 

and OK(p,i). Our task will thus be to prove that DistSysS(G)' implements S(G). 
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4 . 2  A n  I n t r a c l u s t e r  S y n c h r o n i z e r  

The collection of automata that perform intracluster synchronization for a cluster C use algorithm 

8. The combined activity of these automata is to synchronize the cluster, and in addition to inform 

the intercluster synchronizer (via CLUSTEROK(C,i)) when the whole cluster is safe, and to delay 

the GO(p,i) at any node until all neighboring clusters are known to be safe. (The intercluster 

synchronizer reports this by CLUSTERGO(C,i).) Thus the behavior of the cluster as a whole can 

be specified by the following automaton: 

Modified Synchronizer for eluster C: SL(C) 

(This is a slightly modified synchronizer specified, with extra operations that interact with the 

intercluster synchronizer.) 

Inputs: 

OK(p,i) for p E C, i positive 

CLUSTERGO(C,i) for i positive 

Outputs: 

GO(p,i) for p E C, i positive 

CLUSTEROK(C,i) for i positive 

State: 

array OKrec[p,i], initially all false 

array GOsent[p,i], initially all false 

array CLUSTEROKsent[i], initially all false 

array CLUSTERGOrec[il, initially all false 

transitions: 

OK(p,i) 

Postconditions 

s.OKrec[p,i] = true 

CLUSTERGO(C,i) 

Postconditions 

s.CLUSTERGOrec[i] = true 

GO(p,i) 
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Preconditions 

i = 1 or (s'.OKrec[q,i-1] -- true for all q E Neighbors(p) N C) 

i = 1 or s'.GOsent[p,i-1] = true 

s'.CLUSTERGOrec[i] = true 

s'.GOsent[p,i] = false 

Postconditions 

s.GOsent[p,i] = true 

CLUSTEROK(C~i) 

Preconditions 

s'.OKrec[p,i] = true for all p E C 

s'.CLUSTEROKsent[i] = false 

Postconditions 

s.CLUSTEROKsent[i] = true 

In order to express formally the fact that the algorithm ~ is correct, we let SysSL(C) denote 

the result of composing the automata LESL(C), NDSL(p) for all p E C except leader(C), and 

LISL(p,q) for all p and q so that (p,q) is an edge of G and both p and q are nodes of C, and then 

hiding all the operations that are not operations of SL(C). Then we have the following lemma, 

whose proof is found in the full version of this paper. 

L e m m a  3 SysSL(C) implements SL(C). 

4 . 3  A C l u s t e r  R e p r e s e n t a t i v e  f o r  I n t e r c l u s t e r  S y n c h r o n i z a t i o n  

In giving his informal account of this algorithm, Awerbuch refers to the intercluster synchroniza- 

tion being performed by using algorithm a between the clusters. Thus, we give, for each cluster 

C, an automaton that specifies the activity of the whole cluster as a participant in intercluster 

synchronization, using algorithm a. Thus the cluster sends messages to its neighbors once it has 

heard (from CLUSTEROK(C,i)) that the cluster is safe, it receives messages from its neighbors 

indicating that they are safe, and performs CLUSTERGO(C,i) once all the neighboring clusters 

are known to be safe. 

Cluster representative: CLCS(C) 

Inputs: 
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CLUSTEROK(C, i )  for i a number  

rec(D,C)CLUSTERSAFE(D, i )  for D • Neighbors(C), i positive 

Outputs :  

CLUSTERGO(C, i )  for i positive 

send(C,D)CLUSTERSAFE(C, i )  for D • Neighbors(C), i positive 

state: 

array CLUSTERGOsent[ i ] ,  init ially all false 

array CLUSTERSAFErec[D,i] ,  initially all false 

mult iset  mess, init ially empty  

transi t ions:  

CLUSTEROK(C, i )  

Postcondit ions 

s.mess = s ' .mess U {(C,D)CLUSTERSAFE(C, i )  : D • Neighbors(C)} 

rec (D,C)CLUSTERSAFE (D,i) 

