(3002 's'n 21 31410
MV LHOIHAJOD A8 03103104d
38 AV IVIMILVIN SIHL ‘3D1ON

CHAPTER §

Theory of Real-Time Systems —
Project Survey*

Hagit Attiyal
Nancy A. Lynch
Laboratory for Computer Science
MIT
Cambridge, MA 02139

1 Introduction

An important area of computer applications is real-time process control,
in which a computer system interacts with a real-world system in order
to guarantee certain desirable real-world behavior. In most interesting
cases, the real-world requirements involve timing properties, and so the
behavior of the computer system is required to satisfy certain timing
constraints. In order to be able to guarantee timing constraints, the
computer system must satisfy some assumpti'ons about time—for exam-
ple, its various components should operate at known speeds.

It is clear that good theoretical work in the area of real-time systems
is necessary. In the past few years, several researchers have proposed
new frameworks for specifying requirements of such systems, describ-
ing implementations, and proving that the implementations satisfy the

*This work was supported by ONR contract N00014-85-K-0168, by NSF grants
CCR-8611442 and CCR-8915206, and by DARPA contracts N00014-89-J-1988 and

N00014-87-K-0825.
tCurrent address: Computer Science Department, The Technion, Haifa 32000,

Israel.

112

requirements. These frameworks are based on, among others, state ma-
chines ([18, 78, 92]), weakest precondition methods ([43]), first-order
logic ([47, 48]), temporal logic ([11]), Petri nets ([17, 62, 91]), and pro-
cess algebra ([9, 40, 46, 53, 88, 100]). Work is still needed in evaluating
and comparing the various models for their usefulness in reasoning about
important problems in this area and perhaps in developing new models
if these prove to be inadequate.

Work is also needed in developing the complexity theory of such sys-
tems; very little work has so far been done in this area. An example of the
kind of work needed is provided by the theory of asynchronous concurrent
systems.! That theory contains many combinatorial results that show
what can and cannot be accomplished by asynchronous systems; for tasks
that can be accomplished, other combinatorial results determine the in-
herent costs. In addition to their individual importance, these results
also provide a testbed for evaluating modeling decisions and a stimulus
for the development of algorithm verification techniques. Similar results
should be possible for real-time systems. Some examples of complexity
results that have already been obtained for real-time systems are the
many results on clock synchronization, including [24, 42, 56, 66, 99] (see
[94] for a survey).

In this project, we have embarked on a study of complexity results for
real-time systems. We have formulated several abstract problems that
seem to be characteristic of real-time computing, and have obtained up-
per and lower bounds for the time complexity of those problems. The
problems we have defined are all variations of problems that have pre-
viously been studied for asynchronous concurrent systems; the major
differences are that we impose rather stringent timing requirements on
the solutions and that we assume that our systems satisfy certain as-
sumptions about the timing of events. The assumptions we make about
the timing of events are not exact; rather, we assume that the time re-
quired for various events is known to be within certain bounds. For
example, in real-time systems, there can be uncertainty in the time re-
quired for real-world tasks to be completed, for processors to take steps,
for clocks to advance and for messages to be delivered.

We have obtained bounds on the time complexity of solving three fun-

1 Asynchronous systems are those in which processes work at completely indepen-
dent rates and have no way of estimating time.

damental p
a model wi
respectivel;

In the
systematic
of timing b
assertional

Asserti
properties
involves de
defining a
One proves
reachable i
of the mac
property te
general pr
an intuitiv
property. (
correspond
used as a s

We hav
proving cox
work is des

The for
automaton
model of |
be satisfied
describe th
erties. We

The las
of wait-fres
systems, it
e.g., becau
ory latenc
page faults
algorithm |

s, state ma-
, first-order
1), and pro-
1 evaluating
oning about
new models

of such sys-
ample of the
s concurrent
s that show
ns; for tasks
mine the in-
hese results
1 a stimulus
nilar results
" complexity
ems are the
- 66, 99] (see

;y results for
oblems that
»btained up-
blems. The
at have pre-
; the major
irements on
* certain as-
make about
the time re-
ounds. For
the time re-
> take steps,

1g three fun-

etely indepen-

113

damental problems: mutual exclusion, synchronization and agreement, in
a model with inexact timing assumptions. These results are described,
respectively, in Sections 2, 3 and 4.

In the course of our work on these problems, we felt a need for a
systematic method for reasoning about the correctness and performance
of timing based systems. To satisfy this need, we have developed a new
assertional method of reasoning about timing based systems.

Assertional reasoning is a very useful technique for proving safety
properties of sequential and concurrent algorithms. This proof method
involves describing the algorithm of interest as a state machine, and
defining a predicate known as an assertion on the states of the machine.
One proves inductively that the assertion is true of all the states that are
reachable in a computation of the machine, i.e., that it is an invariant
of the machine. The assertion is defined so that it implies the safety
property to be proved. Assertional reasoning is a rigorous, simple and
general proof technique. Furthermore, the assertions usually provide
an intuitively appealing explanation of why the algorithm satisfies the
property. One kind of assertional reasoning uses a mapping to describe a
correspondence between the given algorithm and a higher-level algorithm
used as a specification of correctness. (See, for example, [57, 67, 71].)

We have developed an assertional technique based on mappings, for
proving correctness and timing properties of timing-based systems. This
work is described in Section 5.

The formal model we have used to describe our results is the timed
automaton model, a slight variant of the time consirained automaton
model of [78]. We have used this model to state the requirements to
be satisfied, to define the basic architectural and timing assumptions, to
describe the algorithms, and to prove their correctness and timing prop-
erties. We have also used it for describing our mapping proof technique.

The last work described in this survey considers the time complexity
of wait-free algorithms in shared-memory distributed systems. In such
systems, it is possible for processes to operate at very different speeds,
e.g., because of implementation issues such as communication and mem-
ory latency, priority-based time-sharing of processors, cache misses and
page faults. It is also possible for processes to fail entirely. A wait-free
algorithm guarantees that each nonfaulty process terminates regardless

114

of the speed and failure of other processes ([44, 58]). Because wait-free
algorithms guarantee that fast processes terminate without waiting for
slow processes, wait-free algorithms seem to be generally thought of as
fast. However, while it is obvious from the definition that wait-free al-
gorithms are highly resilient to failures, we believe that the assumption
that such algorithms are fast requires more careful examination.

We have addressed this general problem by studying the time com-
plexity of wait-free algorithms for the approzimate agreement problem.
Our results are described in Section 6.

A major emphasis in our project has been on the impact of uncer-
tainty in the system on the time complexity of solving problems. This
uncertainty might be due to inexact timing assumptions as described
above, to unpredictable inputs, or to failures. More specifically, our
work on mutual exclusion involves timing uncertainty and unpredictable
inputs, our work on synchronization involves only timing uncertainty,
and our work on agreement and wait-free algorithms involves timing un-
certainty and failures.

The portion of our work that deals with resource allocation problems
is related to prior work in scheduling theory (for example, [40, 65, 86)).
Our work on resource allocation is distinguished from the scheduling
theory work in its emphasis on distributed algorithms and on timing un-
certainties and failures. Also, our emphasis has been on upper and lower
bounds for solving particular problems, e.g., mutual exclusion, whereas
the emphasis in scheduling theory seems to be on general strategies (e.g.,
first-come-first-serve) for solving large classes of problems. As the sub-
ject matter of scheduling theory broadens, however, we believe that the
two areas will become more closely related.

Our work has taken advantage of many of the approaches, techniques
and results of distributed computing theory. In particular, our selection
of problems, our use of automaton-style formal models and assertional
reasoning, the design of our algorithms, and the techniques we use to
prove lower bounds (e.g., the perturbation of executions and the use of
the limitations of local knowledge) have all been heavily influenced by
prior work in distributed computing theory.

