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1 Introduction

An important area of computer applications is real-time process control,
in which a computer system interacts with a real-world system in order
to guarantee certain desirable real-world behavior. In most interesting
cases, the real-world requirements involve timing properties, and so the
behavior of the computer system is required to satisfy certain timing
constraints. In order to be able to guarantee timing constraints, the
computer system must satisfy some assumpti'ons about time—for exam-
ple, its various components should operate at known speeds.

It is clear that good theoretical work in the area of real-time systems
is necessary. In the past few years, several researchers have proposed
new frameworks for specifying requirements of such systems, describ-
ing implementations, and proving that the implementations satisfy the
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requirements. These frameworks are based on, among others, state ma-
chines ([18, 78, 92]), weakest precondition methods ([43]), first-order
logic ([47, 48]), temporal logic ([11]), Petri nets ([17, 62, 91]), and pro-
cess algebra ([9, 40, 46, 53, 88, 100]). Work is still needed in evaluating
and comparing the various models for their usefulness in reasoning about
important problems in this area and perhaps in developing new models
if these prove to be inadequate.

Work is also needed in developing the complexity theory of such sys-
tems; very little work has so far been done in this area. An example of the
kind of work needed is provided by the theory of asynchronous concurrent
systems.! That theory contains many combinatorial results that show
what can and cannot be accomplished by asynchronous systems; for tasks
that can be accomplished, other combinatorial results determine the in-
herent costs. In addition to their individual importance, these results
also provide a testbed for evaluating modeling decisions and a stimulus
for the development of algorithm verification techniques. Similar results
should be possible for real-time systems. Some examples of complexity
results that have already been obtained for real-time systems are the
many results on clock synchronization, including [24, 42, 56, 66, 99] (see
[94] for a survey).

In this project, we have embarked on a study of complexity results for
real-time systems. We have formulated several abstract problems that
seem to be characteristic of real-time computing, and have obtained up-
per and lower bounds for the time complexity of those problems. The
problems we have defined are all variations of problems that have pre-
viously been studied for asynchronous concurrent systems; the major
differences are that we impose rather stringent timing requirements on
the solutions and that we assume that our systems satisfy certain as-
sumptions about the timing of events. The assumptions we make about
the timing of events are not exact; rather, we assume that the time re-
quired for various events is known to be within certain bounds. For
example, in real-time systems, there can be uncertainty in the time re-
quired for real-world tasks to be completed, for processors to take steps,
for clocks to advance and for messages to be delivered.

We have obtained bounds on the time complexity of solving three fun-

1 Asynchronous systems are those in which processes work at completely indepen-
dent rates and have no way of estimating time.
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damental problems: mutual exclusion, synchronization and agreement, in
a model with inexact timing assumptions. These results are described,
respectively, in Sections 2, 3 and 4.

In the course of our work on these problems, we felt a need for a
systematic method for reasoning about the correctness and performance
of timing based systems. To satisfy this need, we have developed a new
assertional method of reasoning about timing based systems.

Assertional reasoning is a very useful technique for proving safety
properties of sequential and concurrent algorithms. This proof method
involves describing the algorithm of interest as a state machine, and
defining a predicate known as an assertion on the states of the machine.
One proves inductively that the assertion is true of all the states that are
reachable in a computation of the machine, i.e., that it is an invariant
of the machine. The assertion is defined so that it implies the safety
property to be proved. Assertional reasoning is a rigorous, simple and
general proof technique. Furthermore, the assertions usually provide
an intuitively appealing explanation of why the algorithm satisfies the
property. One kind of assertional reasoning uses a mapping to describe a
correspondence between the given algorithm and a higher-level algorithm
used as a specification of correctness. (See, for example, [57, 67, 71].)

We have developed an assertional technique based on mappings, for
proving correctness and timing properties of timing-based systems. This
work is described in Section 5.