Postcondit ions 

s .CLUSTERSAFErec[D,i]  = true 

CLUSTERGO(C, i )  

Precondit ions 

i -- 1 or (s ' .CLUSTERSAFErec[D,i-1] ---- t rue for all D E Neighbors(C)) 

i = 1 or s ' .CLUSTERGOsent[ i ]  = true 

s ' .CLUSTERGOsent[ i ]  = false 

Postcondit ions 

s .CLUSTERGOsent[ i]  ---- t rue 

send(C,D) CLUSTERSAFE(C, i )  

Precondit ions 

(C,D)CLUSTERSAFE(C, i )  E s' .mess 

Postcondit ions 

s.mess = s' .mess - {(C,D)CLUSTERSAFE(C, i )}  
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We denote by SysCLCS(C) the system formed by composing all the au tomata  LECS(C), 

NDCS(p) for p • C - leader(C), and LICS(p,q) for p and q in C such that  (p,q) is all edge of G, 

then renaming send(p,q)CLUSTERSAFE(p,i)  as send(C,D)CLUSTERSAFE(C,i)  and rec(q,p)- 

CLUSTERSAFE(q,i)  as rec(D,C)CLUSTERSAFE(D,i)  when (p,q) is the preferred edge between 

C and D, and finally hiding all operations that  are not operations of CLCS(C). Then we have the 

following claim, that  the detailed algorithm in each cluster implements the required behavior. Its 

proof is found in the full version of this paper. 

L e m m a  4 SysCLCS(C) implements CLCS(C}. 

4 . 4  A n  I n t e r c l u s t e r  S y n c h r o n i z e r  

If we consider all the automata  CLCS(C) for each cluster C, together with link au tomata  LICS(C,D) 

(each of these is just  LICS(p,q) for (p,q) the preferred edge between C and D with operations 

renamed, with p replaced by C and q replaced by D), then these together perform algorithm 

to synchronize between the clusters. Thus we introduce an automaton that  is just  a specification 

synchronizer for the quotient graph formed by identifying all the nodes in a cluster together, 

except that  each state and operation name is prefixed by 'cluster ' .  

Intercluster Synchronizer: CS 

Inputs: 

CLUSTEROK(C,i) for C a cluster, i positive 

Outputs: 

CLUSTERGO(C,i) for C a cluster, i positive 

State: 

array CLUSTEROKrec[C,i], initially all false 

array CLUSTERGOsent[C,i], initially all false 

transitions: 

CLUSTEROK(C,i) 

Postconditions 

s.CLUSTEROKrec[C,i] = true 
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CLUSTERGO(C,i) 

Preconditions 

i = 1 or (s'.CLUSTEROKrec[D,i-1] = true for all D 6 Neighbors(C)) 

i = 1 or (s'.CLUSTERGOsent[C,i-1] =true} 

s'.CLUSTERGOsent[C,i] = false 

Postconditions 

s.CLUSTERGOsent[C,i] = true 

We denote by SysCS the automaton formed by composing the automata CLCS(C) for all 

clusters C, and LICS(C,D) for all pairs of clusters C and D that are neighbors, and then hiding 

all operations that are not operations of CS. The fact that algorithm a is correct is expressed 

simply by the following lemma, whose proof is given in the full version of this paper. 

L e m m a  5 SysCS implements CS. 

4 . 5  H i g h  L e v e l  S t r u c t u r e  

Consider an automaton SysS(G), which is formed by composing the intracluster synchronizers 

SL(C) for all clusters C, together with the intercluster synchronizer CS, and then hiding all 

the operations except GO(p,i) and OK(p,i). The fa~t that performing inter- and intracluster 

synchronization is a way to synchronize the whole graph, is expressed in the following simple 

statement: SysS(G) implements S(G). In order to prove this statement, we first give several 

results that  relate the schedules of the automata involved to the states in which the automata are 

left. First we discuss the specification automaton S(G). 