2 M

We have s
is one of
as an ab:
note that
literature
push diffe
the same
rod movis
reaction 1

More
number, 7
are suppo
moving p
pushing a
The cont:
gives perr
is expecte
system is
it is safe -
m has ela
that a R
preceding
correspon
time betw
i.e., the u

The c
dedicated
Processor:
efficiently
elapsed ti
the contre
by inaccu
the time
about tim

1. the

wuse wait-free
1t waiting for
thought of as
; wait-free al-
e assumption
ation.

he time com-
nent problem.

vact of uncer-
oblems. This
as described
ecifically, our
unpredictable
r uncertainty,
res timing un-

tion problems

[40, 65, 86]).
he scheduling
on timing un-
per and lower
sion, whereas
‘rategies (e.g.,
. As the sub-
lieve that the

es, techniques
, our selection
ad assertional
ues we use to
und the use of
influenced by

115

2 Mutual Exclusion

We have studied a variant of the mutual exclusion problem. This problem
is one of the fundamental problems in distributed computing; it serves
as an abstraction of a large class of hazard avoidance problems. We
note that this particular problem appears in the real-time computing
literature (cf. [48]) as the “nuclear reactor problem”. There, operators
push different buttons to request the motion of different control rods in
the same nuclear reactor. It is undesirable to have more than one control
rod moving at the same time, presumably since in that case the nuclear
reaction might be slowed down too much.

More specifically, we have considered a system consisting of some
number, n, of identical moving parts (e.g., control rods), no two of which
are supposed to move at the same time. An operator associated with each
moving part can request permission for the associated part to move by
pushing a button that sends a REQUEST signal to the control system.
The control system responds with GRANT signals; each GRANT signal
gives permission to the designated moving part to move, but such motion
is expected to be finished no more than a fixed time, m, later. The control
system is only supposed to issue a GRANT signal when it knows that
it is safe to move the corresponding moving part, i.e., at least real time
m has elapsed since the last GRANT signal. We assume, for simplicity,
that a REQUEST signal is only issued by a particular operator if any
preceding REQUEST by that operator has already been satisfied (by a
corresponding GRANT signal). Our goal is to minimize the worst-case
time between a REQUEST signal and the corresponding GRANT signal,
i.e., the worst-case response time.

The control system might consist of a single process running on a
dedicated processor or might be a distributed system running on separate
processors communicating over a message system. Solving the problem
efficiently requires the control system to make accurate estimates of the
elapsed time since the last GRANT signal; the difficulty, however, is that
the control system only has inaccurate information about time, as given
by inaccurate clock components within the system and by estimates of
the time required for certain events. Specifically, the only information
about time that the control system has is the following:

1. the knowledge that a moving part will stop moving within time m

116

after a GRANT signal,

2. the knowledge that the time between successive ticks of any clock
is always in the interval [¢;,c2], for known constants ¢; and cg,
where 0 < ¢; < ¢g,

3. the knowledge that the time between successive steps of any process
within the control system is always in the interval [0,!], for a known
constant [,0 </, and

4. (if the system is distributed) the knowledge that the time to deliver
the oldest message in each channel is no greater than a known
constant d,0 < d.

In the cases we have in mind, we suppose that | € ¢; < ¢; € d € m.
We use the notation C to represent the ratio ¢3/¢;; C is a useful measure
of the timing uncertainty.

We obtain the following results. First, we consider a centralized
control system, consisting of just a single process with a local clock. For
that case, we show that

n'c2(L(m+l)/c1J + 1)+l

(approximately nmC) is an eract bound on the worst-case response time
for the timing-based mutual exclusion problem. The upper bound result
arises from a careful analysis of a simple FIFO queue algorithm, while
the matching lower bound result arises from explicitly constructing and
“retiming” executions to obtain a contradiction.

We then consider the distributed case, which is substantially more
complicated. For that case, we obtain very close (but not exact) bounds:
an upper bound of

nlea ([(m+0)/ei)] + 1) +d+ ¢y + 20

(approximately nmC + nd) and a lower bound of nmC + (n — 1)d. As-
suming that the parameters have the relative sizes described earlier, e.g.,
that d is much larger than [, ¢; and ¢, the gap between these two bounds
is just slightly more than a single message delay time. The upper bound

arises fr
employ:
process

(Ths

3 S

Some p1
comput:
forming
robots 1
robot re
synchro
the sep
small p.
achievir
the tim

The
session
Roughl;
one stejp
antees t
sessions
variable
in syncl
the pro
in the a

We
distribu
have co
undirec!
message
chronou

call here

2Syncl

steps sim

of any clock
s ¢; and co,

[any process
for a known

ne to deliver
an a known

L d KL m.
eful measure

. centralized
al clock. For

»sponse time
bound result
rithm, while
tructing and

ntially more
act) bounds:

2 — 1)d. As-
earlier, e.g.,
two bounds
tpper bound

117

arises from a simple token-passing algorithm, while the lower bound proof
employs a new technique of shifting some of the events happening at a
process while carefully retiming other events.

(The work described in this section appears in [5].)

3 Synchronization

Some problems in real-time computing involve synchronization of several
computer system components, in order that they might cooperate in per-
forming a task involving real-world components. For example, multiple
robots might cooperate to build a car on an assembly line, with each
robot responsible for assembling a small piece of the machinery. Similar
synchronization problems arise in distributed computing as well, where
the separate components might each be responsible for performing a
small part of a computation. We have studied the time complexity of
achieving synchronization, in the presence of various assumptions about
the timing of basic events.

The particular synchronization problem we have considered is the
session problem, first defined by Arjomandi, Fischer and Lynch ([2]).
Roughly speaking, a session is a sequence of events that contains at least
one step by each process. An algorithm for the s-session problem guar-
antees that each execution of the algorithm includes at least s separate
sessions. It was assumed in [2] that processes communicate via shared
variables, and the time complexity of the session problem was studied
in synchronous and asynchronous models.? The results of [2] show that
the problem can be solved much faster in the synchronous model than
in the asynchronous model.

We have studied the time requirements for the session problem in
distributed networks rather than shared memory systems. That is, we
have considered a collection of n processes located at the nodes of an
undirected communication graph G; communication is assumed to be by
messages sent over the edges of G. We have considered both the asyn-
chronous model and a model with inexact timing assumptions (which we
call here the partially synchronous model).

2Synchronous systems are those in which processes operate in lock-step, taking
steps simultaneously.

118

Time is measured under the following assumptions on the system.
We assume that the delivery time for every message is in the range [0, d],
where d is a known nonnegative constant. Instead of assuming explicit
clocks (as in the previous section), we assume that the times between
successive local steps are in the range [0, ¢;] for the asynchronous model,
and in the range [c1,cz] for the partially synchronous model, where ¢,
and ¢, are constants, 0 < ¢; < ¢;. As before, we define C = ¢3/¢;.

Our upper bound results are as follows. Our first algorithm relies on
explicit communication to ensure that the needed steps have occurred,
and does not rely on any timing information. In either the asynchronous
model or the partially synchronous model, this algorithm has time com-
plexity (s — 1)diam(G)(d + ¢2), where the diameter of an undirected
graph G, diam(G), is the maximum distance between any two nodes.
Our second algorithm does not use any communication and relies only
on timing information; this algorithm works only in the partially syn-
chronous model. Its time complexity is co + (s — 2)(|C| + 1)c2. These
algorithms can be combined to yield a partially synchronous algorithm
for the s-session problem whose time complexity is c;+(s—2) min{(|C|+

1)02 , dzam(G)(d + Cz)}.

