
Atomic Data Access in Distributed Hash Tables

Nancy Lynch1, Dahlia Malkhi2, and David Ratajczak3

1 MIT
2 Hebrew University

3 UC Berkeley

Abstract. While recent proposals for distributed hashtables address the
crucial issues of communication efficiency and load balancing in dynamic
networks, they do not guarantee strong semantics on concurrent data
accesses. While it is well known that guaranteeing availability and con-
sistency in an asynchronous and failure prone network is impossible,
we believe that guaranteeing atomic semantics is crucial for establishing
DHTs as a robust middleware service. In this paper, we describe a simple
DHT algorithm that maintains the atomicity property regardless of tim-
ing, failures, or concurrency in the system. The liveness of the algorithm,
while not dependent on the order of operations in the system, requires
that node failures do not occur and that the network eventually deliv-
ers all messages to intended recipients. We outline how state machine
replication techniques can be used to approximate these requirements
even in failure-prone networks, and examine the merits of placing the
responsibility for fault-tolerance and reliable delivery below the level of
the DHT algorithm.

1 Introduction

Several groups have proposed distributed hashtables as a building block for large-
scale distributed systems, sometimes under the alias of content addressable net-
works [RFH+01], distributed data structures [GBH+00, LNS96], resource lookup
services [SMK+01], or peer-to-peer routing services [ZKJ01]. DHTs are composed
of nodes that are allowed to join and leave the system and that share the burden
of implementing a distributed hash table of data objects. For large networks,
only limited portions of the data set and/or membership set might be known
to any particular node; thus it is possible that accesses to the data structure
are forwarded between nodes until an appropriate handler of that data object is
found. DHT proposals are generally distinguished by the way in which the data
set is partitioned and sparse routing information is maintained.

The design of efficient DHTs is confounded by opposing design goals. First,
the set of nodes is assumed to be large, dynamic, and vulnerable to failure, so
it is imperative not only to manage joins and leaves to the network efficiently
while maintaining short lookup path lengths and eliminating bottlenecks, but
also to replicate data and routing information to increase availability. Most DHT
proposals focus primarily on these objectives. However, another design goal, and

P. Druschel, F. Kaashoek, and A. Rowstron (Eds.): IPTPS 2002, LNCS 2429, pp. 295–305, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



296 Nancy Lynch, Dahlia Malkhi, and David Ratajczak

one which is essential for maintaining the illusion of a single-system image to
clients, is to ensure the atomicity of operations on the data objects in the system.
Stated simply, submissions and responses to and from objects (values) in the
DHT should be consistent with an execution in which there is only one copy
of the object accessed serially [Lyn96]. Because of the complexity of dynamic
systems, and because many DHTs assume an environment in which leaves and
failures are equivalent, most proposals focus on the first design goal and are
designed to make a “best effort” with respect to atomicity. They violate the
atomicity guarantee by allowing stale copies of data to be returned, or skirt
around the problem by allowing only write-once semantics.

It is well-known that simultaneously guaranteeing availability (liveness) and
atomicity in failure-prone networks is impossible. Therefore, we assume a system
in which the network is asynchronous but reliable (messages are eventually de-
livered) and where servers do not fail. They can, however, initiate a join or leave
routine at any time, thus admitting possible concurrent modifications along with
concurrent data accesses. By tackling the problem of concurrency in the absence
of failures, we aim to produce a simple and elegant algorithm that will provide
correct semantics and achieve competitive scaling performance to current DHTs.
We will later discuss how existing fault-tolerance techniques can be used to mask
node failures and network unreliability with little impact to the simplicity of the
high-level algorithm.

Given our strong system assumptions, we seek an algorithm that yields
atomic access to data when there is only one copy of each piece of data in
the system. The challenge will be to ensure that as data migrates (when nodes
join and leave), requests do not access a residual copy nor do they arrive at the
destination before the data is transferred and mistakenly think the data does not
exist. Another challenge is to ensure that once a request has been initiated by a
node, a result is eventually returned. Because we have assumed an asynchronous
network, we must ensure that requests are not forwarded to machines that have
left the system (and thus will never respond). Furthermore, we must ensure that
routing information is maintained so that requests eventually reach their targets
as long as there is some active node.

