Introduction to the Theory of Nested Transactions

Nancy Lynch
Massachusetts Institute of Technology
Cambridge, Mass.

Michael Merritt
A. T. and T. Bell Laboratories
Murray 11ill, New Jersey

July 21, 1986

1. Introduction

“This paper develops the foundation for a gencral theory of nested transuctions. We present a simple formal
model for studying concurrency and resiliency in a nested environment. This model has distinct advantages
over the many alternatives, the greatest of which is the unification of a subject replete with formalisms,
correctness conditions and proof techniques, The authors are presently engaged in an ambitious project to
recast the substantial amount of work in nested transactions within this single intuitive framework, These
pages contain the preliminary results of that project - a description of the model, and its use in stating and

proving correctness conditions for two variations of a well-known algorithm,

The model is based on I/0 automata, a simple formalization of communicating automata, Itis not complex
- it is casily presented in a few pages, and easy to understand, given a minimal background in automata
theory. Fach nested transaction and data object is modelled by a separate 170 automaton. These automata,
the system primitives, issue requests to and receive replics from some scheduler, which is simply another 1/0
automaton, Simple syntactic constraints on the interactions of these automata ensure, for example, that no
transaction requests the creation of the same child more than once. One scheduler, in this case the "serial
scheduler”, interacts with the transactions and objccts in a particularly constrained way. The “scrial
schedules™ of the primitives and the scrial scheduler are the basis of our correctness conditions. Specifically,
alternative schedulers are required to ensure that nested transaction automata individually have local
schedules which they could have in a serial schedule, In essence, cach scheduler must "fool” the transactions

into believing that the system is exccuting in conjunction with the serial scheduler.

In the past ten years, an important and substantial body of work has appeared on the design and analysis of
algorithms for implementing concurrency control and resiliency in database transaction systems
[EGLT,RLS,BG,KS,Gr,1LaS, etc]. Among this has been a number of results dealing with nested transactions
[R,Mo,LiS LHILSW,AM,BBGLS,BBG. etc.]. The present work does not replace these other contributions,

but augments them by providing a unifying and mathematically tractable framework for pusing and exploring

279

a varicty of questions. This previous work uses behavioral specifications of nested transactions, focusing on
what nested transactions do, rather than what they arc. By answering the question "What is a nested

transaction?”, /0 automata provide a powerful tool for understanding and reasoning about them.

Somec unification is vitally important to further development in this ficld. The plethora and complexity of
cxisting formalizations is a challenge to the most scasoned rescarcher. More critically, it belics the argument
that nested transactions provide a clean and intuitive tool for organizing distributed databases and more
gencral distributed applications. It is particularly important to provide an intuitive and precise description of
nested transactions themselves, as in typical systems, these arc the components which the application

programmer must implement!

The remainder of this paper is organized as follows. The 170 automaton modcl is described in Section 2.
The rest of the paper contains an extended example, which establishes correctness properties for two related

lock-bascd concurrent schedulers.

Scction 3 contains simplc definitions for naming nested transactions and objects, and for specifying the
operations {(interactions) of thesc components. Simple syntactic restrictions on the orders of these opcerations
are presented, and then a particular system of 1/0 automata is presented, describing the interactions of nested
transactions and objects with a serial scheduler. The interface between the scrial scheduler and the
transactions provides a basis for the specification of correctness conditions for alternative schedulers. These
schedulers would presumably be more cfficient than the scrial scheduler. The strongest correctness condition,
"serial correctness,” requires that all non-access transactions sce scrial behavior at their interface with the
system. The second condition, “correctness for 'I‘O," only requires that this serial interface be maintained at
the interface of the system and the external world, These interfaces also provide simple descriptions of the
cnvironment in which nested transactions can be assumed to execute. A particular contribution is the clear
and concise semantics of ABORT operations which arises naturally from this formalization. The scction

closes with some lemmas describing useful properties of serial systems,

Next, a lock-based concurrent system is presented. Section 4 contains a description of a special type of
object, called a "resilicnt object”, which is used in the concurrent system. Scction 5 describes the remainder
of the concurrent system, the "concurrent scheduler.” This concurrent scheduler includes "lock manager”

modules for all the objects; lock managers coordinate concurrent accesses.

Scction 6 defincs a system which is closely related to the concurrent system, the "weak concurrent system.”
This system preserves serial correctness for those transactions whose ancestors do not abort (i.c.. those that are
not “orphans”), Since the root of the transaction tree, TO, has no ancestor, weak concurrent systems are

280

correct for ’I‘o. Scction 7 contains correctness thecorems for concurrent and weak concurrent sytems;
concurrent systems arc scrially correct, and weak concurrent systems are correct for 'l‘o. ‘The stronger

condition is obtained for concurrent systems as a corollary to a result about weak concurrent systems.,

It is interesting that the concurrent system algorithms are described in complete detail (cssentially, in
"pscudocode"), yet significant formal claims about their behavior can be stated clearly and casily. Despite the
detailed level of presentation, the underlying model is general cnough that the results apply to a wide range of

implementations.

The style of the correctness proof is also noteworthy. [t is a constructive proof, in that for cach step of the
weak concurrent system and cach non-orphan transaction, an exccution of the scrial system is explicitly
constructed. The transaction's local "view" in the constructed exccution is identical to that in the original
weak concurrent exccution, establishing the correctness of the weak concurrent system. One may think of the
weak concurrent system as maintaining consistent, parallel "world views” within which concurrent siblings
cxccute. As siblings return to their parent, these parallel worlds arc "merged” to form a single consistent
view. ‘The locking policy prevents collisions between different views at the shared data. This intuition is
strongly supported and clarificd by the correctness proof, which constructs the parallel views as different
scrial schedules consistent with cach sibling’s local history. Lemmas illustrate how these serial schedules can

be merged as siblings return or abort to their parent.

Scction 8 contains a discussion of the rclationship of this work to previous results, and Section 9 contains an

indication of the work that lics ahead.

This paper is a shortened version of a complete paper with the same title, available as a technical report
from MIT or AT&T Bell Labs [[.LM]. Whereas the present paper omits many casy lemmas and

straightforward proofs, the longer paper contains completely detailed proofs of all results.

2. Basic Model

In this section, we present the basic 70 automaton model, which is used to describe all components of our
systems. This model consists of rather standard, possibly infinite-state, nondeterministic automata that have
operation names associated with their state transitions. Communication among automata is described by
identifying their operations. This model is very similar to modcls uscd by Milner, Hoare {Mi,Ho] and others,
Therc are a few differences: first, we find it important to classify operations of any automaton or system of
automata as cither "input” or "output” operations, of that automaton or system, and we trcat these two cascs
differently. Also, we allow identification of arbitrary numbers of operations from different automata, rather

than just pairwise identification as considered in [Mil.

281

This paper is not intended to develop the basic model. For the genceral theory of 170 automata, including a
unified treatment of finite and infinite behavior, we refer the reader to [L'T]. In the present treatment of
concurrent transaction systems, we only prove propertics of finite behavior, so we only require a simple

special case of the general model.

2.1 1/0 Automata

All components in our systems, transactions, objects and schedulers, will be modelled by /0 automata. An
170 automaton A has components states(A), stari(A), out(L), in(A), and steps(A). Here, states(A) is a set of
states, of which a subsct stari(A) is designated as the sct of start states. The next two components are disjoint
sets: oul(A) is the set of oulput operations, and in(A) is the sct of input operations. The union of these two
sets is the sct of operations of the automaton. Finally, steps(A) is the transition rclation of A, which is a set of
triples of the form (s°,#,8), where §° and s arc states, and # is an operation, 'This triple means that in state 8,
the automaton can atomically do operation o and change to state s. An clement of the transition retation is

called a step of A,

"The output opcerations are intended to model the actions that are triggered by the automaton itsclf, while
the input operations model the actions that arc triggered by the environment of the automaton. Our
partitioning of opcrations into input and output indicates that cach operation is only triggered in one place.