Our lower bound results are as follows. For the asynchronous model,
we prove a lower bound of (s — 1)diam(G)d for the time complexity of
any algorithm for the s-session problem; this almost matches our upper
bound for that model. For the partially synchronous model, we prove
two lower bounds. We first show a simple lower bound of (s —2)|C]e¢, for
the case where communication is not used. We then present our main
result: a lower bound of ¢z + (s — 2) min{(L%J)ez, diam(G)d} for the
time complexity of any partially synchronous algorithm for the s-session
problem. For appropriate values of the various parameters, these results
imply a time separation between partially synchronous and asynchronous
networks.

The lower bounds presented in this paper use the same general ap-
proach as in [2]. However, since we assume processes communicate by
sending messages while [2] assumes processes communicate via shared
memory, the precise details differ substantially. The lower bound proof
in [2] uses fan-in arguments, while our lower bounds are based on infor-
mation propagation arguments using long delays of messages, combined
with appropriate selection of processes and careful timing arguments.

Awerb
way to tra
chronous
synchrono
algorithm
not the c:
partially s
the s-sessi
constant t

(The v

4 Dis

We have a
agreement
of the nox
have cons:
process th
two proce:
was the in
by stoppis
model agr
sensors, ol
landing sh

The ti:
well studie
ceeds in &
round, ea
ceives all -
computati
13, 80, 10]
basic time
bounds of
reaching a

We ha
of the syn

the system.
range [0, d],
iing explicit
1es between
nous model,
21, where ¢;

62/61.

am relies on
ve occurred,
synchronous
8 time com-
. undirected
two nodes.
1 relies only
artially syn-
1)e;. These
ts algorithm

min{(|C]+

nous model,
»mplexity of
3s our upper
2], we prove
-2)[C]e; for
nt our main
7)d} for the
;he s-session
these results
synchronous

general ap-

nunicate by
3> via shared
bound proof
ied on infor-
s, combined
rguments.

119

Awerbuch ([8]) has introduced the concept of a synchronizer as a
way to translate algorithms designed for synchronous networks to asyn-
chronous networks. Although the results of [8] may suggest that any
synchronous network algorithm can be translated into an asynchronous
algorithm with constant time overhead, our results imply that this is
not the case: for some values of the parameters, any translation of a
partially synchronous (and in particular, a synchronous) algorithm for
the s-session problem to an asynchronous algorithm must incur a non-
constant time overhead.

(The work described in this section appears in [7].)

4 Distributed Agreement

We have also considered the time complexity of the problem of reaching
agreement among nodes in a distributed system, in the case where some
of the nodes are faulty. In the version of the agreement problem we
have considered, each of n processes starts with an input value. Each
process that does not fail must choose a decision value such that (i) no
two processes decide differently, and (ii) if any process decides v then v
was the input value of some process. We assume that processes fail only
by stopping (without warning). This abstract problem can be used to
model agreement on the value of a sensor reading obtained with multiple
sensors, or agreement on a course of action such as whether an airplane
landing should be completed or aborted.

The time complexity of the distributed agreement problem has been
well studied in the synchronous model. In this model, computation pro-
ceeds in a sequence of numbered rounds of communication. In each
round, each non-failed process sends out messages to all processes, re-
ceives all messages sent to it at that round, and carries out some local
computation. (See, for example, [60, 82, 21, 32, 19, 59, 29, 41, 76, 28, 79,
13, 80, 10] for results involving time complexity in this model.) The most
basic time bound results in these papers are matching upper and lower
bounds of f + 1 on the number of rounds of communication required for
reaching agreement in the presence of at most f faults.

We have considered how these bounds are affected by using, instead
of the synchronous model, one in which there are inexact timing as-

120

sumptions. In particular, we have used the partially synchronous model
described in Section 3, assuming that d is an upper bound on message
delivery time, ¢; and ¢y are lower and upper bounds, respectively, on
process step time, and C = c3/c;.2> We have assumed that processes fail
only by stopping, so that failures can be detected by “timeouts”: if an
expected message from some process is not received within a sufficiently
long time, then that process is known to have failed.

Initially, we had hoped to be able to adapt known results about the
synchronous model to obtain good bounds for the version with inexact
timing. Indeed, an (f + 1)-round algorithm can be adapted in a straight-
forward way to yield an algorithm for the partially synchronous model
that requires time at most (f + 1)dC if there are f faults. On the other
hand, a simple transformation in the reverse direction, of any partially
synchronous algorithm to a synchronous algorithm yields a lower bound
of (f +1)d. There is a significant gap between these two bounds, namely,
a multiplicative factor equal to the timing uncertainty, C. We would like
to obtain closer bounds on the time complexity of this problem; in par-
ticular, we would like to understand how this complexity depends on

C.

Our main result is an agreement algorithm in which the uncertainty
factor C is only incurred once, i.e., for one “round” of communication,
yielding a running time of approximately 2td + dC in the worst case.
The term of dC arises from the possible need to time out a failed pro-
cess; if a process fails, then it stops sending messages, and within time
approximately dC, every other process can determine that the failure
has occurred. It seems surprising that the overhead for such a timeout
need only occur once in any execution. The algorithm can be viewed as
an asynchronous algorithm which uses a fault detection (e.g., timeout)
mechanism. That is, the timing bounds ¢i,cz,d are used only in the
fault detection mechanism.

Our second result shows that any agreement algorithm must take
time at least (f — 1)d + dC in the worst case. The lower bound is
unusual in that it combines, in a nontrivial way, three different lower
bound techniques: a “chain argument” ([32, 19, 29, 76, 14, 28]), used
previously to prove that f + 1 rounds are required in the synchronous

3Results of [33, 20]) imply that if any one of the bounds ¢, ¢2, d does not exist, then
there is no agreement algorithm tolerant to even one fault.

rounds mc
that fault.
and a “tir
described
tight, the;
just a sing
of the me:

Some
timing ass
determini
els; only r
were giver
the latenc
synchronc
from ours.
within son
stated in |

(The v

5 Anrx
ten

Assertion:
sequential
gorithms.
be used tc
sumptions
of propert
dinary” sa
erties (upj
assumptio
of real-tim
proving su

Our m

The wor

nous model
on message
actively, on
‘ocesses fail
ats”: if an
sufficiently

s about the
rith inexact
L a straight-
nous model
n the other
ny partially
ower bound
.ds, namely,
e would like
lem; in par-
depends on

uncertainty
munication,
worst case.
. failed pro-
within time
the failure
h a timeout
e viewed as
3., timeout)
only in the

. must take
or bound is
ferent lower
, 28]), used
synchronous

10t exist, then

121

rounds model; a “bivalence” argument ([33, 20]) used previously to prove
that fault-tolerant agreement is impossible in an asynchronous system;
and a “time stretching” argument developed to prove the lower bounds
described in Section 2 ([5]). Although these bounds are not completely
tight, they do demonstrate that the inherent dependence on C involves
just a single term dC; there is no need to multiply C by larger multiples
of the message delivery time.

Some prior work on distributed agreement in a model with inexact
timing assumptions appears in [27]. The main emphasis in [27] was on
determining the maximum fault tolerance possible for various fault mod-
els; only rough upper bounds on the time complexity of the algorithms
were given, and no lower bounds on time were proved. Related work on
the latency® of reaching agreement when processors are not completely
synchronous appears in [12] and [96], although the results are different
from ours. These papers assume that process clocks are synchronized to
within some fixed additive error. Unlike our results. these results are not
stated in terms of absolute real time.

(The work described in this section appears in [4].)

5 A new proof technique for timing-based sys-
tems

Assertional reasoning has been used primarily to prove properties of
sequential algorithms and synchronous and asynchronous concurrent al-
gorithms. We have developed a way in which assertional reasoning can
be used to prove timing properties for algorithms that have timing as-
sumptions of the kind described in the previous sections. Also, the kinds
of properties generally proved using assertional reasoning have been “or-
dinary” safety properties; our method can be used to prove timing prop-
erties (upper and lower bounds on time) for algorithms that have timing
assumptions. Predictable performance is often a desirable characteristic
of real-time systems [95]; assertional techniques could be very helpful in
proving such performance properties.

