
12. Communication and Data Sharing
for Dynamic Distributed Systems∗

Nancy Lynch1 and Alex Shvartsman2,1

1 Laboratory for Computer Science, Massachusetts Institute of Technology,
200 Technology Square, NE43-365, Cambridge, MA 02139, USA

2 Department of Computer Science and Engineering, University of Connecticut,
191 Auditorium Road, Unit 3155, Storrs, CT 06269, USA

12.1 Introduction

This research direction aims to develop and analyze algorithms to solve problems of
communication and data sharing in highly dynamic distributed environments. The term
dynamic here encompasses many types of changes, including changing network topol-
ogy, processor mobility, changing sets of participating client processes, a wide range of
types of processor and network failures, and timing variations. Constructing distributed
applications for such environments is a difficult programming problem. In practice,
considerable effort is required to make applications resilient to changes in client re-
quirements and to evolution of the underlying computing medium. We focus our work
on distributed services that provide useful guarantees and that make the construction of
sophisticated distributed applications easier. The properties we study include ordering
and reliability guarantees for communication and coherence guarantees for data sharing.
To describe inherent limitations on what problems can be solved, and at what cost, the
algorithmic results will be accompanied by lower bound and impossibility results.

One example of our approach is the new dynamic atomic shared-memory service for
message-passing systems. We formally specified the service and developed algorithms
implementing the service. A system implementation is under development. The service
is reconfigurable in the sense that the set of owners of data can be changed dynamically
and concurrently with the ongoing read and write operations. We proved the correctness
of the implementation for arbitrary patterns of asynchrony and crashes, and we analyzed
its performance conditioned on assumptions about timing and failures.

12.2 Recent Directions

In recent years, we worked on distributed algorithms and their analysis for a wide range of
problems including maintenance of replicated data, e.g., [12.6, 12.7] and view-oriented
group membership and communication, e.g., [12.5, 12.8]. We have also carried out
implementation studies, e.g., [12.3, 12.13]. Several of our projects were inspired by
middleware used in commercial and academic systems, most notably, by group com-
munication systems [12.4]. Additional motivation comes from dynamic voting systems,

∗ This work is supported by the NSF Grants 0121277, 9988304 and 9984774.

A. Schiper et al. (Eds.): Future Directions in DC 2002, LNCS 2584, pp. 62–67, 2003.
c© Springer-Verlag Berlin Heidelberg 2003



12. Communication and Data Sharing for Dynamic Distributed Systems 63

e.g., [12.15], protocols for atomic data, e.g., [12.1, 12.10], and dealing with unbounded
number of processors, e.g., [12.14].

Many of our algorithms are designed to cope with timing anomalies and some forms
of processor and communication failure, and some handled explicit requests to reconfig-
ure the system. In carrying out this work, we found it useful to formulate problems and
decompose solutions in terms of precisely-defined global services. Most of our work,
and other work on fault-tolerant distributed computing, makes it clear that algorithms
for such a setting can be extremely complex. The use of abstract global services with
well-defined interfaces and behavior to decompose the algorithms helps considerably in
reducing this complexity. For example, consensus algorithms have been used as build-
ing blocks in other work [12.9]. Additionally, such decomposition is useful in analyzing
correctness of algorithms and their performance.

12.3 New Directions: Dynamic Distributed Systems

Our new directions target communication and data sharing problems in highly dynamic
distributed environments. The environments we consider will be (even) less well-behaved
than the ones we considered earlier, including, for example, unknown universe of pro-
cessors, explicit requests by participants to join and leave the system, and mobility.
We aim for a coherent theory rather than isolated algorithmic results, and we look for
common services that can be used as parts of many algorithms, and for lower bound
results as well as upper bound (algorithmic) results. We are considering network en-
vironments in which the set of processors and their connectivity changes over time.
Processors and links may be added and removed from a network, and while they are in
the network, they may fail and recover. Different processors and communication links
may operate at drastically different speeds, and these speeds may vary over time. Pro-
cessors may be connected wirelessly and be mobile, moving about in space while they
communicate. Application processes may also migrate around the network. On such
substrates, we will consider running distributed applications involving identified groups
of participants. These will include sharing of files in wide-area networks, distributed
multi-player games, computer-supported cooperative work, maintaining and dissemi-
nating information about real-world, real-time endeavors with strict data-consistency
requirements (such as military operations), multimedia transmission, and others.

Approach. We view the communication and data-sharing problems to be solved as
high level global services, which span network locations. These services generally will
provide performance and fault-tolerance guarantees, conditioned on assumptions about
the behavior of the environment and of the underlying network substrate.

Traditionally, research on distributed computing primitives and services has empha-
sized specification and correctness, while research on distributed and parallel algorithms
has emphasized efficiency and performance. Our approach will combine and synthe-
size these two concerns: It will yield algorithms that perform efficiently and degrade
gracefully in dynamic distributed systems, and whose correctness, performance, and
fault-tolerance guarantees are expressed by precisely-defined global services. We will
include the study of trade-offs involving service guarantees and performance. For exam-



64 Nancy Lynch and Alex Shvartsman

ple, achieving atomicity is expensive, and there are reasons to believe that weakening
consistency slightly may reduce the cost and still provide useful semantics.