2 Guarantees

The goal of a DHT is to support three operations: join, leave and data update.
Joins and leaves are initiated by nodes when they enter and leave the service.
An update is a targeted request initiated at a node, and is forwarded toward its
target by a series of update-step requests between nodes.1

As far as liveness is concerned, we are primarily interested in the behavior
of the algorithm when the system is quiescent: when only a small number of
concurrent joins and leaves are occuring during a sufficiently long period and
1 The update operation includes updates as simple as reads and writes, as well as

much more powerful data types such as compare-and-swap and consensus objects.
See [Lyn96] for a thorough treatment of atomic data objects.



Atomic Data Access in Distributed Hash Tables 297

join(m): This operation is initiated by a node wishing to join the network, and
includes as an argument the physical machine address of a currently active node.

leave(): This operation is initiated by an active node wishing to leave the
network.

update(op,x): This operation is initiated by an active node wishing to
perform a data operation, op, on a value in the DHT that is stored under the
logical identifier x.

not all nodes have tried to leave the system. Otherwise, if too many nodes join
and leave all the time, then updates may not make sufficient progress toward
their target as the set of newly joined nodes lengthens the paths between nodes.
The language used in the following descriptions accounts for this detail.

Stated informally, we require that the system guarantee the following prop-
erties:

Atomicity: Updates to and the corresponding values read from data objects
must be consistent with a sequential execution at one copy of the object.

Termination: If after some point no new join or leave operation is initiated
and not all nodes have initiated a leave, then all pending join and leave
operations must eventually terminate and all updates eventually terminate
(including those initiated after that point).

Stabilization: If after some point no new join or leave operation is initiated,
then the data and link information at each node should eventually be the
same as that prescribed by the chosen hashing and routing schemes, with
the expected lookup/update performance.

3 Algorithm

In this section we describe an algorithm that implements the guarantees de-
scribed above. Here we focus on a particular implementation that stems from
Chord [SMK+01]. In this implementation, objects and nodes are assigned logi-
cal identifiers from the unit ring, [0, 1), and objects are assigned to nodes based
on the successor relationship which compares object and node identifiers. More-
over, nodes maintain “edge” information that enables communication (e.g., IP
addresses) to some of the other nodes. Specifically, nodes maintain edges to
their successor and predecessor along the ring (they can also keep track of other
long-range contacts using the algorithm presented). We augment the basic ring
construction of Chord to include support for atomic operations on the data
objects, even in the face of concurrent joins and leaves.

Each node, n, keeps track of its own status (such as joining, active, leaving,
etc.), and its identifier. Every node maintains a table of physical and logical
identifiers corresponding to its “in-links” and “out-links.” In-links are nodes
from which requests are allowed to be entered into the input queue. Out-links are



298 Nancy Lynch, Dahlia Malkhi, and David Ratajczak

nodes to which a connection has been established and requests can be forwarded.
The data objects controlled by the node are kept in a local data structure, data.
Each node accumulates incoming requests and messages in a FIFO queue, InQ.
Requests in the InQ include all action-enabling requests, including self-generated
leave and join requests, other nodes’ requests involved with their joining or
leaving, and data update requests. Figure 1 illustrates a single node with its
local data structures.

InLinks

Status

InLinks OutLinks

Id Data

InQ OutQ

Thread
Pool

State Machine

OutLinks

Fig. 1. In our node model, requests are performed in a serial manner at each node, with

its execution determined entirely by the order in which external events are received.

Each node has a simple dispatch loop, which takes a message off the InQ
and runs the appropriate procedure for that message, awakens any suspended
procedure waiting for that message, and checks if any suspended procedures can
be run due to a change of status. Thus each procedure will be initiated from some
message arriving on the InQ, may produce outgoing messages between waiting
points — when control is returned to the dispatch loop — and will eventually
terminate. Only a single procedure has control at any time.

We now describe the algorithm at a high level. (The appendix provides a
psuedocode description of the actions performed by each machine.) We assume
that the system is initialized with one or more nodes with an initial set of edges
and data objects. We will describe the leave, join, and update-step operations
in order below.

