
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 41, 65-156 (1990)

Commutativity-Based Locking for Nested Transactions*

ALAN FEKETE

Department of Computer Science, University of Sydney,
NS W 2006. Australia

NANCY LYNCH

MIT Laboratory for Computer Science, 545 Technology Square,
Cambridge, Massachusetts 02139

MICHAEL MERRITT

AT& T Bell Laboratories, 600 Mountain Avenue,
Murray Hill, New Jersey 07974

AND

WILLIAM WEIHL

MIT Laboratory for Computer Science, 545 Technology Square,
Cambridge, Massachusetts 02139

Received August 31, 1987; revised July 21, 1989

We present a new model for describing and reasoning about transaction-processing
algorithms. The model provides a comprehensive, uniform framework for rigorous correctness
proofs. The model generalizes previous work on concurrency control to encompass nested
transactions and type-specific concurrency control algorithms. Using our model, we describe
general conditions for a concurrency control algorithm to be correct-i.e., to ensure that
transactions appear to be atomic. We also present a new concurrency control algorithm for
abstract data types in a nested transaction system. The algorithm uses commutativity proper-
ties of operations to allow high levels of concurrency. The results of operations, in addition
to their names and arguments, can be used in checking for conflicts, further increasing
concurrency. We show, using our general model, that the new algorithm is correct. We also
present a read-update locking algorithm due to Moss and prove it correct. The correctness
proofs for the algorithms are modular, in the sense that we consider a system structure
consisting of many objects, with concurrency control and recovery performed independently

* The work of the first and second authors was supported in part by the Oftice of Naval Research
under Contract NOOO14-85-K-0168, by the National Science Foundation under Grant CCR-8611442,
and by the Defense Advanced Research Projects Agency (DARPA) under Contract N00014-83-K-0125.
The work of the fourth author was supported in part by the National Science Foundation under Grant
CCR-8716884, and by The Defense Advanced Research Projects Agency (DARPA) under Contract
NOO014-83-K-0125.

65
0022-0000/90 $3.00

Copyright 0 1990 by Academic Press. Inc.
All rights of reproduction in any form reserved.

66 FEKETE ET AL.

at each object. We define a condition on individual objects, called dynamic atomicity, which
has the property that as long as all objects in the system are dynamic atomic, transactions will
appear atomic. We then show that each algorithm, considered at a single object, ensures
dynamic atomicity. This means that different algorithms can be used at different objects; as
long as each ensures dynamic atomicity, global atomicity of transactions is guaranteed.
c 1990 Academic Press. Inc.

1. INTRODUCTION

This paper has two main contributions. First, we present a comprehensive model
for nested transaction systems. The model allows rigorous proofs of a wide variety
of transaction-processing algorithms in a single uniform framework. The model
generalizes most previous work on concurrency control to encompass nested trans-
actions and type-specific concurrency control algorithms. We used the model to
define correctness for nested transaction systems and also to discuss alternative
correctness criteria.

Second, we present a new concurrency control and recovery algorithm for
abstract data types in a nested transaction system and prove it correct. The
algorithm, which generalizes an algorithm developed by Weihl [42, 391 to handle
nested transactions, uses commutativity properties of operations to achieve high
levels of concurrency. The results of operations, in addition to their names and
arguments, can be used in checking for conflicts, further increasing concurrency.

As part of our development of the general model, we present a theorem that
provides a general sufficient condition for a transaction-processing algorithm to be
correct. This condition is analogous to the “absence of cycles” condition used in the
more classical work on concurrency control (e.g., see [7]). We use the condition as
the basis of the correctness proof of the algorithms presented in this paper. We have
also used it in other work to prove the correctness of other algorithms. For
example, in [2], we prove the correctness of Reed’s multi-version timestamping
algorithm [34] and of a type-specific variation of Reed’s algorithm that uses the
semantics of operations to permit more concurrency.

The description and correctness proof of our algorithm are modular. We consider
a system structure consisting of many objects, with concurrency control and
recovery performed independently at each object. We define a condition on
individual objects, called dynamic atomicity, with the property that as long as all
objects in the system are dynamic atomic, transactions will appear atomic. We then
show that our algorithm, when used to implement a single object, ensures dynamic
atomicity. This means that our algorithm can be used at some objects and other
algorithms at other objects in the same system; as long as each algorithm ensures
dynamic atomicity, global atomicity of transactions is guaranteed.

Dynamic atomicity is ensured by a wide range of concurrency control algorithms,
including most popular variations on two-phase locking [9]. We also present the
read-update locking algorithm developed by Moss [29] for nested transactions and
prove that it ensures dynamic atomicity.

COMMUTATIVITY-BASED LOCKING 67

The generality of the model presented here is illustrated in part by the two
algorithms that are described and verified in this paper and by the proofs
of the timestamp-based algorithms (including multi-version algorithms) in [2].
In addition, with others we have used the model presented here to prove the
correctness of algorithms for management of replicated data [121 and of orphan
transactions [171.

The remainder of this paper is organized as follows. We begin in Section 2 with
some background on nested transactions and a brief discussion of related work.
Then, in Sections 3 through 5, which constitute the first major part of this paper,
we present our general model. In Section 3, we describe input/output automata,
which provide the formal foundation for our work. In Section 4, we define correct-
ness for a nested transaction system. Finally, in Section 5, we present our
Serializability Theorem, which describes general sufficient conditions that can be
used to prove the correctness of many concurrency control algorithms.

In Sections 6 through 9, which constitute the second major part of this paper, we
describe our new algorithm and Moss’ algorithm and prove them correct. In
Section 6, we define dynamic atomicity and prove that it is a local atomicity
property [42,40]-i.e., that if each object in a system is dynamic atomic, then the
system is correct. In Section 7, we define the properties of operations, such as
commutativity, that are used by the two algorithms to be presented later. Next, in
Section 8, we present our new commutativity-based locking algorithm and prove it
correct. Finally, in Section 9, we present the description and proof of Moss’s read-
update locking algorithm.

Finally, we conclude the paper in Section 10 with a summary and a discussion
of future work.

2. BACKGROUND

The abstract notion of “atomic transaction” was originally developed to hide the
effects of failures and concurrency in centralized database systems. It has since been
generalized to incorporate a nested structure and has been applied to problems in
both centralized and distributed systems.

2.1. Atomic Transactions

Roughly speaking, a transaction is a sequence of accesses to data objects; it
should execute “as if” it ran with no interruption by other transactions. Moreover,
a transaction can complete either successfully or unsuccessfully, by “committing” or
“aborting.” If it commits, any alterations it makes to the database should be lasting;
if it aborts, it should be “as if” it never altered the database at all. The execution
of a set of transactions should be “serializable,” that is, equivalent to an execution

68 FEKETE ET AL.

in which no transactions run concurrently and in which all accesses of committed
transactions, but no accesses of aborted transactions, are performed.

The original motivation for transactions was to provide a way of maintaining the
consistency of a database. Maintaining consistency is difficult because the hardware
can fail and because users can access the database concurrently. Transactions
provide fault-tolerance by guaranteeing that either all or none of the effects of a
transaction occur. Transactions also simplify the problems of concurrent access by
synchronizing the access of concurrent users so that the users appear to access the
database sequentially. The net effect is that one can guarantee that consistency is
preserved by ensuring that each transaction, when run alone and to completion,
preserves consistency. Given that each transaction preserves consistency, any serial
execution of transactions without failures (i.e., where each transaction runs to
completion) also preserves consistency. Since any serializable concurrent execution
is equivalent to a serial execution without failures, any serializable concurrent
execution also preserves consistency.

Although much of the database literature focuses on preserving consistency, this
alone is not enough. Consider, for example, a simple database system in which no
transaction ever actually modifies the database. Such a database is always in a con-
sistent state (assuming that the initial state is consistent), but it is not very useful.
A useful system should also guarantee something about the connection between
different transactions, and between transactions and the database state. For
example, ordinary serializability requires the final state of the database to be the
same as after a serial execution in which the same transactions occur. The “view
serializability” condition insists in addition that accesses to data return the same
values as in the equivalent serial execution. Also, either ordinary serializability or
view serializability can be augmented by an “external consistency” condition, which
requires that the order of transactions in the equivalent serial execution should be
compatible with the order in which transaction invocations and responses occur. A
discussion of several correctness conditions can be found in Chapter 2 of the book
by Papadimitriou [33].

Recently, transactions have been explored as a way of organizing programs for
distributed systems [23, 373. Here, their purpose is not just to provide a way of
keeping the state of the database consistent but also to provide the programmer
with mechanisms that simplify reasoning about programs. Failures and concurrency
make it harder to reason about programs because of the complexity of the interac-
tions among concurrent activities and because of the multitude of failure modes.
(See, for instance, the banking example in [23].) Transactions help here by allow-
ing the programmer to view a complex piece of code as if it is run atomically: it
appears to happen instantaneously, and it happens either completely or not at all.

2.2. Nested Transactions

In order for transactions to be useful for general distributed programming, the
notion needs to be extended to include nesting. Thus, in addition to accesses to

COMMIJTATIVITY-BASED LOCKING 69

data objects, a transaction can also contain subtransactions. The transaction
nesting structure can be described by a forest, with the top-level transactions at the
roots and the accesses to data at the leaves. (We do not place any constraints on
the structure of the transaction trees. For example, we do not require all the leaves
to be at the same level. Instead, leaves may occur at any level, so that a top-level
transaction might itself be a leaf representing a single data access, or it might
invoke both a subtransaction and a data access as children.) The semantics of
nested transactions generalize those of ordinary transactions as follows. Each set of
sibling transactions or subtransactions is supposed to execute serializably. As with
top-level transactions, subtransactions can commit or abort. Each set of sibling
transactions runs as if all the transactions that committed ran in a serial order and
all the transactions that aborted did not run at all. An external consistency property
is also required for each set of siblings, ensuring that if a transaction waits for one
child T to complete before invoking another child T’, then T is before T’ in the
apparent serial order.

Nested transactions provide a flexible programming mechanism. They allow the
programmer to describe more concurrency than would be allowed by single-level
transactions, by having transactions request the creation of concurrent sub-
transactions. They also allow localized handling of transaction failures. When a
subtransaction commits or aborts, the commit or abort is reported to its parent
transaction. The parent can then decide on its next action based on the reported
results. For example, if a subtransaction aborts, its parent can use the reported abort
to trigger another subtransaction, one that implements some alternative action.
This flexible mechanism for handling failures is especially useful in distributed
systems, where failures are more common because of unreliable communication and
where one node can keep running while another node is down.

Nested transactions are useful in other ways in distributed systems. For example,
they can be used to implement remote procedure calls with a “zero or once” seman-
tics: the call appears to happen either zero or one times despite retransmissions of
request messages caused by poorly chosen timeouts, lost acknowledgements, and
other problems of unreliable communication. This is accomplished by treating
incomplete or redundant calls as aborted subtransactions of the caller and by
undoing their activity without aborting the successful call. For another example,
nested transactions aid in the construction of replicated systems. The reading and
writing of individual copies of data objects can be done as subtransactions; even if
some of the copies fail to respond (causing their subtransactions to fail), the overall
transaction can still succeed if enough of the copies respond.

The idea of nested transactions seems to have originated in the “spheres of
control” work of Davies [S]. Reed [34] developed the current notion of nesting
and designed a timestamp-based implementation. Moss [29] later designed a
locking implementation that serves as the basis of the implementation of the Argus
programming language. The notion of nesting studied here is analogous to levels of
procedural abstractions. A related but more complex notion of nesting, emphasizing
levels of data abstraction, is used in System R and has been studied in a number

70 FEKETE ET AL

of papers, including work by Beeri et al. [S, 41, Moss et al. [30], and
Weikum [44].

2.3. Transaction-Processing Algorithms

Many algorithms have been proposed and used for implementing non-nested
atomic transactions [9, 38, 201 and also for implementing nested transactions
[34,29]. These algorithms make use of various techniques, including some based
on locks, timestamps, multiple versions of data objects, and multiple replicas. The
most popular algorithms in practice are probably “read-update” locking algorithms
such as those in [9, 291, in which transactions must acquire read locks or update
locks on data objects in order to access the objects in the corresponding manner.
Update locks are defined to conflict with other locks on the same data object, and
conflicting locks are not permitted to be held simultaneously. Thus, a transaction
that updates a data object prevents or delays the operation of any other transaction
that also wishes to update the same object. The recent book by Bernstein et al. [7]
provides an excellent survey of many of the most important transaction-processing
algorithms for non-nested transactions.

While read-update locking is simple and widely used, in some situations it can
result in poor performance. Many systems contain “concurrency bottlenecks”: for
example, if the data is organized into a graph structure, the roots of the structure
are likely to be accessed by most of the transactions. If read-update locking is used,
a transaction that modifies the roots will prevent any other transaction from
accessing the root until the modifying transaction commits and releases its lock.
Thus, most transactions will be blocked for a significant period, and throughput
will suffer. Examples of such situations arise in index structures (e.g., a B-tree) and
in resource allocation problems (e.g., a free list of disk blocks). Concurrency
bottlenecks also occur when the database contains data that summarizes other
data, such as a record of the total assets of a bank. In such cases, most transactions
that update the database will need to update the summary data and thus will
exclude one another from concurrent activity if update locks need to be obtained
on the summary data.

In the last decade, many researchers have explored using type-specific con-
currency control algorithm to avoid concurrency bottlenecks (e.g., see [19, 42, 40,
39, 36, 1, 5, 4, 30, 43, 44, 311). Read-update locking itself is a simple example of
such an algorithm: transactions executing read operations can be allowed to run
concurrently without sacrificing atomicity. The correctness of this algorithm
depends on type-specific properties of the transactions, namely, that certain opera-
tions do not modify the state of the database. This example can be generalized to
allow more concurrency than can be permitted by read-update locking. For exam-
ple, operations on summary data such as the total assets of a bank often include
increment, decrement, and read operations. Increment and decrement operations
are executed by transactions that transfer money into or out of the bank. Using
read-update locking, transactions executing increment and decrement operations

COMMUTATIVITY-BASED LOCKING 71

must exclude each other. However, it is possible to design more permissive
concurrency control algorithms for this example, using the fact that increment and
decrement operations commute to allow transactions executing them to run
concurrently. (Cf. IMS Fast Path [ll].)