Our method involves constructing a multivalued mapping from an

*The worst-case elapsed time measured on the clock of any correct process.

122

automaton representing the given algorithm to another automaton rep-
resenting the timing requirements. The key to our method is a way of
representing a system with timing constraints as an automaton whose
state includes predictive timing information. Timing assumptions and
timing requirements for the system are both represented in this way, and
the mappings we construct map from the “assumptions automaton” to
the “requirements automaton”.

The formal model used in our work is the timed automaton model,
adapted from the time-constrained automaton model of [78]. A timed
automaton is a pair (A, b), consisting of an I/O automaton A ([71, 72]),
together with a boundmap b, which is a formal description of the timing
assumptions for the components of the system. We have introduced the
notion of a timing condition to state upper and lower bounds on the dif-
ference between the times at which certain events or states appear in an
execution; the conditions imposed by a boundmap are timing conditions
of a particular kind. An automaton and a set of timing conditions (in
particular, a timed automaton) generate a set of timed executions and a
corresponding set of timed behaviors.

While convenient for specifying timing assumptions and requirements,
timed automata are not directly suited for carrying out assertional proofs
about timing properties, because timing constraints are described by
specially-defined timing conditions and are not part of the automaton
itself. We have therefore introduced a way of incorporating timing con-
ditions into an automaton definition. For a given timed automaton A,
and a set U of timing conditions, the automaton time(A,U) is defined to
be an ordinary I/O automaton (not a timed automaton) whose state in-
cludes predictive information describing the first and last times at which
various events can next occur; this information is designed to enforce the
timing conditions in U.

The timing requirements to be proved for an algorithm described as
a timed automaton, (A, b), are described as a set of timing conditions, i,
for A. The requirements automaton is defined to be time(A,U). Thus,
predictive information about the first and last times at which certain
events of interest can next occur are built into the state of the require-
ments automaton.

The problem of showing that a given algorithm (A,b) satisfies the
timing requirements is then reduced to that of showing that any behavior

of the auton
using invari
multivalued

We have
is a simplifie
described in
bounds on 1
between eac
is a system
relays a sigr
right. We 1
time to proj
The third, 1
a counter u.
this counter
have given «
DONE occu

The maj
ticularly int
time bound:s
These inequ
satisfied.

Technic:
only capabl
Timing pro;
lower bounc
of time has
finite prefix
regarded as
event must
be regarded
of time does
time cannot
In our work
without bon
proved in o
properties.

>maton rep-
is a way of
1aton whose
nptions and
his way, and
;omaton” to

aton model,
3]. A timed
A ([71, 72)),
f the timing
roduced the
s on the dif-
\ppear in an
g conditions
nditions (in
utions and a

aquirements,
;ional proofs
lescribed by
- automaton
timing con-
tomaton A,
is defined to
ose state in-
1es at which
» enforce the

described as
mditions, U,
{,U). Thus,
hich: certain
the require-

satisfies the
:ny behavior

123

of the automaton time(A, b) is also a behavior of time(A,U). Thisis done
using invariant assertion techniques; in particular, one demonstrates a
multivalued mapping from time(A,bd) to time(A,U).

We have applied our technique to three examples. The first example
is a simplified version of the timing-dependent resource granting system
described in Section 2. We have given careful proofs of upper and lower
bounds on the amount of time prior to the first GRANT event and in
between each successive pair of GRANT events. The second example
is a system consisting of a “line” of processes, in which each process
relays a signal received from the process at its left to the process at its
right. We have given careful proofs of upper and lower bounds on the
time to propagate a signal from the left end to the right end of the line.
The third, more complicated example involves one process incrementing
a counter until another process modifies a flag, and then decrementing
this counter. When the counter reaches 0, a DONE action occurs. We
have given careful proofs of upper and lower bounds on the time until a
DONE occurs.

The mappings we provide for all three of these examples have a par-
ticularly interesting and simple form—a set of inequalities relating the
time bounds to be proved to those that can be computed from the state.
These inequalities contain information about how the bounds are to be
satisfied.

Technically, mapping techniques of the sort used in this paper are
only capable of proving safety properties, but not liveness properties.
Timing properties have aspects of both safety and liveness. A timing
lower bound asserts that an event cannot occur before a certain amount
of time has elapsed; a violation of this property is detectable after a
finite prefix of a timed execution, and so a timing lower bound can be
regarded as a safety property. A timing upper bound asserts that an
event must occur before a certain amount of time has elapsed. This can
be regarded as making two separate claims: that the designated amount
of time does in fact elapse (a liveness property), and that that amount of
time cannot elapse without the event having occurred (a safety property).
In our work, we have assumed the liveness property that time increases
without bound, so that all the remaining properties that need to be
proved in order to prove either upper or lower time bounds are safety
properties. Thus, our mapping technique provides complete proofs for

124

timing properties without requiring any special techniques (e.g., variant
functions or temporal logic methods) for arguing liveness.

We have shown that this method is complete: if every behavior of
(A,d) is also a behavior of time(A,U) then is there necessarily a strong
possibilities mapping (in the form of inequalities) from time(A,b) to
time(A,U). Related completeness results for the usage of refinement
mappings to prove properties of non timing-based algorithms were proved
in [1] and [77].

There has been some prior work on using assertional reasoning to
prove timing properties. In particular, Hasse [43], Shankar and Lam
[92], Tel [97], Schneider [90], Lewis [63] and Shaw [93] have all developed
models for timing-based systems that incorporate time information into
the state, and have used invariant assertions to prove timing properties.
In [97] and [63], in fact, the information that is included is similar to ours
in that it is also predictive timing information (but not exactly the same
information as ours). Nomne of this work has been based on mappings,
however. Several other, quite different formal approaches to proving
timing properties have also been developed. Some representative papers
describing these other methods are [11], [52], [48], [45], [100], [49], and
[35].

(The work described in this section appears in [68).)

6 Time complexity of asynchronous resilient
algorithms

In shared-memory distributed systems, some number n of independent
asynchronous processes communicate by reading and writing to shared
memory. Wait-free algorithms have been proposed as a mechanism for
computing in the face of variable speeds and failures: a wait-free algo-
rithm guarantees that each nonfaulty process terminates regardless of
the speed and failure of other processes ([44, 58]). The design of wait-
free shared-memory algorithms has recently been a very active area of
research (see, e.g., [3, 22, 44, 58, 64, 83, 84, 89, 98]).

We have studied the time complexity of wait-free and non-wait-free al-
gorithms in “normal” executions, where no failures occur and processes

operate a
ticular su
is only re
where bot
nate even
fail to ter
execution:
time meas
to evalua
[2, 15, 69
time cost
extra com

We h:
problem—
[23, 30, 3:
ular share
ters. In tl
(provided
The outpt
be include
ant of the
is closely -
in a distri

Appra
lowed, by
ory; all ot
their outp
see that t
of n, the :
simple wa
averaging
depends 1
input valt
complexit
ment algo

Our fis

whose timr

.g., variant

»ehavior of
ly a strong
ne(A,b) to
refinement
vere proved

:asoning to
r and Lam
| developed
nation into
properties.
ilar to ours
y the same
mappings,
to proving
tive papers
], [49], and

-esilient

1dependent
g to shared
‘hanism for
t-free algo-
sgardless of
gn of wait-
;sive area of

vait-free al-
d processes

125

operate at approximately the same speed. We have selected this par-
ticular subset of the executions for making the comparison, because it
is only reasonable to compare the behavior of the algorithms in cases
where both are required to terminate. Since wait-free algorithms termi-
nate even when some processes fail, while non-wait-free algorithms may
fail to terminate in this case, the comparison should only be made in
executions in which no process fails, i.e., in failure-free executions. The
time measure we have used is the one introduced in [54, 55], and used
to evaluate the time complexity of asynchronous algorithms, in, e.g.,
[2, 15, 69, 70, 85]. To summarize, we are interested in measuring the
time cost imposed by the wait-free property, as measured in terms of
extra computation time in the most normal (failure-free) case.