We require the following condition.
Input Condition: For cach input operation o and cach state §', there exist a state s and a step (s”,7,5).

This condition says that an 170 automaton must be prepared to receive any input operation at any time.
This condition makes intuitive sensc if we think of the input operations as being triggered externally. (In this
paper, this condition serves mainly as a technical convenience, but in [[LT], where infinite behavior is

considered, it is critical.)

An execution of A is an alternating sequence ST ST g of states and operations of .A; the sequence may
be infinite, but if it is finite, it ends with a state. Furthermore, §p isin start(.4), and cach triple (8", o,8) which
occurs as a consecutive subsequence is a step of A, From any exccution, we can extract the schedule, which is
the subsequence of the exccution consisting of operations only. Because transitions to different states may

have the same operation, different executions may have the same schedule.

1f S is any sct of schedules (or property of schedules), then A is said to preserve S provided that the
following holds, If @ = o’# is any schedule of A, where o is an output operation, and o’ is in S, then a is in

S. That is, the automaton is not the first to violate the property described by S.

282

2.2. Composition of Automata
We describe systems as consisting of interacting components, cach of which is an 1/0 automaton. It is
convenient and natural to view systems as [/0 automata, also. Thus, we define a composition operation for

170 automata, to yield a new 170 automaton.

A set of 170 automata may be composed to create a system ¥, if all of the output operations arc disjoint.
(Thus, cvery output operation in f will be triggered by exactly onc component.) The system ¥ is itself an 170
automaton. A state of the composed automaton is a tuple of states, onc for each component, and the start
states are tuples consisting of start states of the components. The sct of operations of 5, ops(¥), is exactly the
union of the sets of operations of thc component automata. The sct of output operations of ¥, oul(¥), is
likewise the union of the scts of output operations of the component automata, Finally, the sct of input
operations of ¥, in(%), is ops(¥) - oui(F), the sct of operations of ¥ that arc not output operations of . The
output operations of a system are intended to be exactly thosc that arc triggered by components of the system,

while the input operations of a system arc those that arc triggered by the system’s environment.

The triple (5°,9.5) is in the transition relation of ¥ if and only if for cach component automaton A, onc of the
following two conditions holds. Hither o is an operation of .4, and the projection of the step onto A is a step
of A, or clsc & is not an operation of 4, and the states corresponding to A in the two tuples s' and s are
identical. Thus, each operation of the composed automaton is an opcration of a subsct of the component
automata. During an operation # of ¥, cach of the components which has operation # carries out the
operation, while the remainder stay in the same state. Again, the operation « is an output operation of the
composition if it is the output opcration of a component — otherwise, # is an input operation of the

L' An execution of a system is defined to be an exccution of the automaton composed of the

composition.
individual automata of the system. If a is a schedule of a system with component A, then we denote by al A
the subsequence of a containing all the operations of A, Clearly, a4 is a schedule of A,

Lemma 1 Let o be a schedule of a system ¥, and let a = o’w, where 7 is an output operation
of component A. If afA is a schedule of A, then a is a schedule of ¥,

lNatc that our model has chosen a particular convention for identifying operations of different components in a system: we simply
identify.those with the same name. This convention is simple, and sufficient for what we do in this paper, Howcever, when this work is
extended to more complicated systems, it may be expedient to generalize the convention for identifying opcrations, to permit reuse of the
samc operation name internally to different components.- "Lhis will require introducing a renaming operator for operations, or else
defining composition with respect to a designated equivalence relation on operations. We leave this for later work.

283

3. Serial Systems

In this paper, we define three Xinds of systems: “serial systems” and two types of “concurrent systems™.
Scrial systems describe serial exccution of transactions. Serial systems are defined for the purpose of
providing a correctness condition for other systems: that the schedules of the other systems should "look
like" schedules of the scrial system to the transactions. As with serial schedules of single-level transaction
systems, our serial schedules are too incfficient to use in practice. Thus, we define systems which allow
concurrency, and which permit the abort of transactions after they have performed some work., We then

prove that the schedules permitted by concurrent systems are correct.

In this scction, we define "scrial systems”. Scrial systems consist of "transactions” and “basic objects”
communicating with a "seriaf scheduler™. Transactions and basic objects describe user programs and data,
respectively, The serial scheduler controls communication between the other componcnts, and thereby
defines the allowable orders in which the transactions may take steps. All three types of system components

arc modelled as 170 automata.

We begin by defining a structure which describes the nesting of transactions. Namely, a system (ype is a
four-tuple (3.parent,0,V), where 9, the set of transaction namcs, is organized into a trec by the mapping
parent: ¥ —s 9, with T, as the root. In referring to this tree, we use traditional terminology, such as child, leaf,
least common ancestor (Ica), ancestor and descendant. (A transaction is its own ancestor and descendant.)
The Icaves of this tree are called accesses. The sct O denotes the sct of objects; formally, O is a partition of the
set of accesses, where each clement of the partition contains the accesses to a particular object. Theset Visa

set of values, to be used as return values of transactions.

The tree structure can be thought of as a predefined naming scheme for all possible transactions that might
ever be invoked. In any particular execution, however, only some of these transactions will actually take
steps. We imagine that the tree structure is known in advance by all components of a system. The tree will, in

general, be an infinite structure.

The classical transactions of concurrency control theory {without nesting) appear in our model as the
children of a “mythical” transaction, To, the root of the transaction tree. (In work on ncsted transactions, such
as ARGUS [LiS,ILHIL.SW], the children of T, are often called "top-level” transactions.) It is very convenient
to introduce the new root transaction to model the environment in which the rest of the transaction system
runs. Transaction T0 has operations that describe the invocation and return of the classical transactions. Itis
natural to reason about T in much the same way as about all of the other transactions, although it is
distinguished from the other transactions by having no parent transaction. Since committing and aborting are

operations which take place at the parent of cach transaction (sce below), To can neither commit nor abort.

284
‘Thus, a commit or abort of a top-level transaction to Ty is an irreversible step.

The internal nodes of the tree model transactions whose function is to create and manage subtransactions,
but not to access data dircctly. 'The only transactions which actually access data arc the leaves of the
transaction trce, and thus they arc distinguished as "accesses”. 'The partition O simply identifies those

transactions which access the same object.

A scrial system of a given system type is the composition of a sct of 170 automata. This set contains a
transaction for each internal (i.c. non-leaf, non-access) node of the transaction tree, a basic object for each
clement of O and a scrial scheduler. These automata arc described below. (If X is a basic object associated
with an clement % of the partition O, and T is an access in %, we write 7 € accesses(X) and say that "1 is an

access to X".)

3.1. Transactions

This paper differs from carlier work such as [Ly,Go,We] in that we modcl the transactions explicitly, as [/O
automata. In modeclling transactions, we consider it very important not to constrain them unnccessarily; thus,
we do not want to require that they be cxpressible as programs in any particular high-level programming
language. Modelling the transactions as 1/0 automata allows us to state exactly the propertics that are

needed, without introducing unnccessary restrictions or complicated semantics.

A non-access transaction T is modelled as an 170 automaton, with the following opcerations.