In this paper we present and prove correct two algorithms: a read-update locking
algorithm developed by Moss [29] and a new commutativity-based locking algo-
rithm, which allows transactions to proceed concurrently as long as their opera-
tions commute (in a precise sense to be defined below). Our commutativity-based
locking algorithm generalizes most existing type-specific locking algorithms in
several ways. First, it works for nested transactions. Second, it works for arbitrary
abstract data types, including types whose operations may be both partial and non-
deterministic. Third, it allows the results of operations, as well as their names and
arguments, to be used in checking for conflicts; this gives the effect of a finer
“granularity” of locking, thus providing more concurrency. The algorithm is based
on one developed by Weihl [42, 391, generalized to handle nested transactions.

2.4. Formal Models

There are two reasons why a formal model is needed for reasoning about atomic
transactions. First, the implementors of languages that contain transactions need a
model with which to reason about the correctness of their implementations. Some
of the algorithms that have been proposed for implementing transactions are com-
plicated, and informal arguments about their correctness are not convincing. In
fact, it is not even obvious how to state the precise correctness conditions to be
satisfied by the implementations; a model is needed for describing the semantics of
transactions carefully and formally. Second, if programming languages containing
transactions become popular, users of these languages will need a model to help
them reason about the behavior of their programs.

Much of the prior work on formal models is summarized in [7]. This “classical”
theory is primarily applicable to single-level transactions, rather than nested trans-
actions. It treats both concurrency control and recovery algorithms, although the
treatments of the two kinds of algorithms are not completely integrated. The theory
assumes a system organization in which accesses are passed from the transactions
to a “scheduler,” which determines the order in which they are to be performed by
the database. The database handles recovery from transaction abort and media
failure, so that each access to one data object is performed in the state resulting
from all previous non-aborted accesses to that object. “Serializability” is defined in
this model by requiring an execution of the same system to exist in which the trans-
actions run one at a time (without interleaving of steps from different transactions)
and perform the same steps. Proofs for some algorithms are presented, primarily
based on one combinatorial theorem, the “Serializability Theorem.” This important
basic theorem states that serializability is equivalent to the absence of cycles in a
graph representing dependencies among transactions.

There has also been some recent work extending some of the ideas of the classical

72 FEKETE ET AL.

theory to encompass nested transactions involving levels of data abstraction
[S, 4,441); this work is aimed at developing proof techniques for type-specific
concurrency control algorithms, such as the commutativity-based locking algorithm
presented later in this paper.

The classical theory and its extensions to handle type-specific algorithms have
several limitations that we have tried to avoid in our work. First, the notion of
correctness, stated as it is in terms of the existence of a serial execution of the same
system, is too restrictive. The implementation of the system does not serve as an
adequate specification of the permissible serial executions, particularly when the
specification permits operations to be nondeterministic but the implementation
restricts the nondeterminism. In the approach we describe in this paper, we define
the correctness of a system relative to a separate specification of the permissible
serial executions.

Second, the classical theory defines correctness for a particular system organiza-
tion. In early work, such as [32], the interface between the scheduler and the
database that is described is suitable for single-version locking and timestamp algo-
rithms (in the absence of transaction aborts), but it is much less appropriate for
other kinds of algorithms. Multi-version algorithms and replicated data algorithms,
for example, maintain state information in a form that is quite different from the
(single-copy latest-value) form used for the simple algorithms, and the appropriate
interface between the scheduler and the database is also different. In later work,
such as [18, 61, the interface between the scheduler and the database is changed to
accomodate multi-version algorithms. In effect, a different model is used to define
correctness for different classes of algorithms. It seems more appropriate and useful,
in not unduly restricting possible implementations, to state correctness conditions
in a way that does not depend on the details of a particular system organization
and that does not require different definitions for different classes of algorithms.

Third, most of the classical work ignores recovery. Typically, the informal
assumption that “some underlying recovery mechanism ensures that aborted trans-
actions have no effect” is captured formally by studying only executions in which
all transactions commit. It the process, however, assumptions are made about the
way in which the database processes operations; in particular, the database is
assumed to use an “update-in-place” strategy, which requires basing recovery on
some sort of “undo log.” (In the work that does include a model of recovery and
aborts (e.g., [30, 15]), similar assumptions are made about the use of an update-in-
place strategy for recovery.) As shown by Weihl [41], there are useful concurrency
control and recovery algorithms based on other approaches to recovery that do not
match the assumptions made in the classical theory (e.g., a “deferred-update”
strategy, using intentions lists [21,28] for recovery).

Furthermore, the different strategies for recovery place different constraints on
concurrency control, so that there exist intuitively correct concurrency control algo-
rithms that use intentions lists for recovery that do not work with undo logs and
hence cannot be considered correct in a model that restricts recovery to an update-
in-place strategy.

COMMUTATIVITY-BASED LOCKING 73

There are other aspects of the classical work that seem to make it difficult to
extend to handle nested transactions. For example, there is no operational model
(i.e., an execution model, or operational semantics) for transactions; instead, they
are characterized using axioms about their executions. We have found many situa-
tions in which such an operational model is useful. For example, it is possible for
a transaction to create a subtransaction because of the fact that an earlier sub-
transaction aborted; an operational model is helpful in capturing this dependency.
Also, it is sometimes interesting to describe how the same transaction would behave
in different systems. Such reasoning is facilitated by an operational model, such as
the one used in this paper, that clarifies which actions occur under the transaction’s
control, and which are due to activity of the environment.

The model we present in this paper provides an explicit operational model for
transactions and for the other components of a system. Our definition of correct-
ness, described in detail later in the paper, relies on a specification of the acceptable
behavior of a system in the absence of concurrency and failures; this specification
is separate from the description of the system itself. Taking this approach allows us
to give a single definition of correctness that applies to a wide range of systems,
including both single-version and multi-version systems, as well as systems that use
a wide range of methods for recovery. Our model includes explicit events for aborts;
as discussed later in the paper, this avoids restrictive assumptions about recovery
that are made in the classical theory.

Another difference between our work and the “classical” work on concurrency
control is that we include more events in our model. For example, we include
separate events for the request by a transaction to perform an access to an object,
the invocation of the access at the object, the completion of the access at the object,
the decision by the system that the access is to be committed rather than aborted,
and the report to the transaction of the results of the access. In the classical theory,
these five separate events from our model would be represented by a single event.
Partly because of the technical tools that we employ in this paper, we have found
it convenient to distinguish these different events. In addition, the introduction of
nesting and aborts into the model, both of which are missing in the classical theory,
requires us to state certain properties that seem difficult to state without dis-
tinguishing between these different events. At the same time, however, our model is
more complex because of the greater level of detail. Some of this complexity may
be inherent in the systems being studied, and some is certainly due to our desire to
state definitions and results so that they -apply to as broad a range of systems as
possible.

In earlier work, Lynch [24] provided a complete proof of an exclusive locking
algorithm for nested transactions, but the framework used there does not appear to
extend easily to treat many other transaction-processing algorithms. The approach
taken in this paper was started by Lynch and Merritt in [25], with an analysis of
an exclusive locking algorithm, and developed further [lo], with an analysis of a
read/write locking algorithm. In this paper we present a theory that is significantly
more general than that used in this earlier work.

74 FEKETE ET AL.

3. THE INPUT/OUTPUT AUTOMATON MODEL

In order to reason carefully about complex concurrent systems such as those that
implement atomic transactions, it is important to have a simple and clearly defined
formal model for concurrent computation. The model we use for our work is the
input/output automaton model [26,27]. This model allows careful and readable
descriptions of concurrent algorithms and of the correctness conditions that they
are supposed to satisfy. The model can serve as the basis for rigorous proofs that
particular algorithms satisfy particular correctness conditions.

This section contains an introduction to a simple special case of the model that
is sufficient for use in this paper. Since we consider only properties of finite execu-
tions in this paper, we omit aspects of the model that are concerned with describing
and verifying “liveness” or “fairness” properties.

3.1. Mathematical Preliminaries

We rely on several basic mathematical concepts in this paper. To make the paper
self-contained and to avoid confusion about possibly non-standard terminology, we
summarize these concepts here.

An irreflexive partial order is a binary relation that is irreflexive, antisymmetric,
and transitive. Two binary relations R and S are consistent if their union can be
extended to an irreflexive partial order (or in other words, if their union has no
cycles).

The formal subject matter of this paper is concerned with finite and infinite
sequences describing the executions of automata. Usually, we will be discussing
sequences of elements from a universal set of actions. Formally, a sequence /I of
actions is a mapping from a prefix of the positive integers to the set of actions. We
describe the sequence by listing the images of successive integers under the map-
ping, writing /? = rci n2n3 . . . ’ Since the same action may occur several times in a
sequence, it is convenient to distinguish the different occurrences. Thus, we refer to
a particular occurrence of an action in a sequence as an event. Formally, an event
in a sequence fi = n, rrc2 . . . of actions is an ordered pair (i, n), where i is a positive
integer and n is an action, such that n;, the ith action in /?, is rc.

If p is a sequence of actions and A is a set of actions, then /3 1 A, the projection
of p on the set A, is the subsequence of p containing exactly the occurrences in b
of actions in A.

A set of sequences P is prefix-closed provided that whenever p E P and y is a
prefix of B, it is also the case that y E P. Similarly, a set of sequences P is limit-closed
provided that any sequence all of whose finite prefixes are in P is also in P.

’ We use the symbols 8, -p, . . for sequences of actions and the symbols n, 4, and I) for individual
actions.

COMMUTATIVITY-BASED LOCKING 75

3.2. Basic Definitions

Each system component is modeled as an “I/O automaton,” which is a mathe-
matical object somewhat like a traditional finite-state automaton. However, an I/O
automaton need not be finite-state but can have an infinite state set. The actions of
an I/O automaton are classified as either “input,” “output,” or “internal.” This
classification is a reflection of a distinction in the system being modeled between
events (such as the receipt of a message) that are caused by the environment, events
(such as sending a message) that the component can perform when it chooses and
that affect the environment, and events (such as changing the value of a local
variable) that a component can perform when it chooses but that are undetectable
by the environment except through their effects on later events. In the model, an
automaton generates output and internal actions autonomously and transmits out-
put actions instantaneously to its environment. In contrast, the automaton’s input
is generated by the environment and transmitted instantaneously to the automaton.
The distinction between input and other actions is fundamental, based on who
determines when the action is performed: an automaton can establish restrictions
on when it will perform an output or internal action, but it is unable to block the
performance of an input action.

3.2.1. Action Signatures

A formal description of the classification of an automaton’s actions is given by
an “action signature.” An action signature S is an ordered triple consisting of three
pairwise-disjoint sets of actions. We write in(S), out(S), and int(S) for the three
components of S, and refer to the actions in the three sets as the input actions, out-
put actions, and internal actions of S, respectively. We let ext(S) = in(S) u out(S)
and refer to the actions in ext(S) as the external actions of S. Also, we let
local(S) = int(S) u out(S) and refer to the actions in local(S) as the locally
controlled actions of S. Finally, we let acts(S) = in(S) u out(S) u int(S) and refer to
the actions in acts(S) as the actions of S.

An external action signature is an action signature consisting entirely of external
actions, that is, having no internal actions. If S is an action signature, then the
external action signature of S is the action signature extsig(S) = (in(S), out(S), a),
i.e., the action signature that is obtained from S by removing the internal actions.

3.2.2. Input/Output Automata

An input/output automaton A (also called an I/O automaton or simply an
automaton) consists of four components:

l an action signature sig(A),
. a set states(A) of states,
l a nonempty set start(A) G states(A) of start states, and
l a transition relation steps(A) E states(A) x acts(sig(A)) x states(A), with the

76 FEKETE ET AL.

property that for every state s’ and input action 71 there is a transition (s’, 71, s) in
steps(d).*

Note that the set of states need not be finite. We refer to an element (s’, n, S) of
steps(d) as a step of A. The step (s’, z, S) is called an input step of A if n is an input
action, and output steps, internal steps, external steps, and locally controlled steps
are defined analogously. If (s’, 71, s) is a step of A, then n is said to be enabled in
s’. Since every input action is enabled in every state, automata are said to be input-
enabled. The input-enabling property means that an automaton is not able to block
input actions. If A is an automaton, we sometimes write acts(A) as shorthand for
acts(sig(d)), and likewise for in(A), out(A), etc. An I/O automaton A is said to be
closed if all its actions are locally controlled, i.e., if in(A) = @.

Note that an I/O automaton can be “nondeterministic,” by which we mean two
things: that more than one locally controlled action can be enabled in the same
state and that the same action, applied in the same state, can lead to different suc-
cessor states. This nondeterminism is an important part of the model’s descriptive
power. Describing algorithms as nondeterministically as possible tends to make
results about the algorithms quite general, since many results about nondeter-
ministic algorithms apply a fortiori to all algorithms obtained by restricting the
nondeterministic choices. Moreover, the use of nondeterminism helps to avoid
cluttering algorithm descriptions and proofs with inessential details. Finally, the
uncertainties introduced by asynchrony make nondeterminism an intrinsic property
of real concurrent systems, and so an important property to capture in our formal
model of such systems.

3.2.3. Executions, Schedules, and Behaviors

When a system is modeled by an I/O automaton, each possible run of the system
is modeled by an “execution,” an alternating sequence of states and actions. The
possible activity of the system is captured by the set of all possible executions that
can be generated by the automaton. However, not all the information contained in
an execution is important to a user of the system, or to an environment in which
the system is placed. We believe that what is important about the activity of a
system is the externally visible events and not the states or internal events. Thus,
we focus on the automaton’s “behaviors’‘-the subsequences of its executions con-
sisting of external (i.e., input and output) actions. We regard a system as suitable
for a purpose if any possible sequence of externally visible events has appropriate
characteristics. Thus, in the model, we formulate correctness conditions for an I/O
automaton in terms of properties of the automaton’s behaviors.

Formally, an execution fragment of A is a finite sequence sgnls,rc2... rc,s, or
infinite sequence sgnls,z2... rc,s “... of alternating states and actions of A such that
(Si, xi+ 13 si+ 1) is a step of A for every i for which si+ 1 exists. An execution

‘I/O automata, as defined in 1261, also include a fifth component, an equivalence relation on
local(sig(ri)). This component is used for describing fair executions and is not needed for the results
described in this paper.

COMMUTATIVITY-BASED LOCKING 77

fragment beginning with a start state is called an execution. We denote the set of
executions of A by execs(A), and the set of finite executions of A by linexecs(A).
A state is said to be reachable in A if it is the final state of a finite execution of A.

The schedule of an execution fragment tl of A is the subsequence of a consisting
of actions, and is denoted by sched(cr). We say that p is a schedule of A if /I is the
schedule of an execution of A. We denote the set of schedules of A by scheds(A)
and the set of finite schedules of A by finscheds(A). The behavior of a sequence /I
of actions in acts(A), denoted by beh(P), is the subsequence of /I consisting of
actions in ext(A). The behavior of an execution fragment a of A, denoted by beh(a),
is defined to be beh(sched(a)). We say that /I is a behavior of A if /I is the behavior
of an execution of A. We denote the set of behaviors of A by behs(A) and the set
of finite behaviors of A by linbehs(A).