The formal model we have used to describe our results is the timed
automaton model, a slight variant of the time consirained automaton
model of [78]. We have used this model to state the requirements to
be satisfied, to define the basic architectural and timing assumptions, to
describe the algorithms, and to prove their correctness and timing prop-
erties. We have also used it for describing our mapping proof technique.

The last work described in this survey considers the time complexity
of wait-free algorithms in shared-memory distributed systems. In such
systems, it is possible for processes to operate at very different speeds,
e.g., because of implementation issues such as communication and mem-
ory latency, priority-based time-sharing of processors, cache misses and
page faults. It is also possible for processes to fail entirely. A wait-free
algorithm guarantees that each nonfaulty process terminates regardless
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of the speed and failure of other processes ([44, 58]). Because wait-free
algorithms guarantee that fast processes terminate without waiting for
slow processes, wait-free algorithms seem to be generally thought of as
fast. However, while it is obvious from the definition that wait-free al-
gorithms are highly resilient to failures, we believe that the assumption
that such algorithms are fast requires more careful examination.

We have addressed this general problem by studying the time com-
plexity of wait-free algorithms for the approzimate agreement problem.
Our results are described in Section 6.

A major emphasis in our project has been on the impact of uncer-
tainty in the system on the time complexity of solving problems. This
uncertainty might be due to inexact timing assumptions as described
above, to unpredictable inputs, or to failures. More specifically, our
work on mutual exclusion involves timing uncertainty and unpredictable
inputs, our work on synchronization involves only timing uncertainty,
and our work on agreement and wait-free algorithms involves timing un-
certainty and failures.

The portion of our work that deals with resource allocation problems
is related to prior work in scheduling theory (for example, [40, 65, 86)).
Our work on resource allocation is distinguished from the scheduling
theory work in its emphasis on distributed algorithms and on timing un-
certainties and failures. Also, our emphasis has been on upper and lower
bounds for solving particular problems, e.g., mutual exclusion, whereas
the emphasis in scheduling theory seems to be on general strategies (e.g.,
first-come-first-serve) for solving large classes of problems. As the sub-
ject matter of scheduling theory broadens, however, we believe that the
two areas will become more closely related.

Our work has taken advantage of many of the approaches, techniques
and results of distributed computing theory. In particular, our selection
of problems, our use of automaton-style formal models and assertional
reasoning, the design of our algorithms, and the techniques we use to
prove lower bounds (e.g., the perturbation of executions and the use of
the limitations of local knowledge) have all been heavily influenced by
prior work in distributed computing theory.
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2 Mutual Exclusion

We have studied a variant of the mutual exclusion problem. This problem
is one of the fundamental problems in distributed computing; it serves
as an abstraction of a large class of hazard avoidance problems. We
note that this particular problem appears in the real-time computing
literature (cf. [48]) as the “nuclear reactor problem”. There, operators
push different buttons to request the motion of different control rods in
the same nuclear reactor. It is undesirable to have more than one control
rod moving at the same time, presumably since in that case the nuclear
reaction might be slowed down too much.

More specifically, we have considered a system consisting of some
number, n, of identical moving parts (e.g., control rods), no two of which
are supposed to move at the same time. An operator associated with each
moving part can request permission for the associated part to move by
pushing a button that sends a REQUEST signal to the control system.
The control system responds with GRANT signals; each GRANT signal
gives permission to the designated moving part to move, but such motion
is expected to be finished no more than a fixed time, m, later. The control
system is only supposed to issue a GRANT signal when it knows that
it is safe to move the corresponding moving part, i.e., at least real time
m has elapsed since the last GRANT signal. We assume, for simplicity,
that a REQUEST signal is only issued by a particular operator if any
preceding REQUEST by that operator has already been satisfied (by a
corresponding GRANT signal). Our goal is to minimize the worst-case
time between a REQUEST signal and the corresponding GRANT signal,
i.e., the worst-case response time.