Input opcrations:
CREATE(T)
COMMIT(T,v), for 1" € children(T) and v € V
ABORT(T"), for T" € children(T)

Output operations:
REQUEST—-CREATE(T), for T* € children(T)
REQUEST—-COMMIT(T,v), forvE V

The CREATE input operation "wakes up” the transaction. The REQUEST—CREATE output operation is
a request by T to create a particular child transaction.The COMMIT input operation rcports to T the
successful completion of one of its children, and returns a value recording the results of that child’s execution.
The ABORT input opcration reports to 1 the unsuccessful completion of one of its children, without
returning any other information. We call COMMIT(T",v), for any v, and ABORT(T") return opcrations for

2Notc: that there is no provision for T to pass information to its child in this request. In a programming language, T might be
permitled 1o pass parameter values to a subtransaction. Although this may be a convenient descriptive aid, it is not necessary to include
in it the underlying formal model. Instead, we consider transactions that have dilferent input parameters to be different transactions.

285

transaction I°. "The REQUEST—COMMIT opcration is an announcement by 'I' that it has finished its work,

and includes a value recording the results of that work.

It is convenicnt to use two scparate operations, REQUEST—CREATE and CREATE, to describe what
takes place when a subtransaction is activated. 'The REQUEST—CREATE is an operation of the
transaction’s parent, while the actual CREATE takes place at the subtransaction itself. In actual systems such
as ARGUS, this separation does occur, and the distinction will be important in our results and proofs. Similar
remarks hold for the REQUEST—COMMIT and COMMIT opcrations.3 We leave the executions of
particular transaction automata largely unspecified; the choice of which children to create, and what value to
return, will depend on the particular implementation. For the purposes of the schedulers studied here, the
transactions (and in large part, the objects) are "black boxes." Nevertheless, it is convenient to assume that
schedules of transaction automata obey certain syntactic constraints, Thus, transaction automata arc required

to prescrve well-formedness, as defined below.

We recursively define well-formedness for sequences of operations of transaction T. Namely, the empty
schedule is well-formed. Also, if @ = a'w is a sequence of operations of ‘T, where = is a single operation,
then a is well-formed provided that o is well-formed, and the following hold.

o If w is CREATE(T), then
(i) there is no CREATE(1) in o

o If ¢ is COMMIT(T",v) or ABORT(T") for a child T" of T, then
(i) REQUEST~CREATFE(T") appears in a” and
(ii) there is no return operation for 1 in o',

o If 7 is REQUEST—CREATE(I") for achild T° of T, then
(i) there is no REQUEST —CREATH(T) in o’
(ii) there is no REQUEST ~COMMIT(T) in o” and
(iii) CREATE(T) appears in a’.

o If 7 is a REQUEST — COMMIT for T, then

(i) there is no REQUEST—COMMIT for T'in «” and
(ii) CREATE(T) appears in o’.

These restrictions are very basic; they simply say that a transaction docs not get created more than once,

docs not receive repeated notification of the fates of its children, docs not receive conflicting information

3Note that we do not include a REQUEST — ABORT operation for a transaction: we do not model the situation in which a transaction
decides that its own existence is a mistake. Rather, we assign decisions 10 abort transactions to another component of the system, the
scheduler. In practice, the scheduler must have some power to decide to abort transactions, as when it detects deadlocks or failures. To
ARGUS, transactions are permitted to request to abori: we regard this request simply as a "hint" to the scheduler, to restrict its allowable
execitions in a particular way. This operation could be made explicit, constraining the scheduler to abort the requesting transaction,
without substantively changing the model or results.

286

about the fates of its children, and docs not receive information about the fate of any child whose creation it
has not requested; also, a transaction docs not perform any output operations before it has been created or
after it has requested to commit, and docs not request the creation of the same child more than once. Except
for these minimal conditions, there are no restrictions on allowable transaction behavior. For example, the
maodel allows a transaction to request to commit without discovering the fate of all subtransactions whose
creation it has requested. Also, a transaction can request creation of new subtransactions at any time, without
regard to its statc of knowledge about subtransactions whose crcation it has previously requested. Particular
programming languages may choose to impose additional restrictions on transaction behavior. (An example is
ARGUS, which suspends activity in transactions until subtransactions complete.) However, our results do not

require such restrictions.

3.2. Basic Ohjects

Recall that 170 automata arc associated with non-access transactions onty. Since access transactions model
abstract operations on shared data objects, we associate a single 1/0 automaton with cach object, rather than
one for cach access, The operations for cach object are just the CREATE and REQUEST ~COMMIT
operations for all the corresponding access transactions. Although we give these operations the same names as
the opcerations of non-access transactions, it is helpful to think of the operations of access transactions in other
terms also: a CREATE corresponds to an invocation of an operation on the object, while a
REQUEST~COMMIT corresponds to a response by the object to an invocation. Actually, these CREATE
and REQUEST - COMMIT operations generalize the usual invocations and responses in that our operations
carry with them a designation of the position of the access in the transaction trec. We depart from the
traditional notational distinction between creation of subtransactions and invocations on objects, since the
common terminology for access and non-access transactions is of great benefit in unifying the statements and

proofs of our results. Thus, a basic object X is modelled as an automaton, with the following operations.

Input operations:
CREATE(T), for T in accesses(X)

Output operations:

REQUEST~COMMIT(T,v), for T in accesses(X)

The CREATE operation is an invocation of an access to the object, while the REQUEST —~COMMIT is a

return of a valuc in response to such an invocation.

As with transactions, while specific objects are left largely unspecified, it is convenient to require that
schedules of basic objects satisfy certain syntactic conditions. Thus, cach basic object is required to preserve

well-formedness, defined below.

287

let & be a sequence of operations of basic object X. Then an access T to X is said to be pending in a
provided that there is a CREA'TE(T), but no REQUEST~COMMIT for T, in a. We define well-formedness
for sequences of operations of basic objects recursively. Namely, the empty schedule is well-formed. Also, if
a = o'w is a sequence of operations of basic object X, where # is a single operation, then a is well-formed
provided that & is well-formed, and the following hold.

o If o is CREATE(T), then

(i) there is no CREATE(T) in a’, and
(ii) there are no pending accesses in a’,

o If 7 is REQUEST—-COMMIT for T, then
(i) there is no REQUEST~COMMIT for T'in o, and
(ii) CREATE(T) appears in o’

"These restrictions simply say that the same access does not get created move than once, nor does a creation
of a new access occur at a basic object before the previous access has completed (i.e. requested to commit);
also, a basic object does not respond more than once to any access. and only responds to accesses that have

previously been created.

3.3. Serial Scheduler

The third kind of component in a serial system is the scrial scheduler. The serial scheduler is also modelied
as an automaton. The transactions and basic objects have been specified to be any 1/0 automata whose
operations and behavior satisfy simple syntactic restrictions. The serial scheduler, however, is a fully specified
automaton, particular to each system type. It runs transactions according to a depth-first traversal of the
transaction tree. The scrial scheduler can choose nondeterministically to abort any transaction after its parent
has requested its creation, as long as the transaction has not actually been created. In the context of this
scheduler, the "scmantics” of an ABORT(T) operation are that transaction T was ncver created. The

operations of the scrial scheduler are as follows,

Input Opcrations:
REQUEST~—~CREATE(T)
REQUEST—COMMIT(T,v)

Output Operations:

CREATE(T)
COMMIT(T,v)
ABORI(T)

The REQUEST~CREATE and REQUEST—-COMMIT inputs arc intended to be identified with the
corresponding outputs of transaction and object automata, and correspondingly for the CREATE, COMMIT

and ABORT output opecrations, FEach state s of the serial scheduler consists of four sets:

288

create — requested(s), created(s), commit—requested(s), and returned(s). The sct commit— requested(s) is a
set of (transaction, valuc) pairs. The others are sets of transactions. "There is exactly onc initial state, in which

the set create — requested is {’1‘0}, and the other scts arc empty.