An extended step of an automaton A is a triple of the form (s’, /I, s), where s’ and
s are in states(A), fl is a finite sequence of actions in acts(A), and there is an execu-
tion fragment of A having s’ as its first state, s as its last state, and /I as its schedule.
(This execution fragment might consists of only a single state, in the case that p is
the empty sequence.) If y is a sequence of actions in ext(A), we say that (s’, y, s) is
a moue of A if there is an extended step (s’, j?, S) of A such that y = beh(/?).

We say that a finite schedule p of A can leave A in state s if there is some finite
execution c(of A with final state s and with sched(a) = j. We say that an action z
is enabled after a finite schedule fl of A if there is a state s such that /I can leave
A in state s and rr is enabled in S.

If CI is any sequence of actions and A is an automaton, we write a 1 A for
c[1 acts(A).

3.3. Composition

Often, a single system can also be viewed as a combination of several component
systems interacting with one another. To reflect this in our model, we define an
operation called “composition,” by which several I/O automata can be combined to
yield a single I/O automaton. Our composition operator connects each output
action of the component automata with the identically named input actions of any
number (usually one) of the other component automata. In the resulting system, an
output action is generated autonomously by one component and is thought of as
being instantaneously transmitted to all components having the same action as an
input. All such components are passive recipients of the input, and take steps
simultaneously with the output step.

3.3.1. Composition of Action Signatures
We first define composition of action signatures. Let Z be an index set that is at

most countable. A collection { Si}icl of action signatures is said to be strongly
compatible3 if we have

’ A weaker notion called “compatibility” is defined in [26], consisting of the first two of the three
given properties only. For the purposes of this paper, only the stronger notion will be required.

78 F’EKETE ET AL.

1. out(Si) n out(Sj) = 0, for all i,je I such that i#j,
2. int(Si) n acts(Sj) = 0, for all i, je I such that i # j, and
3. no action is in acts(Si) for infinitely many i.

Thus, no action is an output of more than one signature inthe collection, and inter-
nal actions of any signature do not appear in any other signature in the collection.
Moreover, we do not permit actions involving infinitely many component
signatures.

The composition S = n, E I Si of a collection of strongly compatible action
signatures { Si} ie, is defined to be the action signature with

l in(S)=UiE,in(Sj)-lJ;.,out(S,),
l out(S) = uic, out(Si), and
l int(S)= Uj,,int(Si).

Thus, output actions are those that are outputs of any of the component signatures,
and similarly for internal actions. Input actions are any actions that are inputs to
any of the component signatures, but outputs of no component signature.

3.3.2. Composition of Automata

A collection {Ai}i,, of automata is said to be strongly compatible if their action
signatures are strongly compatible. The composition A = nicl Ai of a strongly
compatible collection of automata {Aj)j,I has the following components:4

l sig(A)=FIjEIsk(Ai),

l states(A) = nre, states(Ai),
l start(A) = nisi start(Ai), and
l steps(A) is the set of triples (s’, 7t, s) such that for all ieZ, (a) if ICE acts(Ai)

then (s’[i], rr, s[i]) E steps(Ai), and (b) if z $ acts(A,) then s’[i] = s[i].’

Since the automata Ai are input-enabled, so is their composition, and hence their
composition is an automaton. Each step of the composition automaton consists of
all the automata that have a particular action in their action signature performing
that action concurrently, while the automata that do not have that action in their
signature do nothing. We will often refer to an automaton formed by composition
as a “system” of automata.

If LY=sg711s1... is an execution of A, let ~11 Ai be the sequence obtained by deleting
zjsj, when nj is not an action of Ai, and replacing the remaining sj by sj[i]. Recall
that we have previously defined a projection operator for action sequences. The two
projection operators are related in the obvious way: sched(cl) Ai) = sched(a) 1 Ai
and, similarly, beh(cr 1 Ai) = beh(a) 1 Ai.

4 Note that the second and third components listed are just ordinary Cartesian products, while the
first component uses a previous definition.

5 We use the notation s[i] to denote the ith component of the state vector S.

COMMUTATIVITY-BASED LOCKING 19

In the course of our discussions we will often reason about automata without
specifying their internal actions. To avoid tedious arguments about compatibility,
henceforth we assume that unspecified internal actions of any automaton are
unique to that automaton and do not occur as internal or external actions of any
of the other automata we discuss.

All of the systems that we will use for modeling transactions are closed systems;
that is, each action is an output of some component. Also, each output of a compo-
nent will be an input of at most one other component.

3.3.3. Properties of Systems of Automata

Here we give basic results relating executions, schedules, and behaviors of a
system of automata to those of the automata being composed. The first result says
that the projections of executions of a system onto the components are executions
of the components and similarly for schedules, etc.

PROPOSITION 1. Let (Ai}i, t be a strongly compatible collection of automata, and
let A = ni,, Ai. If a E execs(A) then a 1 Ai E execs(Ai) for all ie I. Moreover, the same
result holds for finexecs, scheds, finscheds, behs, and finbehs in place of execs.

Certain converses of the preceding proposition are also true. In particular, we can
prove that schedules of component automata can be “patched together” to form a
schedule of the composition, and similarly for behaviors.

PROPOSITION 2. Let {Aj}i,I be a strongly compatible collection of automata, and
let A=niG,Ai.

1. Let /I be a sequence of actions in acts(A). rf /I 1 Ai E scheds(Ai) for all i E I,
then /I E scheds(A).

2. Let /? be a finite sequence of actions in acts(A). rf /I 1 Ai E linscheds(Ai) for
all i E Z, then b E linscheds(A).

3. Let /I be a sequence of actions in ext(A). Zf /? 1 A i E behs(A ;) for all i E Z, then
/I E behs(A).

4. Let p be a finite sequence of actions in ext(A). If /I (Ai E finbehs(A;) for all
i E I, then /3 E linbehs(A).

The preceding proposition is useful in proving that a sequence of actions is a
behavior of a composition A: it suffices to show that the sequence’s projections are
behaviors of the components of A and then to appeal to Proposition 2.

3.4. Implementation

We define a notion of “implementation” of one automaton by another. Let A
and B be automata with the same external action signature, i.e., with
extsig(A) = extsig(B). Then A is said to implement B if linbehs(A) c finbehs(B). One

80 FEKETE ET AL.

way in which this notion can be used is the following. Suppose we can show that
an automaton B is “correct,” in the sense that its finite behaviors all satisfy some
specified property. Then if another automaton A implements B, A is also correct.
One can also show that if A implements B, then replacing B by A in any system
yields a new system in which all finite behaviors are behaviors of the original system.6

In order to show that one automaton implements another, it is often useful to
demonstrate a correspondence between states of the two automata. Such a corre-
spondence can often be expressed in the form of a kind of abstraction mapping that
we call a “possibilities mapping,” defined as follows. Suppose A and B are automata
with the same external action signature, and supposef is a mapping from states(A)
to the power set of states(B). That is, if s is a state of A, f(s) is a set of states of
B. The mapping f is said to be a possibilities mapping from A to B if the following
conditions hold:

1. For every start state s0 of A, there is a start state t, of B such that
to E fboh

2. Let s’ be a reachable state of A, t’ Ed a reachable state of B, and
(s’, rc, s) a step of A. Then there is an extended step, (t’, y, t), of B (possibly having
an empty schedule) such that the following conditions are satisfied:

3. a. y 1 ext(B) = x 1 ext(A), and
b. t Ed.

PROPOSITION 3. Suppose that A and B are automata with the same external action
signature and there is a possibilities mapping, f, from A to B. Then A implements B.

3.5. Preserving Properties

Although automata in our model are unable to block input actions, it is often
convenient to restrict attention to those behaviors in which the environment
provides inputs in a “sensible” way, that is, where the environment obeys certain
“well-formedness” restrictions. A useful way of discussing such restrictions is in
terms of the notion that an automaton “preserves” a property of behaviors: as long
as the environment does not violate the property neither does the automaton. Such
a notion is primarily interesting for properties that are prefix-closed and limit-
closed. Let @ be a set of actions and P be a nonempty, prefix-closed, limit-closed
set of sequences of actions in @ (i.e., a nonempty, prefix-closed, limit-closed
“property” of such sequences). Let A be an automaton with @n int(A) = 0. We
say that A preserves P $8~ 1 A E tinbehs(A), n E out(A), and /3 1 @E P together imply
that /?z 1 @E P. (Note that in the case CD n out(A) = 0, A trivially preserves P.)

6A stronger and often useful notion of “A implements B” would require both finite and infinite
behaviors of A to be behaviors of B, behs(A) c behs(l). As observed by Rosenkrantz et nl [35], this
condition is too strong for us to use in defining correctness conditions for the locking algorithms
considered in this paper.

COMMUTATIVITY-BASED LOCKING 81

Thus, if an automaton preserves a property P, the automaton is not the first to
violate P: as long as the environment only provides inputs such that the cumulative
behavior satisfies P, the automaton will only perform outputs such that the
cumulative behavior satisfies P. Note that the fact that an automaton A preserves
a property P does not imply that all of A’s behaviors, when restricted to CD, satisfy
P; it is possible for a behavior of A to fail to satisfy P, if an input causes a violation
of P. However, the following proposition gives a way to deduce that all of a
system’s behaviors satisfy P. The proposition says that if all components of a system
preserve P, then all the behaviors of the composition satisfy P.

PROPOSITION 4. Let {Ai};,, be a strongly compatible collection of automata, and
let A = nicl Ai. Let @ be a set of actions such that Q, n int(A) = @, and let P be a
nonempty, prefix-closed, limit-closed set of sequences of actions in @. If every Ai
preserves P, then A preserves P; if in addition, A is closed, then behs(A) I@ G P.

4. SERIAL SYSTEMS AND CORRECTNESS

In this section, we develop the formal machinery needed to define correctness for
transaction-processing systems. Unlike much of the classical work on concurrency
control, which defines correctness of a transaction-processing system in terms of the
existence of a serial execution of the same system, we define correctness by first
giving a separate specification of the permissible serial executions as seen by users
of the system and then defining how executions of a transaction-processing system
must relate to this specification.’ We specify the permissible serial executions in
terms of a system of automata, called a “serial system.” A serial system has a struc-
ture that looks much like a transaction-processing system but is constrained not to
run transactions concurrently and not to allow aborted transactions to access data.

4.1. Overview

Transaction-processing systems consist of user-provided transaction code plus
transaction-processing algorithms designed to coordinate the activities of different
transactions. The transactions are written by application programmers in a suitable
programming language. Transactions are permitted to invoke operations on data
objects. In addition, if nesting is allowed, then transactions can invoke subtransac-
tions and receive responses from the subtransactions describing the results of their
processing.

In a transaction-processing system, the transaction-processing algorithms interact
with the transactions, making decisions about when to schedule subtransactions
and operations on objects. In order to carry out such scheduling, the transaction-

’ Work that has analyzed multi-version concurrency control algorithms (e.g., [6]) has taken a similar
approach of using a separate specification of the serial executions, but has not developed a general
structure that applies to a wide range of algorithms.

82 FEKETE ET AL.

processing algorithms may manipulate locks, multiple copies of objects, and other
data structures. In the system organization emphasized by the classical theory, the
transaction processing algorithms are divided into a “scheduler algorithm” and a
“database” of objects. The scheduler has the power to decide when operations are
to be performed on the objects in the database, but not to perform more complex
manipulations on objects (such as maintaining multiple copies). Although this
organization is popular, it does not encompass all useful system designs.

In this paper, each component of a transaction-processing system is described as
an I/O automaton. In particular, each transaction is an automaton, and all the
transaction-processing algorithms together comprise another automaton. Some-
times, as when describing serial systems or explaining our algorithms, we will use
a more detailed structure and present the transaction-processing algorithms as a
composition of a collection of automata, one representing each object and one
representing the rest of the system.

It is not obvious how one ought to model the nested structure of transactions
within the I/O automaton model. One might consider defining special kinds of
automata that have a nested structure. However, it appears that the cleanest way
to model this structure is to describe each subtransaction in the transaction nesting
structure as a separate automaton. If a parent transaction T wishes to invoke a
child transaction T’, T will issue an output action that “requests that T’ be
created.” The transaction-processing algorithms receive this request, and at some
later time they might decide to issue an action that is an input to the child T’ and
that corresponds to the “creation” of T’. Thus, the different transactions in the
nesting structure comprise a forest of automata, communicating with each
other indirectly through the transaction-processing automaton. The highest level
user-defined transactions, i.e., those that are not subtransactions of any other
user-defined transactions, are the roots in this forest.

It is actually more convenient to model the transaction nesting structure as a tree
rather than as a forest. Thus, we add an extra “root” automaton as a “dummy
transaction,” located at the top of the transaction nesting structure. The highest
level user-defined transactions are considered to be children of this new root. The
root can be thought of as modeling the outside world, from which invocations of
top-level transactions originate and to which reports about the results of such
transactions are sent; indeed, we will generally regard the boundary between this
root transaction and the rest of the system as the “user interface” to the system. The
use of the root transaction works out nicely in the formal development: in most
cases, the reasoning we do about this dummy root transaction is the same as the
reasoning we do about ordinary transactions, so that regarding the root as a trans-
action leads to economy in our formal arguments.

The main purpose of this section is to deline correctness conditions to be satisfied
by transaction-processing systems. In general, correctness conditions for systems
composed of I/O automata are stated in terms of properties of sequences of external
actions, and we will follow that convention in this paper. Here it seems most
natural to define correctness conditions in terms of the actions occurring at the

COMMUTATIVITY-BASED LOCKING 83

boundary between the transactions (including the dummy root transaction) and the
transaction-processing automaton, for it is immaterial how the transaction-
processing algorithms work, as long as the outside world and the transactions see
“correct” behavior.

We define correct behavior for a transaction-processing system in terms of the
behavior of a particular and heavily constrained transaction-processing system, one
that processes all transactions serially. We call such a system a “serial system.”
Serial systems consist of transaction automata and “serial object automata” com-
posed with a “serial scheduler automaton.” Transaction automata have already
been mentioned above. Serial object automata serve as specifications for permissible
object behavior. They describe the responses the objects should make to arbitrary
sequences of operation invocations, assuming that later invocations wait for
responses to previous invocations. Serial objects are much like the ordinary typed
variables that occur in sequential programming languages; they serve the same
purpose as the “serial specifications” for data objects used by Weihl [42,40].

