
Introduction to the Theory of Nested Transactions

Nancy Lynch
Massachusetts Institute of Technology

Cambridge, Mass.

Michael Merritt
A. T. and T. Bell Laboratories

Murray 1 lill, New Jersey

July 21, 1986

1. Introduction
This paper develops the foundation for a general theory of nested transactions. We present a simple formal

model for studying concurrency and resiliency in a nested environment. This model has distinct advantages

over the many alternatives, the greatest of which is the unification of a subject replete with formalisms,

correctness conditions and proof techniques. The authors are presently engaged in an ambitious project to

recast the substantial amount of work in nested transactions within this single intuitive framework. These

pages contain the preliminary results of that project - a description of the model, and its use in stating and

proving correctness conditions for two variations of a well-known algorithm.

The model is based on I / 0 automata, a simple formalization of communicating automata. It is not complex

- it is easily presented in a few pages, and easy to understand, given a minimal background in automata

theory, l-Lach nested transaction and data object is modelled by a separate I/O automaton. These automata,

the system primitives, isstie requests to and receive replies from some scheduler, which is simply another I/O

automaton. Simple syntactic constraints on the interactions of these automata ensure, for example, that no

tran~ction requests the creation of the same child more than once. One scheduler, in this case the "serial

scheduler", interacts with the transactions and objects in a particularly constrained way. The "serial

schedules" of the primitives and the serial scheduler are the basis of our correctness conditions. Specifically,

alternative schedulers are required to ensure that nested transaction automata individually have hw, al

schedules which they could have in a serial schedule. In essence, each scheduler must "fool" the transactions

into believing that the system is executing in conjunction with the serial scheduler.

In the past ten years, an important and substantial body of work has appeared on the design and analysis of

algorithms for implementing concurrency control and resiliency in database tran~ction systems

[EGLT, RLS,BG,KS,Gr,I.aS, etc.]. Among this has been a number of results dealing with nested transactions

[R,Mo,LiS.LHJLSW,AM,BBGLS,BBG, etc.]. The present work does uot replace these other contributions,

but augments thcm by providing a unifying and mathematically ~actable li'amework for p~rsing and exploring

279

a variety of questions. 'llais previous work uses behavioral specifications of nested transactions, focusing on

what nested transactions do, rather than what they are. By answering the question "What is a nested

transaction?", I/O automata provide a powerthl tool for understanding and reasoning about them.

Some unification is vitally important to further development in this field. The plcthora and complexity of

existing formalizations is a challenge to the most seasoned researcher. More critically, it belies the argument

that nested transactions provide a clean and intuitive tool for organizing distributed databases and more

general distributed applications. It is particularly important to provide an intuitive and precise description of

nested transactions themselves, as in typical systems, these are the components which the application

programmer must implementl

The remainder of this paper is organi~od as fi)llows. The I/O automaton model is described in Section 2.

The rest of the paper contains an extended example, which establishes correctness properties for two related

Inck-based concurrcnt schedulers.

Section 3 contains simple definitions for naming nested transactions and objects, and for specifying the

operations (interactions) of these components. Simple syntactic restrictions on the orders of these operations

are presented, and then a particular system of 1/O automata is presented, describing the interactions of nested

transactions and objects with a serial scheduler. The interface between the serial scheduler and the

transactions provides a basis for the specification of correctness conditions for alternative schedulers. These

schedulers would presumably be more efficient than the serial scheduler. The strongest correctness condition,

"serial correctness," requires that all non-access transactions see serial behavior at their interface with the

system. The second condition, "correctness for T0," only requires that this serial interface be maintained at

the interface of the system and the external world. These interfaces also provide simple descriptions of the

environment in which nested transactions can be assumed to execute. A particular contribution is the clear

and concise semantics of ABORT operations which arises naturally from this fotanalization, The section

closes with some lemmas describing useful properties of serial systems.

Next, a lock-based concurrent system is presented. Section 4 contains a de~ription of a special type of

object, called a "resilient object", which is used in the concurrent system. Section 5 describes the remainder

of the concurrent system, the "concurrent scheduler." This concurrent scheduler includes "lock manager"

modules for all the objects; lock managers coordinate concurrent accesses.

Section 6 defines a system which is closely related to the concurrent system, the "weak concurrent system."

This system preserves serial correctness for those transactions whose ancestors do not abort (i.e.. those that are

not "orphans"). Since the root of the transaction tree, T0, has no ancestor, weak concurrent systems are

280

correct fi~r q'0" Section 7 contains correctness theorems for concurrent and weak concurrent sytems;

concurrent systems are serially correct, and weak concurrent systems are correct for '1 o. The stronger

condition is obtained for concurrent systems as a corollary to a result about weak concurrent systems.

It is interesting that the concurrent system algorithms are described in complete detail (essentially, in

"pseudocode"), yet significant formal claims abut, t their behavior can be stated clearly and easily. Despite the

detailed level of presentation, the underlying model is general enough that the results apply to a wide range of

implementations.

The style of the correctness proof is also noteworthy. It is a constructive proof, in that for each step of the

weak concurrent system and each non-orphan transaction, an exccution of the serial system is explicitly

constructed. The transaction's local "view" in the constructed exccution is identical to that in the original

weak concurrent execution, establishing the correctness of the weak cuncurrcnt system. One may think of the

weak concurrent system as maintaining consistent, parallel "world views" within which concurrent siblings

execute. As siblings return to their parent, these parallel worlds arc "merged" to form a single consistent

view. The locking policy prevents collisions between different views at the shared data. This intuition is

strongly supported and clarified by the correctness proof, which constrtucts the parallel views as different

serial schedules consistent with each sibling's local history. Lemmas illustrate how these serial schedules can

be mcrged as siblings return or abort to their parent.

Section 8 contains a discussion of the relationship of this work to previous results, and Section 9 contains an

indication of ~ e work that lies ahead.

This papcr is a shortcncd vcrsion of a complcte papcr with the same title, available as a technical report

from MIT or AT&T Bcll l.abs [I,M]. Whercas the present paper omits many easy lemmas and

straightforward proofs, tbc longer paper contains completely detailed proofs of all results.

2. Basic Model

In this section, we present the basic l /O automaton model, which is used to describe all components of our

systems. This model consists of rather standard, possibly infinite-state, nondeterministic automata that have

operation names associated with their state transitions. Communication among automata is described by

identifying their operations. This model is very similar to models used by Milner, ttoare [Mi,Ho] and others.

There are a few differences: first, we find it important to classify operations of any automaton or system of

automata as either "input" or "output" operations, of that automaton or system, and we treat these two cases

differently. Also, we allow identification of arbitrary numbers of operations from different automata, rather

than just pairwise identification as considercd in [Mi].

281

This paper is not intended to develop the basic model. For the general theory o f l / O automata, including a

unified treatment of finite and infinite behavior, we refer the reader to [1~'1]. In the present treatment of

concurrent transaction systems, we only prove properties of finite behavior, so we only require a simple

special case of the general model.

2.1. ! /O Automata

All components in our systems, transactions, objects and schedulers, will be modelled by I /0 automata. An

I/O automaton at has components states(A), start(at), out(A), in(at), and steps(A). Here, states(A) is a set of

states, of which a subset start(A) is designated as the set of start states. The next two components are disjoint

sets: out(at) is the set of output operations, and in(at) is the set of input operations. The union of these two

sets is the set of operations of the automaum. Finally, steps(A) is the transition relation of at, which is a set of

triples of the form (s',~r,s), where s' and s are states, and ~r is an operation. This triple means that in state s',

the automaton can atomically do operation rt and change to state s. An element of the transition relation is

called a step of at,

The output operations are intended to model the actions that are triggered by the automaton itself, while

the input operations model the actions that are triggered by the environment of the automaton. Our

partitioning of operations into input and output indicates that each operation is only triggered in one place.