When an active node wishes to leave, it places all of its data in a nice big
message to its successor and changes its status to transferring. At this point, all
requests that would be meant for the current node will be forwarded along to the



Atomic Data Access in Distributed Hash Tables 299

successor.2 After getting an acknowledgement that the data was received, the
node changes its status to leaving and sends a “leaving” message to its in-links
(predecessor and any others) informing that it is going away. These nodes will
route “connecting” requests on the network to add an edge to their new closest
active machines as a replacement for the leaving edge. When the “connecting”
request finally reaches the closest active successor, it is processed, a “connecting”
acknowledgment is returned, and once processed, the new edge is added. When
the new edge is added, the leaving node receives an acknowledgment that the
edge to it is removed, so that no more requests will be forwarded along this
edge. When the leaving node has collected “leaving” acknowledgments from all
in-links, and it has no more pending requests requiring a response, then it can
drop out of the system. This operation is illustrated in Figure 2.

(a) (b)

(c)

(1
)(2

)(3
)

(d)
Fig. 2. For a leave operation (a) the leaving node transfers its state to its successor

(b) it tells its predecessor to find its new active successor [1], which the successor does

by submitting a targeted request [2] that is forwarded until a response [3] from an

active node is returned, (c) an edge is added, and the leaving node is informed that its

in-edges are flushed, and (d) it drops out.

A joining node will attempt to send a join request to a node for which it has
a priori knowledge.3 The request, if the node has not left, will be acknowledged

2 If the successor is also leaving, messages will be forwarded even further, though this
is only visible to the first node in that acknowledgements may come from a node
other than the successor.

3 Because this information may be stale, a node might never succeed in joining. How-
ever, if the joining node has knowledge of some active node, joins will complete, and
in any case they will not disrupt the safety properties of the system.



300 Nancy Lynch, Dahlia Malkhi, and David Ratajczak

and atomically put on the queue with the rest of the requests. The join mes-
sage, similar to other targeted requests, will be routed around the system until
the closest active target processes the message. At this time, the target node
will separate its data, modify its bucket, and send a big message to the joining
node that it is processing. It will also not be allowed to leave or handle other
joins until the entire join procedure has completed. It creates a surrogate pointer
to the joining node so that all requests for the new joining node are forwarded
along this link during this period. It then contacts each of its in-neighbors telling
them to update their pointers to the new node. Each of them sends a “connect-
ing” message to the new node, updates its out-neighbors table, then sends an
acknowledgment to the host node after removing the host from its out-neighbors
table. When the host node collects acknowledgments from all of the neighbors
in question, it can remove its surrogate pointer and start entertaining more join
requests. This is illustrated in Figure 3.

(a) (b)

(c) (d)
Fig. 3. For a join operation (a) the joining node initiates a targeted request to the

successor, where (b) a response is returned to the joining node including the relevant

state and the predecessor is notified of a new node. At this point the joining node has

a surrogate edge pointing to it. After this, (c) the predecessor will contact the joining

node to add an edge, it will remove an edge to the old successor, and the surrogate

edge will then be removed (d).

When an update-step is invoked on a node, it is either forwarded or pro-
cessed locally depending on its target identifier. When a response is generated,
it is sent back to the return address specified in the request. All other targeted
requests are either forwarded or processed locally depending on their target
identifier.



Atomic Data Access in Distributed Hash Tables 301

4 Discussion

Certain aspects of our algorithm deserve further mention. First, the particular
choice of a ring structure as the underlying routing/hashing scheme was some-
what arbitrary. The presented algorithm is readily adaptable to other routing
schemes, such as the d-dimensional torii described in [RFH+01] (of which the
connected ring is a special case). However, most other schemes admit the possi-
bility that a small subset of nodes leaving at the same time could fail to make
progress because they all wish to transfer state to each other.4 In the case of the
ring, the only time this occurs is when all nodes in the system leave, a scenario
already excluded from consideration. For a d-dimensional torus (see [RFH+01])
this could be as few as O( d

√
n) nodes.

For routing schemes that are based on a connected ring structure with addi-
tional long-range edges [MNR02, SMK+01], the presented algorithm and pseu-
docode can be modified to forward targeted requests based on the routing pro-
tocol rather than merely forwarding to the successor, and to allow a joined node
to send connect requests to connect to its appropriate long-range edges before
(or just after) becoming active. The remaining code for managing incoming and
outgoing links can be left unaltered.

The use of the connect request to add links in the network is also useful if
the update messages are large, and the cost of forwarding a message through
the network is prohibitive. In this case, the initiator of the update can send a
connect request to the target of the update, add an edge to that node, and then
forward the update to that node directly. This does not violate the correctness
of the algorithm since this node could still leave and the targeted update will
be forwarded appropriately. In a relatively static network this will require the
update to be forwarded along only one edge, and can drastically reduce the num-
ber of hops in even the most dynamic setting. However, it also incurs additional
overhead for maintaining and dismantling the resulting edge.