The serial scheduler handles the communication among the transactions and
serial objects and thereby controls the order in which the transactions take steps.
It ensures that no two sibling transactions are active concurrently-that is, it runs
each set of sibling transactions serially. The serial scheduler is also responsible for
deciding if a transaction commits or aborts. The serial scheduler can permit a trans-
action to abort only if its parent has requested its creation but it has not actually
been created. Thus, in a serial system, all sets of sibling transactions are run serially
and in such a way that no aborted transaction ever performs any steps.

It is important to understand that serial systems are introduced solely to serve as
the specification of the permissible serial behaviors. Since serial systems allow nd
concurrency among sibling transactions and cannot cope with a transaction that
fails after it has started running, they are not sufficiently general to serve directly
as a model of real transaction-processing systems. However, they are quite adequate
as a basis for the definition of correctness of more interesting systems. In later
sections, we will describe some systems that do allow concurrency and recovery
from transaction failures. (For example, they undo the effects of aborted trans-
actions that have performed significant activity.) We prove that these systems are
correct in the sense that certain transactions, in particular the root transaction, are
unable to distinguish these systems from corresponding serial systems. In other
words, it appears to these transactions as if all siblings run serially and that aborted
transactions were never created.

In the remainder of this section, we develop all the necessary machinery for detin-
ing serial systems. First, we define a type structure used to name transactions and
objects. Then we describe the general structure of a serial system-the components
it includes, the actions the components perform, and the way that the components
are interconnected. Next, we define several useful concepts involving the actions of
a serial system. We then define the components of the serial system in detail and
state some basic properties of serial systems. Finally, we use serial systems to state
the correctness conditions that we will use for the remainder of this paper.

84 FEKETE ET AL.

4.2. System Types

We begin by defining a type structure that will be used to name the transactions
and objects in a serial system. A system type consists of the following:

. a set Y of transaction names,

. a distinguished transaction name T,, E F-,

l a subset accesses of F not containing TO,
. a mapping parent: F - (TO} + F, which configures the set of transaction

names into a tree, with TO as the root and the accesses as the leaves,
. a set 3 of object names,

l a mapping object: accesses + X, and
. a set V of return values.

Each element of the set “accesses” is called an access transaction name, or simply
an access. Also, if object(T) =X we say that T is an access to X.

In referring to the transaction tree, we use standard tree terminology, such as
“leaf node, ” “internal node,” “child,” “ancestor,” and “descendant.” As a special
case, we consider any node to be its own ancestor and its own descendant, i.e., the
“ancestor” and “descendant” relations are reflexive. We also use the notion of a
“least common ancestor” (lea) of two nodes.

The transaction tree describes the nesting structure for transaction names, with
TO as the name of the dummy “root transaction.” Each child node in this tree
represents the name of a subtransaction of the transaction named by its parent. The
children of TO represent names of the top-level user-defined transactions. The
accesses represent names for the lowest level transactions in the transaction nesting
structure; we will use these lowest level transactions to model operations on data
objects. Thus, the only transactions that actually access data are the leaves of the
transaction tree, and these do nothing else. The internal nodes model transactions
whose function is to create and manage subtransactions (including accesses), but
they do not access data directly.

The tree structure should be thought of as a predefined naming scheme for all
possible transactions that might ever be invoked. In any particular execution,
however, only some of these transactions will actually take steps. We imagine that
the tree structure is known in advance by all components of a system. The tree will,
in general, be an infinite structure with infinite branching.

Classical concurrency control theory, as represented, for example, in [7], con-
siders transactions having a simple nesting structure. As modeled in our framework,
that nesting structure has three levels: the top level consists of the root T,,, model-
ing the outside world, the next level consists of all the user-defined transactions,
and the lowest level consists of the accesses to data objects.

The set 3 is the set of names for the objects used in the system. Each access
transaction name is assumed to be an access to some particular object, as
designated by the “object” mapping. The set V of return values is the set of possible

COMMUTATIVITY-BASED LOCKING 85

values that might be returned by successfully completed transactions to their parent
transactions.

If T is an access transaction name and u is a return value, we say that the pair
(T, u) is an operation of the given system type. Thus, an operation includes a
designation of a particular access to an object, together with a designation of the
value returned by the access.

4.3. General Structure of Serial Systems

A serial system for a given system type is a closed system consisting of a “trans-
action automaton” A, for each non-access transaction name T, a “serial object
automaton” S, for each object name X, and a single “serial scheduler automaton.”
Later in this section, we will give a precise definition for the serial scheduler
automaton and will give conditions to be satisfied by the transaction and object
automata. Here, we just describe the signatures of the various automata, in order
to explain how the automata are interconnected. Figure 1 depicts the structure of
a serial system.

The transaction nesting structure is indicated by dotted lines between transaction
automata corresponding to parent and child and between each serial object
automaton and the transaction automata corresponding to parents of accesses to
the object. The direct connections between automata (via shared actions) are
indicated by solid lines. Thus, the transaction automata interact directly with the
serial scheduler, but not directly with each other or with the object automata. The
object automata also interact directly with the serial scheduler.

Figure 2 shows the interface of a transaction automaton in more detail. Transac-
tion T has an input CREATE(T) action, which is generated by the serial scheduler
in order to initiate T’s processing. We do not include explicit arguments to a trans-
action in our model; rather, we suppose that there is a different transaction for each
possible set of arguments, and so any input to the transaction is encoded in the

Scheduler

FIG. 1. Serial system structure.

86 FEKETE ET AL.

CREATE(T) REQUEST-COMMIT(T.v)

T’ a child of T

REQUEST-CREATE(T’)
REPORT-ABORT(T)

REPORT-COMMIT(T,v’)

FIG. 2. Transaction automaton.

name of the transaction, In addition, T has REQUESTCREATE actions for
each child T’ of T in the transaction nesting structure; these are requests for crea-
tion of child transactions and are communicated directly to the serial scheduler. At
some later time, the scheduler might respond to a REQUEST-CREATE(T’) action
by issuing a CREATE(T’) action, an input to transaction T’. Transaction T also
has REPORT-COMMIT(T’, v’) and REPORT-ABORT(T’) input actions, by
which the serial scheduler informs T about the fate (commit or abort) of its pre-
viously requested child T’. In the case of a commit, the report includes a return
value u’ that provides information about the activity of T’; in the case of an abort,
no information is returned. Finally, T has a REQUEST-COMMIT(T, u) output
action, by which it announces to the scheduler that it has completed its activity
successfully, with a particular result as described by return value u.

Figure 3 shows the object interface. Object X has input CREATE(T) actions for
each T that is an access to X. These actions should be thought of as invocations
of operations on object X. Object X also has output actions of the form
REQUEST-COMMIT(T, v), representing responses to the invocations. The value
u in a REQUEST-COMMIT(T, u) action is a return value returned by the object
as part of its response. (We have chosen to use the “create” and “request-commit”
notation for the object actions, rather than the more familiar “invoke” and
“respond” terminology, in the interests of uniformity: there are many places in our
formal. arguments where access transactions can be treated uniformly with non-
access transactions, and so it is useful to have a common notation for them.)

CREATE(T) REQUESTCOMMIT(l-.v)

Tan access to X

FIG. 3. Object automaton.

COMMUTATIVITY-BASED LOCKING 87

Figure 4 shows the serial scheduler interface. The serial scheduler receives the
previously mentioned REQUEST-CREATE and REQUEST-COMMIT actions as
inputs from the other system components. It produces CREATE actions as outputs,
thereby awakening transaction automata or invoking operations on objects. It also
produces COMMIT(T) and ABORT(T) actions for arbitrary transactions T # TO,
representing decisions about whether the designated transactions commit or abort.
For technical convenience, we classify the COMMIT and ABORT actions as out-
put actions of the serial scheduler, even though they are not inputs to any other
system component.’ Finally, the serial scheduler has REPORT-COMMIT and
REPORT-ABORT actions as outputs, by which it communicates the fates of trans-
actions to their parents.

As is always the case for I/O automata, the components of a system are deter-
mined statically. Even though we referred earlier to the action of “creating” a child
transaction, the model treats the child transaction as if it had been there all along.
The CREATE action is treated formally as an input action to the child transaction;
the child transaction will be constrained not to perform any output actions until
such a CREATE action occurs. A consequence of this method of modeling dynamic
creation of transactions is that the system must include automata for all possible
transactions that might ever be created, in any execution. In most interesting cases,
this means that the system will include infinitely many transaction automata.

4.4. Serial Actions and Well-Formedness

The serial actions for a given system type are defined to be the external actions
of a serial system of that type. These are just the actions listed in the preceding sub-

REQUEST-CREATE(T)

I
Serial Scheduler Automaton

CRf=TEo
1

REQUEST~C0MMWT.v)

FIG. 4. Serial scheduler automaton.

‘Classifying actions as outputs even though they are not inputs to any other system component is
permissible in the I/O automaton model. In this case, it would also be possible to classify these two
actions as internal actions of the serial scheduler, but then the statements and proofs of the ensuing
results would be slightly more complicated.

88 FEKETE ET AL.

section: CREATE(T) and REQUESTCOMMIT(T, u), where T is any transaction
name and u is a return value, and REQUEST-CREATE(T), COMMIT(T),
ABORT(T), REPORT-COMMIT(T,) u , and REPORT_ABORT(T), where T # T,,
is a transaction name and u is a return value.’

In this subsection, we define some basic concepts involving serial actions. All the
definitions in this subsection are based on the set of serial actions only and not on
the specific automata in the serial system. For this reason, we present these delini-
tions here, before going on (in the next subsection) to give more information about
the systems components.

We first present some basic definitions, and then we define “well-formedness” for
sequences of external actions of transactions and objects.

4.1.1. Basic Definitions

The COMMIT(T) and ABORT(T) actions are called completion actions for T,
while the REPORT-COMMIT(T, u) and REPORT-ABORT(T) actions are called
report actions for T.

With each serial action n that appears in the interface of a transaction or
object automaton (that is, with any non-completion action), we associate a trans-
action in the natural way: let T be any transaction name. If 71 is one of the serial
actions CREATE(T), REQUEST-COMMIT(T, u), REQUEST-CREATE(T’),
REPORT_COMMIT(T’, u’), or REPORT-ABORT(T’), where T’ is a child of T,
then we define transaction to be T. If rc is a completion action, then transac-
tion(z) is undefined. In some contexts, we will need to associate a transaction with
completion actions as well as with other serial actions; since a completion action
for T can be thought of as occurring “in between” T and parent(T), we will some-
times want to associate T and sometimes parent(T) with the action. Thus, we
extend the “transaction(n)” definition in two different ways. If rc is any serial action,
then we define hightransaction to be transaction(n), if rt is not a completion
action, and to be parent(T), if 7c is a completion action for T. Also, if rc is any serial
action, we define lowtransaction to be transaction(if 7c is not a completion
action, and to be T, if n is a completion action for T. In particular,
hightransaction = lowtransaction = transaction(n) for all serial actions other
than completion actions.

We also require notation for the object associated with any serial action whose
transaction is an access. If 7c is a serial action of the form CREATE(T) or
REQUEST-COMMIT(T, u), where T is an access to X, then we define object(n)
to be X.

We extend the preceding notation to events as well as actions. For example, if rc
is an event, then we write transaction(z) to denote the transaction of the action of
which n is an occurrence. We extend the definitions of “hightransaction,” “lowtrans-

9 Later in the paper, we will deline other kinds of systems besides serial systems, namely, simple
systems and generic systems. These will also include the serial actions among their external actions; we
will still refer to these actions as “serial actions” even though they appear in non-serial systems.

COMMUTATIVITY-BASED LOCKING 89

action,” and “object” similarly. We will extend other notation in this paper in the
same way, without further explanation.

Recall that an operation is a pair (T, v), consisting of an access transaction name
and a return value. We can associate operations with a sequence of serial actions:
if /I is a sequence of serial actions, we say that the operation (T, u) occurs in /I if
there is a REQUEST-COMMIT(T, u) event in /I. Conversely, we can associate
serial actions with a sequence of operations: for any operation (T, u), let per-
form(T, u) denote the two-action sequence CREATE(T) REQUEST-COM-
MIT(T, u), the expansion of (T, u) into its two parts. This definition is extended to
sequences of operations in the natural way: if 5 is a sequence of operations of the
form <‘(T, u), then perform(<) = perform perform(T, u). Thus, the “perform”
function expands a sequence of operations into a corresponding alternating
sequence of CREATE and REQUEST-COMMIT actions.

Now we require terminology to describe the status of a transaction during execu-
tion. Let fi be a sequence of serial actions. A transaction name T is said to be active
in /I provided that /I contains a CREATE(T) event but no REQUEST-COMMIT
event for T. Similarly, T is said to be live in /I provided that /I contains a
CREATE(T) event but no completion event for T. (However, note that /I may
contain a REQUEST-COMMIT for T.) Also, T is said to be an orphan in b if there
is an ABORT(U) action in /I for some ancestor U of T.

We have already used projection operators to restrict action sequences to
particular sets of actions and to actions of particular automata. We now introduce
another projection operator, this time to sets of transaction names. Namely, if /I is
a sequence of serial actions and 42 is a set of transaction names, then fi 1% is defined
to be the sequence /?I (7~: transaction(z) E %}. If T is a transaction name, we
sometimes write p 1 T as shorthand for /I 1 {T}. Similarly, if /? is a sequence of
serial actions and X is an object name, we sometimes write /?I X to denote
p 1 {n: object(z) = X}.

Sometimes we will want to use definitions from this subsection for sequences of
actions chosen from some other set besides the set of serial actions-usually, a set
containing the set of serial actions. We extend the appropriate definitions of this
subsection to such sequences by applying them to the subsequences consisting of
serial actions. Thus, if b is a sequence of actions chosen from a set @ of actions,
define serial(p) to be the subsequence of p consisting of serial actions. Then we say
that operation (T, u) occurs in /3 if it occurs in serial(p). A transaction T is said to
be active in /I provided that it is active in serial(p) and similarly for the “live” and
“orphan” definitions. Also, /?I % is defined to be serial@) 1 u2! and similarly for
restriction to an object.

4.42. Well-Formedness

We will place very few constraints on the transaction automata and serial object
automata in our definition of a serial system. However, we will want to assume that
certain simple properties are guaranteed; for example, a transaction should not take

90 FEKETE ET AL.

steps until it has been created, and an object should not respond to an operation
that has not been invoked. Such requirements are captured by “well-formedness
conditions,” properties of sequences of external actions of the transaction and serial
object components. We define those conditions here.