We require the following condition.

Input Condition: For each input operation ~r and each state s', there exist a state s and a step (s',~r,s).

This condition says that an I /O automaton must be prepared to receive any input operation at any time.

This condition makes intuitive sense if we think of the input operations as being triggered externally. (In this

paper, this condition serves mainly as a technical convenience, but in [Lq], where infinite behavior is

considered, it is critical.)

An execution of at is an alternating sequence s0,rtl, sl,,rt2,.., of states and operations of at; the sequence may

be infinite, but if it is finite, it ends with a state. Furthermore, s o is in start(at), and each triple (s',~r,s) which

occurs as a consecutive subsequence is a step of at. From any execution, we can extract the schedule, which is

the subsequence of the execution consisting of operations only. Because transitions to different states may

have the same operation, different executions may have the same schedule.

If S is any set of schedules (or property of schedules), then at is said to preserve S provided that the

following holds, l f a = a'~r is any schedule of at, where ~r is an output operation, and a ' is in S, then a is in

S. That is, the automaton is not the first to violate the property described by S.

282

2.2. Composition of Automata

We describe systems as consisting of interacting components, each of which is an I /O automaton. It is

convenient and natoral to view systems as I/O automata, also. Thus, we define a composition operation for

I /O automata, to yield a new I /O automaton.

A set of I/(3 automata may be composed to create a syslem ~f, if all of the output operations are disjoint.

('l~qus, every output operation in ~f will bc triggered by exactly one component.) The system ;f is itself an I /O

automaton. A state of the composed automaton is a tuple of states, one for each component, and the start

states are tuptes consisting of start states of the components. The set of operations of :f, ops(~, is exactly the

union of the sets of operations of the component automata. The set of output operations of ~f, nuttY, is

likewise the union of the sets of output operations of the component automata, Finally, the set of input

operations of ~f, in(J3, is ops(~ - nuttY, the set of operations of :f that are not output operations of :f. The

output operations of a system are intended to be exactly those that are triggered by components of the system,

while the input operations of a system arc those that are triggered by the system's environment.

The triple (s',rt,s) is in the transition relation of Y if and only if for each component automaton A, one of the

following two conditions holds. Either ~r is an operation of Jl., and the projection of the step onto A is a step

of A, or else ~r is not an operation of A, and thc states corresponding to ..4. in the two tuples s' and s are

identical. Thus, each operation of the composed automaton is an operation of a subset of the component

automata. During an operation ~r of ~f, each of the components which has operation ~r carries out the

operation, while the remainder stay in the same state, Again, the operation w is an output operation of the

composition if it is the output operation of a component - otherwise, ~r is an input operation of the

composition, t An execution of a system is defined to be an execution o f the automaton composed of the

individual automata of the system. I r a is a schedule of a system with component Jr, then we denote by al.£

the subscquence of a containing all the operations of..¢. Clearly, a i d is a schedule of A.

Lemma I: l.ct a" be a schedule of a system ~, and let a = a ' r t , where rr is an output operation
of component ,.L l f a l A is a schedule of Jr, then a is a schedule of~f.

1Note that our model has chosen a particular convention for identifying operations of different components in a sy~em: we simply
identify.those with the ~me name. This convention is simple, and sufficient for what we do in this paper, llowever, when this work is
extended to more complicated systems, it may be expedient to generalize the convention for identifying operations, to permit reuse of the
same operation name internally to different components.. 'Ibis will require introducing a renaming operator for operations, or else
defining composition with respect to a designated equivalence relation on operations. We leave this for later work.

283

3. Serial S y s t e m s

In this paper, we define three kinds of systems: "serial systems" and two types of "concurrent systems".

Serial systems describe serial execution of transactions. Serial systems are defined for the purpose of

providing a correctness condition for other systems: that the schedules of the other systems should "look

like" schedules of the serial system to the transactions. As with serial schedules of single-level transaction

systems, our serial schedules are too inefficient to use in practice. Thus, we define systems which allow

concurrency, and which permit the abort of transactions after they have performed some work. We then

prove that the schedules permitted by concurrent systems are correct.

In this section, we define "serial systems". Serial systems consist of "transactions" and "basic objects"

communicating with a "serial scheduler". Transactions and basic objects describe user programs and data,

respectively. The serial scheduler controls communication between the other components, and thereby

defines the alk~wable orders in which the transactions may take steps. All threc types ofsystcm components

are modelled as ! /O automata.

We begin by defining a structure which describes the nesting of transactions. Namely, a system type is a

four-tuple (~2:parent,O,V), where T, the set of transaction names, is organized into a tree by the mapping

parent:~f--, T, with '1 o as the root. In referring to this trec, we use traditional terminology, such as child, leaf,

least common ancestor (lca), ancestor and descendant. (A transaction is its own ancestor and descendant.)

The leaves of this tree are called accesses. The set 0 denotes the set of objects; formally, 0 is a partition of the

set of accesses, where each element of the partition contains the accesses to a particular object. The set V is a

set of values, to be used as return values of transactions.

The tree structure can be thought of as a prcdefined naming scheme for all possible transactions that might

ever bc invoked. In any particular execution, however, only some of these transactions will actually take

steps. We imagine that the tree structure is known in advance by all components of a system. The tree will, in

general, be an infinite structure.

"llae classical transactions of concurrency control theory (without nesting) appear in our model as the

children of a "mythical" transaction, "1 O, the root of the transaction tree. (In work on nested transactions, such

as ARGUS [LiS,LHJI,SW], the children o fT 0 are often called "top-level" transactions.) It is very convenient

to introduce the new root transaction to model the environment in which the rest of the transaction system

runs. Transaction T 0 has operations that describe the invocation and return of the classical transactions. It is

natural to reason about T 0 in much the same way as about all of the other transactions, although it is

distinguished from the other transactions by having no parent transaction. Since committing and aborting are

operations which take place at the parent of each transaction (see below), T 0 can neither commit nor abort.

284

Thus, a commit or abort of a top-level transactiun m 'F 0 is an irreversible step.

The internal nodes of the tree model transactions whuse function is to create and manage subtmnsactions,

but not to access data directly. The only transactions which actually access data are the leaves of the

transaction tree, and thus they are distinguished as "accesses". The partition 0 simply identifies those

transactions which access the same object.

A serial system of a given system type is the composition of a set of I /O automata. This set contains a

transaction for each internal (i.e. non-leaf, non-access) node of the transaction tree, a basic object for each

element of 0 and a serial scheduler. These automata are described below. (I fX is a basic object associated

with an element % of the partition O, and T is an access in %, we write TE accesses(X) and say that "T is an

access to X".)

3.1. T ransac t ions

This paper differs from earlier work such as [Ly,Go,We] in that we model the transactions explicitly, as I /O

automata. In modelling transactions, we consider it very important not to constrain them unnecessarily: thus,

we do not want to require that they be expressible as programs in any particular high-level programming

language. Modelling the transactions as I/O automata allows us to state exactly the properties that are

needed, without introducing unnecessary restrictions or complicated semantics,

A non-access transaction T is modelled as an I /O automaton, with the following operations.

Input opcrations:
CREATE('D
COMM IT(T',v), for T' £ children(T) and v £ V
ABORT(T'), for T' C children(T)

Output operations:
RFQUEST-CREATE(T ') , for T' £ children(T)
REQUEST-COMMIT(T,v) , for v E V

The CREATE input operation "wakes up" the transaction. The R E Q U E S T - C R E A T E output operation is

a request by T to create a particular child transaction.~l'he COMMIT input operation reports to T the

successful completion of one of its children, and returns a value recording the results of that child's execution.