5 Fault-Tolerance

It is a deliberate aspect of our algorithm that we have modeled each node as
a state machine dependent only on the order of its inputs. This means we can
employ existing state machine replication (SMR) algorithms to produce a fault-
tolerant version of our algorithm, where the abstract nodes of the algorithm are
implemented by a replicated set of machines as illustrated in Figure 4. SMR
algorithms ensure that a set of replicas receive inputs in the same order (thus
they have the same execution) and provide mechanisms for replicas to join and
leave a group, as well as to coordinate a response and a replica change when a
failure is detected.5 There are different variants that tolerate different types of
failures and that are tuned for different environments.
4 Note that this is an instance of the classical dining philosophers problem, and is

solvable by a number of techniques beyond the scope of our algorithm or this paper.
5 See [Sch90] for a thorough treatment of SMR techniques.



302 Nancy Lynch, Dahlia Malkhi, and David Ratajczak

Fig. 4. Normal communication between nodes at the algorithm level (top) can be made

fault-tolerant using state machine replication techniques at the node level (bottom).

The simplest way to incorporate SMR into the system is to have physical
nodes form replica groups elsewhere, and join into the network as a virtual node
with a virtual address encoding the set of replicas in the group.6 The replicas
in a virtual node will execute the algorithm we have already presented, though
there will be occasional view change operations invoked by the SMR service
when replica failures are detected. When the set of remaining active replicas in
a virtual node gets below a certain threshold, the SMR service will invoke the
leave operation on the remaining replicas, and when it is complete, the active
replicas may go elsewhere to become a new virtual node when more participants
are found. In this way, failures of individual replicas are masked and eventually
turned into correct leaves at the algorithm level.

There are several benefits to this approach. First, many mature SMR imple-
mentations already exist and their behavior in various environments has been
well established. Second, different replication factors and different SMR imple-
mentations may be appropriate for different deployments; a DHT on a tightly-
controlled cluster of machines will have a different failure model than one that
is deployed over the Internet, and will require different fault-tolerance guaran-
tees. Third, because this scheme does not specify how replica groups are formed,
they can be formed to optimize a number of different factors, such as geographic
proximity, failure independence, trust, etc.

6 Communication between virtual nodes will involve k2 actual messages in a trivial
implementation and will require some filtering on the part of the replicas in the
receiving virtual node. This can be optimized in numerous ways which we will not
discuss here.



Atomic Data Access in Distributed Hash Tables 303

An alternative approach is to enforce that replica groups are sets of consecu-
tive nodes on the ring. This would work by keeping high and low thresholds for
the size of replica groups about the ring. A replica group manages all data that
would be managed by any of the replicas individually in the original algorithm,
and thus a new physical node will join into the replication group wherever it is
“hashed” onto the ring.7 When the size of a group exceeds the high threshold,
it splits into two adjacent replication groups each with roughly half the replicas
and data. When the size of a group drops below the low threshold, it merges
with its successor group.

When the thresholds are set at roughtly O(log n), this scheme has some inter-
esting theoretical advantages. First, it ensures that the replica groups are com-
posed of O(log n) independently chosen physical nodes, and thus if we assume
that failures are independent of identifiers, it ensures that with high probability
there is no virtual node failure in the system. Second, the size of the ring regions
covered by the replica groups are balanced to within a constant factor with high
probability. This is an improvement over the logarithmic factor normally guar-
anteed and requires fewer edges than the “virtual node” scheme employed by
Chord [SMK+01].

The details of this scheme remain to be fully worked out due to some sub-
tleties arising from having two replica groups communicating view changes to
each other. We are in the process of finalizing these details and building the
system to examine its behavior in practice.

References

[GBH+00] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and D. Culler. “Scalable,
distributed data structures for Internet service construction. In the
Fourth Symposium on Operating System Design and Implementation
(OSDI 2000), October 2000.

[Lam79] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocessor programs. IEEE Transactions on Computers,
C-28(9):690–691, 1979.

[LNS96] W. Litwin, M.A. Neimat, D. A. Schneider. “LH*-A scalable, dis-
tributed data structure”. ACM Transactions on Database Systems,
Vol. 21, No. 4, pp 480-525, 1996.

[Lyn96] Lynch, N. Distributed Algorithms, Morgan Kaufmann, San Francisco,
CA 1996.