First, we define “transaction well-formedness.” Let T be any transaction name. A
sequence p of serial actions rc with transaction(z) = T is defined to be transaction
well-formed for T provided the following conditions hold:

1. The first event in /I, if any, is a CREATE(T) event, and there are no other
CREATE events.

2. There is at most one REQUESTCREATE event in b for each child
T’ of T.

3. Any report event for a child T’ of T is preceded by
REQUEST-CREATE(T’) in /I.

4. There is at most one report event in B for each child T’ of T.
5. If a REQUEST-COMMIT event for T occurs in /I, then it is preceded by

a report event for each child T’ of T for which there is a REQUEST-CREATE(T’)
in /I.

6. If a REQUEST-COMMIT event for T occurs in /I, then it is the last event
in B.

In particular, if T is an access transaction name, then the only sequences that are
transaction well-formed for T are the prefixes of the two-event sequence
CREATE(T) REQUEST-COMMIT(T, u). For any T, it is easy to see that the set
of transaction well-formed sequences for T is nonempty, prefix-closed, and limit-
closed.

It is helpful to have an equivalent form of the “transaction well-formedness”
definition for use in later proofs.

LEMMA 5. A sequence b of actions IJ% with transaction(4) = T is transaction well-
formed for T if and only if f or every finite prefix yz of p, where z is a single action,
the following conditions hold:

1. If 7t is CREATE(T), then
a. there is no CREATE(T) event in y.

2. Ifrt is REQUEST-CREATE(T’) for a child T’ of T, then
a. there is no REQUEST-CREATE(T’) event in y,
b. CREATE(T) appears in y, and
c. there is no REQUESTPCOMMIT event for T in y.

3. Zf 7~ is a report event for a child T’ of T, then
a. REQUEST-CREATE(T’) appears in y, and
b. there is no report event for T’ in y.

COMMUTATIVITY-BASED LOCKING 91

4. Zf rt is REQUEST-COMMIT(T, u) for some value v, then
a. there is a report event in y for every child of T for which there is a

REQUEST-CREATE event in y,
b. CREATE(T) appears in y, and
c. there is no REQUEST-COMMIT event for T in y.

Now we define “serial object well-formedness.” Let X be any object name.
A sequence of serial actions n with object(z) = X is defined to be serial object
well-formed for X if it is a prefix of a sequence of the form CREATE(T,)
REQUESTpCOMMIT(T,, u,) CREATE(T,) REQUEST-COMMIT(T,, u,)...,
where Ti # Tj when i # j.

LEMMA 6. Suppose /3 is a sequence of serial actions II with object(n) = X. If /I is
serial object well-formed for X and T is an access to X, then /3 1 T is transaction well-
formed for T.

Again, we give an equivalent form of the “serial object well-formedness” delini-
tion that will be useful in later proofs.

LEMMA 7. A sequence /? of actions C$ with abject(4) = X is serial object well-
formed for X tf and only if for every finite prefix yn of /?, where rc is a single action,
the following conditions hold

1. If n is CREATE(T), then
a. there is no CREATE(T) event in y, and
b. there are no active accesses in y.

2. Zfn is REQUEST-COMMIT(T, v) for a return ualue u, then
a. T is active in y.

We also say that a sequence 5 of operations (T, u) with object(T) =X is serial
object well-formed for X if no two operations in C; have the same transaction name.
Clearly, if t is a serial object well-formed sequence of operations of X, then per-
form(<) is a serial object well-formed sequence of actions of X. Also, any serial
object well-formed sequence of actions of X is a prefix of perform(<) for some serial
object well-formed sequence of operations 5.

4.5. Serial Systems

We are now ready to define “serial systems.” Serial systems are composed of
transaction automata, serial object automata, and a single serial scheduler
automaton. There is one transaction automaton A, for each non-access transaction
name T, and one serial object automaton S, for each object name X. We describe
the three kinds of components in turn.

92 FEKETE ET AL.

4.5.1. Transaction Automata

A transaction automaton A, for a non-access transaction name T of a given
system type is an I/O automaton with the following external action signature:
Input:

CREATE(T)
REPORT-COMMIT(T’, u’), for every child T’ of T, and every return value u’
REPORT-ABORT(T’), for every child T’ of T

output:
REQUESTCREATE(for every child T’ of T
REQUEST-COMMIT(T, u), for every return value v

In addition, A, may have an arbitrary set of internal actions. We require A, to
preserve transaction well-formedness for T, as defined in Sections 3.5 and 4.4.2.
Except for this requirement, transaction automata can be chosen arbitrarily. Note
that if /3 is a sequence of actions, then 6 1 T= p 1 ext(A.).

As discussed earlier, the requirement that A, preserve transaction well-formed-
ness for T does not mean that all behaviors of A, are transaction well-formed, but
it does mean that as long as the environment of A, does not violate transaction
well-formedness, A, will not do so. Notice that the only ways the environment can
violate transaction well-formedness for T are by reporting the fate of a subtrans-
action that was never requested or by generating duplicate CREATE(T) actions or
report actions for children of T.

Transaction automata are intended to be general enough to model the trans-
actions defined in any reasonable programming language. Of course, there is still
work required in showing how to define appropriate transaction automata for the
transactions in any particular language. This correspondence depends on the special
features of each language, and we do not describe techniques for establishing such
a correspondence in this paper.

4.5.2. Serial Object Automata

A serial object automaton S, for an object name X of a given system type is an
I/O automaton with the following external action signature:

Input:
CREATE(T), for every access T to X

output:
REQUEST-COMMIT(T, u), for every access T to X and every return value v

In addition, S, may have an arbitrary set of internal actions. We require S, to
preserve serial object well-formedness for X, as defined in Sections 3.5 and 4.4.2.

As with transaction automata, serial object automata can be chosen arbitrarily as
long as they preserve serial object well-formedness. However, as above, this does
not mean that all behaviors of S, are serial object well-formed for X, but it does
mean that as long as the environment of S, does not violate serial object well-
formedness, S, will not do so.

COMMUTATIVITY-BASED LOCKING 93

Serial object automata are intended to be general enough to model any of the
system-provided or user-defined types provided in modern programming languages,
subject to the restriction that each operation involves only a single object. The
“semantic information” about a data object that is used in some concurrency
control algorithms is obtained from the serial object automaton.

4.5.2.1. EXAMPLE: A BANK ACCOUNT. As an example, we describe a serial object
BA representing the specification of a bank account. There are three kinds of
accesses to B.4:

l balance?: The return value for this kind of access gives the current balance.
l deposit-$a: This increases the balance by $a. The only return value is

“OK.”
l withdraw-$b: This reduces the balance by $b if the result will not be

negative. In this case the return value is “OK.” If the result of withdrawing would
be to cause an overdraft, then the balance is left unchanged, and the return value
is “FAIL.”

The serial object automaton S,, is defined as follows. A state s of S,, has two com-
ponents, s. pending, which is either null or an access to BA, and s. balance, which is
an integer representing the current balance of the account. The transition relation
consists of all triples (s’, rr, s) satisfying the pre- and post-conditions described
below, where n is the indicated action. If a component of s is not mentioned in the
effects, it is implicit that the value is the same in s’ and s.

CREATE(T), for T an access to S,,
Effect:

s . pending = T

REQUEST-COMMIT(T, “OK”), for T a deposit$a access to S,,
Precondition:

s’. pending = T
Postcondition:

s. pending = null
s. balance = s’. balance + a

REQUEST-COMMIT(T, “OK”), for T a withdraw-$b access to S,,
Precondition:

s’. pending = T
s’. balance > b

Postcondition:
s. pending = null
s. balance = s’. balance - b

94 FEKETE ET AL.

REQUEST-COMMIT(T, “FAIL”), for T a withdraw-$b access to S,,
Precondition:

s’. pending = T
s’. balance < b

Postcondition:
s . pending = null

REQUESTCOMMIT(T, o), for T a balance? access to S,,
Precondition:

s’. pending = T
s’. balance = v

Postcondition:
s. pending = null

An invocation can occur at any time and is recorded as pending. A response to a
pending deposit operation increments the current balance by the amount to be
deposited. A response with value “OK” to a pending withdraw operation can be
generated whenever the current balance is large enough to cover the requested
withdrawal and decrements the current balance by the specified amount. If the
current balance is too small to cover a requested withdrawal, then the response to
the withdrawal must return the value “FAIL,” and the balance is not changed.
Finally, a response v to a pending balance? operation can be generated whenever
the balance is v.

The ability to specify the behavior of an object using a serial object automaton
is essential for modeling type-specific concurrency control algorithms. As discussed
earlier, concurrency can be enhanced by using information about the semantics of
operations-for example, that two operations commute-in synchronizing con-
current transactions. When a system has a hot spot, such as an aggregate quantity
(e.g., net assets for a bank or quantity on hand for an inventory system) or a data
structure representing a collection, type-specific algorithms can be essential for
achieving good performance. Many examples of type-specific algorithms can be
found in the literature. In the second half of this paper, we describe a locking algo-
rithms that uses the specifications of operations to allow operations that commute
to run concurrently.

4.5.3. Serial Scheduler

There is a single serial scheduler automaton for each system type. It runs trans-
actions according to a depth-first traversal of the transaction tree, running sets of
sibling transactions serially. When two or more sibling transactions are available to
run (because their parent has requested their creation), the serial scheduler is free
to determine the order in which they run. In addition, the serial scheduler can
choose nondeterministically to abort any transaction after its parent has requested
its creation, as long as the transaction has not actually been created. In the context
of this scheduler, the “semantics” of an ABORT(T) action are that transaction T

COMMUTATIVITY-BASED LOCKING 95

was never created. The scheduler does not permit any two sibling transactions to
be live at the same time and does not abort any transaction while any of its siblings
is live. We now give a formal definition of the serial scheduler automaton.

The action signature of the serial scheduler consists of the following actions, for
every transaction name T and return value u:

Input:
REQUEST-CREATE(T), T # T,,
REQUEST-COMMIT(T, u)

output:
CREATE(T)
COMMIT(T), T # To
ABORT(T), T# T,,
REPORT-COMMIT(T, v), T # To
REPORTpABORT(T), T # To

Each state s of the serial scheduler consists of six sets, denoted via record nota-
tion: s. create-requested, s. created, s. commit-requested, s. committed, s. aborted,
and s.reported. The set s.commit-requested is a set of operations. The others are
sets of transactions. There is exactly one start state, in which the set createere-
quested is {To}, and the other sets are empty. We use the notation s.completed to
denote s.committed u s.aborted. Thus, s.completed is not an actual variable in the
state, but rather a “derived variable” whose value is determined as a function of the
actual state variables.

The transition relation of the serial scheduler consists of exactly those triples
(s’, rr, s) satisfying the preconditions and yielding the effects described below, where
n is the indicated action. We include in the effects only those conditions on the state
s that may change with the action. If a component of s is not mentioned in the
effects, it is implicit that the set is the same in s’ and s.

REQUEST-CREATE(T), T # To
Effect:

s.createerequested = s’. create-requested u { T}

REQUEST-COMMIT(T, u)
Effect:

s. committrequested = s’. commit-requested u { (T, u)}

CREATE(T)
Precondition:

T E s’. create-requested - s’. created
T $ s’. aborted
siblings(T) n s’. created E s’. completed

Effect:
s. created = s’. created u { T}

96 FEKETE ET AL.

COMMIT(T), T# T,,
Precondition:

(T, V) E s’. commitrequested for some z)
T 4 s’. completed

Effect:
s. committed = s’. committed u { T}

ABORT(T), T # T,,
Precondition:

T E s’. create-requested - s’. completed
T # s’. created
siblings(T) n s’. created c s’. completed

Effect:
s. aborted = s’. aborted u { T}

REPORT-COMMIT(T, u), T # To
Precondition:

T E s’. committed
(T, u) E s’. commit-requested
T $ s’. reported

Effect :
s. reported = s’. reported u { T}

REPORT-ABORT(T), T # To
Precondition:

T E s’. aborted
T 4 s’. reported

Effect:
s. reported = s’. reported u { T}

The input actions, REQUEST-CREATE and REQUEST-COMMIT, simply
result in the request being recorded. The COMMIT and REPORT output actions
are relatively simple: a COMMIT action can occur only if it has previously been
requested and no completion action has yet occurred for the indicated transaction,
while the result of a transaction can be reported to its parent at any time after the
COMMIT or ABORT has occurred.

The other output actions, CREATE and ABORT, are the most interesting. A
CREATE action can occur only if a corresponding REQUEST-CREATE has
occurred and the CREATE has not already occurred. Moreover, it cannot occur if
the transaction was previously aborted. Similarly, an ABORT action can occur only
if a corresponding REQUEST-CREATE has occurred and no completion action
has yet occurred for the indicated transaction. Moreover, it cannot occur if the
transaction was previously created. The third precondition on the CREATE action
says that the serial scheduler does not create a transaction until each of its
previously created sibling transactions has completed (i.e., committed or aborted).
That is, siblings are run sequentially. Similarly, the third precondition on the

COMMUTATIVITY-BASED LOCKING 97

ABORT action says that the scheduler does not abort a transaction while there is
activity going on on behalf of any of’its siblings. That is, aborted transactions are
dealt with sequentially with respect to their siblings. The combined effect of the
preconditions on the CREATE and ABORT actions is that the scheduler does not
consider a transaction for creation or abortion so long as a sibling is live.

The following lemma describes simple relationships between the state of the serial
scheduler and its computational history.

LEMMA 8. Let b be a finite schedule of the serial scheduler, and let s be a state
such that /I can leave the serial schedule in state s. Then the following conditions are
true.

1. TE s.create-requested if and only if T = TO or p contains a
REQUEST-CREATE(T) event.

2. TE s. created if and only if /? contains a CREATE(T) event.

3. (T, v) E s.commit-requested if and only if fl contains a REQUESTCOM-
MIT(T, v) event.

4. TE s.committed zf and only if /3 contains a COMMIT(T) event.

5. TE s.aborted zf and only if fl contains an ABORT(T) event.

6. T E s. reported if and only if /; contains a report event for T.

I. s.committedns.aborted= 0.

8. s.reportedEs.committedvs,aborted.

The following lemma gives simple facts about the actions appearing in an
arbitrary schedule of the serial scheduler.

LEMMA 9. Let j3 be a schedule of the serial scheduler. Then all of the following
hold

1. If a CREATE(T) event appears in /I for T # TO, then a
REQUEST-CREATE(T) event precedes it in /?.

2. At most one CREATE(T) event appears in /? for each transaction T.

3. If a COMMIT(T) event appears in /I, then a REQUEST-COMMIT(T, v)
event precedes it in p for some return value v.

4. Zf an ABORT(T) event appears in /I, then a REQUEST-CREATE(T) event
precedes it in /I.

5. Zf a CREATE(T) or ABORT(T) event appears in /? and is preceded by a
CREATE(T’) event for a sibling T’ of T, then it is also preceded by a completion
event for T’.