L e m m a  6 Let a be a schedule of S(G), and let s be the state of S(G) after a. Then 

1. s.OKrec[p,i]=true if and only if a contains OK(p,i}. 

e. s.GOsent[p,i]=true if and only if a contains GO(p,i}. 

Proof :  We give the proof of (1), as the proof of (2) is almost the same. We use induction on the 

length of a. If a is empty, then it does not contain OK(p,i), and s is the initial state, for which 

s.OKrec[p,i]=false. Thus suppose a = atr ,  and let s' be the state of S(G) after a'. If 7r is OK(p,i), 

then a contains OK(p,i), and by the postcondition of the operation OK(p,i), s.OKrec[p,i] = true. 

Otherwise r is an operation whose postconditions do not mention OKrec[p,i], and so we have 

s.OKrec[p,i] = true if and only if s'.OKrec[p,i] = true, which by the induction hypothesis occurs 
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if and only if a '  contains OK(p,i). But (since ~r is not OK(p,i)) we also have in this situation that 

a ~ contains OK(p,i) if and only if a contains OK(p,i). This completes the proof of (t). Q.E.D. 

We next give the lemmas about the state of the components of SysS(G). The proofs are almost 

identical to that for Lemma 6, and so are left to the reader. 

L e m m a  7 Let a be a schedule of CS, and let s be the state of CS after a. Then 

1. s.VLUSTEROgrec[C,i]--true if and only if a contains CLUSTEROK(C,i) .  

2. s.CLVSTERGOsent[C,i]=true if and only if ex contains CLUSTERGO(C,i) .  

L e m m a  8 Let a be a schedule of SL(C), and let s be the state of SL(C) after a. Then 

1. s.Ogrec[p,i]=true i /and only if ~ contains og(p, i ) .  

Z. s.GOsent[p,s']=true if and only if a contains GO(p,i). 

8. s.CLUSTEROKsent[i]=true if and only if a contains CLUSTEROK(C,i) .  

$. s.CLUSTERGOrec[i]=true if and only if a contains CLUSTERGO(C,i) .  

Now we can prove the claim above, which says that intracluster synchronization and intercluster 

synchronization combine to provide synchronization for the whole graph G. 

L e m r n a  9 SysS(G) implements S(G). 

Proof :  Since every input and output operation of S(G) is an input or output  of some component 

SL(C) from which the system SysS(G) is formed, we only need to prove that whenever a is a 

schedule of SysS(G), and fl denotes the subsequence of a consisting of the operations of S(G), 

then fl is a schedule of S(G). This is proved by induction on the length of a. If a is empty, then 

so is/3, so that fl is a schedule of S(G). So let us assume that a = a~Tr. Letting fit denote the 

subsequence of a ~ consisting of operations of S(G), we have by the induction hypothesis that fl~ is 

a schedule of S(G). If r is not an operation of S(G), then fl = fl', and we are done. Otherwise fl 

= / ~ ' r .  If r is OK(p,i), then ~r is an input to S(G), and so is enabled after any schedule of S(G), 

by the Input Condition, and therefore/~ is a schedule of S(G). 

Thus we suppose that r is GO(p,i). Let s denote the state of SL(C) after a', where C is the 

cluster containing p. Let t denote the state of S(G) after/~'. We have that  ~r is enabled (as an 

operation of SL(C)) in t, and we will deduce that it is enabled (as an operation of S(G)) in s. By 

the preconditions for r ,  t.GOsent[p,i] = false, and thus by Lemma 8 a' does not contain GO(p,i). 

Therefore/~' does not contain GO(p,i), and so by Lemma 6, s.GOsent[p,i] -- false. Also by the 
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preconditions, either i -- 1 or t.GOsent[p,i] = true. If i ~ 1, by Lemma 8 a '  contains GO(p,i-1), 

and thus/~' contains GO(p,i-1). Therefore, by Lemma 6, either i = 1 or s.GOsent[p,i-1] --- true. 