[MNR02] D. Malkhi, M. Naor and D. Ratajczak. “Viceroy: A Scalable and Dy-
namic Lookup Scheme”. Submitted for publication.

[RFH+01] S. Ratnasamy, P. Francis, M. Handley, R. Karp and S. Shenker. “A
scalable content-addressable network”. In Proceedings of the ACM
SIGCOMM 2001 Technical Conference. August 2001.

[Sch90] F. Schneider. Implementing Fault-Tolerant Services Using the State
Machine Approach. ACM Computing Surveys 22:4 (Dec. 1990), 299-
319.

7 Note that this is not the same join operation that is described for the high-level
algorithm.



304 Nancy Lynch, Dahlia Malkhi, and David Ratajczak

[SMK+01] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan.
“Chord: A scalable peer-to-peer lookup service for Internet applica-
tions”. In Proceedings of the SIGCOMM 2001, August 2001.

[ZKJ01] B. Y. Zhao, J. D. Kubiatowicz and A. D. Joseph. “Tapestry: An in-
frastructure for fault-tolerant wide-area location and routing”. U. C.
Berkeley Technical Report UCB/CSD-01-1141, April, 2001.

A Pseudocode

local data:
ID = {id, addr}, id ∈ R randomly chosen, addr is a physical address
InLinks and OutLinks, set of {id, addr} logical/physical address pairs,

initially empty
data, set of named data objects, initially empty
myrange = (low, high) ∈ R ×R, initially (ID.id, ID.id)
InQ and OutQ, FIFO queues containing requests/msgs. InQ initially contains

join(someAddr)
status ∈ {inactive, joining, active, transferring, leaving}, initially inactive

definitions:
successor = closest(OutLinks)
“(msg,ID)” a message of type msg from a machine with logical/physical address

of ID

main program:
do forever

if there is any waiting procedure that may resume, dispatch the oldest one
else

remove head request from InQ
if status is leaving and request is targeted, then forward request to successor
else

dispatch the oldest procedure waiting for that message (if any)
else dispatch a new procedure to handle request

leave(): ; handle self leaving
wait until status is active ; yield
status← transferring
send ((data-trans,data),ID) to successor
myrange← (ID, ID)
wait for (data-trans-ack,successor) ; yield
status← leaving
send (leaving,ID) to all machines in InLinks
wait for (leaving-ack,m) from all machines in InLinks ; yield
forward all update-step requests in InQ to successor
status← inactive

join(someAddr): ; handle join
wait until status is inactive ; yield
status← joining



Atomic Data Access in Distributed Hash Tables 305

send (joining,ID) to the machine denoted by someAddr
wait for ((join-ack-and-data-trans,datainfo),surrogate); yield
send (data-trans-ack,ID) to surrogate
include surrogate in OutLinks
set data and myrange based on datainfo
wait for (join-complete,surrogate)
status← active

update-step(x, op)retaddress:
if x is in myrange (contained within [low, high) on the unit ring)
then perform op on x and send result to retaddress
else forward to successor

receive-msg T :
if T is (data-trans,m)

merge data and myrange with incoming data and range information
send (data-trans-ack,ID) to m

else if T is (joining,m)
if m is in myrange

oldstatus← status
status← transferring
group data and modify range between m and ID into datainfo msg
send ((join-ack-and-data-trans,datainfo),ID) to m
wait for (data-trans-ack,m) ; yield
status← oldstatus
include m in OutLinks ; surrogate pointer
send ((notify-of-new,m),ID) to all machines in InLinks
wait for (new-ack,m′) from all machines in InLinks; yield
remove those machines from InLinks
remove m from OutLinks ; remove surrogate pointer

else forward request to successor

else if T is (leaving,m)
send ((connect,m),ID) to successor
wait for (connecting-ack,substitute) ; may differ from successor
replace m in OutLinks with substitute′

send (leaving-ack,ID) to m

else if T is ((connect,x),m)
if x is in myrange

add m to InLinks
send (connecting-ack,ID) to m

else forward to successor

else if T is ((notify-of-new,x),m)
send ((connect,x),ID) to closest link in OutLinks
wait for (connecting-ack,new)
replace m with new in OutLinks
send (new-ack,ID) to m


	Introduction
	Guarantees
	Algorithm
	Discussion
	Fault-Tolerance
	Pseudocode