6. At most one completion event appears in /? for each transaction.

I. At most one report event appears in /I for each transaction.

98 FEKETE ET AL.

8. If a REPORT-COMMIT(T,) v event appears in 8, then a COMMIT(T)
event precedes it in /I.

9. Zf a REPORT-ABORT(T) event appears in fi, then an ABORT(T) event
precedes it in b.

The final lemma of this subsection says that the serial scheduler preserves the
well-formedness properties described earlier.

LEMMA 10. 1. Let T be any transaction name. Then the serial scheduler
.vreserves transaction well-formedness for T.

2. Let X be any object name. Then the serial scheduler preserves serial object
well-formedness for X.

Proof 1. Let @ be the set of all serial actions 4 with transaction(d) = T.
Suppose /?rc restricted to the actions of the serial scheduler is a finite behavior
of the serial scheduler, rr is an output action of the serial scheduler, and /I I@ is
transaction well-formed for T. We must show that flz I@ is transaction well-formed
for T. If rc I# 0, then the result is immediate, so assume that rc E @, i.e., that
transaction(z) = T.

We use Lemma 5. We already know that b 10 is transaction well-formed for T,
and so the four conditions of the lemma hold for all prefixes of p I@. Thus, we need
only prove that the four conditions of the lemma hold for /?rc I,@. Since z is an out-
put of the serial scheduler, 7c is either a CREATE(T) event or a report event for a
child of T. If n: is CREATE(T), then since /Ire restricted to the actions of the serial
scheduler is a schedule of the serial scheduler, Lemma 9 implies that no
CREATE(T) occurs in /?. If rc is a REPORT event for a child T’ of T, then
Lemma 9 implies that REQUEST-CREATE(T’) occurs in /I and no other
REPORT for T’ occurs in /I. Then Lemma 5 implies that /%c I@ is transaction well-
formed for T.

2. The argument for this case is similar, using Lemma 7. i

4.54. Serial Systems, Executions, Schedules, and Behaviors

A serial system of a given system type is the composition of a strongly compatible
set of automata indexed by the union of the set of non-access transaction names,
the set of object names and the singleton set {SS) (for “serial scheduler”).
Associated with each non-access transaction name T is a transaction automaton A 7
for T. Associated with each object name X is a serial object automaton S, for X.
Finally, associated with the name SS is the serial scheduler automaton for the given
system type. When the particular serial system is understood from context, we will
sometimes use the terms serial executions, serial schedules, and serial behaviors for
the system’s executions, schedules, and behaviors, respectively.

We show that serial behaviors are well-formed for each transaction and object
name.

COMMUTATIVITY-BASED LOCKING 99

PROPOSITION 11. If /? is a serial behavior, then the following conditions hold.

1. For every transaction name T, p 1 T is transaction well-formed for T.
2. For every object name X, p 1 X is serial object well-formed for X.

ProoJ For non-access transaction names T or arbitrary object names X, the
result is immediate by Proposition 4, the definitions of transaction and object
automata, and Lemma 10.

Suppose that T is an access to X. Since /I 1 X is serial object well-formed for X,
Lemma 6 implies that fll T is transaction well-formed for T. m

A serial system runs sibling transactions serially. This does not mean, however,
that the REQUEST-CREATE events and the REPORT events for siblings are
serialized. For example, the following sequence could be a fragment of a serial
behavior, where T and T’ are siblings:

REQUEST-CREATE(T)
REQUEST-CREATE(T’)
CREATE(T)
REQUEST-COMMIT(T, v)
COMMIT(T)
CREATE(T’)
REQUEST-COMMIT(T’, v’)
COMMIT(T’)
REPORTCOMMIT(T’, u’)
REPORT-COMMIT(T, v).

Notice that the REQUEST-CREATE and REPORT events for T and T’ are inter-
leaved, even though the CREATE and COMMIT events are serialized.

Unless expressly stated, we henceforth assume an arbitrary but fixed system type
and serial system, with A T as the transaction automaton associated with non-access
transaction name T, and S, as the serial object automaton associated with object
name X. In the next subsection, we show how this fixed serial system serves as the
basis of our definition of correctness for actual transaction-processing systems.

4.6. Correctness Conditions

Now that we have defined serial systems, we can use them to define correctness
conditions for other transaction-processing systems. It is reasonable to use serial
systems in this way because of the particular constraints the serial scheduler
imposes on the orders in which transactions and objects can perform steps. We con-
tend that the given constraints correspond precisely to the way nested transaction
systems ought to appear to behave; in particular, these constraints yield a natural
generalization of the notion of serial execution in classical transaction systems. We

100 FEKETE ET AL.

arrive at a number of correctness conditions by considering for which system com-
ponents this appearance must be maintained: for the external environment r,,, for
all transactions, or for all non-orphan transactions.

To express these correctness conditions we define the notion of “serial correct-
ness” of a sequence of actions for a particular transaction name. We say that a
sequence /I of actions is serially correct for transaction name T provided that there
is some serial behavior y such that /? 1 T = y 1 T.” (Recall that if T is a non-access,
we have /I 1 T = /I 1 ext(A T) and y 1 T = y I ext(A T)). If T is a non-access transaction,
the serial correctness for T of a sequence fl guarantees to implementors of A, that
their code has encountered only situations that could arise in serial executions.

Our intention in defining correctness for a system is to constrain its interactions
with the external environment, which is modeled by the root transaction To. Thus,
our fundamental correctness condition simply requires serial correctness for To. We
might expect most systems to contain the same transaction automaton for To as in
the serial system. (In other words, the external environment in the serial system will
be the same as in the real transaction-processing system.) In fact, we have modeled
many systems with a structure that is even closer to that of the serial system: as a
system of automata containing an automaton A, for each transaction name T.
However, our definition of correctness does not depend on these or other assump-
tions. Such constraints may seem intuitively reasonable, but they are not needed for
defining correctness. Furthermore, in our experience, most such constraints rule out
some interesting systems. Thus, in defining correctness, we allow any system
(modeled as an I/O automaton) to be considered as a candidate for a transaction-
processing system. As a result, our definition of correctness does not constrain the
internal structure of a transaction-processing system or even its interface with the
external environment.

We consider a system to be serially correct for transaction name T provided all
of its finite behaviors are serially correct for T. Then if T is a non-access transac-
tion, serial correctness for T of a system containing A, guarantees to implementors
of A, that their code will encounter only situations that can arise in serial execu-
tions.

The principal notion of correctness for a transaction-processing system that we
use in our work is that of serial correctness for the root transaction To of all finite
behaviors. This says that the “outside world” cannot distinguish between the given
system and the serial system. However, many of the algorithms we study satisfy
stronger correctness conditions. A fairly strong and possibly interesting correctness
condition is the serial correctness of all finite behaviors for all non-access
transaction names. Thus, neither the outside world nor any of the individual user
transactions can distinguish between the given system and the serial system. Note
that the definition of serial correctness relative to all non-access transactions does
not require that all the transactions see behavior that is part of the same execution

lo This condition is analogous to the “view serializability” condition of Yannakakis [45], extended to
deal with operations other than reads and writes and with subtransactions.

COMMUTATIVITY-BASED LOCKING 101

of the serial system; rather, each could see behavior arising in a different serial
execution.

We will also consider intermediate conditions such as serial correctness for all
non-orphan transaction names. This condition implies serial correctness for T,
because the serial scheduler does not have the action ABORT(T,) in its signature,
so T, cannot be an orphan. Most of the popular algorithms for concurrency control
and recovery, including the locking algorithms in this paper, guarantee serial
correctness for all non-orphan transaction names. Our Serializability Theorem gives
sufficient conditions for showing that a behavior of a transaction-processing system
is serially correct for an arbitrary non-orphan transaction name and can be used to
prove this property for many of these algorithms. The usual algorithms do not
guarantee serial correctness for orphans, however; in order to guarantee this as
well, the use of a special “orphan management” algorithm is generally required.
Such algorithms are described and proved correct in [17].

Note that each correctness condition discussed in this section can be applied to
many different kinds of transaction-processing systems. All that is needed is that the
system be modeled as an I/O automaton with appropriately named actions. Typi-
cally, the system would contain an automaton AT for each non-access transaction
name and one or more automata modeling the transaction management com-
ponents. In this paper, and in most of our work, we place no restrictions on the
transaction automata other than their preservation of transaction well-formedness.
(More specialized algorithms could depend upon special properties of the transac-
tion automata; for example, that transactions access objects in a particular order.)
In fact, we place no constraints on the signature or structure of a transaction-
processing system. All we require is that its behaviors satisfy the stated correctness
condition, namely serial correctness for r,.

5. THE SERIALIZABILITY THEOREM

In this section, we present our Serializability Theorem, which embodies a fairly
general method for proving that a concurrency control algorithm guarantees serial
correctness. This theorem expresses the following intuition: a behavior of a system
is serially correct provided that there is a way to order the transactions so that
when the operations at each object are arranged in the corresponding order; the
result is a behavior of the corresponding serial object. The correctness of many
different concurrency control algorithms can be proved using this theorem; in this
paper, we use it to prove correctness of two locking algorithms.

This theorem is the closest analog we have for the classical Serializability
Theorem of [7]. Both that theorem and ours hypothesize that there is some order-
ing on transactions consistent with the behavior at each object. In both cases, this
hypothesis is used to show serial correctness. Our result is somewhat more com-
plicated, however, because it deals with nesting and aborts, and also with objects
whose operations are more complex than simple reads and updates. In the first

102 FEKETE ET AL.

subsection of this section, we give some additional definitions that are needed to
accommodate these complications.

We have tried to state our theorem to make it as widely applicable as possible.
Thus, the theorem talks about sequences of actions, not about particular system
organizations. However, not all sequences of actions are reasonable; the theorem
applies to those sequences that could be behaviors of systems containing the trans-
action automata A.. In other words, the projection of the sequence on each
transaction must be a behavior of that transaction’s automaton. In addition, certain
additional constraints, such as that a CREATE(T) action does not occur without
a preceding REQUEST-CREATE(T) action, must also be satisfied. To capture
these constraints on sequences of actions, we define “simple systems” in Section 5.2.
Next, we define various orders on events and transactions that are used to reorder
behaviors of real transaction-processing systems to show the existence of
appropriate serial behaviors. Finally, we present the statement and proof of our
Serializability Theorem.

5.1. Visibility

One difference between our result and the classical Serializability Theorem is that
the conclusion of our result is serial correctness for an arbitrary transaction T,
whereas the classical result essentially considers only serial correctness for To. Thus,
it should not be surprising that the hypothesis of our result does not deal with all
the operations at each object, but only with those that are in some sense “visible”
to the particular transaction T. In this subsection, we define a notion of “visibility”
of one transaction to another. This notion is a technical one, but one that is natural
and convenient in the formal statements of results and in their proofs. Visibility is
defined so that, in the usual transaction-processing systems, only a transaction T’
that is visible to another transaction T can effect the behavior of T.

A transaction T’ can affect another transaction T in several ways. First, if T’ is
an ancestor of T, then T’ can affect T by passing information down the transaction
tree via invocations. Second, a transaction T’ that is not an ancestor of T can affect
T through COMMIT actions for T’ and all ancestors of T’ up to the level of the
least common ancestor with T; information can be propagated from T’ up to the
least common ancestor via REPORT-COMMIT actions (and the associated return
values) and, from there, down to T via invocations. Third, a transaction T’ that is
not an ancestor of T can affect T by accessing an object that is later accessed by
T; in most of the usual transaction-processing algorithms, this is only allowed to
occur if there are intervening COMMIT actions for all ancestors of T’ up to the
level of the least common ancestor with T.

Thus, we define “visibility” as follows. Let p be any sequence of serial actions. If
T and T’ are transaction names, we say that T’ is visible to T in /I if there is a
COMMIT(U) action in /3 for every U in ancestors(T’) - ancestors(T). Thus, every
ancestor of T’ up to (but not necessarily including) the least common ancestor of
T and T’ has committed in /I.

COMMUTATIVITY-BASED LOCKING 103

Our definition of visibility has been chosen for ease of argument. Note, however,
that it says that T’ is visible to T even in some situations where T’ cannot affect
the behavior of T, for example when T’ follows T in /I. Intuitively, the definition
includes all transactions that, as far as T can “see,” participate in the computation,
either before or after T.

Figure 5 depicts two transactions, T and T’, neither an ancestor of the other. If
the transactions represented by all of the circled nodes have committed in some
sequence of serial actions, then the definition implies that T’ is visible to T.

The following lemma describes elementary properties of “visibility.”

LEMMA 12. Let p be a sequence of actions, and let T, T’, and T” be transaction
names.

1. If T’ is an ancestor of T, then T’ is visible to T in b.
2. T’ is visible to T in a if and only if T’ is visible to lca(T, T’) in 8.
3. If T” is visible to T’ in p and T’ is visible to T in fl, then T” is visible to

T in j3.
4. If T’ is live in j3 and T’ is visible to T in j, then T is a descendant of T’.
5. If T’ is an orphan in B and T’ is visible to T in 8, then T is an orphan in 8.

We use the notion of “visibility” to pick, out of a sequence of actions, a sub-
sequence consisting of the actions corresponding to transactions that are visible to
a given transaction T. More precisely, if a is any sequence of actions and T is a
transaction. name, then visible(/?, T) denotes the subsequence of /3 consisting of
serial actions 71 with hightransaction visible to T in /I. Note that every action
occurring in visible(/?, T) is a serial action, even if /I itself contains other actions.
Note also that the use of “hightransaction” in the definition implies that if T’ is
visible to T in /I and T” is a child of T’ that has an ABORT(T”) in /I, then any
REQUEST-CREATE(T”), ABORT(T”) and REPORT-ABORT(T”) actions in B
are included in visible@, T), but actions of T” are not.”

FIG. 5. Visibility.

” If T= T,,, visible(8, T) corresponds to the “committed projection” of /3 as defined in [7].

104 FEKETE ET AL.

The following easy lemma says that the “visible” operator on sequences picks out
either all or none of the actions having a particular transaction.

LEMMA 13. Let /? be a sequence of actions, and let T and T’ be transaction
names. Then visible@, T) 1 T’ is equal to B 1 T’ if T’ is visible to T in /3, and is equal
to the the empty sequence otherwise.