The ABORT input operation reports to T the unsuccessful completion of one of its children, without

returning any other information. We call COMMIT(T',v), for any v, and ABORT(T') return operations for

2Note that there is no provision for T to pa~s information to its child in this request. In a programming language. T might be
permitted to pass parameter values to a subtransaction. Although this may be a convenient descriptive aid, it is not necessary to include
in it the underlying formal model. Instead, we consider transactions that have different input parameters to be different tran~ctions.

285

transaction T'. The REQUI~ST-COMMIT operation is an announcement by T that it has finished its work,

and includes a value recording the rcsults of that work.

It is convenient to use two ,separate operations, P, EQUFLST-CI~,EATE and CREATE, to describe what

takes place when a subtransaction is activated. The R E Q U E S T - C R E A T E is an opcration of the

transaction's parent, while the actual CREATE takes place at the subtransaction itself. In actual systems such

as ARGUS, this separation does occur, and the distinction wilt be important in our results and proofs. Similar

remarks hold for the R E Q U E S T - C O M M I T and COMMIT operations. 3 We leave the executions of

particular transaction automata largely unspecified; the choicc of which children to create, and what value to

return, will depend on the particular implementation. For the purposes of the schedulers studied here, the

transactions (and in large part, the objects) are "black boxes." Nevertheless, it is convenient to assume that

schcdttles of transaction automata obey certain syntactic constraints. Thus, transaction automata are required

to preserve welt-formedness, as defined below.

We recursively define well-formedness for sequences of operations of transaction T. Namely, the empty

schedule is well-formed. Also, if a = a'~r is a sequence of operations o fT , where ~ is a single operation,

then a is well-formed provided that a ' is well-formed, and the following hold,

• If~r is CI~,EATE(T), then
(i) there is no CI~,EA'I'E(T) in a ' .

• If lr is COMM IT(T',v) or ABORT(T') for a child "1" ofT, then
(i) REQUEST-CREATF~'I") appears in a ' and
(it) there is no return operation for T' in a ' .

• If~r is R E Q U E S T - CREATF~(T') for a child T' ofT, then
(i) there is no I~,EQUEST- CRI~,ATE(T ') in a '
(ii) there is no Rb~UEST-COMMIT(T) in a ' and
(iii) CREATE(T) appears in a ' .

• lf~r is a R E Q U E S T - C O M M I T for T, then
(i) there is no R E Q U E S T - C O M M I T for T in a ' and
(it) CREATE(T) appears in a ' .

These restrictions are very basic; they simply say that a transaction does not get created more than once,

does not receive repeated notification of the l~tes of its children, does not receive conflicting information

3Note that we do not include a REQUEST- ABORT operation for a transaction: we do not model the situation in which a transaction
decides that its own existence is a mistake. Rather. we a.~sign decisions to abort transactions to another component of the system, the
scheduler. In practice, the scheduler must have some power to decide to abort transactions, a.s when it detects deadlocks or failures. In
ARGUS, transactions arc permitted to request to ahorl: we regard this request simply as a "hint" to the scheduler, to restrict its allowable
executions in a particular way. "lhis operation could be made explicit, constraining the scheduler to abort the requesting transaction,
without substantively changing the model or results°

286

about the fates of its children, and does not receive information about the fate of any child whose creation it

has not requested; aluL a transaction does not perform any output operations before it has been created or

after it has requested to commit, and does not request the creation of the same dfild more than once. Except

for these minimal conditions, there are no restrictions on allowable transaction behavior. For example, the

model allows a transaction to request to commit without discovering the fate of all subtran~actions whose

creation it has requested. Also, a transaction can request creation of new subtransactions at any time, without

regard to its state of knowledge about subtransactions whose creation it has previously requested. Particular

programming languages may choose to impose additional restrictions on transaction behavior. (An example is

ARGUS, which suspends activity in transactions until subtransactions complete.) However, our results do not

require such restrictions.

3.2. Basic Objects

Recall that 1/O automata are associated with non-access transactions only. Since access transactions model

abstract operations on shared data objects, we associate a single I/O automaton with each object, rather than

one for each access. The operations for each object are just the CREATE and REQUEST-COMMIT

operations for all the corresponding access transactions. Although we give these operations the same names as

the operations of non-access transactions, it is helpful to think of file operations of access transactions in other

terms also: a CREATE corresponds to an invocation of an operation on the object, while a

REQUEST-COMMIT corresponds to a response by the object to an invocation. Actually, these CREATE

and REQUEST- COMM IT operations generalize the usual invocations and responses in that our operations

carry with them a designation of the position of the access in the transaction tree. We depart from the

traditional notational distinction between creation of subtransactions and invocations on objects, since the

common terminology for access and non-access transactions is of great benefit in unifying the statements and

proofs of our results. Thus, a basic object X is modelled as an automaton, with the following operations.

Input operations:
CREATE(T), for T in accesses(X)

Output operations:
REQUEST- COMM IT(T,v), for T in accesses(X)

The CREATE operation is an invocation of an access to the object, while the RFQUEST-COMMIT is a

return of a value in response to such an invocation.

As with tran~ctions, while specific objects are left largely unspecified, it is convenient to require that

schedules of basic objects satisfy certain syntactic conditions. Thus, each basic object is required to preserve

wetl-formedness, defined below.

287

l.et a be a sequence of operations of basic object X. Then an access T to X is said to be pending in a

pawided that there is a CREATE(T), but no RFQUEST-COMMIT for % in a. We define well-fomwdness

for sequences of operations of basic objects recursively. Namely, the empty schedule is well-formed. Also, if

a = a'~" is a sequence of operations of basic objcct X, where ~r is a single operation, then a is well-formed

provided that a ' is well-formed, and the following hold.

• lf~r is CREATE(T), then
(i) there is no CREATE(T) in a', and
(ii) there are no pending accesses in a' .

• I f~ is I~:EQUEST-COMM rr for T, then
(i) there is no REQUEST-COMMIT for T in a', and
(ii) CREATI~T) appears in a'.

These restrictions simply .say that the same access does not get created more than once, nor does a creation

of a new access occur at a basic object before the previous access has completed (i.e. requested to commi0;

also, a basic object does not respond more than once to any access, and only responds to ,accesses that have

previously been created.

3.3. Serial Scheduler

The third kind of component in a serial system is the serial scheduler. The serial schcduler is also modelled

as an automaton, The transactions and basic objects have been specified to be any I/O automata whose

operations and behavior satisfy simple syntactic restrictions. The serial scheduler, however, is a fully specified

automaton, particular to each system type. It runs transactions according to a depth-fit,st traversal of the

transaction tree. The serial scheduler can choose nondeterministically to abort any transaction after its parent

has requested its creation, as long as the transaction has not actually been created. In the context of this

scheduler, the "semantics" of an ABORT(q) operation are that transaction T was never created. The

opcrations of the serial scheduler are as follows.

Input Operations:
l~. EQU E S T - CRIb:ATE(T)
REQUFST- COM M rr('l,v)

Output Operations:
CREA'I'F~T)
COMMIT(T,v)
ABORT(T)

The REQUEST-CREATE and REQUEST-COMMIT inputs are intended to be identified with the

corresponding outputs of transaction and object automata, and correspondingly for the CREATE, COMMIT

and ABOWF output operations. Each state s of tile serial scheduler consists of four sets:

288

create-requested(s), created(s), commit-requested(s), and returned(s). The set commit-requested(s) is a

set of (transaction,value) pairs. The others are sets of transactions. There is exactly one initial state, in which

the set c rea te- requested is {'Io}, and the other sets are empty.