Suppose tha t  i ~ 1. Then the preconditions of ~r as an operation of SL(C) imply that 

t.CLUSTERGOrec[i] = true and that t.OKrec[q,i-1] = true for all q e Neighbors(p) N C. By 

Lemma 8, a' contains CLUSTERGO(C,i) and OK(q,i) for all q E Neighbors(p) M C. Now, by 

examining the preconditions for the operation CLUSTERGO (C,i) of the intercluster synchronizer 

CS, and Lemma 7, we see that the prefix of a '  preceding the CLUSTERGO(C,i) operation must 

contain CLUSTEROK(D,i-1) for all clusters D that are neighbors of C. Therefore, by the precon- 

ditions of the operation CLUSTEROK(D,i-1) of SL(D) and Lemma 8, we deduce that the prefix 

of a '  preceding each CLUSTEROK(D,i-1) contains the operations OK(q,i-1) for all nodes q in 

cluster D. Thus c~' (and hence/~') contains OK(q,i-1) for all q E Neighbors(p), as any such q is 

either in Neighbors(p) N C, or else is a member of a cluster D that is in Neighbors(C). By Lemma 

6, s.OKrec[q,i-1] -- true for any q e Neighbors(p). 

Thus we have shown that s.GOsent[p,i] = false, that i = 1 or s.GOsent[p,i-1] = true, and that 

i= l  or (s.OKrec[q,i-1] -- true for all q e Neighbors(p)). That is, we have shown that ~r is enabled 

in state s, completing the proof. Q.E.D. 

4 . 6  T h e  M a i n  T h e o r e m  

We can now combine the results given above to verify the correctness of the detailed algorithm 

for network synchronization. 

T h e o r e m  10 DistSysS(G) implements S(G). 

P r o o f :  We first consider DistSysCS, the automaton that results from composing all the automata 

NDCS(p), LECS(C) and LICS(p,q), and then hiding all operations except CLUSTERGO(C,i) and 

CLUSTEROK(C,i). By the associativity of composition (and the fact that renaming and hid- 

ing behave well in composition), this is equivalent to composing all the automata SysCLCS(C) 

and LICS(C,D), and then hiding the remaining operations except CLUSTERGO(C,i) and CLUS- 

TEROK(C,i). Since by Lemma 4, SysCLCS(C) implements CLCS(C) for each C, we have that 

DistSysCS implements SysCS by Lemma 2. Since by Lemma 5, SysCS implements CS, we deduce 

that DistSysCS implements CS. 

Now DistSysS(G) is equivalent to DistSysS(G)', the result of composing all the automata 

NDCS(p), NDSL(p), LECS(C), LESL(C), LICS(p,q) and LISL(p,q), and then hiding all oper- 

ations except GO(p,i) and OK(p,i). But DistSysS(G)' is, by the associativity of composition, 
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equivalent to the result of composing DistSysCS with all the automata  SysSL(C), and then hid- 

ing operations. Since by Lemma 3 SysSL(C) implements SL(C), and, as we saw above, DistSysCS 

implements CS, we can deduce from Lemma 2 that  DistSysS(G)'  implements SysS(G), the result 

of composing CS with all the automata  SL(C) and then hiding all operations except GO(p,i) and 

OK(p,i). By Lemma 9, SysS(G) implements S(G), and therefore DistSysS(G) '  implements S(G). 

Thus DistSysS(G) implements S(G). Q.E.D. 

5 S u m m a r y  a n d  Fur ther  D i r e c t i o n s  

In this paper we have offered a formal, rigorous proof of the correctness of Awerbuch's algorithm 

for network synchronization. We specified both the algorithm and the correctness condition using 

the I /O  automaton model. Our proof of correctness followed closely the intuitive arguments made 

by the designer of the algorithm by exploiting the model 's  natural  support  for such important  

design techniques as stepwise refinement and modularity. In part icular,  since the algorithm uses 

simpler algorithms for synchronization within and between 'clusters '  of nodes, our proof could 

have imported as lemmas the correctness of these simpler algorithms, if these had been proved 

before. Alternatively, the understanding of the modulari ty that  the proof gives us would allow us 

to see how to safely change the choices of implementation of the separate parts  of the synchronizer, 

independently of one another. Also, we clearly benefit from having carried out the correctness 

proof in the I /O automaton model which supports modularity, since the network synchronizer 

is often used as an 'off-the-shelf building block' component in a larger system, and proofs of the 

correctness of the system will be able to use our proof without change. 