t'he transition relation consists of cxactly those triples (8',7,8) satisfying the pre- and postconditions below,
where # is the indicated operation. For brevity, we include in the postconditions only those conditions on the
state s which may change with the operation. If a component of s is not mentioned in the postcondition, (such
as returned(s) in the postcondition for REQUEST—CREATE(T)), it is implicit that the set is the same in §°
and s (that returncd(s’) = returned(s), in this example). Note that here, as elsewhere, we have tried to specify
the component as nondeterministically as possible, in order to achicve the greatest possible generality for our

results,

¢ REQUEST—-CREATE(T)
Posteondition:
create — requested(s) = create — requested(s’) U {1}

o REQUEST~-COMMIT(T,v)
Postcondition:
commit-- requested{s) = commit—requested(s U {(T,v)}

o CREATE(T)
Precondition:
T € create — requested(s’) - created(s’)
siblings('I) N created(s’) C returned(s’)
Postcondition:
created(s) = created(s) U {T}

o COMMIT(T,v)
Precondition:
(T.v) € commit—requested(s’)
T ¢ returned(s’)
children(l’) N create—requested(s’) C returncd(s’)
Postcondition:
returned(s) = returned(s) U {1}

* ABORT(T)
Precondition:
T € create — requested(s’) - created(s”)
siblings(T') N created(s’) C returned(s)
Postcondition:
created(s) = created(s)y U {1}
returned(s) = returned(s’y U {T}

The input operations, REQUEST —CREATE and REQUEST—-COMMIT, simply result in the request
being recorded. A CREATE operation can” only occur if a corresponding REQUFEST—CREATE has

289

occurred and the CREATE has not already occurred. The second precondiition on the CREATE operation
says that the scrial scheduler docs not create a transaction until all its previously created sibling transactions
have returned. That is, siblings arc run sequentially, 'The precondition on the COMMIT operation says that
the scheduler does not allow a transaction to commit to its parent until its children have returned. The
precondition on the ABORT opcration says that the scheduler does not abort a transaction while there is
activity going on on behalf of any of its siblings. 'T'hat is, aborted transactions are run sequentially with

respect to their siblings.

3.4. Serial Systems and Serial Schedules

In this subsection, we define scrial systems preciscly and provide some uscful terminology for talking about

them,

‘The composition of transactions with basic objects and the serial scheduler for a given system type is called
a serial system. Decfine the serial operations to be those operations which occur in the serial system:
REQUEST - CREATES, REQUEST—COMMITS, CREATES, COMMITS and ABOR'TS. 'The schedules
of a scrial system are called serial schedules. 'The non-access transactions and basic objects are called the
system primitives. (Recall that each basic object is an automaton corresponding to a set of access transactions.

Thus, individual access transactions arc not considered to be primitives.)

Recall that the operations of the basic objects have the same syntax as transaction opcrations. It is
convenient to refer to CREATE(T) and REQUEST— COMMIT(T), when T is an access to basic object X,
both as operations of transaction T and of object X. To avoid confusion, it is important to remember that

there is no transaction automaton associated with any access operation.

For any secrial operation o, we define transaction(ar) to be the transaction at which the operation occurs,
(For CREATE(T) operations and REQUEST—COMMIT operations for T, the transaction is T, while for
REQUEST—CREATE(L) operations, and COMMIT and ABORT operations for T, the transaction is
parent(T).) For a sequence a of scrial operations, transaction(a) is the set of transactions of the operations in

o

Two sequences of serial operations, a and o', are said to be equivalent provided that they consist of the
same operations, and alP = o'|P for cach primitive P. Obviously, this yiclds an equivalence relation on

scquences of serial operations.

We let afT denote the subsequence of o consisting of operations whose transaction is T, even if T is an
access. {(This is an extension of the previous definition of T, as accesses are not component automata of the

290

scrial system.)

Let a be a sequence of serial operations. We say that a transaction T is live in a provided that a
CREATE(T), but no COMMIT(T.v) or ABORT(T), occurs in a. We say that transaction T is visibleto T in a
provided that for each ancestor 1™ of 1" which is a proper descendant of lea('T,1"), some COMMIT(T™,v)
occurs in a. (In particular, any ancestor of 'I' is visible to T in «.) For sequence a and transaction T, let
visible(a, T) be the subscquence of o consisting of operations whose transactions are visible to T'in a. (These

include access transactions 1°.) We say that transaction T sees everything in a provided that visible(a,T) = a.

This is the samce definition of visibility as appears, in a different model, in {l.y]. Visibility capturcs an
intuitive notion suggested by the name: the transactions visible to a transaction T in a are those whose cffects
T is permitted to "sec” in a. If transaction 1" is visiblc to transaction T in a, it means that descendants of I
may have passed to T information about '1°, obtained by accessing objects that were previously accessed by

descendants of 'I°.

If « is a sequence of opcrations, not necessarily all serial, then define serial(a) to be the subsequence of a
consisting of the scrial operations. We say that T is Jive in « provided that it is live in serial{a). We say that T”
is visible to T in « if T" is visible to T in scrial{a), and define visible{a,T) to be visible(serial{a), T). Also, T
sees everything in a provided that T sces cverything in scrial{e). Similarly, define transaction(a) =

transaction(serial(a)).

3.5, Correctness Condition

We use scrial schedules as the basis of our correctness definitions. Namely, we say that a sequence of
operations is serially correct for a primitive P provided that its projection on P is identical to the projection on
P of some serial schedule. We say that any sequence of operations is serially correct if it is serially correct for

every non-access transaction. That is, « "looks like" a serial schedule to every non-access transaction.
y

In the remainder of this paper, we define two systems: concurrent systems and weak concurrent systems.
We show that schedules of concurrent systems are serially correct, and that schedules of weak concurrent
systems are serially correct for TO. Thus, we use the scrial scheduler as a way of describing desirable behavior,
Just as scrial schedules describe desirable behavior in more classical concurrency control scttings (those
without nesting). Then scrial correctness plays the role in our theory that scrializability plays in classical

settings.

Note that our correctness conditions are defined at the transaction interface only, and do not constrain the

object interface. 'We belicve that this makes the conditions more meaningful to users, and more likely to

29

suffice for a large varicty of algorithms, which may usc a varicty of back-out, locking or version schemcs to
implement objects. Previous work has focussed on correctness conditions at the object interface [EGLT, etc.}.
While we believe that object interface conditions are important, their proper role in the theory is not to serve
as the basic correctness condition. Rather, they are useful as intermediate conditions for proving correctness

of particular implementations.

The serial correctness condition says that a schedule a must look like a serial schedule to cach non-access
transaction; this allows for the possibility that a might look like different scrial schedules to different non-
access transactions. ‘This condition may at first scem to be too weak, It may seem that we should require that
all transactions sce a projection of the same serial schedule. But this stronger condition is not satisficd by most
of the known concurrency control algorithms. Also, the serial correctness condition is really not as weak as it
may scem at first because T, the root transaction, is included among the transactions to which a must appear
serial. As discussed above, transaction T can be thought of as modelling the environment in which the rest of
the transaction system runs. Its REQUEST —CREATE operations correspond to the invocation of top-level
transactions, while its COMMIT and ABOR'T operations cotrespond to return values and cxternal effects of
those transactions. Since a's projection on TO must be serial, the environment of the transaction system will

sec only results that could arisc in a scrial exccution.