The control system might consist of a single process running on a
dedicated processor or might be a distributed system running on separate
processors communicating over a message system. Solving the problem
efficiently requires the control system to make accurate estimates of the
elapsed time since the last GRANT signal; the difficulty, however, is that
the control system only has inaccurate information about time, as given
by inaccurate clock components within the system and by estimates of
the time required for certain events. Specifically, the only information
about time that the control system has is the following:

1. the knowledge that a moving part will stop moving within time m
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after a GRANT signal,

2. the knowledge that the time between successive ticks of any clock
is always in the interval [¢;,c2], for known constants ¢; and cg,
where 0 < ¢; < ¢g,

3. the knowledge that the time between successive steps of any process
within the control system is always in the interval [0,!], for a known
constant [,0 </, and

4. (if the system is distributed) the knowledge that the time to deliver
the oldest message in each channel is no greater than a known
constant d,0 < d.

In the cases we have in mind, we suppose that | € ¢; < ¢; € d € m.
We use the notation C to represent the ratio ¢3/¢;; C is a useful measure
of the timing uncertainty.

We obtain the following results. First, we consider a centralized
control system, consisting of just a single process with a local clock. For
that case, we show that

n'c2(L(m+l)/c1J + 1)+l

(approximately nmC) is an eract bound on the worst-case response time
for the timing-based mutual exclusion problem. The upper bound result
arises from a careful analysis of a simple FIFO queue algorithm, while
the matching lower bound result arises from explicitly constructing and
“retiming” executions to obtain a contradiction.

We then consider the distributed case, which is substantially more
complicated. For that case, we obtain very close (but not exact) bounds:
an upper bound of

nlea ([(m+0)/ei)] + 1) +d+ ¢y + 20

(approximately nmC + nd) and a lower bound of nmC + (n — 1)d. As-
suming that the parameters have the relative sizes described earlier, e.g.,
that d is much larger than [, ¢; and ¢, the gap between these two bounds
is just slightly more than a single message delay time. The upper bound
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arises from a simple token-passing algorithm, while the lower bound proof
employs a new technique of shifting some of the events happening at a
process while carefully retiming other events.

(The work described in this section appears in [5].)

3 Synchronization

Some problems in real-time computing involve synchronization of several
computer system components, in order that they might cooperate in per-
forming a task involving real-world components. For example, multiple
robots might cooperate to build a car on an assembly line, with each
robot responsible for assembling a small piece of the machinery. Similar
synchronization problems arise in distributed computing as well, where
the separate components might each be responsible for performing a
small part of a computation. We have studied the time complexity of
achieving synchronization, in the presence of various assumptions about
the timing of basic events.

The particular synchronization problem we have considered is the
session problem, first defined by Arjomandi, Fischer and Lynch ([2]).
Roughly speaking, a session is a sequence of events that contains at least
one step by each process. An algorithm for the s-session problem guar-
antees that each execution of the algorithm includes at least s separate
sessions. It was assumed in [2] that processes communicate via shared
variables, and the time complexity of the session problem was studied
in synchronous and asynchronous models.? The results of [2] show that
the problem can be solved much faster in the synchronous model than
in the asynchronous model.

We have studied the time requirements for the session problem in
distributed networks rather than shared memory systems. That is, we
have considered a collection of n processes located at the nodes of an
undirected communication graph G; communication is assumed to be by
messages sent over the edges of G. We have considered both the asyn-
chronous model and a model with inexact timing assumptions (which we
call here the partially synchronous model).

2Synchronous systems are those in which processes operate in lock-step, taking
steps simultaneously.
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Time is measured under the following assumptions on the system.
We assume that the delivery time for every message is in the range [0, d],
where d is a known nonnegative constant. Instead of assuming explicit
clocks (as in the previous section), we assume that the times between
successive local steps are in the range [0, ¢;] for the asynchronous model,
and in the range [c1,cz] for the partially synchronous model, where ¢,
and ¢, are constants, 0 < ¢; < ¢;. As before, we define C = ¢3/¢;.