We have addressed the general question by considering a specific
problem—the approzimate agreement problem studied, for example, in
[23, 30, 31, 73]; we have studied this problem in the context of a partic-
ular shared-memory primitive—single-writer multi-reader atomic regis-
ters. In this problem, each process starts with a real-valued input, and
(provided it does not fail) must eventually produce a real-valued output.
The outputs must all be within a given distance € of each other, and must
be included within the range of the inputs. This problem, a weaker vari-
ant of the well studied problem of distributed consensus (e.g., [33, 60]),
is closely related to the important problem of synchronizing local clocks
in a distributed system.

Approximate agreement can be achieved very easily if waiting is al-
lowed, by having a designated process write its input to the shared mem-
ory; all other processes wait for this value to be written and adopt it as
their outputs. In terms of the time measure described above, it is easy to
see that the time complexity of this algorithm is constant—independent
of n, the range of inputs and €. On the other hand, there is a relatively
simple wait-free algorithm for this problem which is based on successive
averaging of intermediate values. The time complexity of this algorithm
depends linearly on n, and logarithmically on the size of the range of
input values and on 1/¢. A natural question to ask is whether the time
complexity of this algorithm is optimal for wait-free approximate agree-
ment algorithms.

Our first major result is an algorithm for the special case where n = 2,
whose time complexity is constant, i.e., it does not depend on the range

126

of inputs or on ¢. The algorithm uses a novel method of overcoming the
uncertainty that is inherent in an asynchronous environment, without
resorting to synchronization points (cf. [39]) or other waiting mechanisms
(cf. [15]): this method involves ensuring that the two processes base their
decisions on information that is approximately, but not exactly, the same.

Next, using a powerful technique of integrating wait-free (but slow)
and non-wait-free (but fast) algorithms, together with an O(logn) wait-
free input collection function, we generalize the key ideas of the 2-process
algorithm to obtain our second major result: a wait-free algorithm for
approximate agreement whose time complexity is O(logn). Thus, the
time complexity of this algorithm does not depend on either the size of
the range of input values or on ¢, but it still depends on n, the number
of processes.

At this point, it was natural to ask whether the logarithmic depen-
dence on n is inherent for wait-free approximate agreement algorithms,
or whether, on the other hand, there is a constant-time wait-free algo-
rithm (independent of n). Our third major result shows that the logn
dependency is inherent: any wait-free algorithm for approximate agree-
ment has time complexity at least log n.® This implies an Q(logn) time
separation between the non-wait-free and wait-free computation models.

We note that the constant time 2-process algorithm behaves rather
badly if one of the processes fails. The work performed in an execution
of an algorithm is the total number of atomic operations performed in
that execution by all processes before they decide. We have proved a
tradeoff between the time complexity of and the work performed by any
wait-free approximate agreement algorithm. We have shown that for any
wait-free approximate agreement algorithm for 2 processes, there exists
an execution in which the work exhibits a nontrivial dependency on ¢
and the range of inputs.

In practice, the design of distributed systems is often geared towards
optimizing the time complexity in “normal executions,” i.e., executions
where no failures occur and processes run at approximately the same
pace, while building in safety provisions to protect against failures (cf.
[61]). Our results indicate that, in the asynchronous shared-memory

5
The lower bound is attained in an execution where processes run synchronously
and no process fails.

setting, t
must resu
situation
tems that
are early-
still term
imposed 1
ple, in [14
systems, °
in failure-
Recen
chronous
issues, by
tolerance
combinat:
wait-free
has not p.

(The

7 Fu

Our futur
for proble
we are cu.

e Mor

excl
e A pi
e Prol

o Exte
case
cur.

e The

:rcoming the
ant, without
mechanisms
es base their
ly, the same.

e (but slow)
(log) wait-
he 2-process
lgorithm for
. Thus, the
;r the size of
the number

hmic depen-
: algorithms,
ait-free algo-
1at the logn
imate agree-
Y(logn) time
.tion models.

haves rather
an execution
serformed in
ave proved a
rmed by any
. that for any
, there exists
ndency on €

ared towards
.., e€xecutions
sly the same
; failures (cf.
wred-memory

synchronously

127

setting, there are problems for which building in such safety provisions
must result in performance degradation in the normal executions. This
situation contrasts with that occurring, for example, in synchronous sys-
tems that solve the distributed consensus problem. In that setting, there
are early-stopping algorithms (e.g., [25, 28, 79]) that tolerate failures, yet
still terminate in constant time when no failures occur. The exact cost
imposed by fault-tolerance on normal executions, was studied, for exam-
ple, in [14, 28, 79]. It has been shown, for synchronous message passing
systems, that non-blocking commit protocols take twice as much time,
in failure-free executions, as blocking protocols ([29]).

Recent work has addressed the issue of adapting the usual syn-
chronous shared-memory PRAM model to better reflect implementation
issues, by reducing synchrony ([15, 16, 39, 81, 74]) or by requiring fault-
tolerance ([50, 51]). To the best of our knowledge, the impact of the
combination of asynchrony and fault-tolerance (as exemplified by the
wait-free model) on the time complexity of shared-memory algorithms
has not previously been studied.

(The work described in this section appears in [6].)

7 Further research

Our future research plans include more work on upper and lower bounds
for problems of interest in real-time computing. Some specific problems
we are currently working on are as follows.

e More complex resource allocation problems than simple mutual
exclusion.

¢ A problem of probabilistic processor fault diagnosis.
¢ Probabilistic versions of agreement problems.

o Extensions of the consensus problem described in Section 4 to the
case where more severe faults than simple stopping faults can oc-
cur.

¢ The problem of determining the power of a bounded capacity link.

128

We also plan to continue our work on modeling and verification. Specif-
ically, this includes the following.

o An attempt to relate recent work on process algebraic approaches
to reasoning about real-time systems to state-machine models such

as [78].

e An attempt to develop timing analysis techniques for randomized
algorithms.

e An effort to apply the mapping method to verify substantial al-
gorithms of interest in the fields of communication and/or real-
time processing. A particular example we are working on is a new
link-state packet distribution algorithm proposed as a standard by
DEC.

o An effort to simplify our mapping method described in Section 5.

7.0.1 Acknowledgements:

We owe great thanks to the other researchers who worked with us on
these papers: Cynthia Dwork, Marios Mavronicolas, Nir Shavit and
Larry Stockmeyer. We also thank Nancy Leveson, Michael Merritt,
Stephen Ponzio, Mark Tuttle and Jennifer Welch for many helpful dis-
cussions and for their reading of drafts of our papers.

References

[1] M. Abadi and L. Lamport, “The existence of refinement map-
pings,” DEC SRC Research Report 29, August 1988.

[2] E. Arjomandi, M. J. Fischer and N. Lynch, “Efficiency of syn-
chronous versus asynchronous distributed systems,” Journal of the
ACM, Vol. 30, No. 3 (July 1983), pp. 449-456.

[3] J. Aspnes and M. Herlihy, “Fast randomized consensus using
shared memory,” Journal of Algorithms, September 1990, to ap-
pear.