In the future, we hope to study other network protocols in the same way. We still need to 

understand how to use the model to capture the intuition behind other, less clear-cut, forms of 

'modular i ty ' .  For example many network algorithms operate over spanning forests that  change 

with time, and so seem to be hard to represent as intermediate specifications implemented by 

collections of automata.  Nonetheless, we expect that  the I /O  automaton model will provide 

support  for verifying many protocols, once we understand the precise nature of the modularity. 
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A p p e n d i x  I: The  Deta i led  Code  for the  Synchronizat ion  

Algorithm 

We give the code for each automaton ND(p) for a non-leader node p, and also for each automaton 

LE(C) for the leader node of cluster C. Afterwards, we discuss the code for two operations, to 

give the interested reader some feeling for the model. We also discuss the way our algorithm is 

developed from the code in [Aw], which is written for an interrupt-driven model. 

Non-leader node: ND(p) 
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Inputs:  

rec(q,p)READY(q,i)  for q • children(p), i positive 

ree(q,p)CLUSTERSAFE(q, i)  for q • Preferred(p) or q = parent(p),  i positive 

OK(p,i) for i positive 

rec(q,p)SAFE(q,i) for q • children(p), i positive 

rec(q,p)PULSE(q,i) for q = parent(p),  i positive 

Outputs:  

send(p,q)READY(p,i)  for q = parent(p),  i positive 

send(p,q)CLUSTERSAFE(p, i )  for q • children(p) U Preferred(p), i positive 

GO(p,i), for i positive 

send(p,q)SAFE(p,i)  for q -- parent(p),  i positive 

send(p,q)PVLSE(p,i)  for q • children(p), i positive 

state: 

array CLUSTERSAFErec[q, i] ,  initially all false 

array READYrec[q,i], initially all false 

array OKree[i], initially all false 

array GOsent[i], initially all false 

array SAFErec[q,i], initially all false 

array pulse[i], initially all false 

multiset mess, initially empty 

transitions: 

rec(q,p)READY(q,i) 

Postconditions 

s.READYrec[q,i] = true 

if q E specialchildren(p) 

and (s'.READYrec[q',i] = true for all q' E (specialchildren(p)-{q})) 

and (s ' .CLUSTERSAFErec[q' , i ]  = true for all q '  • Preferred(p)) 

then s.mess = s' .mess U {(p,parent(p))READY(p,i)} 

rec(q,p) CLUSTERSAFE(q, i )  

Postconditions 
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s.CLUSTERSAFErec[q,i]  = t rue  

if q = parent(p)  

then  s.mess = s ' .mess U {(p ,p ' )CLUSTERSAFE(p, i )  : p '  • specialchildren(p) t2 Preferred(p)} 

if q • Preferred(p) 

and (s'.READYrec[q',i] = t rue for all q' • specialchildren(p)) 

and  (s ' .CLUSTERSAFErec[q ' , i ]  = t rue for all q '  • (Preferred(p)-{q})) 

then  s.mess = s ' .mess U {(p,parent(p))READY(p, i )}  

OK(p,i)  

Postcondit ions 

s.OKrec[i] = true 

if  ( s ' .SAFErec [q , i ]  = t rue  for all  q • c h i l d r e n ( p ) )  

t h e n  s . m e s s  = s ' . m e s s  U { ( p , p a r e n t ( p ) ) S A F E ( p , i ) }  

rec(q,p)SAFE(q,i)  

Postcondit ions 

s.SAFErec[q,i] = true 

if (s ' .SAFErec[q',i] = t rue for all q' • children(p)-{q} 

and  s'.OKrec[i] = true) 

then s.mess = s ' .mess U {(p,parent(p))SAFE(p, i )}  

rec(q,p)PULSE(q,i)  