3.6. Properties of Serial Systems

In this subscction, we give a pair of lemmas which describe ways in which serial schedules can be "cut and
pasted” to yicld other serial schedules. These lemmas are used in the proof of the main theorem, in Scction 7.
'The proofs arc omitted from this papcer, but appear in [LM]. [LLM] also contains many additional intercsting

properties of the behavior of serial systems.
Lemma 2 Let aff lCOMM!T('[",U) and aﬁ2 be two serial schedules and T, T and T three
transactions such that the following conditions hold:
(1T is achild of T” and T is a descendant of T” but not of T,
(2) T sces everything in af8 »
(3) T sces everything in “Bz’
@a= visiblc(a,Bl.T") = visiblc(aﬂz.’l“”) and
(5) no basic object has operations in both ,Bl and Bz'
Then aff, COMMIT(T",u)B, is a serial schedule.
Lemma 3: Let aABORT(T") and aff be two scrial schedules, and let T, T and T” be
transactions, such that the following conditions hold:
(1) 1" is achild of T™ and T is a descendant of T” but not of 1",
(2) V' sces everything in a8, and
(3) a = visible(a,T”) = visible(a8,17).
Then a ABORT(1")8 is a scrial schedule.

292

4, Resilient Objects

Having stated our correctness conditions, we arc now rcady to begin describing implementations and
proving that they meet the requirements, This section and the next are devoted to the description of a
concurrent system which permits the abort of transactions that have performed steps. An important
component of a concurrent system is a new kind of object called a "resilient object,” which we introduce in
this scction. A resilient object is similar to a basic object, but it has the additional capability to undo

opcrations of transactions that it discovers have aborted.

Resilicnt objects have no capabilities for managing concurrency: rather, they assume that concurrency
control is handled externally (by lock manager components of the scheduler). This section defines resilient
objects. The complete paper [LLM] presents some of their properties, and also describes and proves correct a
particular implcmentation of resilient objects, constructed by keeping multiple versions of corresponding

basic objects.

4.1. Definitions

Resilient object R(X) mimics the behavior of basic object X, but has two additional input operations,
INFORM —COMMIT—AT(X)OF(I) and INFORM—ABORT-AT(X)OK(T), for every transaction
T. Upon receiving an INFORM ~ABOR'T—~AT(X)OF(1), R(X) crases any cffects of accesses which are

descendants of T. This property is made formal as the "Resiliency Condition” below.

R{X) has the following operations, which we call R(X)-operations.

Input Operations:
CREATE(T), T an access to X
INFORM - COMMIT - AT(X)OH(T)
INFORM — ABORT—-AT(X)OF(T)

Output Operations:
REQUEST—COMMIT(T,v), T an access to X

In order to describe well-formedness for resilicnt objects, we require a technical definition for the set of
transactions which arc active after a sequence of R(X)-operations. Roughly speaking, the transactions which
are active are those on whose behalf the object has carried out some activity, but whose fate the object does

not know.

The definition is recursive on the length of the scquence of R(X) operations. Namely, only '1‘0 is active after
the empty sequence. Let @ = Bar, where « is a single operation, and let A and B denote the scts of active
transactions after a and 8, respectively, If w is CREATE(T), then A = B U {1}, If# is a

293

REQUEST~COMMIT for T, then A = B. If w is INFORM —~COMMIT—AT(X)OF(T), and if T is in B,
then A = (B- {TH U {parent(D}; if T'is not in B, then A = B. If 7 is INFORM — ABORT— AT(X)OK(T),
then A = B - descendants(1).

Now we define well-formedness for sequences of R(X) operations. Again, the definition is recursive.
Namely, the empty schedule is well-formed. Also, if @ = a’ar is a sequence of R(X)-operations, then « is

well-formed provided that o is well-formed, and the following hold.

o If w is CREATE(T), then

(i) there is no CREATE(T) in o',

{ii) all the transactions which are active after a’ arc ancestors of T.
o If 7 is a REQUEST~COMMIT for T, then

(i) there is no REQUEST~COMMIT for T'in o', and

(i) T is active after o'

e [f 7 is INFORM —~ COMMIT — AT(X)OF(T), then
(i) there is no INFORM —ABORT —AT(X)OF(T) in o, and
(ii) if T is an access to X, then a REQUEST—COMMIT for T occurs in o’.

o If o is INFORM ~ ABORT - AT(X)OK(T) , then
(i) there is no INFORM — COMMIT - AT(X)OF(T) in o',

An immediate conscquence of these definitions is that the transactions active after any well-formed
sequence of R(X)-operations & are a subsct of the ancestors of a single active transaction, which we denote

least(a).

For a a sequence of R(X)-operations, define undo(a) recursively as follows. Define undo(A) = A, where A
is the ecmpty sequence. Let a = B, where # is a single operation. If # is a scrial operation (a CREATE or a
REQUEST—~COMMIT), then undo{a) = undo(B)ar. If o is INFORM—COMMIT —AT(X)OK(T), then
undo(a) = undo(B). If w is INFORM— ABORT - AT(X)OF(T), then undo(a) is the resuit of climinating,
from undo(B), all operations whose transactions are descendants of T. Note that undo(e) contains only serial

operations,

Iet a be any sequence of R(X)-opcrations, and let = be an operation in a of the form
INFORM — ABORT — AT(X)O(I). Then the scope of o in a is the subsequence y of a consisting of

operations eliminated by .

Resiliency Condition
Resilient object R(X) satisfies the resiliency condition if for every well-formed schedule a of R(X), undo(a) is

a schedulce of basic object X.

294

We require that resilient object R(X) preserve well-formedness and satisfy the resiliency condition.

The resiliency condition is the correctness condition required by the concurrent schedulers at the object
interface. The well-formedness requirement is a syntactic restriction, and the condition that undo{a) be a
schedule of basic object X cxpresses the required semantic relationship between the resilient object and the
basic object it incorporates; specifically, that the resilicnt object "backs out” operations in the scope of
INFORM —~ ABORTS.

5. Concurrent Systems

As with serial schedules in classical scttings, our scrial schedules contain no concurrency or resiliency and
thus are too incfficient to usc in practice. Their importance is solely for defining correctness for transaction
systems. In this section, we define a new kind of system called a concurrent system. The new system consists
of the same transactions as in a scrial system, a resilicnt object R(X) for every basic object X of the scrial

system, and a concurrent scheduler,

Concurrent systems describe computations in which transactions run concurrently and can be aborted after
they have performed some work. The concurrent scheduler has the joint responsibility of controlling
concurrency and of sccing that the cffects of aborted transactions (and their descendants) become undone.
Concurrent systems make use of the roll-back capabilities of resilient objects to make sure that ABORT
operations in concurrent systems have the same semantics (so far as the transactions can tell) as they do in

scrial systems.

Concurrent systems are defined in this scction. In the noxt section, the more permissive "weak concurrent
systems” are defined. In Scction 7, we prove that the schedules of concurrent systems are serially correct, as a

corollary of a weaker correctness property for the weak concurrent system.