[4] H. .
on
tain

con
Rea
cal

MI’

[6] H.
fast
tior

[7] H. .
sem
Cor
199

nal

[9] J. (
Tec
[10] P. I
trib
Cor

[11] A. 1
PTOf
tem
ber

[12] F. C
Fro:
Int.
Resce

[13] B. /
tole:
ples

ion. Specif-

approaches
nodels such

randomized

»stantial al-
wnd /or real-
on is a new
standard by

1 Section 5.

with us on
Shavit and
ael Merritt,
helpful dis-

>ment map-

mncy of syn-
»urnal of the

ensus using
1990, to ap-

[4]

[5]

[7]

[8]

[9]

[10]

[13]

129

H. Attiya, C. Dwork, N. .A. Lynch and L. J. Stockmeyer, “Bounds
on the time to reach agreement in the presence of timing uncer-
tainty,” in preparation.

H. Attiya and N. A. Lynch, “Time bounds for real-time process
control in the presence of timing uncertainty,” Proc. 10th IEEE
Real-Time Systems Symposium, 1989, pp. 268-284. Also, Techni-
cal Memo MIT/LCS/TM-403, Laboratory for Computer Science,
MIT, July 1989.

H. Attiya, N. Lynch and N. Shavit, “Are wait-free algorithms
fast?” to appear in the 31st Annual IEEE Symposium on Founda-
tions of Computer Science (FOCS), October 1990.

H. Attiya and M. Mavronicolas, “Efficiency of asynchronous vs.
semi-synchronous networks,” to appear in the 28th annual Allerton
Conference on Communication, Control and Computing, October
1990.

B. Awerbuch, “The complexity of network synchronization,” Jour-
nal of the ACM, Vol. 32, No. 4 (1985), pp. 804-823.

J. C. M. Baeten and J. A. Bergstra, Real time process algebra,
Technical Report P8916b, University of Amsterdam, March 1990.

P. Berman, J. A. Garay and K. J. Perry, “Towards optimal dis-
tributed consensus,” Proc. 30th IEEE Symp. on Foundations of
Computer Science, 1989, pp. 410-415.

A. Bernstein and P. Harter, Jr. “Proving real-time properties of
programs with temporal logic,” Proc. 8th Symp. on Operating Sys-
tem Principles, Operating Systems Review, Vol. 15, No. 5 (Decem-
ber 1981), pp. 1-11.

F. Cristian, H. Aghili, R. Strong and D. Dolev, “Atomic broadcast:
From simple message diffusion to Byzantine agreement,” Proc. 15th
Int. Conf. on Fault Tolerant Computing, 1985, pp. 1-7. Also, IBM
Research Report RJ5244, revised October 1989.

B. A. Coan, “A communication-efficient canonical form for fault-
tolerant distributed protocols,” Proc. 5th ACM Symp. on Princi-
ples of Distributed Computing, 1986, pp. 63-72.

130

[14]

[15]

[16]

[17]

[18]

[20]

[21]

B. A. Coan and C. Dwork, “Simultaneity is harder than agree-
ment,” Proc. 5th IEEE Symp. on Reliability in Distributed Soft-
ware and Database Systems, 1986, pp. 141-130.

R. Cole and O. Zajicek, “The APRAM: Incorporating asynchrony
into the PRAM model,” Proc. 1st ACM Symp. on Parallel Algo-
rithms and Architectures, 1989, pp. 169-178.

R. Cole and O. Zajicek, “The expected advantage of asynchrony,”
Proc. 2nd ACM Symp. on Parallel Algorithms and Architectures,

1990, to appear.

J. E. Coolahan and N. Roussopoulus, “Timing requirements for
time-driven systems using augmented Petri nets,” IEEE Transac-
tions on Software Engineering, Vol. SE-9, No. 5 (September 1983),
pp. 603-616.

B. Dasarathy, “Timing constraints of real-time systems: Con-
structs for expressing them, methods for validating them,” IEEE
Transactions on Software Engineering, Vol. SE-11, No. 1 (January
1985), pp. 80-86.

R. DeMillo, N. A. Lynch and M. Merritt, “Cryptographic proto-
cols,” Proc. 14th Annual ACM Symp. on Theory of Computing,
May 1982, pp. 383-400.

D. Dolev, C. Dwork and L. Stockmeyer, “On the minimal synchro-
nism needed for distributed consensus,” Journal of the ACM, Vol.

34, No. 1 (January 1987), pp. 77-97.

D. Dolev, M. J. Fischer, R. Fowler, N. A. Lynch and H. R. Strong,
“Efficient byzantine agreement without authentication,” Informa-
tion and Control, Vol. 52 (1982), pp. 257-274.

D. Dolev, E. Gafni and N. Shavit, “Toward a non-atomic era: £-
exclusion as a test case,” Proc. 20th ACM Symp. on the Theory of
Computing, 1988, pp. 78-92.

D. Dolev, N. Lynch, S. Pinter, E. Stark and W. Weihl, “Reaching
approximate agreement in the presence of faults,” Journal of the
ACM, Vol. 33, No. 3, 1986, pp. 499-516.

[24] D. D
1Impos
puter

[25] D. D¢
imme
Scien

[26] D. Dc
tine ¢
(Nove

[27] C. Dy

ence «
pp. 2¢

[28] C. Dy
in by
on T}
Kaufn
Comp

[29] C.Dw
ment,
puting

[30] A. Fe
agreer
Comp

[31] A. Fe
ACM
64-76.

[32] M. Fi
interas
No. 4

[33] M. Fi
tribute
Vol. 3:

than agree-

ributed Soft-

; asynchrony
arallel Algo-

asynchrony,”
.rchitectures,

irements for
FEF Transac-
amber 1983),

items: Con-
hem,” IFFFE
». 1 (January

-aphic proto-
" Computing,

mal synchro-
e ACM, Vol.

1. R. Strong,
n,” Informa-

;omic era: £-

he Theory of

d, “Reaching
rurnal of the

131

[24] D. Dolev, J. Halpern and H. R. Strong, “On the possibility and
impossibility of achieving clock synchronization.” Journal of Com-
puter and Systems Sciences, Vol. 32, No. 2 (1986) pp. 230-250.

[25] D. Dolev, R. Reischuk, and H. R. Strong, “Eventual is earlier than
immediate,” Proc. 23rd IEEE Symp. on Foundations of Computer
Science, 1982, pp. 196-203.

[26] D. Dolev and H. R. Strong, “Authenticated algorithms for byzan-
tine agreement,” SIAM Journal on Computing, Vol. 12, No. 3
(November 1983), pp. 656—666.

[27] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the pres-
ence of partial synchrony,” Journal of the ACM, Vol. 35 (1988),
pp. 288-323.

[28] C. Dwork and Y. Moses, “Knowledge and common knowledge
in byzantine environments I: Crash failures,” Proc. Ist Conf.
on Theoretical Aspects of Reasoning About Knowledge, Morgan-
Kaufmann, Los Altos, CA, 1986, pp. 149-170; Information and
Computation, to appear.

[29] C. Dwork and D. Skeen, “The inherent cost of nonblocking commit-
ment,” Proc. 2nd ACM Symp. on Principles of Distributed Com-
puting, 1983, pp. 1-11.

[30] A. Fekete, “Asymptotically optimal algorithms for approximate
agreement,” Proc. 5th ACM Symp. on Principles of Distributed
Computing, 1986, pp. 73-87.

[31] A. Fe“kete, “Asynchronous approximate agreement,” Proc. 6th
ACM Symp. on Principles of Distributed Computing, 1987, pp.
64-76.

[32] M. Fischer and N. Lynch, “A lower bound for the time to assure

interactive consistency,” Information Processing Letters, Vol. 14,
No. 4 (June 1982), pp. 183-186.

[33] M. Fischer, N. Lynch and M. Paterson, “Impossibility of dis-
tributed consensus with one faulty process,” Journal of the ACM,
Vol. 32, No. 2 (1985), pp. 374-382.