The transition relation consists of exactly those triples (s',rt,s) satisfying the pro- and postconditions below,

where ~r is the indicated operation. For brevity, we include in the postconditions only those conditions on the

state s which may change with the operation, l fa component ofs is not mentioned in the postcondition, (such

its returned(s) in the postcondition for REQUEST-CREATE(T)), it is implicit that the set is the same in s'

and s (that returncd(s') = returned(s), in this example). Note that here, as elsewhere, we have tried to specify

the component as nondetcrministically as possible, in order to achieve the greatest possible generality for our

results.

• R EQ U E S T - C R EA'I'I?,(T)
Postcondition:
create-requested(s) = create-rcquested(s ')O {q]

• REQUEST- COM M IT(T,v)
Postcondition:
commi t - requested(s) = commi t - rcquested(s') U {(T,v)}

• CREATE(T)
Precondition:
T E c rea te - requested(s') - crcated(s')
siblings(T) I"1 created(s') C returned(s')
Postcondition:
created(s) = created(s')U {T}

• COM MITfl',v)
Precondition:
fl',v) E commi t - requested(s')
T ~ returned(s')
children(T) f'l create-requcsted(s') C returned(s')
Postcondition:
returned(s) = returned(s') U {T}

• AI~ORT(T)
Precondition:
T E c rea te - requested(s') - created(s')
siblings(T) f-1 created(s') C returned(s')
Postcondition:
created(s) = crcated(s') U {T}
returned(s) = returned(s')U {T}

' lhe input operations, REQUEST-CREATE and REQUEST-COM/VlIT, simply result in the request

being recorded. A CREATE operation can only occur if a corresponding REQUFST-CREATE has

289

occurred and the CREATE has not already occurred. The second precondiition on the CREATE operation

says that the serial scheduler does not create a transaction until all its previously created sibling transactions

have returned. That is, siblings are run sequentially. The precondition on the COMMIT operation says that

the scheduler does not allow a transaction to commit to its parent until its children have returned. The

precondition on the ABORT operation says that the scheduler does not abort a transaction while there is

activity going on on behalf of any of its siblings. That is, aborted transactions are run sequentially with

respect to their siblings.

3.4. Serial Systems and Serial Schedules

In this subsection, we define serial systems precisely and provide some useful terminology for talking about

them.

The composition of transactions with basic objects and the serial scheduler for a given system type is called

a serial system. Define the serial operations to be those operations which occur in the serial system:

REQUEST-CREATES, REQUEST-COMMITS, CREATES, COMMITS and ABORTS. The schedules

of a serial system are called serial schedules. The non-access transactions and basic ohjects are called the

system primitives. (Recall that each basic object is an automaton corresponding to a set of access transactions.

Thus, individual access transactions are not considered to be primitives.)

Rccatl that the operations of the basic objects have the same syntax as transaction operations. It is

convenient to refer to CREATE(T) and REQUEST-COMMIT(T) , when T is an access to basic ohject X,

both as operations of transaction T and of object X. To avoid confusion, it is important to remember that

there is no transaction automaton associated with any access operation.

For any serial operation ~t, we define transaction(~r) to be the transaction at which the operation occurs.

(For CI~EATE(T) operations and I~.FQUEST-COMM1T operations for T, the transaction is T, while for

REQUEST-CREATE(T) operations, and COMMIT and ABORT operations for T, the transaction is

parent(T).) For a sequence a of serial operations, transaction(a) is the set of transactions of the operations in

0t.

Two sequences of serial operations, a and a', are said to be equivalent provided that they consist of the

same operations, and alP = a'JP for each primitive P. Obviously, this yields an equivalence relation on

sequences of serial operations.

We let alT denote the subsequence of a consisting of operations whose transaction is T, even if T is an

access. (This is an extension of the previous definition of afT, as accesses are not component automata of the

290

serial system.)

Let a be a sequence of serial operations. We say that a transaction T is live in a provided that a

CREATE(T), but no COM M IT(T,v) or AIIORT(T), it.curs in a. We say that transaction T' is visible to T in a

provided that for each ancestor T" of T' which is a proper descendant of Ica(T,T'), st)me COMM IT(T",v)

occurs in a. (In particular, any ancestor of T is visible to T in a,) For sequence a and transaction T, let

visible(a.T) be the subsequence of a consisting of operations whose transactions are visible to T in a, (These

include access transactions T'.) We say that transaction T sees everything in a provided that visible(a,T) = a.

This is the same definition of visibility as appears, in a different model, in [l.y]. Visibility captures an

intuitive notion suggested by the name: the transactions visible to a transaction T in a are those whose effects

T is permitted to "see" in a, If transaction "I" is visible to transaction T in a, it means that descendants o f T

may have passed to T information about T', obtained by accessing objects that were previously accessed by

descendants ofT' .

if a is a sequence of operations, not necessarily all serial, then define serial(a) to be the subsequence of a

consisting of the serial operations. We say that T is live in a provided that it is live in serial(a). We say that ~I ~

is visible to T in a i f ' l" is visible to T in serial(a), and define visible(a,T) to be visible(serial(a),T). Also, T

sees everything in a provided that T sees everything in serial(a). Similarly, define transaction(a) =

transaction(serial(a)).

3.5. Correctness Condition

We use serial schedules as the basis of our correctness definitions. Namely, we say that a sequence of

operations is serially correct for a primitive P providcd that its projection on P is identical to the projection on

P of some serial schedule. We say that any sequence of operations is serially correct if it is serially correct for

every non-access transaction. That is, a "looks like" a serial schedule to every non-access transaction.

In the remainder of this paper, we define two systems: concurrent systems and weak concurrent systems.

We show that schedules of concurrent systems are serially correct, and that schedules of weak concurrent

systems are serially correct for T 0. Thus, we use the serial scheduler as a way of describing desirable behavior,

just as serial schedules describe desirable behavior in more classical concurrency control settings (those

without nesting). Then serial correctness plays the role in our theory that serializability plays in classical

settings.

Note that our correctne~ conditions are defined at the transaction interface only, and do not constrain the

object interface. We believe that this makes the conditions more meaningful to users, and more likely to

291

suffice for a large variety of algorithms, which may use a variety of back-out, locking or version schemes m

implement objects, Previous work has focussed on correctness conditions at the object interface [EGIT, etc.].

While we believe that object interfi~ce conditions are important, their proper role in the theory is not to serve

as the basic correctness condition. Rather, they are useful as intermediate conditions for proving correctness

of particular implementations.

"111e serial correctness condition says that a schedule ct must took like a serial schedule to each non-access

transaction; this allows for the possibility that a might look like different serial schedules to different non-

access transactions. This condition may at first seem to be too weak. It may seem that we should require that

all transactions see a projection of the same serial schedule. But this stronger condition is not satisfied by most

of the known concurrency control algorithms. Also, the serial correctness condition is really not as weak as it

may seem at first because T 0, the root transaction, is included among the transactions to which a must appear

serial. As discussed above, transaction T 0 can be thought of as modelling the environment in which the rest of

the transaction system runs. Its I~EQUEST-CI~,I'ATE operations correspond to the invocation of top-level

transactions, while its COMMIT and ABORT operations correspond to return values and external effects of

those transactions. Since t~'s projection on T 0 must be serial, the environment of the transaction system will

see only results that cottld arise in a serial execution.

3.6. Properties of Serial Systems

In this subsection, we give a pair of lemmas which describe ways in which serial schedules can be "cut and

pasted" to yield other serial schedules. These lemmas are used in the proof of the main theorem, in Section 7.

The proofs are omitted from this paper, but appear in [LM]. [LM] also contains many additional interesting

properties of the behavior of serial systems.