Postcondit ions 

s.pulse[i] = true 

s.mess = s ' .mess t2 {(p,p ' )PULSE(p, i )  : p ' e  children(p)} 

send(p,q) READY(p,i)  

Precondi t ions 

(p,q)READY(p,i)  e s ' .mess 

Postcondit ions 

s.mess = s ' .mess - {(p,q)READY(p,i)} 

send(p,q) CLUSTERSAFE(p , i )  
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Precondit ions 

(p ,q)CLUSTERSAFE(p, i )  e s ' .mess 

Postcondit ions 

s.mess = sLmess - {(p,q)CLUSTEF~SAFE(p,i)} 

GO(p,i)  

Precondi t ions 

s'.pulse[i] = true 

i = 1 or s' .GOsent[i-1] = true 

s' .GOsent[i] = false 

Postcondit ions 

s.GOsent[i] = t rue 

send(p,q) SAFE(p,i)  

Precondi t ions 

(p,q)SAFE(p,i)  e s ' .mess 

Postcondit ions 

s.mess = s ' .mess - {(p,q)SAFE(p,i)} 

send(p,q) PULSE(p,i)  

Precondi t ions 

(p,q)PULSE(p,i)  e s ' .mess 

Postcondi t ions 

s.mess = s ' .mess - {(p,q)PVLSE(p,i)} 

Leader: LE(C) 

Inputs: 

rec(q,p)READY(q,i)  for p ---- leader(C), q e children(p),  i positive 

rec(q ,p)CLUSTERSAFE(q, i )  for p = leader(C), q C preferred(p), i positive 

OK(p,i)  for p = leader(C), i positive 

rec(q,p)SAFE(q,i)  for p = leader(C), q e children(p),  i positive 

Outputs :  

CLUSTERGO(C, i )  for i positive 
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send(p,q)CLUSTERSAFE(p, i )  for p = leader(C), q E children(p) u preferred(p), i positive 

GO(p,i),  for p ---- leader(C), i positive 

CLUSTEROK(C, i )  for i positive 

send(p,q)PULSE(p,i)  for p -- leader(C), q E children(p), i positive 

state: 

array READYrec[q,i], initially all false 

array CLUSTERSAFErec[q, i] ,  initially all false 

array clustergo[i], initially all false 

array OKrec[i], initially all false 

array GOsent[i], initially all false 

array SAFErec[q,i], initially all false 

array clustersafe[i], initially all false 

array pulse[i], initially all false 

array CLUSTEROKsent[i] ,  initially all false 

multiset mess, initially empty 

transitions: 

rec(q,p) READY(q,i)  

Postconditions 

s.READYrec[q,i] = true 

rec(q,p) CLUSTERSAFE(q,i) 

Postconditions 

s.CLUSTERSAFErec[q,i]  = true 

OK(p,i) 

Postconditions 

s.OKrec[i] =- true 

if (s'.SAFSrec[q,i] -- true for all q E children(p)) 

then (s.clustersafe[i] -- true 

if (s'.SAFErec[q,i] = true for all q ~ children(p) 

and s ' .clustergo[i+l] = true) 
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then (s.mess = s'.mess U {(p,q)PULSE(p,i+I) : p e children(p)} 

and s.pulse[i+l] = true)) 

r e c ( q , p ) S A F E ( q , i )  

P o s t c o n d i t i o n s  

s .SAFErec [q , i ]  = t r u e  

if ( s ' . S A F E r e c [ q ' , i ]  = t r u e  for  all  q '  e c h i l d r e n ( p ) - { q }  

a n d  s ' .OKrec [ i ]  = t rue )  

t h e n  s .c lus tersafe[ i ]  = t r u e  

if ( s ' . S A F E r e c [ q ' , i ]  = t r u e  for  all  q '  E c h i l d r e n ( p ) - { q }  

a n d  s ' .OKrec[ i ]  --  t r u e  a n d  s ' . c l u s t e r g o [ i + l ]  = t r u e )  

t h e n  ( s .mess  = s ' . m e s s  U { ( p , q ) P V L S E ( p , i + l )  : p ~ c h i l d r e n ( p ) )  

a n d  s . p u l s e [ i + l ]  --  t r u e )  