5.2. Simple Systems

It is desirable to state our Serializability Theorem in such a way that it can be
used for proving correctness of many different kinds of transaction-processing
systems, with radically different architectures. We therefore define a “simple
system,” which embodies the common features of most transaction-processing
systems, independent of their concurrency control and recovery algorithms and
even of their division into modules to handle different aspects of transaction-
processing. A “simple system” consists of the transaction automata together with
a special automaton called the “simple database.” The simple database ensures a
number of simple constraints, including the following:

l A transaction is not created without first being requested.
l A transaction does not both commit and abort.
l A transaction does not commit without first requesting to commit.
l A REPORT action does not occur for a transaction unless it is preceded

by a corresponding completion action.

However, the simple database does not include any constraints based on the seman-
tics of the objects as specified by the serial system. In other words, the simple
database is allowed to return arbitrary responses to accesses.

In practice, a real transaction-processing system will obey all the constraints
imposed by a simple system and will also impose additional constraints on the
responses to accesses that guarantee serial correctness. Our Serializability Theorem
is stated in terms of simple systems; it can be applied to any system that
“implements” the simple system in the sense that each of its behaviors is a simple
behavior. In our experience, many complicated transaction-processing algorithms
can be modeled as implementations of the simple system. For example, a system
containing separate objects that manage locks and a “controller” that passes infor-
mation among transactions and objects can be represented in this way, and so our
theorem can be used to prove its correctness. The same strategy works for a system
containing objects that manage timestamped versions and a controller that issues
timestamps to transactions. Later in this paper, we apply our Serializability
Theorem to show that every behavior of certain locking systems is serially correct
for non-orphan transactions.

COMMUTATIVITY-BASED LOCKING 105

5.2.1. Simple Database

There is a single simple database for each system type. The action signature of
the simple database is that of the composition of the serial scheduler with the serial
objects:

Input:
REQUEST-CREATE(T), T # To
REQUEST_COMMIT(T, u), T a non-access

output:
CREATE(T)
COMMIT(T), T # To
ABORT(), T # To
REPORT-COMMIT(T, v), T # To
REPORT-ABORT(T), T # To
REQUEST-COMMIT(T, u), T an access

Note that actions such as CREATE(T) and REQUEST-COMMIT(T, u), for T
an access transaction name, are outputs of the simple database but are not inputs
of any transaction automaton. (The same is true for the COMMIT and ABORT
actions.) Thus, they could be classified as internal actions of the simple database,
but it turns out to be more convenient to treat them as outputs.

States of the simple database are the same as for the serial scheduler, and the
initial states are also the same. In particular, although the signature of the serial
scheduler has been extended by adding the actions of the serial objects, no addi-
tional state information about the objects occurs in the simple database. Intuitively,
the behaviors of the simple database are “syntactically well-formed,” but are not
constrained to satisfy any substantive “semantic” constraints, particularly as to the
serial object actions. Semantic constraints are added in the statement of the
Serializability Theorem, which specifies general sufficient conditions for the serial
correctness of behaviors of the simple system. The transition relation is as follows:

REQUEST-CREATE(T), T # T,,
Effect :

s. create-requested = s’. create-requested u { T}

REQUEST-COMMIT(T, u), T a non-access
Effect :

s. commit-requested = s’. commit-requested u { (T, u) }

CREATE(T)
Precondition:

T E s’. create-requested - s’. created
Effect:

s. created = s’. created u { T}

106 FEKETE ET AL.

COMMIT(T), T # TO
Precondition:

(T, u) E s’.commit-requested for some u
T $ s’. completed

Effect:
s. committed = s’. committed u { T}

ABORT(T), T # TO
Precondition:

T E s’. create-requested - s’. completed
Effect :

s. aborted = s’. aborted u { T}

REPORT-COMMIT(T, II), T # T,,
Precondition:

T E s’. committed
(T, u) E s’. commit-requested
T $ s’. reported

Effect :
s. reported = s’. reported u { T}

REPORTABORT(T), T # TO
Precondition:

T E s’. aborted
T .$ s’. reported

Effect:
s. reported = s’. reported u { T>

REQUEST-COMMIT(T, u), T an access
Precondition:

T E s’. created
for all v’, (T, u’) $ s’. commit-requested

Effect:
s. commit-requested = s’. commit-requested u { (T, u) }

The next two lemmas are analogous to those previously given for the serial
scheduler.

LEMMA 14. Let B be a finite schedule of the simple database, and let s be a state
that can result from applying b to the start state. Then the following conditions are
true:

1. T E s. create-requested if and only if T= TO or /I contains a
REQUEST-CREATE(T) event.

2. TE s. created if and only if /3 contains a CREATE(T) event.

COMMUTATIVITY-BASED LOCKING 107

3. (T, v) E s. commit-requested if and only if /I contains a REQUEST-COM-
MIT(T, v) event.

4. TE s. committed if and only if fi contains a COMMIT(T) event.

5. TE s.aborted if and only ifB contains an ABORT(T) event.

6. T E s.reported if and only if p contains a report event for T

7. s.committedn s.aborted= a.

8. s.reportedcs.committedvs.aborted.

LEMMA 15. Let /3 be a schedule of the simple database. Then all of the following
hold:

1. If a CREATE(T) event appears in b for T # T,,, then a
REQUEST-CREATE(T) event precedes it in p.

2. At most one CREATE(T) event appears in p for each transaction T.

3. rf a COMMIT(Tj event appears in fl, then a REQUEST-COMMIT(T, v)
event precedes it in b for some return value v.

4. Zf an ABORT(T) event appears in p, then a REQUEST-CREATE(T) event
precedes it in p.

5. At most one completion event appears in /I for each transaction.

6. At most one report event appears in j3 for each transaction.

7. If a REPORT-COMMIT(T, v) event appears in /I, then a COMMIT(T)
event precedes it in 8.

8. Jf a REPORT-ABORT(T) event appears in /I, then an ABORT(T) event
precc&4 it in /I.

9. Zf T is an access and a REQUEST-COMMIT(T, v) event occurs in p, then
a CREATE(T) event precedes it in /?.

10. If T is an access, then at most one REQUEST-COMMIT event for T
occurs in 0.

Thus, the simple database embodies those constraints that we would expect any
reasonable transaction-processing system to satisfy-i.e., well-formedness and
control-flow (communication) requirements. The simple database does not allow
CREATE, ABORTS, or COMMITS without an appropriate preceding request,
does not allow any transaction to have two creation or completion events, and does
not report completion events that never happened. Also, it does not produce
responses to accesses that were not invoked nor does it produce multiple responses
to accesses. On the other hand, the simple database allows almost any ordering of
transactions, allows concurrent execution of sibling transactions, and allows
arbitrary responses to accesses.

We do not claim that the simple database produces only serially correct
behaviors; rather, we use the simple database to model features common to more

108 FEKETEET AL.

sophisticated systems. Such systems will usually include a controller (perhaps with
constraints of its own) and complicated objects with concurrency control and
recovery built into them. Such a system will have additional actions for com-
munication between these objects and the controller.

We now show that the simple database preserves transaction well-formedness.

LEMMA 16. Let T be ay transaction name. Then the simple database preserves
transaction well-formedness for T.

Proof Let @ be the set of all serial actions 4 with transaction(4) = T. Suppose
Prt restricted to the actions of the simple database is a finite behavior of the simple
database, rc is an output action of the simple database, and /I I@ is transaction well-
formed for T. We must show that Prr 10 is transaction well-formed for T. If n $ @,
then the result is immediate, so assume that rc E @, i.e., that transaction(n) = T.

We use Lemma 5. We already know that /I 1 Q, is transaction well-formed for T,
and so the four conditions of the lemma hold for all prefixes of /3 I@. Thus, we need
only prove the four conditions of the lemma hold for flrc I@. Since rc is an output
of the simple database, rc is either a CREATE(T) event for an arbitrary transaction
T, a REPORT event for a child of an arbitrary transaction T, or a
REQUEST-COMMIT for T, where T is an access. If rr is CREATE(T), then since
/3r restricted to the actions of the simple database is a schedule of the simple
database, Lemma 15 implies that no CREATE(T) occurs in /I. If rt is a REPORT
event for a child T’ of T, then Lemma 15 implies that REQUEST-CREATE(T’)
occurs in /I and no other REPORT for T’ occurs in p. If rr is REQUEST-COM-
MIT(T, u) and T is an access, then Lemma 15 implies that CREATE(T) occurs in
p, and no REQUEST-COMMIT for T occurs in /I. Then Lemma 5 implies that
/?rr I@ is transaction well-formed for T. 1

5.2.2. Simple Systems, Executions, Schedules, and Behaviors

A simple system is the composition of a strongly compatible set of automata
indexed by the union of the set of non-access transaction names and the singleton
set {SD} (for “simple database”). Associated with each non-access transaction
name T is the transaction automaton AT for T, and associated with the name SD
is the simple database automaton for the given system type. When the particular
simple system is understood from context, we will often use the terms simple execu-
tions, simple schedules, and simple behaviors for the system’s executions, schedules,
and behaviors, respectively.

PROPOSITION 17. Zf /I is a simple behavior and T is a transaction name, then fl[T
is transaction well-formed for T.

Proof The result is immediate by Lemma 16 and the definition of transaction
automata. 1

The following is a basic fact about simple behaviors.

COMMUTATIVITY-BASED LOCKING 109

LEMMA 18. Let fl be a simple behavior. Let T and T’ be transaction names, where
T’ is an ancestor of T. If T is live in B and not an orphan in p then T’ is live in p.

Our Serializability Theorem is formulatd below in terms of simple behaviors; it
provides a sufficient condition for a simple behavior to be serially correct for a
particular transaction name T.

5.3. Event and Transaction Orders

Our general approach to showing that a system is correct is to extract a sub-
sequence of each behavior of the system, reorder the subsequence in certain ways,
and then show that the resulting sequence is a behavior of the serial system. We put
two constraints on the reordering: first, it must preserve the order of certain events
from the original behavior, and second, for certain pairs of transactions T and T’
it must order all events of T before all events of T’. The first constraint is captured
by the notion of an “affects order,” while the second is captured by a “sibling
order.” In this subsection we define these orders precisely and prove some simple
facts about them.

5.3.1. Affects Order
We first define a partial order “affects(p)” on the events of a sequence p of serial

actions. This will be used to describe basic dependencies between events in a simple
behavior; any appropriate reordering of j3 will be required to be consistent with
these dependencies.

We define the affects relation by first defining a subrelation, which we call the
“directly-affects” relation, and then taking its transitive closure. This decomposition
will be useful to us later when we carry out proofs about the “affects” relation, since
it is often easy to reason about “directly-affects.” For a sequence fi of serial actions,
and events 4 and rr in /I, we say that 4 directly affects rc in fl (and that (4, rr) E
directly-affects(P)) if at least one of the following is true.

l transaction(d) = transaction(n) and 4 precedes rc in p”
l 4 = REQUEST-CREATE(T) and r~= CREATE(T)

l 4 = REQUEST-COMMIT(T, v) and ‘it = COMMIT(T)
l 4 = REQUEST-CREATE(T) and 7c = ABORT(T)
l 4 = COMMIT(T) and n = REPORT-COMMIT(T, v)
l 4 = ABORT(T) and rc = REPORT-ABORT(T).

LEMMA 19. If /? is a simple behavior and (4, 7~) E directly-affects(P), then 4
precedes n in p. l3

I2 This includes accesses as well as non-accesses.
I3 Note that the actions of a simple system are exactly the serial actions.

110 FEKETE ET AL.

Proof: The first case is obvious, so we consider only the last five cases of the
definition. Transaction well-formedness implies that there cannot be two
REQUEST-CREATE(7’) events in /I for the same T and that there cannot be two
REQUEST-COMMIT events for the same transaction. Also, Lemma 15 says that
b does not contain two completion events for the same T. Hence, in each case 4 is
the only occurrence of the appropriate action in /?. In each case, rc is an output of
the simple database, and the simple database preconditions test for the presence of
the appropriate preceding action. 1

For a sequence /I of serial actions, define the relation affects@) to be the
transitive closure of the relation-directly-affects(j). If the pair(#, rc) is in the relation
affects(P), we also say that 4 affects rr in /I. The following is immediate.

LEMMA 20. Let /? be a simple behavior. Then affects(p) is an irrefexive partial
order on the events in /?.

Proof: By Lemma 19, 4 directly affects n: in /3 only if 4 precedes n in /I. There-
fore 4 affects rr in b only if 4 precedes rc in /I. Thus, affects(P) is irreflexive and
antisymmetric. Since affects(b) is constructed as a transitive closure, the result
follows. 1

The conditions listed in the definition of “directly-affects” should seem a
reasonable collection of dependencies among the events in a simple behavior. At a
technical level, the justification for them is that we will use the affects relation to
extract serial behaviors from a simple behavior satisfying certain conditions. The
order of the events in the serial behavior will be consistent with the affects ordering.
Thus, if p is a simple behavior and (4, rc) E affects(P), all the serial behaviors we
construct that contain n will also contain 4, and 4 will precede 71 in each such
behavior. The first case of the “directly-affects” definition is necessary because we
are not assuming special knowledge of transaction behavior; if we included rt and
not 4 in our candidate serial behavior, we would have no way of proving that the
result included correct behaviors of the transaction automata. The remaining cases
naturally parallel the preconditions of the serial scheduler; in each case, the pre-
conditions of n as an action of the serial scheduler include a test for a previous
occurrence of 4, so a sequence of actions with n not preceded by 4 could not
possibly be a serial behavior.

5.3.1 .l. EXAMPLE: AFFECTS ORDER. Recall that a serial system only constraints
the CREATE and completion actions of siblings, not the REQUEST-CREATE
and REPORT actions. For example, consider the following fragment of a simple
behavior, where T and T’ are siblings:

REQUEST-CREATE(T)
REQUEST-CREATE(T’)

CREATE(T)
CREATE(T’)

COMMUTATIVITY-BASED LOCKING 111

REQUEST-COMMIT(T’, 11’)
REQUEST-COMMIT(T, u)
COMMIT(T)
COMMIT(T’)
REPORT-COMMIT(T’, u’)
REPORT-COMMIT(T, u).

Notice that T and T’ are not run serially. However, the events of T do not affect
the events of T’, or vice versa. Thus, the following reordering of the sequence above
is consistent with the affects relation for the sequence:

REQUEST-CREATE(T)
REQUEST-CREATE(T’)
CREATE(T)
REQUEST-COMMIT-(T, u)
COMMIT(T)
CREATE(T’)
REQUEST-COMMIT(T’, u’)
COMMIT(T’)
REPORT-COMMIT(T’, u’)
REPORT-COMMIT(T, u).

In addition, this reordering is a schedule of the serial scheduler. This illustrates how
we can reorder a simple behavior into a serial one without violating the affects
ordering.