Lemma 2: Let aflICOMMIT(T',u) and aft2 be two serial schedules and T, T' and T" three
transactions such that the following conditions hold:
(1) T' is a child o fT" and T is a descendant o fT" but not of 'F ,
(2) T' sees everything in aft l'
(3) T sees everything in aft2,
(4) a = visible(afll,T") = visible(afl2,T")and
(5) no basic object has operations in both fl | and f12"
Then aft ICOMM1T(T',u)fl2 is a serial schedule.

Lemma 3: 1,et aABOP, T(T') and aft be two serial schedu!es, and let T, T' and T" be
transactions, such that the following conditions hold:
(1) T' is a child o fT" and T is a descendant o fT" but not ofT' ,
(2) T sees everything in aft, and
(3) a = visible(a,T") = visible(aft;l"').
Then aABORT(T')fl is a serial schedule.

292

4. Resilient Objects
}laving stated our correctness conditions, we are now ready to begin describing implementations and

proving that they meet the requiremcnts. This section and the next are devoted to the description of a

concurrent system which permits the abort of transactions that have pert~)rmed steps. An important

component of a concurrent system is a new kind of object called a "resilient object," which we introduce in

this section. A resilient object is similar to a basic object, but it has the additional capability to undo

operations of transactions that it di~overs have aborted.

Resilient objects have no capabilities for managing concurrency: rather, they assume that concurrency

control is handled externally (by lock manager components of the scheduler). This section defines resilient

objects. The complete paper [I.M] presents some of their properties, and also describes and proves correct a

particular implementation of resilient objects, constructed by keeping multiple versions of corresponding

basic objects.

4.1. Definitions
Resilient object R(X) mimics the behavior of basic object X, but has two additional input ~)perations,

INI~'ORM-COMMIT-AT(X)OF(T) and INFORM-ABORT-NI ' (X)OF(T) , for every transaction

T. Upon receiving an INFORM-Ai~OIT, T-AT(X)OF(1) , R(X) erases any effects of accesses which are

descendants ofT. This property is made formal as the "Resiliency Condition" below.

R(X) has the following operations, which we call R(X)-operations.

Input Operations:
CREATF(T), T an access to X
I N F O R M - COM M I T - AT(X)OF(T)
I N F O R M - ABORT- AT(X)OF(T)

Output Operations:
RFQUEST-COMMIT(T,v), T an access to X

In order to describe well-formedness for resilient objects, we require a technical definition t~)r the set of

transactions which are active after a sequence of R(X)-operations. Roughly speaking, the transactions which

are active are those on whose behalf the object has carried out some activity, but whose fate the object does

not know.

The definition is rccursive on the length of the sequence of R(X) operations. Namely, only T 0 is active after

the empty sequence. Let a = fl~r, where ~r is a single operation, and let A and B denote the sets of active

transactions after a and t , respectively. If rt is CREATE(T), then A = B U {T}. If ~r is a

293

R E Q U E S T - C O M M I T fi~r T, then A = B. If ~r is 1NFORM-COMMIT-AT(X)OF(T) , and i f T is in B,

then A = (11 - {T}) LI {parent(T)}; i fT is not in 11, then A = B. lf~r is I N F O R M - A B O R T - A T (X) O F (T) ,

then A = B - descendant~'i).

Now we define well.formedness for sequences of R(X) operations. Again, the definition is recursive.

Namely, the empty schedule is well-formed. Also, if a = a'~r is a sequence of R(X)-operations, then a is

well-formed provided that a ' is well-formed, and the following hold.

• lf~t is CREATE(T), then
(i) there is no CREATF~T) in a ' ,
(ii) all the transactions which are active after a ' are ancestors ofT.

• I f ~ is a REQUFkST-COMMIT for T, then
(i) there is no R E Q U E S T - C O M M I T forT in a ' , and
(ii) T is active after a ' .

• I f~ is I N F O R M - C O M M I T - AT(X)OF'(T), then
(i) there is no I N F O R M - A I l O R T - A T (X) O F (T) in a ' , and
(ii) i fT is an access to X, then a R E Q U E S T - C O M M I T for T occurs in a ' .

• lf~r is INFORM-ABORT-AT(X)OF(T), then
(i) there is no INFORM - C O M M I T - AT(X)OF(T) in a ' .

An immediate consequence of these definitions is that the transactions active after any well-formed

sequence of R(X)-operations a are a subset of the ancestors of a single active transaction, which we denote

least(a).

For a a sequence of R(X)-operations, define undo(a) recursively as follows. Define undo(h) = h, where h

is the empty sequence, Let a = fin, where rr is a single operation. IfTr is a serial operation (a CREATE or a

RP'QUEST-COMMIT), then undo(a) = undo(fl)~r. If ~r is I N F O R M - C O M M I T - A T (X) O F (T) , then

undo(a) = undo(t) . If ~r is INFORM-AI IORT-AT(X)OF(T) , then undo(a) is the result of eliminating,

from undo(,8), all operations whose transactions are descendants ofT. Note that undo(a) contains only serial

operations.

Let a be any sequence of R(X)-operations, and let ~r be an operation in a of the form

I N F O R M - A B O R T - A T (X) O F (T) . Then the scope of ~r in a is the subsequence y of a consisting of

operations eliminated by ~.

Resiliency Condition

Resilient object R(X) satisfies the resiliency condition if for every well-formed schedule a of R(X), undo(a) is

a schedule of basic object X.

294

We require that resilicnt object R(X) preserve wcll-formcdncss and satisfy the resiliency condition.

The resiliency condition is the correctness condition required by the concurrent schedulers at tile object

interface. The well-formedness requirement is a syntactic restriction, and the condition that undo(a) be a

schedule of basic object X expresses the required semantic relationship between the resilient object and the

basic object it incorporates; specifically, that the resilient object "backs out" operations in the scope of

I N F O R M - ABORTS.

5. Concurrent Systems

As with serial schedules in classical settings, our serial schedules contain no concurrency or resiliency and

thus are too incfficient to use in practice. Their importance is solely for defining correctness for transaction

systems. In this section, we define a new kind of system called a concurrent system. The new system consists

of the same transactions as in a serial system, a resilient object R(X) for every basic object X of the serial

system, and a concurrent scheduler.

Concurrent systems describe computations in which transactions run concurrently and can be aborted after

they have performed some work. The concurrent scheduler has file joint responsibility of controlling

concurrency and of seeing that the effects of aborted transactions (and their descendants) become undone.

Concurrent systems make use of the roll-back capabilities of resilient objects to make sure that ABORT

operations in concurrent systems have the same semantics (so far as the transactions can tell) as they do in

serial systems.

Concurrent systems are defined in this section. In the next section, the more permissive "weak concurrent

systems" are defined. In Section 7, we prove that the schedules of concurrent systems are serially correct, as a

corollary of a weaker correctness property for the weak concurrent system.

5.1. Lock Managers

The scheduler we define is called tile concurrent scheduler. It is composed of several automata: a lock

manager for every object X, and a single concurrent controller. The job of the lock managers is to insure that

the associated object receives no CREATES until the lock manager has received abort or commit infomlation

for all necessary preceding transactions. This lock manager models an exclusive locking protocol derived

from Moss' algorithm [Mo]. The lock manager has the following operations.

Input Operations:
INTERNAL-CREATE(T), where T is an access to X
I N F O R M - COM M I T - AT(X)OF(T), for T any transaction
I N F O R M - ABOWI'- AT(X)OF(T), for T any transaction

295

Output Operations:
CREATE(T), where T is an access to X

The input operations INTERNAL-CREATE. I N F O R M - C O M M I T and I N F O R M - A B O R T will

compose with corresponding output operations of the concurrent scheduler which we will eonstrnet in this

subsection, The output CREATE operation composes with the CREATE input operation of the resilient

object R(X). The lock manager receives and manages requests to access object X, using a hierarchical locking

scheme. It uses information about the commit and abort of transactions to decide when to release locks.