132

[34] M. W. Franklin and A. Gabrielian, “A transformational method : [45] J. Hoo
for verifying safety properties in real-time systems,” in Proc. 10th messag
IEEE Real-Time Systems Symp., pp. 112-123, December 1989. Compt

[35] A. Gabrielian and M. W. Franklin, “State-based specification of 1987.
complex real-time systems,” in Proc. IEEE Real-Time Systems [46] C. Hui
Symp., 1988, pp. 2-11. real-tir

[36] A. Gabrielian and M. W. Franklin, “Multi-level specification Proc.
and verification of real-time software,” Technical Report 89-14, 1987, 1
Tomson-CSF, Inc., July 1989. [47] F. Jah

[37] R. Gerth and A. Boucher, “A timed failure semantics for extended real-tir
communicating processes,” In Proc. ICALP ’87, Springer-Verlag Vol. 5]
Lecture Notes in Computer Science #267, 1987. (48] F. Jah

[38] R. Gerber and I. Lee, “The formal treatment of priorities in real- analys:
time computation.” In Proc. 6th IEEE Workshop on Real-Time , ers, V¢
Software and Operating Systems, 1989. (49] F. Jah

[39] P. Gibbons, “Towards better shared memory programming mod- 3 of Mo
els,” Proc. 1st ACM Symp. on Parallel Algorithms and Architec- | Symp.
t . 169-178. i

ures, 1989, pp. 169-178 | [50] P. Ka

[40] D. W. Gillies and J. W.-S. Liu, “Greed in resource scheduling,” ; can be
Proc. 10th IEEE Real-Time Systems Symposium, 1989, pp. 285~ :_ tribute
294.

[51] Z. Ke

[41] V. Hadzilacos, Issues of fault tolerance in concurrent computations, compu

Ph.D. Thesis, Harvard University, June 1984. Technical Report 1990,
TR-11-84, Department of Computer Science, Harvard University. 152]
52] R. Kc
[42] J. Halpern, N. Megiddo and A. A. Munshi, “Optimal precision in gramr
the presence of uncertainty.” Journal of Complezity, Vol. 1 (1985), Symp.
pp. 170-196. N
53] R. K
[43] V. H. Hasse, “Real-time behavior of programs,” IEEE Transac- 53] and SC
tions on Software Engineering, Vol. SE-7, No. 5 (September 1981), tribut
pp. 494-501. 3 (De:
[44] M. Herlihy, “Wait-free implementations of concurrent objects,” i (54] L. Lar
Proc. 7th ACM Symp. on Principles of Distributed Computing, ' I1.z forr

1988, pp. 276-290.

al method
Proc. 10th
er 1989.

ification of
1e Systems

yecification
>ort 89-14,

r extended
ager-Verlag

ties in real-
Real-Time

ming mod-
.d Architec-

cheduling,”
9, pp. 285-

mputations,
ical Report
. University.

precision in
ol. 1 (1985),

vF Transac-
mber 1981),

nt objects,”
Computing,

45]

[47]

[48]

[49]

[50]

[51]

[52]

133

J. Hooman, A compositional proof theory for real-time distributed
message passing, TR. 4-1-1(1), Department of Mathematics and
Computer Science, Eindhoven University of technology, March
1987.

C. Huizing, R. Gerth, and W. P. deRoever, “Full abstraction of a
real-time denotational semantics for an O CCAM-like language,” in
Proc. 14th ACM Symp. on Principles of Programming Languages,
1987, pp. 223-237.

F. Jahanian and A. Mok, “Safety analysis of timing properties in
real-time systems,” IEEE Transactions on Software Engineering,
Vol. SE-12, No. 9 (September 1986), pp. 890-904.

F. Jahanian and A. Mok, “A graph-theoretic approach for timing
analysis and its implementation,” IEEE Transactions on Comput-
ers, Vol. C-36, No. 8 (August 1987), pp. 961-975.

F. Jahanian and D. A. Stuart, “A method for verifying properties
of Modechart specifications,” in Proc. IEEE Real-Time Systems
Symp., 1988, pp. 12-21.

P. Kanellakis and A. Shvartsman, “Efficient parallel algorithms
can be made robust,” Proc. 8th ACM Symp. on Principles of Dis-
tributed Computing, 1989, pp. 211-221.

7. Kedem, K. Palem and P. Spirakis, “Efficient robust parallel
computations,” Proc. 22nd ACM Symp. on Theory of Computing,
1990, pp. 138-148.

R. Koymans, J. Vytopil and W. P. deRoever, “Real-time pro-
gramming and asynchronous message passing,” in Proc. 2nd ACM
Symp. on Principles of Distributed Computing, 1983, pp. 187-197.

R. Koymans, R. K. Shyamasundar, W. P. deRoever, R. Gerth,
and S. Arun-Kumar, “Compositional semantics for real-time dis-
tributed computing,” Information and Computation, Vol. 79, No.
3 (December 1988), pp. 210-256.

[54] L. Lamport, “The synchronization of independent processes,” Acta

Informatica, Vol. 7, No, 1 (1976), pp. 15-34.

134

[55] L. Lamport, “Proving the correctness of multiprocess programs,”

[56]

[57]

[58]

[59]

[62]

[63]

[64]

[65]

IEEFE Transactions on Software Engineering, Vol. SE-3, No. 2
(March 1977) pp. 125-143.

L. Lamport, “Time, clocks and the ordering of events in distributed

systems.” Communications of the ACM, Vol. 21, No. 7 (July 1978),
pPp. 558-565. ‘

L. Lamport, “Specifying concurrent program modules,” ACM
Trans. on Programming Languages and Systems, Vol. 5, No. 2
(April 1983), pp. 190-222.

L. Lamport, “On interprocess communication. parts I and II” Dis-
tributed Computing 1, 2 1986, 77-101.

L. Lamport and M. J. Fischer, “Byzantine generals and transaction

commit protocols,” Tech. Report Op. 62, SRI International, Menlo
Park, CA, 1982.

L. Lamport, R. Shostak and M. Pease, “The byzantine generals
problem,” ACM Transaction on Prog. Lang. and Sys., Vol. 4, No.
3 (July 1982), pp. 382-401.

B. Lampson, “Hints for computer system design”, in Proc. 9th

ACM Symposium on Operating Systems Principles, 1983, pPpP- 33—
48.

N. Leveson and J. Stolzy, “Safety analysis using Petri Nets,” IFEF
Transactions on Software Engineering, Vol. SE-13, No. 3 (March
1987), pp. 386-397.

H. R. Lewis, “Finite-state analysis of asynchronous -circuits
with bounded temporal uncertainty,” Techincal Report TR-15-89,
Aiken Computation Laboratory, Harvard University.

M. Li, J. Tromp and P. M.B. Vitanyi, “How to share concurrent
wait-free variables,” ICALP 1989. Expanded version: Report CS-
R8916, CWI, Amsterdam, April 1989.

C.L. Liu and J. W. Layland, “Scheduling algorithms for multipro-
gramming in a hard real time environment,” Journal of the ACM,
Vol. 20, No. 1 (1973), pp. 46-61.

s programs,”
SE-3, No. 2

n distributed
" (July 1978),

ules,” ACM
‘ol. 5, No. 2

and IT” Dis-

1 transaction
;ional, Menlo

tine generals
., Vol. 4, No.

in Proc. 9th
983, pp. 33-

Nets,” IEEE
lo. 3 (March

ous circuits

rt TR-15-89,

e concurrent

Report CS-

or multipro-
of the ACM,

135

[66] J. Lundelius and N. Lynch, “An upper and lower bound for clock

[67]

[68]

[69]

[70]

[71]

synchronization,” Information and Control, Vol. 62, Nos. 2/3 (Au-
gust /September 1984), pp. 190-204.

N. Lynch, “Concurrency control for resilient nested transactions,”
Advances in Computing Research, Vol. 3, 1986, pp. 335-373.