5.1. Lock Managers

The scheduler we define is called the concurrent scheduler. 1t is composed of scveral automata: a lock
manager for every object X, and a single concurrent controller. The job of the lock managers is to insurc that
the associated object receives no CREATES until the lock manager has received abort or commit information
for all necessary preceding transactions. This lock manager models an exclusive locking protocol derived
from Moss” algorithm [Mo]. The lock manager has the following operations.
Input Opcrations:

INTERNAL~CREATE(T), where T is an access to X

INFORM ~ COMMIT - AT(XJOI(T), for T any transaction
INFORM ~ABORT - AT(X)YOF(T), for T any transaction

2905

Qutput Operations:
CREATE(D), where T is an access to X

The input operations INTERNAL—-CREATE, INFORM—COMMIT and INFORM—ABORT will
compose with corresponding output operations of the concurrent scheduler which we will construct in this
subscction. The output CREATE operation composes with the CREATE input operation of the resilient
object R(X). 'The fock manager receives and manages requests to access object X, using a hicrarchical locking

scheme. It uscs information about the commit and abort of transactions to decide when to release locks.,

Fach state s of the lock manager consists of the following three sets of transactions: lock —holders(s),
create - requested(s), and created(s). Initially, lock —holders = {'l‘o}, and the other sets are empty. The
operations work as follows.

o INTERNAL—CREATE(D)
Postcondition:
create — requested(s) = create — requested(s’) U {1}

¢ INFORM —~ COMMIT - AT(X)OF(T)
Postcondition:
if T € lock — holders(s') then lock — holders(s) = (lock—holders(s) - {1T1) U {parent(T)}

o INFORM — ABORT - AT(X)OK(T)

Postcondition:

fock ~ holders(s) = lock —holders(s’) - descendants(T)
o CREATE(T)

Precondition:

T € create— requested(s’) - created(s’)

fock —holders(s’) C ancestors(1)

Postcondition:

lock — holders(s) = lock ~holders(s) U {T}

created(s) = created(s) U {1}

Note that resilient object R(X) and the lock manager for X share the INFORM—ABORT and
INFORM —~COMMIT input operations. These compose with the output from the concurrent controller

defined below.

Thus, the lock manager only sends a CREATE(T) operation on to the object in casc all the current
lock —holders are ancestors of T. When the lock manager learns about the commit of a transaction 'I for
which it holds a lock, it releases the lock to T's parent. When the lock manager learns about the abort of a
transaction T for which it holds a lock, it simply relcases all locks held by that transaction and its descendants.

Our model provides an exceptionally simple and clear way of describing this important algorithm.

296

5.2. The Concurrent Controller
The concurrent controller is similar to the scrial scheduler, but it allows siblings to proceed concurrently. In
order to manage this properly, it interacts with "concurrent objects” (lock managers and resilient objects)

instcad of just basic objects. 'The operations arc as follows.

Input Operations:
REQUEST—CREATE(T)
REQUEST—COMMIT(T,v)

Qutput Operations:
CREATECD), T a non-acccess transaction
INTERNAL = CREATE(T), T an access transaction
COMMIT(Tv)
ABORT(D)
INFORM — COMMIT - AT(X)OK(T)
INFORM - ABORT—AT(X)OF(T)

Fach state s of the concurrent controller consists of five sets: creatc—requested(s), crecated(s),
commit—requested(s), committed(s), and aborted(s). The sct commit—requested(s) is a sct of
(transaction,valuc) pairs, and the others are sets of transactions. (As before, we will occasionally write T €
commit~requested(s) for (I,v) € commit—requested(s) for some v.) All sets are initially empty except for
create — requested, which is {'l'o}. Define returned(s) = committed(s) U aborted(s). The operations are as

follows.

 REQUEST— CREATE(T)
Postcondition;
create —requested(s) = create—requested(s) U {1}

o REQUEST—COMMII(T,v)
Postcondition:
commit— requested(s) = commit— requested(s) U {(T,v)}

o CRFEATE(T), T a non-access transaction
Precondition:
T € create — requested(s”) - created(s”)
Postcondition:
created(s) = created(sH U {T}

o INTERNAL~CREATE(T), T an access transaction
Precondition: |
T € create — requested(s’) - created(s’)
Postcondition;
created(s) = created(s) U {T}

o COMMIT(T,v)
Precondition:

297

(T.v) € commit— requested(s’)

T ¢ returncd(s’)

children(T) M create~ requested(s’) € returned(s’)
Postcondition:

committed(s) = committed(s’) U {1}

* ABOR'T(T)
Precondition:
T € (create-requested(s’) - created(s”)) U (commit— requested(s’) - returned(s’))
children(T) N create — requested(s’) C returncd(s’)
Postcondition:
created(s) = created(s’) U {1}
aborted(s) = aborted(sy U {T'}

o INFORM —COMMIT—~AT(X)OR(T):
Precondition:
T € committed(s’)

o INFORM — ABORT~AT(X)OF(T):
Precondition:
T € aborted(s')

The concurrent controller is closely related to the serial scheduler. In place of the serial scheduler’s
CREATE operations, the concurrent controller has two kinds of operations, CREATE operations and
INTERNAL—CREATE opcrations. The former is used for interaction with non-access transactions, while
the latter is used for interaction with access transactions. From the concurrent controlier’s viewpoint, the two
operations arc the same; however, our naming convention for operations requires us to assign them different
names, since the INTERNAL—-CREATE operations are intended to be identified with
INTERNAL—-CREATE operations of the lock managers (which also have CREATE operations, for
interaction with the resilient objects). The precondition on the scrial scheduler’'s CREATE operation which
insures scrial processing of sibling transactions, does not appear in the concurrent controller. Thus, the
concurrent controller may run any number of sibling transactions concurrently, provided their parent has

requested their creation.

The concurrent controller's COMMIT operation is the samc as the serial scheduler’s COMMIT operation
(cxcept for a minor difference in bookkeeping). The concurrent controller’s ABORT operation is different,
however; in addition to aborting a transaction in the way that the scrial scheduler docs, the concurrent
controlier has the additional capability to abort a transaction that has actually becn created and has carried out
some steps. In this particular formulation, aborts occur if the transaction was not created (as with the serial
scheduler), or if the transaction has previously requested to commiit, and its children have returned. Togcether

with the requirements on the COMMIT operation, this condition insures that all transaction compiction

208

occurs bottom-up. In the weak concurrent system to be considered in Scction 6, a different, "weak”,
concurrent controller will be used; it differs from the concurrent controller of this section precisely in not

requiring ABORT operations to wait for their transactions (and subtransactions) to complcte.

‘The concurrent controller also has two additional operations not present in the scrial scheduler. These
operations allow the concurrent controller to forward necessary abort and commit information to the lock

managers and resilicnt objects.

5.3. Concurrent Systems
The composition of transactions, resilient objects and the concurrent scheduler (lock managers and
concurrent controlier) is the concurrent sysiem. A schedule of the concurrent system is a concurrent schedule,

and the operations of a concurrent system arc concurrent operations.

A main result of this paper is that every concurrent schedule is serially correct. This will be proved as a

corollary of another result, in Section 7.

6. Weak Concurrent Systems

In this scction, we define "weak concurrent systems”, which are exactly the same as concurrent systems,
except that they have a more permissive controller, the "weak concurrent controller”. The weak concurrent
controller reports aborts to a transaction’s parent while there is still activity going on in the aborted
transaction’s subtrec. In this paper, weak concurrent systems are used primarily to provide an intermediate
step in proving the correctness of concurrent systems: proving a weaker condition for weak concurrent
systems allows us to infor the stronger correctness condition for concurrent systems. However, weak
concurrent systems arc also of interest in themselves. In a distributed implementation of a nested transaction
system, performance considerations may make it important for the system to allow a transaction to abort
without waiting for activity in the transaction’s subtree to subside. In this case, a weak concurrent system
might be an appropriate choice, even though the correctness conditions which they satisfy arc weaker. Weak
concurrent systems also appears to have further technical use, for example in providing simple cxplanatioos of

the ideas used in "orphan detection” algorithms [HLMW].