Our upper bound results are as follows. Our first algorithm relies on
explicit communication to ensure that the needed steps have occurred,
and does not rely on any timing information. In either the asynchronous
model or the partially synchronous model, this algorithm has time com-
plexity (s — 1)diam(G)(d + ¢2), where the diameter of an undirected
graph G, diam(G), is the maximum distance between any two nodes.
Our second algorithm does not use any communication and relies only
on timing information; this algorithm works only in the partially syn-
chronous model. Its time complexity is co + (s — 2)(|C| + 1)c2. These
algorithms can be combined to yield a partially synchronous algorithm
for the s-session problem whose time complexity is c;+(s—2) min{(|C|+

1)02 , dzam(G)(d + Cz)}.

Our lower bound results are as follows. For the asynchronous model,
we prove a lower bound of (s — 1)diam(G)d for the time complexity of
any algorithm for the s-session problem; this almost matches our upper
bound for that model. For the partially synchronous model, we prove
two lower bounds. We first show a simple lower bound of (s —2)|C]e¢, for
the case where communication is not used. We then present our main
result: a lower bound of ¢z + (s — 2) min{( L%J )ez, diam(G)d} for the
time complexity of any partially synchronous algorithm for the s-session
problem. For appropriate values of the various parameters, these results
imply a time separation between partially synchronous and asynchronous
networks.

The lower bounds presented in this paper use the same general ap-
proach as in [2]. However, since we assume processes communicate by
sending messages while [2] assumes processes communicate via shared
memory, the precise details differ substantially. The lower bound proof
in [2] uses fan-in arguments, while our lower bounds are based on infor-
mation propagation arguments using long delays of messages, combined
with appropriate selection of processes and careful timing arguments.
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Awerbuch ([8]) has introduced the concept of a synchronizer as a
way to translate algorithms designed for synchronous networks to asyn-
chronous networks. Although the results of [8] may suggest that any
synchronous network algorithm can be translated into an asynchronous
algorithm with constant time overhead, our results imply that this is
not the case: for some values of the parameters, any translation of a
partially synchronous (and in particular, a synchronous) algorithm for
the s-session problem to an asynchronous algorithm must incur a non-
constant time overhead.

(The work described in this section appears in [7].)

4 Distributed Agreement

We have also considered the time complexity of the problem of reaching
agreement among nodes in a distributed system, in the case where some
of the nodes are faulty. In the version of the agreement problem we
have considered, each of n processes starts with an input value. Each
process that does not fail must choose a decision value such that (i) no
two processes decide differently, and (ii) if any process decides v then v
was the input value of some process. We assume that processes fail only
by stopping (without warning). This abstract problem can be used to
model agreement on the value of a sensor reading obtained with multiple
sensors, or agreement on a course of action such as whether an airplane
landing should be completed or aborted.

The time complexity of the distributed agreement problem has been
well studied in the synchronous model. In this model, computation pro-
ceeds in a sequence of numbered rounds of communication. In each
round, each non-failed process sends out messages to all processes, re-
ceives all messages sent to it at that round, and carries out some local
computation. (See, for example, [60, 82, 21, 32, 19, 59, 29, 41, 76, 28, 79,
13, 80, 10] for results involving time complexity in this model.) The most
basic time bound results in these papers are matching upper and lower
bounds of f + 1 on the number of rounds of communication required for
reaching agreement in the presence of at most f faults.

We have considered how these bounds are affected by using, instead
of the synchronous model, one in which there are inexact timing as-
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sumptions. In particular, we have used the partially synchronous model
described in Section 3, assuming that d is an upper bound on message
delivery time, ¢; and ¢y are lower and upper bounds, respectively, on
process step time, and C = c3/c;.2> We have assumed that processes fail
only by stopping, so that failures can be detected by “timeouts”: if an
expected message from some process is not received within a sufficiently
long time, then that process is known to have failed.