N. A. Lynch and H. Attiya, “Using mappings to prove timing prop-
erties,” proceedings of the 9th Annual ACM Symposium on Princi-
ples of Distributed Computing (PODC), 1990, pp. 265-280. Also,
Technical Memo MIT/LCS/TM-412.b, Laboratory for Computer
Science, MIT, December 1989.

N. Lynch and M. Fischer, “On describing the behavior and imple-
mentation of distributed systems,” Theoretical Computer Science,
Vol. 13, No. 1 (January 1981), pp. 17-43.

N. Lynch and K. Gold-
man, Lecture notes for 6.852. MIT/LCS/RSS-5, Laboratory for
Computer Science, MIT, 1989.

N. Lynch and M. Tuttle, “Hierarchical correctness proofs for dis-
tributed algorithms,” in Proc. 7th ACM symp. on Principles of
Distributed Computing, 1987, pp. 137-151. Expanded version avail-
able as Technical Report MIT/LCS/TR-387, Laboratory for Com-
puter Science, MIT, April 1987.

N. Lynch and M. Tuttle, “An introduction to input/output au-
tomata,” CWI-Quarterly, Vol. 2, No. 3, 1989. Also, Techni-
cal Memo, MIT/LCS/TM-373, Laboratory for Computer Science
Massachusetts Institute of Technology, November 1988.

S. Mahaney and F. Schneider, “Inexact agreement: Accuracy, pre-
cision, and graceful degradation,” Proc. {th ACM Symp. on Prin-
ciples of Distributed Computing, 1985, pp. 237-249.

C. Martel, A. Park and R. Subramonian, “Optimal asynchronous
algorithms for shared memory parallel computers,” Technical Re-
port CSE-89-8, Division of Computer Science, University of Cali-
fornia, Davis, July 1989.

136

[75] C. Martel, R. Subramonian and A. Park, “Asynchronous PRAMs

[76]

[77]

[78]

[79]

[80]

[81]

[82]

are (almost) as good as synchronous PRAMs,” to appear in the 31st

Annual IEEE Symposium on Foundations of Computer Science
(FOCS), October 1990.

M. Merritt, “Notes on the Dolev-Strong Lower Bound for Byzan-
tine Agreement,” unpublished manuscript, 1985.

M. Merritt, “Completeness theorems for automata,” REX Work-
shop, May 1989.

M. Merritt, F. Modugno and M. Tuttle, “Time constrained
automata,” unpublished manuscript, November 1988. Revised:
Aguest 1990.

Y. Moses and M. R. Tuttle, “Programming simultaneous actions
using common knowledge,” Algorithmica, Vol. 3 (1988), pp. 121~
169.

Y. Moses and O. Waarts, “Coordinated traversal: (¢ + 1)-round
byzantine agreement in polynomial time,” Proc. 29th IEEE Symp.
on Foundations of Computer Science, 1988, pp. 246-255.

N. Nishimura, “Asynchronous shared memory parallel computa-
tion,” Proc. 2nd ACM Symp. on Parallel Algorithms and Architec-
tures, 1990, to appear.

M. Pease, R. Shostak and L. Lamport, “Reaching agreement in
the presence of faults,” Journal of the ACM, Vol. 27, No. 2 (1980),
pp. 228-234.

G. Peterson, “Concurrent reading while writing,” ACM Transac-
tions on Programming Languages and Systems, Vol. 5, No. 1 (Jan-
uary 1983), pp. 46-55.

G. Peterson, and J. Burns, “Concurrent reading while writing II:
The multi-writer case,” Proc. 28th IEEE Symp. on Foundations of
Computer Science, 1987, pp. 383-392.

G. Peterson and M. Fischer, “Economical solutions for the critical
section problem in a distributed system,” Proc. 9th ACM Symp.
on Theory of Computing, 1977, pp. 91-97.

[86] R. R
thesis

[87] K. T
sched
IFEEF

pp- 1
[88] G. M

seque

[89] R. S«
MIT,

[90] F. B
tions

Worl

[91}] J. Si
mods
IFIF
terd:

[92] A. U
tems
tribu

[93] A. C
ware

No."
[94] B. S

chro

[95] J. St
para
temns

[96] R. S
aton

Sym

1ous PRAMs
‘ar in the 31st
wwter Science

d for Byzan-

REX Work-

constrained
88. Revised:

reous actions
38), pp. 121~

t + 1)-round
IEEE Symp.
255.

lel computa-
ind Architec-

wgreement in
No. 2 (1980),

M Transac-
, No. 1 (Jan-

le writing II:
wundations of

r the critical
ACM Symp.

137

[86] R. Rajkumar, Task synchronization in real-time systems, Ph.D.
thesis, Carnegie-Mellon University, Augurst 1989.

[87]) K. Ramamritham, J. Stankovic and W. Zhao, “Distributed
scheduling of tasks with deadlines and resource requirements,”
IEEE Transactions on Computers, Vol. C-38, No. 8 (August 1989),
pp. 1110-1123.

[88] G. M. Reed and A. W. Roscoe, “A timed model for communicating
sequential processes,” in JCALP ’86.

[89] R. Schaffer, “On the correctness of atomic multi-writer registers,”

MIT/LCS/TM-364, June 1988.

[90] F. B. Schneider, “Real-time reliable systems project,” in Founda-
tions of Real-Time Computing Research Initiative, ONR Kickoff
Workshop, November 1988, pp. 28-32.

[91] J. Sifakis, “Petri nets for performance evaluation, in measuring,
modeling and evaluating computer systems,” in Proc. 3rd Symp.
IFIP Working Group 7.3, H. Beilner and E. Gelenbe (eds.), Ams-
terdam, The Netherlands, North-Holland, 1977, pp. 75-93.

[92] A. U. Shankar and S. L. Lam, “Time-dependent distributed sys-
tems: Proving safety, liveness and real-time properties,” Dis-
tributed Computing, Vol. 2, pp. 61-79, 1987.

[93] A. C. Shaw, “Reasoning about time in higher-level language soft-
ware,” IEEE Transactions on Software Engineering, Vol. SE-15,
No. 7 (July 1989), pp. 875-889.

[94] B. Simons, J. L. Welch and N. Lynch, “An overview of clock syn-
chronization,” IBM Technical Report RJ 6505, October 1988.

[95] J. Stankovic and K. Ramamritham, “The SPRING kernel: A new
paradigm for real-time operating systems,” ACM Opertating Sys-
tems Reviews, Vol 23, No. 3 (July 1987), pp. 54-71.

[96] R. Strong, D. Dolev and F. Cristian, “New latency bounds for
atomic broadcast,” to appear in 11th IEEE Real-Time Systems

Symposium, 1990.

138

[97] G. Tel, “Assertional verification of a timer based protocol,” in
ICALP ’88, Lecture Notes in Computer Science 317, Springer-
Verlag, pp. 600-614. '

[98] P. Vitanyi and B. Awerbuch, “Atomic shared register access by
asynchronous hardware,” Proc. 27th IEEE Symp. on Foundations
of Computer Science, pp. 233-243, 1986.

[99] J. L. Welch and N. Lynch, “A new fault-tolerant algorithm for clock
synchronization,” Information and Computation, Vol. 77, No. 1
(April 1988), pp. 1-36.

[100] A. Zwarico, Timed acceptence: an algebra of time dependent com-
puting, Ph.D. thesis, Dept. of Computer and Information Science,
University of Pennsylvania, 1988.

[101] A. Zwarico, I. Lee and R. Gerber, “A complete axiomatization of
real-time processes,” submitted for publication.

HMS M
Verifi

Anove
presen
that are
g aut
paredt
fining 1
discret.
framev
ments (
ing suc
formec
andar
arepre
is prese
ificatio
time d
verific:
ing prc
ness-p
ample

schedu
tempo;

INTRO

Various te
have been
studies ha