Fach state s of the lock manager consists of the following three sets of transactions: lock-holders(s),

create-requested(s), and created(s). Initially, lock-holders = {T0}, and the other sets are empty. The

opcratkms work as follows.

• 1NTERNAI,-CREATE(T)
Postcondidon:
create- requested(s) = create- rcqucsted(s') U {T}

• I N F O R M - COMM 1"1'- A'I'(X)OF('I')
Postcondition:
i fT E lock-holders(s') then lock-holders(s) = (lock-holders(s') - {T}) kl {parent(T)}

• I N FORM - a BORT - AT(X)OF(T)
Postcondition:
lock-holders(s) = lock-holders(s')- descendants(T)

• CREATE(T)
Precondition:
T E create- requested(s') - crcated(s')
lock- holdel~s') C_ ancestors(T)
Postcondition:
lock-holders(s) = Iock-holders(s')LI {T}
created(s) = crcated(s') U {T}

Note that resilient object R(X) and the lock manager for X share the I N F O R M - A B O R T and

I N FORM-COMMIT input operations. These compose with the output from the concurrent controller

defined below.

Thus, the lock manager only sends a CREATI~T) operation on to the object in case all the current

lock-holders are ancestors of T. When the lock manager learns about the commit of a transaction T for

which it holds a lock, it releases the lock to T's parent. When the lock manager learns about the abort of a

tran~ction T for which it holds a lock, it simply releases all locks held by that transaction and its descendants.

Our model provides an exceptionally simple and clear way of describing this important algorithm.

296

5.2. The Concurrent Controller

The concurrent controller is similar to the serial scheduler, but it allows siblings to proceed concurrently. In

order to manage this properly, it interacts with "concurrent objects" (lock managers and resilient objects)

instead of just basic objects. The operations are as foUows.

Input Operations:
RFQU E S T - CREATE('I)
RFQU E S T - COM M IT(T,v)

Output Operations:
CRI~ATE(T), T a non-access transaction
INTERNAl . - CREATF~T), T an access transaction
COM MIT(T,v)
ABORT(T)
INFORM - COMM I T - AT(X)OF(T)
INFORM - A 13OIl.T- AT(X)OF(T)

bach state s of the concurrent controller consists of five sees: create-requested(s), created(s),

commit-requested(s), committed(s), and aborted(s). The set commit-requested(s) is a set of

(transaction,value) pairs, and the others are sets of transactions. (As before, we will occasionally write T (E

commit-requested(s) for (T,v) £ commit-requested(s) for some v.) All sets are initially empty except for

create-requested, which is {T0}. Define returned(s) = committed(s) U aborted(s). The operations are as

follows.

• REQUEST- CP, EATE(T)
Postcondition:
create-requested(s) = create-requested(s')O {T}

* REQUEST- COM M IT(T,v)
Postcondition:
commit-requested(s) = commit- reques ted(f)U {(T,v)}

• CREATE(T), T a non-access tran~ction
Precondition:
T E create- requested(f) - created(s')
Postcondition:
created(s) = created(f)O {T}

• INTERNAL-CREATE(T), T an access transaction
Precondition:
T £ create- rcquested(s') - created(s')
Postcondition:
created(s) = crcated(s') U {T}

• CO M M IT(T,v)
Precondition:

297

(T,v) £ commit-requested(s')
T ¢ returned(s')
children(T) f'l create-requested(s') C_ returned(s')
Postcondition:
committed(s) = committed(s')U {T}

• AI3ORT('I~
Precondition:
T E (create-requested(s') - creatcd(s')) U (commit- rcquestcd(s') - returned(s'))
children(T) f"l create-requestcd(s') C_Z_ returned(s')
Postcondition:
created(s) = created(s')U {T}
aborted(s) = aborted(s')LI {T}

. INFOR M - COM M I T - AT(X)OF(T):
Precondition:
T £ committed(s')

• 1 N FORM - ABORT- AT(X)OF(T):
Precondition:
T £ aborted(s')

The concurrent controller is closely related to the serial scheduler. In place of the serial scheduler's

CREATE operations, the concurrent controller has two kinds of operations, CRFATE operations and

INTERNAL-CREATE operations. The former is used for interaction with non-access transactions, while

the latter is used for interaction with access transactions. From the concurrent controller's viewpoint, the two

operations are the same; however, our naming convention for operations requires us to assign them different

names, since the INTERNAL- CREATE operations are intended to be identified with

INTERNAL-CREATE operations of the lock managers (which also have CREATE operations, for

interaction with the resilient objects). The precondition on the serial scheduler's CREATE operation which

insures serial processing of sibling transactions, does not appear in the concurrent controller. Thus, the

concurrent controller may run any number of sibling transactions concurrently, provided their parent has

requested their creation.

The concurrent controller's COMMIT operation is the same as the serial scheduler's COMMIT operation

(except for a minor difference in bookkeeping). The concurrent controller's ABORT operation is different,

however; in addition to aborting a transaction in the way that the serial scheduler does, the concurrent

controller has the additional capability to abort a transaction that has actually been created and has carried out

some steps. In this particular formulation, aborts occur if the transaction was not created (as with the serial

scheduler), or if the transaction has previously requested to commit, and its children have returned. Together

with the requirements on the COMMIT operation, this condition insures that all transaction completion

298

{recurs bottom-up. In the weak concurrent system to be considered in Section 6, a different, "weak",

concurrent controller will be used; it differs from the concurrent controller o f this section precisely in not

requiring ABORT operations to wait for their transactions (and subtransactions) to complete.

The concurrent controllcr also has two additional operations not present in the scrim scheduler. These

operations allow the concurrent controller to forward necessary abort and commit information to the lock

managers and resilient objects.

5.3, Concurrent Systems

The composition of transactions, resilient objects and the concurrent scheduler (lock managers and

concurrent controller) is tile concurrent system. A .schedule of the concurrent system is a concurrent schedule,

and the operations of a concurrent system are concurrenl operations.

A main result of this paper is that every concurrent schedule is serially correct. This will be proved as a

corollary of another result, in Section 7.

6. W e a k C o n c u r r e n t Sy s t ems

In this section, we define "weak concurrent systems", which are exactly the same as concurrent systems,

except that they have a more permissive controller, the "weak concurrent controller". The weak concurrent

controller reports aborts to a transaction's parent while there is still activity going on in the aborted

transaction's subtree. In this paper, weak concurrent systems are used primarily to provide an intermediate

step in proving the correctness of concurrent systems: proving a weaker condition for weak concurrent

systems allows us to infer the stronger correctness condition for concurrent systems. However, weak

concurrent systems are also of interest in themselves. In a distributed implementation of a nested transaction

system, peril)finance considerations may make it important for the system to allow a transaction to abort

without waiting for activity in the transaction's subtree to subside. In this case, a weak concurrent system

might be an appropriate choice, even though the correctness conditions which they satisfy are weaker. Weak

concurrent systems also appears to have further technical use, for example in providing simple explanations of

the ideas used in "orphan detection" algorithms [HLMW].