Initially, we had hoped to be able to adapt known results about the
synchronous model to obtain good bounds for the version with inexact
timing. Indeed, an (f + 1)-round algorithm can be adapted in a straight-
forward way to yield an algorithm for the partially synchronous model
that requires time at most (f + 1)dC if there are f faults. On the other
hand, a simple transformation in the reverse direction, of any partially
synchronous algorithm to a synchronous algorithm yields a lower bound
of (f +1)d. There is a significant gap between these two bounds, namely,
a multiplicative factor equal to the timing uncertainty, C. We would like
to obtain closer bounds on the time complexity of this problem; in par-
ticular, we would like to understand how this complexity depends on

C.

Our main result is an agreement algorithm in which the uncertainty
factor C is only incurred once, i.e., for one “round” of communication,
yielding a running time of approximately 2td + dC in the worst case.
The term of dC arises from the possible need to time out a failed pro-
cess; if a process fails, then it stops sending messages, and within time
approximately dC, every other process can determine that the failure
has occurred. It seems surprising that the overhead for such a timeout
need only occur once in any execution. The algorithm can be viewed as
an asynchronous algorithm which uses a fault detection (e.g., timeout)
mechanism. That is, the timing bounds ¢i,cz,d are used only in the
fault detection mechanism.

Our second result shows that any agreement algorithm must take
time at least (f — 1)d + dC in the worst case. The lower bound is
unusual in that it combines, in a nontrivial way, three different lower
bound techniques: a “chain argument” ([32, 19, 29, 76, 14, 28]), used
previously to prove that f + 1 rounds are required in the synchronous

3Results of [33, 20]) imply that if any one of the bounds ¢, ¢2, d does not exist, then
there is no agreement algorithm tolerant to even one fault.
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rounds model; a “bivalence” argument ([33, 20]) used previously to prove
that fault-tolerant agreement is impossible in an asynchronous system;
and a “time stretching” argument developed to prove the lower bounds
described in Section 2 ([5]). Although these bounds are not completely
tight, they do demonstrate that the inherent dependence on C involves
just a single term dC; there is no need to multiply C by larger multiples
of the message delivery time.

Some prior work on distributed agreement in a model with inexact
timing assumptions appears in [27]. The main emphasis in [27] was on
determining the maximum fault tolerance possible for various fault mod-
els; only rough upper bounds on the time complexity of the algorithms
were given, and no lower bounds on time were proved. Related work on
the latency® of reaching agreement when processors are not completely
synchronous appears in [12] and [96], although the results are different
from ours. These papers assume that process clocks are synchronized to
within some fixed additive error. Unlike our results. these results are not
stated in terms of absolute real time.

(The work described in this section appears in [4].)

5 A new proof technique for timing-based sys-
tems

Assertional reasoning has been used primarily to prove properties of
sequential algorithms and synchronous and asynchronous concurrent al-
gorithms. We have developed a way in which assertional reasoning can
be used to prove timing properties for algorithms that have timing as-
sumptions of the kind described in the previous sections. Also, the kinds
of properties generally proved using assertional reasoning have been “or-
dinary” safety properties; our method can be used to prove timing prop-
erties (upper and lower bounds on time) for algorithms that have timing
assumptions. Predictable performance is often a desirable characteristic
of real-time systems [95]; assertional techniques could be very helpful in
proving such performance properties.

Our method involves constructing a multivalued mapping from an

*The worst-case elapsed time measured on the clock of any correct process.
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automaton representing the given algorithm to another automaton rep-
resenting the timing requirements. The key to our method is a way of
representing a system with timing constraints as an automaton whose
state includes predictive timing information. Timing assumptions and
timing requirements for the system are both represented in this way, and
the mappings we construct map from the “assumptions automaton” to
the “requirements automaton”.