C L U S T E R G O ( C , i )  

P r e c o n d i t i o n s  

i = 1 o r  ( ( s ' .RE A D Yr ec [q , i - 1 ]  = t r u e  for  all  q E s p e c i a l c h i l d r e n ( p ) )  

a n d  ( s ' . C L U S T E R S A F E r e c [ q , i - 1 ]  = t r u e  for  all  q @ P r e f e r r e d ( p ) ) )  

i = 1 or  s ' . c lus te rgo[ i -1 ]  = t r u e  

s ' . c lus te rgo[ i ]  = fa lse  

P o s t c o n d i t i o n s  

s .e lus tergo[ i ]  = t r u e  

if (i = 1 o r  s ' . c lus te rsa fe [ i -1]  --  t r ue )  

t h e n  ( s .mess  --  s ' . m e s s  u { ( p , p ' ) P U L S E ( p , i )  : p '  C c h i l d r e n ( p ) }  

a n d  s.pulse[i]  = t r u e )  

s e n d  (p,q) C L U S T E R S A F E  (p,i) 

P r e c o n d i t i o n s  

( p , q ) C L U S T E R S A F E ( p , i )  E s ' . m e s s  

P o s t c o n d i t i o n s  

s .mess  = s ' . m e s s  - { ( p , q ) C L U S T E R S A F E ( p , i ) )  

GO(p,i) 
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Precondi t ions  

s'.pulse[i] = t rue 

i = 1 or s' .GOsent[i-1] = t rue  

s ' .GOsent[i] = false 

Postcondi t ions  

s.GOsent[i] = t rue  

CLUSTEROK(C,i) 

Precondi t ions  

s'.clustersafe[i] = t rue  

s ' .CLUSTEROKsent [ i ]  = false 

Postcondi t ions  

s .CLUSTERTOKsent [ i ]  = t rue 

s.mess = s ' .mess U { (p ,q )CLUSTERSAFE(p , i )  : q E (specialchildren(p) U Preferred(p))} 

send(p,q) PULSE(p, i )  

Precondi t ions  

(p,q)PVLSE(p, i )  E s ' .mess 

Postcondit ions 

s.mess = s ' .mess - {(p,q)PVLSE(p, i )}  

For each p and q for which (p,q) is an edge of G, we let LI(p,q) be a link au tomaton  from p to 

q, for the  message set J~ described next: if (p,q) is a preferred edge, then J~ is the set of messages 

C L U S T E R S A F E ( p , i )  for posit ive i; if p = parent(q)  then ~ is the set of CLUSTERSAFE(p , i )  

and PULSE(p, i )  for posit ive i; if p E children(q) then  J~ is the set of READY(p, i )  and SAFE(p, i)  

for posi t ive i; if (p,q) is nei ther  a preferred edge nor  a tree edge then  ~ is the empty  set (so in 

this case the link au tomaton  is the tr ivial  au toma ton  with no operations!).  

As an aid in unders tanding  the code above, we consider the pre- and postcondit ions for the 

operat ion r ec (q ,p )CLUSTERSAFE(q , i )  of the non-leader  node au tomaton  ND (p). This  is an input  

operat ion,  and so it has no preconditions,  since it can occur at any t ime. When it occurs, the fact 

tha t  it has happened  is recorded in the state by sett ing the value of CLUSTERSAFErec[q , i ]  to 

true.  The  other  effects depend on whether  this is a message being broadcast  over p 's  own cluster 

(this is the case if q is p's parent)  or whether  this is a message f rom a neighboring cluster (when 
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q is a neighbor of p over a preferred edge). In the first case, a CLUSTERSAFE(p,i) message to p'  

is added to the multiset of outgoing messages, for each p'  among p's children and also for each p'  

that is a neighbor along a preferred edge. In the second case, the node checks to see whether all 

the conditions are now satisfied, in order to play its part in the convergecast of READY messages. 