Because the setting is very complex, the algorithms will also be very complex, which
means that it is necessary to decompose them into smaller, more manageable pieces. In
our research, many of those smaller pieces will be viewed as lower-level, auxiliary global
services. These services will provide lower-level communication and data-sharing capa-
bilities, plus other capabilities such as failure detection, progress detection, consensus,
group membership, leader election, reconfiguration, resource allocation, workload dis-
tribution, location determination, and routing. These services must also include condi-
tional performance and fault-tolerance guarantees. This decomposition can be repeated
any number of times, at lower levels of abstraction. The work we pursue in attaining our
goals includes:

– Defining new global services to support computing in complex distributed environ-
ments, with particular emphasis on communication and data-sharing services.

– Developing and analyzing algorithms that implement these services in dynamic sys-
tems, and algorithms that use the services to implement higher-level services.

– Obtaining corresponding lower bounds and impossibility results.

This work is carried out in terms of a mathematical framework based on interacting
state machines. The state machines will include features to express issues of timing, con-
tinuous behavior, and probabilistic behavior. Supporting metatheory, including general
models, performance measures, and proof and performance analysis methods, will also
be developed. Our theoretical work complements ongoing work on implementation and
testing of distributed system services. Parts of this work are guided by examples chosen
from prototype applications, including distributed file management, information collec-
tion and dissemination, computer-supported cooperative work, and distributed games.
When developing specifications motivated by existing systems we also rely on informa-
tion from the developers about what their services guarantee.

Intended impact. Our research will contribute to developing the theory of communica-
tion and data sharing in dynamic distributed systems. In terms of practical implications,
our research has the potential to produce qualitative improvements in capabilities for
constructing applications for dynamic distributed environments. New global services
can be used to decompose the task of constructing complex into manageable subtasks.
Integrating conditional performance and fault-tolerance guarantees into service speci-
fications will decompose the task of analyzing the performance and fault-tolerance of
complex systems, which in turn will make this analysis more tractable. Lower bound
and impossibility results will tell system designers when further effort would be futile.

12.4 Reconfigurable Atomic Memory Service

We now present an example of our new work on algorithms for dynamic systems. We
overview our algorithm [12.12] that can be used to implement atomic read/write shared
memory in a dynamic network setting, in which participants may join or fail during the
course of computation. Examples of such settings are mobile networks and peer-to-peer



12. Communication and Data Sharing for Dynamic Distributed Systems 65

networks. One use of this service might be to provide long-lived data in a dynamic and
volatile setting such as a military operation.

We developed a formal specification for a reconfigurable atomic shared memory as
a global service. We call this service Rambo, which stands for “Reconfigurable Atomic
Memory for Basic Objects” (“Basic" means “Read/Write”). Then we provided a dynamic
distributed algorithm that implements this service. In order to achieve availability in the
presence of failures, the objects are replicated. In order to maintain memory consistency
in the presence of small and transient changes, the algorithm uses configurations, each
of which consists of a set of members plus sets of read-quorums and write-quorums.
In order to accommodate larger and more permanent changes, the algorithm supports
reconfiguration, by which the set of members and the sets of quorums are modified.
Such changes do not cause violations of atomicity. Any quorum configuration may be
installed at any time.

The algorithm carries out three major activities, all concurrently: reading and writing
objects, introducing new configurations, and removing (“garbage-collecting”) obsolete
configurations. The algorithm is composed of a main algorithm, which handles reading,
writing, and garbage-collection, and a global reconfiguration service, Recon, which pro-
vides the main algorithm with a consistent sequence of configurations. Reconfiguration
is loosely coupled to the main algorithm, in particular, several configurations may be
known at one time, and read and write operations can use them all.

The main algorithm performs read and write operations using a two-phase strategy.
The first phase gathers information from read-quorums of active configurations and the
second phase propagates information to write-quorums of active configurations. This
communication is carried out using background gossiping, which allows the algorithm to
maintain only a small amount of protocol state information. Each phase is terminated by
a fixed point condition that involves a quorum from each active configuration. Different
read and write operations may execute concurrently: the restricted semantics of reads and
writes permit the effects of this concurrency to be sorted out later. A facility is provided
for garbage-collecting old configurations when their use is no longer necessary for
maintaining consistency.

The reconfiguration service is implemented by a distributed algorithm that uses con-
sensus to agree on the successive configurations. Any member of the latest configuration
c may propose a new configuration at any time; different proposals are reconciled by an
execution of consensus among the members of c. Consensus is, in turn, implemented
using a version of the Paxos algorithm [12.11].Although such consensus executions may
be slow—in fact, in some situations, they may not even terminate—they do not delay
read and write operations. Garbage-collection uses a two-phase strategy, where the first
phase communicates with an old configuration c and the second phase communicates
with a new configuration c′. A garbage-collection operation ensures that both a read-
quorum and a write-quorum of c learn about c′, and that the latest object value from c is
conveyed to a write-quorum of c′.