The formal model used in our work is the timed automaton model,
adapted from the time-constrained automaton model of [78]. A timed
automaton is a pair (A, b), consisting of an I/O automaton A ([71, 72]),
together with a boundmap b, which is a formal description of the timing
assumptions for the components of the system. We have introduced the
notion of a timing condition to state upper and lower bounds on the dif-
ference between the times at which certain events or states appear in an
execution; the conditions imposed by a boundmap are timing conditions
of a particular kind. An automaton and a set of timing conditions (in
particular, a timed automaton) generate a set of timed executions and a
corresponding set of timed behaviors.

While convenient for specifying timing assumptions and requirements,
timed automata are not directly suited for carrying out assertional proofs
about timing properties, because timing constraints are described by
specially-defined timing conditions and are not part of the automaton
itself. We have therefore introduced a way of incorporating timing con-
ditions into an automaton definition. For a given timed automaton A,
and a set U of timing conditions, the automaton time(A,U) is defined to
be an ordinary I/O automaton (not a timed automaton) whose state in-
cludes predictive information describing the first and last times at which
various events can next occur; this information is designed to enforce the
timing conditions in U.

The timing requirements to be proved for an algorithm described as
a timed automaton, (A, b), are described as a set of timing conditions, i,
for A. The requirements automaton is defined to be time(A,U). Thus,
predictive information about the first and last times at which certain
events of interest can next occur are built into the state of the require-
ments automaton.

The problem of showing that a given algorithm (A,b) satisfies the
timing requirements is then reduced to that of showing that any behavior
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of the automaton time(A, b) is also a behavior of time(A,U). Thisis done
using invariant assertion techniques; in particular, one demonstrates a
multivalued mapping from time(A,bd) to time( A,U).

We have applied our technique to three examples. The first example
is a simplified version of the timing-dependent resource granting system
described in Section 2. We have given careful proofs of upper and lower
bounds on the amount of time prior to the first GRANT event and in
between each successive pair of GRANT events. The second example
is a system consisting of a “line” of processes, in which each process
relays a signal received from the process at its left to the process at its
right. We have given careful proofs of upper and lower bounds on the
time to propagate a signal from the left end to the right end of the line.
The third, more complicated example involves one process incrementing
a counter until another process modifies a flag, and then decrementing
this counter. When the counter reaches 0, a DONE action occurs. We
have given careful proofs of upper and lower bounds on the time until a
DONE occurs.

The mappings we provide for all three of these examples have a par-
ticularly interesting and simple form—a set of inequalities relating the
time bounds to be proved to those that can be computed from the state.
These inequalities contain information about how the bounds are to be
satisfied.

Technically, mapping techniques of the sort used in this paper are
only capable of proving safety properties, but not liveness properties.
Timing properties have aspects of both safety and liveness. A timing
lower bound asserts that an event cannot occur before a certain amount
of time has elapsed; a violation of this property is detectable after a
finite prefix of a timed execution, and so a timing lower bound can be
regarded as a safety property. A timing upper bound asserts that an
event must occur before a certain amount of time has elapsed. This can
be regarded as making two separate claims: that the designated amount
of time does in fact elapse (a liveness property), and that that amount of
time cannot elapse without the event having occurred (a safety property).
In our work, we have assumed the liveness property that time increases
without bound, so that all the remaining properties that need to be
proved in order to prove either upper or lower time bounds are safety
properties. Thus, our mapping technique provides complete proofs for
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timing properties without requiring any special techniques (e.g., variant
functions or temporal logic methods) for arguing liveness.

We have shown that this method is complete: if every behavior of
(A,d) is also a behavior of time(A,U) then is there necessarily a strong
possibilities mapping (in the form of inequalities) from time(A,b) to
time(A,U). Related completeness results for the usage of refinement
mappings to prove properties of non timing-based algorithms were proved
in [1] and [77].

There has been some prior work on using assertional reasoning to
prove timing properties. In particular, Hasse [43], Shankar and Lam
[92], Tel [97], Schneider [90], Lewis [63] and Shaw [93] have all developed
models for timing-based systems that incorporate time information into
the state, and have used invariant assertions to prove timing properties.
In [97] and [63], in fact, the information that is included is similar to ours
in that it is also predictive timing information (but not exactly the same
information as ours). Nomne of this work has been based on mappings,
however. Several other, quite different formal approaches to proving
timing properties have also been developed. Some representative papers
describing these other methods are [11], [52], [48], [45], [100], [49], and
[35].