The convergecast can occur if a READY(q',i) message has been received from every special child q' 

(as recorded in the state of the READYrec[q',i] variables) and if a CLUSTERSAFE(q',i) message 

has been received from every neighbor q' along a preferred edge (except, of course, for q itself). 

If all of these have been received, the node places a READY(p,i) message for its parent, in its 

buffer of outgoing messages. 

As another example, consider the operation GO(p,i) for a non-leader node p. This can occur 

provided the PULSE(q,i) message has arrived from p's parent (a fact reflected by the variable 

pulse[i] being true) and if the previous GO operation (if any) has already occurred, and if the 

GO(p,i) itself has not occurred (this is necessary as the other conditions once true, remain true 

forever). The fact that the operation has occurred is reflected in the state by setting GOsent[i] 

to true. 

T h e  R e l a t i o n s h i p  t o  A w e r b u c h ' s  O r i g i n a l  A l g o r i t h m  

We have given the detailed algorithm for network synchronization by using I /O automata, where 

a node changes state after receiving a message, and a message can be sent (and the node's state 

can change accordingly) whenever the send(p,q)M operation is enabled. In his account, Awerbuch 

used the interrupt-driven model that is more common among designers of network algorithms, 

where the effects of a message receipt include (atomically) both changes in the state of the node 

involved and the sending of messages from that node, but  where messages are not generated 

spontaneously. As the reader can see, we have expressed the interrupt-driven code 'on receipt 

of M from q: change the value of variable v from v-old to v-new = f(v-old), and send M 1 to 

q l ,  M2 to q2, etc.' by an input operation rec(q,p)M with no precondition, and postcondition 

s.v = f(s'.v), s.mess --- s'.mess U {(p,ql)Ml,(p,q2)M2,...}. Also we have, for example, an output 

operation send(p,ql)M 1 with precondition (p,ql)M1 C s'.mess and postcondition s.mess = s'.mess 

- (p,ql)M1. Thus our model does not send out messages atomically on receipt of a trigger 

message, but rather places them in a multiset of outgoing messages, and sends them at some later 

time. We note that this difference is not important for the correctness of the algorithm. After 

all, even in the interrupt-driven model, the time of message receipt is delayed arbitrarily, and so 

additional uncertainty, about the delay before the message is sent, does not cause trouble. 
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Some other differences between our presentation of the algorithm and the original version in 

[Aw] should be mentioned. The first is that  we have 'hard-wired' the distinction between the 

leader of a cluster and other nodes, while Awerbuch gives a uniform algorithm for every node 

that branches, depending on whether or not the node is a leader. Also Awerbuch uses several 

subroutines that are called from different places, whereas we have included these 'in-line' at every 

occurrence. Another minor difference is that the events that we call CLUSTERGO(C,i) and 

CLUSTEROK(C,i) ,  and treat as operations of the leader of cluster C, are regarded by Awerbuch 

as the leader sending itself a message (PULSE and CLUSTERSAFE,  respectively). None of these 

differences is at all significant for the correctness or performance of the algorithm. 

There is one respect, however, in which our algorithm is significantly altered from the one given 

by Awerbuch. In that  version, each node delayed sending the READY message to its parent until 

it had received the CLUSTERSAFE message for its own cluster, as well as the CLUSTERSAFE 

message for every neighboring cluster along a preferred edge and the READY message from 

every child. In contrast, we allow the READY messages to be sent without waiting for the 

cluster itself to be safe. Instead we check only at the leader, before commencing the broadcast 

of PULSE messages. We therefore use only the subtree containing special nodes, rather than 

the whole tree, for the convergecast. Similarly, the CLUSTERSAFE messages are broadcast 

only over the subtree of special nodes. This alteration does not affect correctness, and may 

improve running time by allowing the convergecast of READY messages to overlap the broadcast 

of CLUSTERSAFE messages. It may also reduce the number of messages sent. The change also 

makes the verification simpler, as it increases the degree of independence between the inter- and 

intracluster synchronization. 