We show atomicity for arbitrary patterns of asynchrony and failure. We analyze
performance conditionally, based on timing and failure assumptions. For example, as-
suming that gossip and garbage-collection occur periodically, that reconfiguration is
requested infrequently enough for garbage-collection to keep up, and that quorums of



66 Nancy Lynch and Alex Shvartsman

active configurations do not fail, we show that read and write operations complete within
time 8d, where d is the maximum message latency.

A complete distributed system implementation is also underway.

12.5 Closing Remarks

Our approach to middleware (of which Rambo is an example) differs from common
practice: although middleware frameworks such as CORBA, DCE and Java/JINI support
construction of distributed systems from components, their specification capability is
limited to the formal definition of interfaces and informal descriptions of behavior.
These are not enough to support careful reasoning about the behavior of systems that
are built using such services. Moreover, current middleware provides only rudimentary
support for fault-tolerance. In contrast, our services are precisely defined, with respect to
both their interfaces and their behavior. The specified behavior may include performance
and fault-tolerance. Our component behavior is specified in a compositional way, so that
correctness, performance, and fault-tolerance properties of a system can be inferred from
corresponding properties of the system’s components.

Our project will, we believe, contribute substantially toward a coherent theory of al-
gorithm design and complexity analysis for dynamic distributed environments, as pow-
erful as the theory that currently exists for static distributed systems. The contributions
of this project will be mainly theoretical. However, the resulting services and algorithms
will also have the potential for impact on design of real systems for dynamic environ-
ments. Note that actually incorporating theoretical services like ours into systems will
require additional work of another sort: software engineering work to integrate them
with other system components built using object-oriented and component technologies
(Birman discusses some of these issues in [12.2]).

References

12.1 H. Attiya, A. Bar-Noy and D. Dolev, “Sharing Memory Robustly in Message Passing
Systems", J. of the ACM, vol. 42, no. 1, pp. 124-142, 1996.

12.2 Kenneth P. Birman. A review of experiences with reliable multicast. Software, Practice
and Experience, 29(9):741–774, September 1999.

12.3 O. Cheiner and A. Shvartsman, “Implementing an eventually-serializable data service as
a distributed system building block,” in Networks in Distributed Computing, vol. 45, pp.
43–72, AMS.

12.4 Communications of the ACM, special section on group communications, vol. 39, no. 4,
1996.

12.5 R. De Prisco, A. Fekete, N. Lynch, and A. Shvartsman, “A dynamic primary configuration
group communication service,” in Distributed Computing Proceedings of DISC’99 - 13th
International Symposium on Distributed Computing, 1999, LNCS, vol. 1693, pp. 64–78.

12.6 B. Englert and A. Shvartsman. Graceful quorum reconfiguration in a robust emulation of
shared memory. In Proc. of the 20th IEEE Int-l Conference on Distributed Computing
Systems (ICDCS’2000), pp. 454-463, 2000.

12.7 A. Fekete, D. Gupta, V. Luchangco, N. Lynch, and A. Shvartsman, “Eventually-serializable
data service,” Theoretical Computer Science, vol. 220, no. 1, pp. 113–156, June 1999.



12. Communication and Data Sharing for Dynamic Distributed Systems 67

12.8 A. Fekete, N. Lynch, and A. Shvartsman. “Specifying and using a partitionable group
communication service." ACM Trans. on Computer Systems. vol. 19, no. 2, pp. 171-216,
2001.

12.9 R. Guerraoui and A. Schiper, “The Generic Consensus Service," IEEE Trans. on Software
Engineering, Vol. 27, No. 1, pp. 29-41, January, 2001.

12.10 S. Haldar and P. Vitányi, “Bounded Concurrent Timestamp Systems Using Vector Clocks",
J. of the ACM,Vol. 249, No. 1, pp. 101-126, January, 2002

12.11 Leslie Lamport, "The Part-Time Parliament", ACM Transactions on Computer Systems,
16(2) 133-169, 1998.

12.12 N. Lynch and A. Shvartsman, “RAMBO: A Reconfigurable Atomic Memory Service", in
Proc. of 16th Int-l Symposium on Distributed Computing, DISC’2002, pp. 173-190, 2002.

12.13 K. W. Ingols, “Availability study of dynamic voting algorithms,” M.S. thesis, Dept. of
Electrical Engineering and Computer Science, MIT, May 2000.

12.14 M. Merritt and G. Taubenfeld, “Computing with infinitely many processes (under assump-
tions on concurrency and participation),” In Proc.14th International Symposium on DIS-
tributed Computing (DISC), October 2000.

12.15 E. Yeger Lotem, I. Keidar, and D. Dolev. “Dynamic voting for consistent primary com-
ponents." In Proceedings of the Sixteenth Annual ACM Symposium on Principles of Dis-
tributed Computing, pages 63–71, August 1997.


	12.1 Introduction
	12.2 Recent Directions
	12.3 New Directions: Dynamic Distributed Systems
	12.4 Reconfigurable Atomic Memory Service
	12.5 Closing Remarks
	References