6.1. The Weak Concurrent Controller

In this subsection, we define the weak concurrent controller. As we have already said, it is identical to the

concurrent controilcr except that it has a more permissive ABORT operation. For convenience, we describe

the controller here in its entirety. It has the same operations as the concurrent controller:

Input Operations:

299

R FOU E S T - CR EATE(T)
REQUEST-COMMIT(T,v)

Output Operations:
CREATF~T), T a non-access transaction
INTERNAI,-CREATE(T), T an access transaction
COMMIT(T,v)
ABORTO"J
INi:ORIVl - COM IVlIT- AT(X)OF('I)
IN 7ORM - A I IORT- AT(X)OF(T)

Each state s of the concurrent controller consists of five sets: create-requested(s), created(s),

commit-requested(s), committed(s), and aborted(s). The set commit-requested(s) is a set of

(transaction, value) pairs, and the others are sets of transactions. (As before, we will occ~ionally write T E

commit-requested(s) for (T,v) £ commit-requested(s) for some v.) All are empty initi~dly except for

c rea te - requested, which is {T0}. Define returned(s) = committed(s) 13 aborted(s). The operations are as

fi)llows.

• R F Q U E S T - CREATE(T)
Postcondition:
create-requested(s) = create-requested(s)13 {T}

• R E Q U E S T - COMMIT('I.v)
Postcondition:
commit-requested(s) = commit-requested(s ')13 {(T,v)}

• CREATE(T), T a non-access transaction
Precondition:
T E c rea te - requested(f) - created(s')
Postcondition:
created(s) = created(f) U ('t'}

• INFERNAL-CREATE(T) , T an access transaction
Precondition:
T C c rea te - requested(s') - created(f)
Postcondition:
created(s) = created(s') LI {T}

• COMMIT(T,v)
Precondition:
(T,v) C commit-requested(s ')
T ff returned(s')
children(T) t"l c rea te - requested(f) C returned(s')
Postcondition:
committed(s) = committed(s') U {T}

* ABORT(T)

300

Precondition:
T E create-requested(s') - returned(s')
Postcondition:
created(s) = created(s') O iT}
aborted(s) = aborted(s') LI {T].

• INFORM - C O M M I T - AT(X)OF(T):
Precondition:
T £ committed(s')

• INFORM-ABORT-AT(X)OF(T):
Precondition:
T £ aborted(s')

Thus, the weak concurrent controller is permitted to abort any transaction that has had its creation

requested, and which has not yet returned.

6.2. Weak Concurrent Systems

The composition of transactions, resilient objects and the weak concurrent scheduler (lock managers and

weak concurrent controller) is the weak concurrent system. A schedule of the weak concurrent system is a

weak concurrent schedule.

Weak concurrent systems exhibit nice behavior to transactions except possibly to those which are

descendants of aborted transactions. Thus, we say that a transaction T is an orphan in any sequence a of

operations provided that an ancestor of T is aborted in a. In many of the properties we prove for weak

concurrent systems, we will have to specify that the transactions involved are not orphans. Orphans have

been studied in [Go,Wa,HM].

6.3. Properties of Weak Concurrent Systems

We here give some useful basic properties for weak concurrent schedules. As before, complete proofs and

additional results appear in [LM].

Lemma 4: Let a be a weak concurrent schedule, l.et R(X) be a resilient object, let T and "I" be
accesses to R(X), and suppose that 'F is not an orphan in a. If an operation ~r o f T precedes an
operation ~r' of ' i" in c~, and w is not in tile scope of an I N F O R M - ABORT in a, then T is visible
roT ' in a.

Proof: By lock manager properties. I

The following is a key lemma.

Lemma 5: Let a be a weak concurrent schedule, and let T be live and not an orphan in a.

1. I fT ' is a transaction, then visiblc(a~T)lT' is a prefix of arl" and a schedule ofT ' .

301

2. If R(X) is a resilient oNect, then visible(a,T)lR(X) is a prefix of undo(aiR(X)) and a
schedule of basic object X.

Proof: 1. Immediate from the fact that visible(a,T)lT' is either equal to alT' or is the empty
sequence.

2. By Lemma 4 and properties of visibility. I

Finally, we show that, in a weak concurrent schedule, concurrently executing transactions access disjoint

sets of resilient objects.

Lemma 6: Let ~t be a weak concurrent schedule, with transactions T and T' live and not orphans
in a. Let T" = lca(T,T'), l .et fl = visible(a,T) - visible(a,T") and fl" = visible(a,T') -
visible(a,T"). Then no resilient object has operations in both fl and fl'.

Proof: By lock manager properties. II

7. S imulat ion of Serial Sys tems by Concurrent Systems

In this section, we prove the main results of this paper, that concurrent schedules are serially correct, and

that weak concurrent schedules are correct at T 0. Both these results follow from an interesting theorem about

weak concurrent schedules, which says that the portion of any weak concurrent schedule which is visible to a

live non-orphan transaction is equivalent to (i.e. looks the same at all primitives as) a serial schedule.

The proof of this theorem is quite interesting, as it provides considerable insight into the scheduling

algorithm. The proof shows not only that a transaction's view of a weak concurrent schedule is equivalent to

some serial schedule, but by a recursive construction, it actually produces such a schedule. It is interesting and

instructive to observe how the views that different transactions have of the system execution get passed up

and down the transaction tree, as CREATES, COMMITS and ABORTS occur.

Theorem 7: Let a be a weak concurrent schedule, and T any transaction which is live and not an
orphan in a. Then there is a serial .schedule fl which is equivalent to visibte(a,T).

Proof: We pl~)ceed by inductkm on the length of a. The basis, length 0, is trivial. Fix a of
length at least 1, and assume that the claim is true for all shorter weak concurrent schedules. Let ~r
be the last operation of a, and let a = a' ,r . Fix T which is live and not an orphan in a. We must
show that there is a serial schedule ,8 which is equivalent to visibte(a,l).

If ~r is not a serial operation, then visible(a',T) = visiblc(serial(a'),T) = visible(serial(a),q) =
visible(a,T), and the result is immediate by induction, So we can assume that ~r is a serial
operation. Also, if transaction(~r) is not visible to T in a, then visible(a,T) = visible(a',T), and
the result is again immediate by induction. Thus, we can assume that transaction(~r) is visible to T
in a. Also, T is not an orphan in a ' .

There are four cases.

(1) ~ is an output operation of a transaction or resilient object.

302

Then the inductive hypothesis implies the existence of a serial schedule ,8' which is equivalent to
visible(a',T). Let.8 = ,8'~. We must show that fl is equivalent to visible(a,T) and serial.

l.ct P be any primitive, qhen/~IP = /] 'n ip = visible(a',T)~rlP by inductive hypothesis, =
visible(a,T)lP. Therefore, ,8 is equivalent to visible(a,T).

Let ~t be an output of primitive P. Then fliP = visible(a,T)lP by equivalence, which is a
schedule of P by l.emma 5. Lemma I implies that l] is serial.

(2) ~r is a CItEA'I'E(T') operation.

Then transaction(n) = T', and so T' is visible to T in a. Then ~r is the first operation in a whose
transaction is a descendant of T'. By the definition of visibility, it must be that T' = T. Then
parent(T) is live in a' . Since parent(T) is not an orphan in a, the inductive hypothesis implies the
existence of a serial schedule/8' which is equivalent to visible(a',parent('l)). Let ,8 = ,8'n. We
must show that ,8 is equivalent to visible(a,T) and serial.

1.et P be any primitive. Then flip = fl'~rlP, = visiblc(a',parent(T))rtlP by inductive hypothesis,
= visiblc(aT)lP. Thus, fl is equivalent to visible(a,T).

Consider any execution of the serial system having ,8' as its operation sequence, and let s' be the
state of the serial scheduler after ,8'. AI~ consider any execution of the weal(concurrent system
having a as its operation scquence, and let s be the state of the weak concurrent scheduler after a ' .
Since ~r is enabled in s, it is easy to show that it is also enabled in s'.