6.1. The Weak Concurrcnt Controller
In this subscction, we define the weak concurrent controller. As we have already said, it is identical to the
concurrent controller except that it has a more permissive ABORT operation. For convenience, we describe

the controfler here in its entirety. Jt has the same operations as the concurrent controlier:

Input Operations:

299

REQUEST-CREATH(T)
REQUEST—-COMMIT(T,v)

Output Operations:
CREATE(T), T a non-access transaction
INTERNAL ~CREATE(T), T an access transaction
COMMIT(T,v)
ABORT(T)
INFORM —COMMIT - AT(X)OR(T)
INFORM — ABORT = AT{X)OF(TY

Each state s of the concurrent controller consists of five sets: create—requested(s), created(s),
commit—rcequested(s), committed(s), and aborted(s). The sct commit—requested(s) is a sct of
{transaction,valuc) pairs, and the others are scts of transactions. (As before, we will occasionally write T €
commit~requested(s) for (I\v) € commit—requested(s) for some v.) All arc empty initially except for
create~requested, which is {’l‘o}. Define returned(s) = committed(s) U aborted(s). The operations are as
follows.

o REQUEST—CREATE(T)
Postcondition:
create ~ requcsted(s) = create—requested(s’y U {T}

 REQUEST— COMMIT(T,v)
Postcondition: :
commit—requested(s) = commit—requested(s’y U {(T,v)}

o CREATE(T), T a non-access transaction
Precondition:
T € create — requested(s’) - created(s’)
Postcondition:
created(s) = created(s’) W {T}

o INTERNAL —~CREATE(T), T an access transaction
Precondition:
T € create— requested(s’) - created(s”)
Postcondition:
created(s) = created(s) U {T}

o COMMIT(T,v)
Precondition:
(T,v) € commit—requested(s’)
T ¢ returned(s’)
children(T) N create— requested(s’) C returncd(s’)
Postcondition:
committed(s) = committed(s’) U {T}

* ABORT(T)

300

Precondition:

'I' € create-requested(s’) - returned(s’)
Postcondition:

created(s) = created(s) U {T}
aborted(s) = aborted(s’) U {T}

o INFORM — COMMIT ~ AT(X)OF(T).
Precondition:
T € committed(s’)

e INFORM - ABORT - AT(X)OF(T):
Precondition:
T € aborted(s’)

Thus, the weak concurrent controller is permitted to abort any transaction that has had its creation

requested, and which has not yet returned.

6.2. Weak Concurrent Systems
The composition of transactions, resilient objects and the weak concurrent scheduler (lock managers and
weak concurrent controller) is the weak concurrent system. A schedule of the weak concurrent system is a

weak concurrent schedule,

Weak concurrent systems cxhibit nice behavior to transactions except possibly to those which are
descendants of aborted transactions. Thus, we say that a transaction T is an orphan in any scquence « of
opcrations provided that an ancestor of T is aborted in . In many of the properties we prove for weak
concurrent systems, we will have to specify that the transactions involved are not orphans. Orphans have
been studicd in [Go,Wa,HM]

6.3. Properties of Weak Concurrent Systems
We here give some uscful basic properties for weak concurrent schedules. As before, complete proofs and

additional results appear in {LM].

Lemma 4: Let a be a weak concurrent schedule. 1ot R(X) be a resilient object, let T and T” be
accesses to R(X), and supposc that 1" is not an orphan in a. If an operation 7 of T precedes an
operation ' of 1" in &, and o is not in the scope of an INFORM — ABORT in a, then T is visible
to T in a.

Proof: By lock manager properties. §

The following is a key lemma,
Lemma 5: Let a be a weak concurrent schedule, and et T be live and not an orphan in a.

1. If 1" is a transaction, then visible(a, T)T" is a prefix of af1” and a schedule of T'.

301

2.1F R(X) is a resilient object, then visible(a, THR(X) is a prefix of undo(a]R(X)) and a
schedule of basic object X.

Proof: 1. Immediate from the fact that visible(a,)1 is cither cqual to a[l” or is the empty
sequence.

2. By Lemma 4 and properties of visibility. #

Finally, we show that, in a weak concurrent schedule, concurrently exccuting transactions access disjoint

scts of resilient objects.

Lemma 6: Let a be a weak concurrent schedule, with transactions T and T” live and not orphans
ina Let1” = ka(l'T"). Let B = visible(a,T) - visible(a, 1) and B° = visibic(a, 1} -
visible(a, T). Then no resilient object has operations in both 8 and 8°.

Proof: By lock manager propertics. &

7. Simulation of Serial Systems by Concurrent Systems

In this section, we prove the main results of this paper, that concurrent schedules are serially correct, and
that weak concurrent schedules are correct at 'I‘O. Both these results follow from an interesting thcorem about
weak concurrent schedules, which says that the portion of any weak concurrent schedule which is visible to a

live non-orphan transaction is equivalent to (i.c. looks the same at all primitives as) a serial schedule.

The proof of this theorem is quite interesting, as it provides considerable insight into the scheduling
algorithm. The proof shows not only that a transaction’s view of a weak concurrent schedule is equivalent to
some serial schedule, but by a recursive construction, it actually produces such a schedule. It is interesting and
instructive to observe how the views that different transactions have of the system cxccution get passed up

and down the transaction tree, as CREATES, COMMITS and ABORTS occur.

Theorem 7: et a be a weak concurrent schedule, and T any transaction which is live and not an
orphan in a. Then there is a serial schedule 8 which is equivalent to visible(a,T).

Proof: We proceed by induction on the length of a. The basis, length 0, is trivial. Fix a of
fength at least 1, and assume that the claim is truc for all shorter weak concurrent schedules, Let o
be the last operation of &, and let @ = a’ar. Fix T which is live and not an orphan in . We must
show that there is a serial schedule 8 which is equivalent to visible(a,T).

If o is not a scrial operation, then visible(a',T) = visible(serial(a’), T) = visible(serial(a),T) =
visible(a,T), and the result is immediate by induction. So we can assumc that 7 is a scrial
operation. Also, if transaction{w) is not visible to T in a, then visible(a,T) = visible(a’,T), and
the result is again immediate by induction. Thus, we can assume that transaction(ar) is visible to T
in o, Also, Tis not an orphan in &',

There are four cascs.

(1) = is an output opcration of a transaction or resilient object.

302

Then the inductive hypothesis implics the existence of a serial schedule 8° which is equivalent to
visible(a",T). Let 8 = B'w. We must show that 8 is equivalent to visible(a, T and scrial.

Ict P be any primitive. Then B{P = f'a[P = visible(a',T)#|P by inductive hypothesis, =
visible(a, T)|P. Therefore, 8 is equivalent to visible(a,T).

Let @ be an output of primitive P, Then 8P = visible(a,T)|P by cquivalence, which is a
schedule of P by Lemma 5. Lemma | implics that 8 is scrial.

(2) = is a CREATE(T’) operation.

Then transaction{w) = 1", and so T" is visible to T in . Then o is the first operation in @ whose
transaction is a descendant of 'I", By the definition of visibility, it must be that 'I” = T, Then
parent(T) is live in a’. Since parent(!) is not an orphan in a, the inductive hypothesis implics the
existence of a serial schedule B8 which is equivalent to visible{a',parent(1)). let 8 = B'w. We
must show that 8 is cquivalent to visible(a, 1) and scrial,

1.ct P be any primitive. Then BIP = B'w|P, = visible(a’ ,parent(1))a [P by inductive hypothesis,
= visible(a, T)P. Thus, B is cquivalent to visible(a,T).

Consider any execution of the serial system having B as its operation scquence, and let s’ be the
state of the serial scheduler after 8. Also consider any exccution of the weak concurrent system
having « as its operation sequence, and let s be the state of the weak concurrent scheduler after o',
Since 7 is cnabled in s, it is casy to show that it is also enabled in §’.

(3Y 7 is a COMMIT(T",v) operation.