(The work described in this section appears in [68).)

6 Time complexity of asynchronous resilient
algorithms

In shared-memory distributed systems, some number n of independent
asynchronous processes communicate by reading and writing to shared
memory. Wait-free algorithms have been proposed as a mechanism for
computing in the face of variable speeds and failures: a wait-free algo-
rithm guarantees that each nonfaulty process terminates regardless of
the speed and failure of other processes ([44, 58]). The design of wait-
free shared-memory algorithms has recently been a very active area of
research (see, e.g., [3, 22, 44, 58, 64, 83, 84, 89, 98]).

We have studied the time complexity of wait-free and non-wait-free al-
gorithms in “normal” executions, where no failures occur and processes
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operate at approximately the same speed. We have selected this par-
ticular subset of the executions for making the comparison, because it
is only reasonable to compare the behavior of the algorithms in cases
where both are required to terminate. Since wait-free algorithms termi-
nate even when some processes fail, while non-wait-free algorithms may
fail to terminate in this case, the comparison should only be made in
executions in which no process fails, i.e., in failure-free executions. The
time measure we have used is the one introduced in [54, 55], and used
to evaluate the time complexity of asynchronous algorithms, in, e.g.,
[2, 15, 69, 70, 85]. To summarize, we are interested in measuring the
time cost imposed by the wait-free property, as measured in terms of
extra computation time in the most normal (failure-free) case.

We have addressed the general question by considering a specific
problem—the approzimate agreement problem studied, for example, in
[23, 30, 31, 73]; we have studied this problem in the context of a partic-
ular shared-memory primitive—single-writer multi-reader atomic regis-
ters. In this problem, each process starts with a real-valued input, and
(provided it does not fail) must eventually produce a real-valued output.
The outputs must all be within a given distance € of each other, and must
be included within the range of the inputs. This problem, a weaker vari-
ant of the well studied problem of distributed consensus (e.g., [33, 60]),
is closely related to the important problem of synchronizing local clocks
in a distributed system.

Approximate agreement can be achieved very easily if waiting is al-
lowed, by having a designated process write its input to the shared mem-
ory; all other processes wait for this value to be written and adopt it as
their outputs. In terms of the time measure described above, it is easy to
see that the time complexity of this algorithm is constant—independent
of n, the range of inputs and €. On the other hand, there is a relatively
simple wait-free algorithm for this problem which is based on successive
averaging of intermediate values. The time complexity of this algorithm
depends linearly on n, and logarithmically on the size of the range of
input values and on 1/¢. A natural question to ask is whether the time
complexity of this algorithm is optimal for wait-free approximate agree-
ment algorithms.

Our first major result is an algorithm for the special case where n = 2,
whose time complexity is constant, i.e., it does not depend on the range
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of inputs or on ¢. The algorithm uses a novel method of overcoming the
uncertainty that is inherent in an asynchronous environment, without
resorting to synchronization points (cf. [39]) or other waiting mechanisms
(cf. [15]): this method involves ensuring that the two processes base their
decisions on information that is approximately, but not exactly, the same.

Next, using a powerful technique of integrating wait-free (but slow)
and non-wait-free (but fast) algorithms, together with an O(logn) wait-
free input collection function, we generalize the key ideas of the 2-process
algorithm to obtain our second major result: a wait-free algorithm for
approximate agreement whose time complexity is O(logn). Thus, the
time complexity of this algorithm does not depend on either the size of
the range of input values or on ¢, but it still depends on n, the number
of processes.