(3) ~r is a COMMIT(T',v) operation.

q~en T ' = parent('V) = transactionOr) is visible to T and not an orphan in a. Also, T' is not an
orphan in a ' . Then T' is live in a ' , and so '1" is live in a ' and so in a. Since T" is live and visible
to 1, T" is an ancestor of T. Since T is live in a, T is not a descendant of T'. The inductive
hypothesis yields two serial schedules, fl' and fl", which are equivalent to visiblc(a',Y) and
visiblc(a',T), respectively. Let y = visibte(fl',T"). Let fit = fl' " Y and r 2 = fl" " Y" We must
show that fl = "yfllnfl2 is equivalent to visible(a,T) and serial.

Equivalence is straightforward. We show that fl is scdal. This follows from Lemma 2, provided
we can show that:
(3.a) ~,fll~r is a serial schedule,
(3.b) T' sees everything in ~'flt'
(3.c) T sees everything in 7fl2'
(3.d) "/ = visible(Yfll,T") = visible(Yfl2,T")and
(3.e) no basic object has operations in both fll and f12'
But (3.a) - (3.d) are straightforward, while (3.e) is immediate from Lemma 6.

(4) ~r is an ABORT(T') operation.

Then T" = parent(T') = transaction(w) is visible m T in a, and so is not an orphan in a. Then
T' is live in a', and T" is live in a ' and so in a. Since T" is live and visible to T in a, T is a
descendant of T". Since T is not an orphan in a, T is not a descendant of T'. The inductive

303

hypothesis yields two serial schedules, fl' and fl", which are equivalent to visible(a',T") and
visible(a',T), respectively. Let/]1 = fl" "/3'. We must show that fl = fl'~rflt is equivalent to
visible(a,T) and serial.

Equivalence is straightforward. We show that fl is serial. This follows from Lemma 3, provided
we can show that:
(4.a) fl'~t is a serial schedule,
(4.b) T sees everything in fl'fl, and
(4.c) fl' = visible(fl',T") = visible(]3'fl,T"),
But this is straightforward, l

Corollary 8: Every weak concurrent schedule is serially correct for every non-orphan non-access
transaction.

Corollary 9: Every weak concurrent ~hedule is serially correct for qo"

Corollary 10: Every concurrent schedule is serially correct.

8. Acknowledgments
We thank Bill Weihl for many, many comments and questions, and much encouragement, during the

coturse of this project. We also thank all the other members of the ARGUS design and implementation group

at MIT, for providing a concrete model for us to try to abstract and generalize. Also, we thank Yehuda Afek

for his comments on an early draft, and Sharon Pcri for her comments on later drafts.

9. References

[AM] Allchin, J. E., and McKendry, M. S., "Synchronization and Recovery of Actions," Proc.
1983 Second Annual ACM Symposium on Principles of Distributed Computing, Montreal,
Quebec, Canada, August 17-19, 1982, pp. 31-44.

[BI3GI Becri, C., Bernstein, P. A., and Goodman, N., "A Model for Concurrency in Nested
Transaction Systems," Manuscript.

[BBGLS] Beeri, C., Bernstein, P. A., Goodman, N., Lai, M. Y., and Shasha, D. E., "A Concurrency
Control Theory for Nested Transactions," Proc. 1983 Second Annual ACM Symposium on
Principles of Distributed Computing, Montreal, Quebec, Canada, August 17-t9, 1983, pp.
45-62.

[BGI Bernstein, P. A., and Goodman, N., "Concurrency Control in Distributed Database
Systems," ACM Computing Surveys 13,2 (June 1981), pp. 185-221.

~GCTI Eswaren, K. P., Gray, J. N., Lorie, R. A., and Traiger, I. L., "The Notions of Consistency
and Predicate Locks in a Database Systems," Communications of the ACM, Vol. 19, No. 11,
November 1976, pp. 624-633.

[Gol Goree, Jr., John A., "Internal Consistency of a Distributed Transaction System With
Orphan l)etection," MS Thesis, Technical Report MIqYLCS/TI~,-286. MIT Laboratory for
Computer Science, Cambridge, MA., January 1983.

304

[Grl

[HM]

[Ho]

[KS]

[i~aSl

[LrlJI.SW]

[LiSI

[LM]

[LT]

[Lyl

[Mi]

[Mo]

[RI

[RLS]

Gray, J., "Notes on Database Operating Systems," in Ikayer, R.,. Graham, R. and
SeegmuUer, G. (eds), Operating Systems: an Advanced Coupe, Lecture Notes in
(~0mpmer Science, Vol. 60, Springer-Verlag, 1978.

Herlihy, M., and McKendry, M.. "Time-Driven Orphan Elimination", in 1'roe. of the 5th
Symposium on Reliability in Distributed Software and Database Systems, I.x)s Angeles, CA.,
January 1986, pp. 42-48.

Hoare, C,A.R., "Communicating Sequential Processes", Prentice Hall International
Englewood Cliffs, N J, 1985.

Kedem, Z., and Silberschatz, A., "A Characterization of Database Graphs Admitting a
Simple Locking Protocol", Acta Infimnatica 16 (1981)pp. 1-13.

Lampson, B. W., and Smrgis, H. E., "Crash Recovery in a Distributed Data Storage
System," Tech. Rep., Computer Science l.ab., Xerox Palo Alto Research Center, Palo Alto,
Calif., 1979.

l.iskov, B., Herlihy, M., Johnson, P., l.eavens, G., Scheifler, R., and Weihl, W.,
"Preliminary Argus Reference Manual," Programming Methodology Group Memo 39,
October 1983.

Liskov, B., and Scheifler, R., "Guardians and Actions: I.inguistic Suppol't for Robust,
Distributed Programs", ACM Transactions on Programming Languages and Systems 5, 3,
(July 1983), pp. 381-404.

Lynch, N., and Merritt, M., "Introduction to the Theory of Nested Transactions", MIT
Technical Report, AT&T Bell Labs Technical Report.

Lynch, N., and Tuttle, M., "Correctness Proofs for Distributed Algorithms", in progress.

Lynch, N.. A., "Concurrency Control For Resilient Nested Transactions," Advances in
Computing Research 3, 1986, pp. 335-373.

Milner, R., "A Calculus of Communicating Systems", Lecture Notes in Computer Science,
#92, Springer-Verlag, Berlin, 1980.

Moss, J. E. B., "Nested Transactions: An Approach To Reliable Distributed Computing,"
Ph.D. Thesis, Technical Report MIT/LCS/TR-260, MIT Laboratory for Computer
Science, Cambridge, MA., April 1981. Also, published by MIT Press, March 1985.

Reed, D. P., "Naming and Synchronization in a Decentralized Computer System," Ph.D
Thesis, Technical Report MI'I'/I,CS/'I'R-205, M1T Laboratory for Computer Science,
Cambridge, MA 1978.

Rosenkrantz, D. J., Lewis, P. M., and Stearns, R. E., "System Level Concurrency Control
for Distributed Database Systems," ACM Transactions on Database Systems, Vot. 3, No. 2,
June 1978, pp. 178-198.

305

[Wal Walker. E. F., "Orphan Detection in the Argus System." M.S. Thesis, Technical
Report/MtT/LCSfl'R-326, Mrr Laboratory for Computer Science, Cambridge, MA.,
June 1984.

[We] Weihl, W. E., "Specification and Implementation of Atomic Data Types," Ph.D Thesis,
Technical Report/M IT/LCS/TR-314, MIT l.aboratory for Computer Science, Cambridge,
MA., March 1984.

This work was supported in part by the Office of Naval Research under Contract N00014-85-K-0168, by

the Office of Army Research under Contract DAAG29-84-K-0058, by the National Science Foundation

under Grant DCR-83-02391, and by the Defense Advanced Research Projects Agency (DARPA) under

Grant N00014-83-K-0125.