Then T = parent(T") = transaction(ar) is visible to T and not an orphan in a, Also, T" is notan
orphan in «'. Then T is live in o, and so 1™ is live in &’ and so in a. Since 'I™ is live and visible
to T, T is an ancestor of T. Since T is live in a, T is not a descendant of T°. The inductive
hypothesis yields two serial schedules, 87 and 8, which are equivalent to visible{a’,1") and
visible{a’,T), respectively. Let y = visible(8',17). Let 8, = g'-yand 8, = B” - y. We must
show that 8 = y8,78, is equivalent to visible{a,T) and serial.

Equivalence is straightforward. We show that 8 is scrial. This follows from Lemma 2, provided
we can show that;
(3.a) B, w is aserial schedule,
(3.b) T" sces everything in Y8 v
(3.c) T sccs cverything in yﬁz,
(3.d) y = visible(yB,,T") = visible(yB,.17) and
(3.¢) no basic object has operations in both /31 and BZ‘
But (3.a) - (3.d) are straightforward, while (3.¢) is immediate from Lemma 6.

(4) # is an ABORT(T") operation.
Then T” = parent(T”) = transaction(sr) is visible to 1" in «, and so is not an orphan in a. Then

T" is live in o', and T is live in @’ and so in a. Since T is live and visible to T in a, T is a
descendant of T, Since T is not an orphan in &, T is not a descendant of T The inductive

303

hypothesis yiclds two scrial schedules, 87 and B, which are cquivalent to visible(a',1™) and
visible(a', T), respectively. Let Bl = B” - B’. Wc must show that 8 = B’wBl is cquivalent to
visible(a,T) and serial.

Equivalence is straightforward. We show that 8 is serial. This follows from Lemma 3, provided
we can show that:
(4.2) B’ is a scrial schedule,
(4.b) T sees everything in 8°8, and
(4.c) B = visible(B°, 1) = visible(8'8.1™).
But this is straightforward.
Corollury 8: Every weak concurrent schedule is serially correct for every non-orphan non-access

transaction.

Corollary 9: Every weak concurrent schedule is serially correct for TO.
Corollary 10: Every concurrent schedule is serially correct.

8. Acknowledgments

We thank Bill Weihl for many, many comments and questions, and much encouragement, during the
coursc of this project. We also thank all the other members of the ARGUS design and implementation group
at MIT, for providing a concretc model for us to try to abstract and generalize. Also, we thank Ychuda Afek

for his comments on an carly draft, and Sharon Perl for her comments on later drafts.

9. References
[AM]

[BBG]

[BBGLS]

[BG]

[EGLT]

[Gol

Allchin, J. E., and McKendry, M. S., "Synchronization and Recovery of Actions,” Proc.
1983 Second Annual ACM Symposium on Principles of Distributed Computing, Montreal,
Qucbec, Canada, August 17-19, 1982, pp. 31-44.

Beeri, C., Bernstein, P, A., and Goodman, N,, "A Model for Concurrency in Nested
Transaction Systems,” Manuscript.

Beeri, C,, Bernstein, P. A., Goodman, N, Lai, M. Y., and Shasha, D. E,, "A Concurrency
Control Theory for Nested Transactions,” Proc. 1983 Second Annual ACM Symposium on
Principles of Distributed Computing, Montreal, Quebec, Canada, August 17-19, 1983, pp.
45-62.

Bernstein, P. A., and Goodman, N., "Concurrency Control in Distributed Database
Systems,” ACM Computing Surveys 13,2 (June 1981), pp. 185-221.

Eswaren, K. P., Gray, J. N, Lorie, R. A, and Traiger, 1. L., "The Notions of Consistency
and Predicate Locks in a Database Systems,” Communications of the ACM, Vol. 19, No. 11,
November 1976, pp. 624-633.

Goree, Jr., John A., "Internal Consistency of a Distributed Transaction System With
Orphan Detection,” MS Thesis, Technical Report MIT/LCS/TR-286, MIT Laboratory for
Computer Science, Cambridge, MA., January 1983,

[G1]

[(HM]

[Ho]

[Ks]

[L.aS]

[LHILSW]

LiS]

[LM]

[LT]

{Ly]

Mi}

Mo]

[R]

[RLS]

304

Gray, L, "Notes on Databasc Opcrating Systems,” in Bayer, R... Graham, R. and

Scegmuller, G. (eds), Opcrating Systems: an Advanced- Course, lLecture Notes in
Computer Science, Vol. 60, Springer-Verlag, 1978.

Herlihy, M., and McKendry, M., "Time-Driven Orphan Elimination”, in Proc. of the 5th
Symposium on Reliability in Distributed Sofiware and Database Systems, Los Angeles, CA.,
January 1986, pp. 42-48. ’

Hoare, C.A.R., "Communicating Secquential Processes”, Prentice Hall International
Englewood Cliffs, NJ, 1985.

Kedem, Z., and Silberschatz, A., "A Characterization of Database Graphs Admitting a
Simple Locking Protocol”, Acta Informatica 16 (1981) pp. 1-13.

Lampson, B. W, and Sturgis, H. E., "Crash Recovery in a Distributed Data Storage
System,” Tech. Rep., Computer Science [Lab., Xerox Palo Alto Rescarch Center, Palo Alto,
Calif,, 1979.

Liskov, B., Herlihy, M., Johnson, P. l.cavens, G. Scheifler, R., and Wcihl, W,,
"Preliminary Argus Reference Manual,” Programming Mcthodology Group Memo 39,
October 1983.

Liskov, B., and Scheifler, R., "Guardians and Actions: Linguistic Support for Robust,
Distributed Programs”, ACM Transactions on Programming Languages and Systems S, 3,
(July 1983), pp. 381-404.

Lynch, N., and Merritt, M., "Introduction to the Theory of Nested Transactions”, MIT
Technical Report, AT&T Bell Labs Technical Report.

Lynch, N., and Tuttle, M., "Correctness Proofs for Distributed Algorithms”, in progress.

Lynch, N..A., "Concurrency Control For Resilient Nested Transactions,”" Advances in
Computing Research 3, 1986, pp. 335-373.

Milner, R., "A Calculus of Communicating Systems”, Lecture Notes in Computer Science,
#92, Springer-Verlag, Berlin, 1980,

Moss, 1. E. B., "Nested Transactions: An Approach To Reliable Distributed Computing,”
Ph.D. Thesis, Technical Report MIT/LCS/TR-260, MIT Laboratory for Computer
Science, Cambridge, MA., April 1981, Also, published by MIT Press, March 1985.

Reed, D. P., "Naming and Synchronization in a Decentralized Computer System,” Ph.D
Thesis, Technical Report MI'T/1L.CS/TR-205, MIT Laboratory for Computer Science,
Cambridge, MA 1978.

Rosenkrantz, D. J,, Lewis, P. M., and Stearns, R. E., "System Level Concurrency Controt
for Distributed Databasc Systems,” ACM Transactions on Database Systems, Vol. 3, No. 2,
Junc 1978, pp. 178-198.

305

[Wa] Walker, E. F,, "Orphan Detection in the Argus System,” M.S. Thesis, Technical
Report/MIT/LCS/TR-326, MIT Laboratory for Computer Science, Cambridge, MA.,
June 1984.

[We] Weihl, W. E., "Specification and Implementation of Atomic Data Types," Ph.ID> Thesis,
Technical Report/MIT/LCS/TR-314, MIT Laboratory for Computer Scicnce, Cambridge,
MA,, March 1984,

This work was supported in part by the Office of Naval Rescarch under Contract N00014-85-K-0168, by
the Office of Army Resecarch under Contract DAAG29-84-K-0058, by the National Science Foundation
under Grant DCR-83-02391, and by the Defense Advanced Rescarch Projects Agency (IDARPA) under
Grant N00014-83-K-0125.