At this point, it was natural to ask whether the logarithmic depen-
dence on n is inherent for wait-free approximate agreement algorithms,
or whether, on the other hand, there is a constant-time wait-free algo-
rithm (independent of n). Our third major result shows that the logn
dependency is inherent: any wait-free algorithm for approximate agree-
ment has time complexity at least log n.® This implies an Q(logn) time
separation between the non-wait-free and wait-free computation models.

We note that the constant time 2-process algorithm behaves rather
badly if one of the processes fails. The work performed in an execution
of an algorithm is the total number of atomic operations performed in
that execution by all processes before they decide. We have proved a
tradeoff between the time complexity of and the work performed by any
wait-free approximate agreement algorithm. We have shown that for any
wait-free approximate agreement algorithm for 2 processes, there exists
an execution in which the work exhibits a nontrivial dependency on ¢
and the range of inputs.

In practice, the design of distributed systems is often geared towards
optimizing the time complexity in “normal executions,” i.e., executions
where no failures occur and processes run at approximately the same
pace, while building in safety provisions to protect against failures (cf.
[61]). Our results indicate that, in the asynchronous shared-memory

5 . . . .
The lower bound is attained in an execution where processes run synchronously
and no process fails.

setting, t
must resu
situation
tems that
are early-
still term
imposed 1
ple, in [14
systems, °
in failure-
Recen
chronous
issues, by
tolerance
combinat:
wait-free
has not p.

(The

7 Fu

Our futur
for proble
we are cu.

e Mor

excl
e A pi
e Prol

o Exte
case
cur.

e The



:rcoming the
ant, without
mechanisms
es base their
ly, the same.

e (but slow)
(log ) wait-
he 2-process
lgorithm for
. Thus, the
;r the size of
the number

hmic depen-
: algorithms,
ait-free algo-
1at the logn
imate agree-
Y(logn) time
.tion models.

haves rather
an execution
serformed in
ave proved a
rmed by any
. that for any
, there exists
ndency on €

ared towards
.., e€xecutions
sly the same
; failures (cf.
wred-memory

synchronously

127

setting, there are problems for which building in such safety provisions
must result in performance degradation in the normal executions. This
situation contrasts with that occurring, for example, in synchronous sys-
tems that solve the distributed consensus problem. In that setting, there
are early-stopping algorithms (e.g., [25, 28, 79]) that tolerate failures, yet
still terminate in constant time when no failures occur. The exact cost
imposed by fault-tolerance on normal executions, was studied, for exam-
ple, in [14, 28, 79]. It has been shown, for synchronous message passing
systems, that non-blocking commit protocols take twice as much time,
in failure-free executions, as blocking protocols ([29]).

Recent work has addressed the issue of adapting the usual syn-
chronous shared-memory PRAM model to better reflect implementation
issues, by reducing synchrony ([15, 16, 39, 81, 74]) or by requiring fault-
tolerance ([50, 51]). To the best of our knowledge, the impact of the
combination of asynchrony and fault-tolerance (as exemplified by the
wait-free model) on the time complexity of shared-memory algorithms
has not previously been studied.

(The work described in this section appears in [6].)

7 Further research

Our future research plans include more work on upper and lower bounds
for problems of interest in real-time computing. Some specific problems
we are currently working on are as follows.

e More complex resource allocation problems than simple mutual
exclusion.

¢ A problem of probabilistic processor fault diagnosis.
¢ Probabilistic versions of agreement problems.

o Extensions of the consensus problem described in Section 4 to the
case where more severe faults than simple stopping faults can oc-
cur.

¢ The problem of determining the power of a bounded capacity link.
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We also plan to continue our work on modeling and verification. Specif-
ically, this includes the following.

o An attempt to relate recent work on process algebraic approaches
to reasoning about real-time systems to state-machine models such

as [78].

e An attempt to develop timing analysis techniques for randomized
algorithms.

e An effort to apply the mapping method to verify substantial al-
gorithms of interest in the fields of communication and/or real-
time processing. A particular example we are working on is a new
link-state packet distribution algorithm proposed as a standard by
DEC.

o An effort to simplify our mapping method described in Section 5.
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