5.3.1.2. PROPERTIES OF THE AFFECTS ORDER. The following lemmas contain some
constraints on the kinds of events that can affect other events in a simple behavior.
The first lemma shows that events of transactions in the subtree rooted at T can
only affect events of transactions outside the subtree if they first affect a REPORT
event for T.

LEMMA 21. Let /? be a simple behavior and T a transaction name. Let q3 and n be
euents of fi such that 4 affects rc in 8, lowtransaction is a descendant of T and
lowtransaction is not a descendant of T. Then /I contains a REPORT event II/
ftir T, ~+3 affects $, and either n = II/ or II/ affects n. Furthermore, if I(/ is a
REPORT-ABORT euent then 4 = ABORT(T).

Proof. The existence of II/ follows from the observation that if 4’ directly affects
n’ in fi, lowtransaction is a descendant of T and lowtransaction is not a
descendant of T, then 4’ is a completion event for T and n’ is a corresponding

571!41,1-8

112 FEKETE ET AL.

REPORT event for T. Furthermore, by Lemma 15, 4’ is the only completion event
for T and rc’ (= rl/) is the only REPORT event for T in fl.

By definition of the affects relation, 4 affects $ and either rc = @ or $ affects rt.
The final property follows from the observation that no event of a descendant of T
directly affects an ABORT event for T. 1

The next lemma shows that events of transactions outside the subtree rooted
at T can only affect events of descendants of T if they first affect a
REQUEST-CREATE(T) event. Its proof is similar to that of the previous lemma.

LEMMA 22. Let p be a simple behavior and T a transaction name, Let q4 and n be
events of j3 such that q5 affects rt in 8, lowtransaction is not a descendant of T and
lowtransaction is a descendant of T. Then either 4 is a REQUEST-CREATE(T)
event or $ affects a REQUEST-CREATE(T) event for T that affects z

Together, Lemmas 21 and 22 describe conditions under which the effects of
events can “leave” or “enter” subtrees of the transaction tree. These conditions will
be useful in later proofs.

As before, we extend the “affects” definition to sequences fl of arbitrary actions
by saying that 4 affects 7~ in b if and only if 4 affects rr in serial@).

5.3.2. Sibling Orders
The essential feature of any concurrency control mechanism is the choice of a

consistent serialization order throughout the system. The type of serialization
ordering needed for a nested transaction system is more complicated than that used
in the classical theory. Instead of just arbitrary total orderings on transactions, we
will use orderings that only relate siblings in the transaction nesting tree. We call
such an ordering a “sibling order.” Interesting examples of sibling orders are the
order of completion of transactions or an order determined by assigned timestamps.
We define “sibling orders” in this subsection. (Note that a total order on all trans-
actions is not appropriate, as subtransactions run concurrently with their parents
in a nested system.)

Let SIB be the (irreflexive) sibling relation among transaction names, for a
particular system type; thus, (T, T’) E SIB if and only if T# T’ and parent(T) =
parent(T’). If R E SIB is an irreflexive partial order then we call R a sibling order.
Sibling orders are the analog for nested transaction systems of serialization orders
in single-level transaction systems. Note that sibling orders are not necessarily total,
in general; totality is not always appropriate for our results.

A sibling order can be extended in two natural ways. First, if R is a binary
relation on the set of transaction names (such as a sibling order), then let R,,,,, be
the extension of R to descendants, i.e., the binary relation on transaction names
containing (T, T’) exactly when there exist transaction names U and U’ such that
T and T’ are descendants of U and U’, respectively, and (U, U’) E R. If R is a
sibling order, R,,,,, echoes the manner in which the serial scheduler runs trans-

COMMUTATIVITY-BASED LOCKING 113

actions when it runs siblings with no concurrency, in the order specified by R.14
Second, if /I is any sequence of actions, then R,,,,,,(j3) is the extension of R to serial
events in /3, i.e., the binary relation on events in p containing (4, n) exactly when
4 and 71 are distinct serial events in /? with lowtransactions T and T’, respectively,
where (T, T’) E R,,,,, . (We use “lowtransaction” in this definition to ensure that
completion actions are ordered along with the actions of the completing
transaction.)

The following are straightforward:

LEMMA 23. Let R be a sibling order. Then R,,,,, is an it-reflexive partial order,
and for any sequence j? of actions, R,,,,,(/I) is an irreflexive partial order.

LEMMA 24. Let j3 be a sequence of actions and R a sibling order. Let 71 and 71’ be
events of /I with lowtransactions U and U’, respectively. Let $ and $’ be events of /I
with lowtransactions T and T’, respectively, where T is a descendant of U and T’ is
a descendant of U’. If (71, n’) E R,,,,@) then ($, $‘) E R,,,,,(P).

The concept of a “suitale sibling order” describes two basic conditions that will
be required of the sibling orders to be used in our theorem. Given T, we want to
find a serial behavior that includes the actions of transactions visible to T (i.e., that
can be “seen” by T). Each set of siblings that appears in this serial behavior must
be totally ordered, motivating the first condition below. The second condition
asserts that R does not contradict the dependencies described by the affects relation.
Formally, let fi be a sequence of actions and T a transaction name. A sibling order
R is suitable for /I and T if the following conditions are met:

1. R orders all pairs of siblings T’ and T” that are lowtransactions of actions
in visible@, T).

2. R,,,,,(/I) and affects(b) are consistent partial orders on the events in
visible(/I, T).

The use of lowtransaction in this definition ensures that ABORT events in
visible(/?, T) are included in the events ordered by R,,,,,. We have the following
extension of the first property above.

LEMMA 25. Let /I be a simple behavior-and T a transaction name. If the sibling
order R is suitable for /I and T, then R orders all pairs of siblings T’ and T” such
that some descendant of each is the lowtransaction of an action in visible@, T).

Proof The lemma follows from the following fact about simple behaviors: if a
descendant of T is the lowtransaction of an action in a simple behavior fl, then T
is the lowtransaction of some action in fl. i

We next give a technical lemma that will be useful for proving that particular
sibling orders are suitable.

I4 A similar definition is used by Beeri et al. [S] and by Lynch [24].

114 FEKETE ET AL.

LEMMA 26. Let j be a simple behavior and let R be a sibling order satisfying the
following condition: if (n, rc’) E affects(B) and lowtransaction is neither an ancestor
nor a descendant of lowtransaction(rc’) then (71, 7~‘) E R,,,,,(P). Then R,,,,,(B) and
affects(P) are consistent partial orders on the events of b.

Proof: We prove this lemma by contradiction. If R,,,,,(/?) and affects(p) are not
consistent, then there is a cycle in the relation R,,,,,(/3) u affects(p), and thus there
must be some shortest cycle. Let rcO, rc,, z2, rr,- 1, rrn, = rcn, be such a shortest
cycle, where for each i, (rc,, rt ;+ 1) E R,,,,,(P) u affects(P). In the following discussion
we will use arithmetic modulo n for subscripts, so that if i = n, rr, + , is to be inter-
preted as ni. We note that n > 1, since both R,,,,,(/?) and affects(p) are irreflexive.

Since the relation R,,,,,(a) is acyclic, there must be at least one index i such that
(xi, 7ci+ 1) E affects(p) and (rci, rrli+ 1) $ R,,,,,(j3). Let T and T’ be the lowtransactions
of rci and xi+,, respectively. By hypothesis, T is either an ancestor or a descendant
of T’. We consider two cases.

1. T is an ancestor of T’. If the pair (7~~ i, rc,) is in affects(P), then by the
transitivity of the affects relation, (rc- i, ni+ ,) E affects(b). On the other hand,
if b- 1 3 nil E Lent(B), th en by Lemma 24, (rcel, rci+ i)~ R,,,,,(j?). In either
situation, there is a shorter cycle in the relation R,,,,,,(/?) u affects(P), obtained by
omitting n;. This contradicts our assumption that the cycle chosen is as short as
possible.

2. T is a descendant of T’. If the pair (n,, i, rtif2) is in affects(P), then by the
transitivity of the affects relation, (7ci, rcif2) E affects(b). On the other hand,
if (rci+ i, rcif2) E R,,,,,(fl), then by Lemma 24, (rc,, rci+?) E R,,,,,(j). In either
situation, there is a shorter cycle in the relation R,,,,,(B) u affects(p), obtained by
omitting n,, i. This contradicts the assumption that the cycle chosen is as short as
possible.

In every case, we have found a contradiction; thus, the assumption that the
relation R,,,,,(B) u affects(P) contains a cycle must be wrong. 1

5.4. The Serializability Theorem

We now present the main result. It says that a simple behavior p is serially
correct for a non-orphan transaction name T provided that there is a suitable
sibling order R for which a certain “view condition” holds for each object name X.
The view condition says that the portion of fl occurring at X that is visible to T,
reordered according to R, is a behavior of the serial object S,. In order to make
all of this precise, suppose B is a finite simple behavior, T a transaction name, R
a sibling order that is suitable for fi and T, and X an object name. Let 5 be the
sequence consisting of those operations occurring in b whose transaction com-
ponents are accesses to X and are visible to T in /?, ordered according to R,,,,, on
the transaction components. (Lemma 25 implies that this ordering is uniquely
determined.) Define view(B, T, R, X) to be perform(t).

COMMUTATIVITY-BASED LOCKING 115

Informally, view@, T, R, X) rep-esentes the portion of the behavior p occurring
at X that is visible to T, reordered according to R. Stated in other words, this
definition extracts from /I the REQUEST-COMMIT actions for accesses to X
that are visible to T; it then reorders those REQUEST-COMMIT actions accord-
ing to R and then inserts an appropriate CREATE action just prior to
each REQUEST-COMMIT action. The theorem uses a hypothesis that each
view@, T, R, X) is a behavior of the serial object S, to conclude that /I is serially
correct for T.

THEOREM 27. (Serializability Theorem). Let /I be a finite simple behavior, T a
transaction name such that T is not an orphan in B, and R a sibling order suitable for
fi and T. Suppose that for each object name X, view@, T, R, X) E linbehs(S,). Then
/I is serially correct for T.

The theorem has a straightforward corollary that applies to other systems besides
simple systems-in particular, to systems that have additional, non-serial actions in
their signature.

COROLLARY 28. Let {Bi}i,I b e a strongly compatible set of automata and let
B=nzt, Bi. Suppose that all non-access transaction names T are in the index set I
and that A, and B, are identical automata for all such T.

Let j3 be a finite behavior of B, T a transaction name that is not an orphan in p
and R a sibling order suitable for serial(p) and T. Suppose that the following condi-
tions hold:

1. serial(p) is a simple behavior.
2. For each object name X, view(serial@), T, R, X) E linbehs(S,).

Then /I is serially correct for T.

(Recall that our definition of serial correctness for T only requires that each finite
behavior of the given system look to T like a serial behavior. An alternative delini-
tion would require the same for all behaviors, not just finite behaviors. However,
for T# TO, the proof of the Serializability Theorem does not work for all behaviors:
the reordering that is carried out in the construction of y need not always produce
a sequence, in the case of a transaction that carries out an infinite amount of com-
putation. In fact, this is not just an anomaly of our proof; transaction management
systems based on locking algorithms do not satisfy this stronger condition, an
observation first made by Rosenkrantz et al. [35]. In the most interesting case,
where T= TO, the stronger condition does hold, and the proof of the Serializability
Theorem can be modified to give the result.)

We use the Serializability Theorem and its corollary later in this paper to reason
about two locking algorithms, and in [2] to prove correctness of timestamp algo-
rithms. The rest of this section contains a careful (and somewhat technical) proof
of the Serializability Theorem. The reader who is more interested in the applica-
tions of this theorem than in its proof may wish to go on to later sections without

116 FEKETE ET AL.

reading the rest of this section. Nothing in the rest of this section is needed for
understanding the rest of the paper.

5.5. Proof of the Serializability Theorem

This subsection is devoted to a proof of the Serializability Theorem. We define
several technical terms, such as “ordered-visible” and “pictures,” to use in the proof.
These definitions are not used elsewhere in the paper.

The general strategy is as follows. Given a finite simple behavior /?, a non-orphan
transaction T, and a suitable sibling order R, we must produce a serial behavior y
that looks the same as fi to T, i.e., such that p 1 T = y 1 T. The construction of y is
done in three steps. First, visible@, T), the portion of /I visible to T, is extracted
from /?. Second, this sequence is reordered according to R and affects@). (There
may be many ways of doing this.) The set of all acceptable reorderings is called
ordered-visible@, T, R). Third, we take a prefix y of a sequence in ordered-
visible@, T, R) that includes all events of T. The set of all acceptable such prefixes
is called pictures@, T, R). We argue that each element of pictures@, T, R) is a serial
behavior by showing separately that its projections are behaviors of the transaction
automata, of the serial object automata, and of the serial scheduler, and then
applying Proposition 2; since the projection of an element of pictures(/?, T, R) on T
is the same as b 1 T, the desired result follows.

5.5.1. Pictures

If fl is a finite simple behavior, T a transaction name, and R a suitable sibling
order for /I and T, then define ordered-visible@, T, R) to be the set of reorderings
of visible@, T) that are consistent with affects@) u R,,,,,(P). Also, define
pictures(/?, T, R) to be the set of all sequences y obtained as follows. If no actions
rc with transaction = T appear in visible@, T) then y is the empty sequence.
Otherwise, take a sequence 6 in ordered-visible@, T, R). Then y is the prefix of 6
ending with rc, where rc is the last event in 6 such that hightransaction is a
descendant of T.

LEMMA 29. Let fi be a finite simple behavior, T a transaction name, and R a
suitable sibling order for p and T. Then ordered-visible@, T, R) and pictures(/?, T, R)
are nonempty sets of sequences.

Proof By the fact that R is suitable for p and T. 1

LEMMA 30. Let /I be a finite simple behavior, T a transaction name, and R a
sibling order that is suitable for /I and T. Let y E pictures(/?, T, R). If 4 and n are
events of /I, 4 affects 71 in /I and n is an evect of y, then I$ is an event in y, and $
precedes rt in y.

Proof: Since affects(P) is the transitive closure of the finite relation directly-
affects(P), it suffices to prove the lemma in the case that I$ directly affects rt in 8.

COMMUTATIVITY-BASED LOCKING 117

Since 7c is in visible(/?, T), examination of the six cases of the definition of directly-
affects(P) shows that 4 is also in visible(fi, T). By definition, y is a prefix of a
sequence 6 in ordered-visible(B, T, R). Since 6 is ordered consistently with
affects(p), 4 precedes rc in 6. Therefore, 4 is in y. 1

5.5.2. Behavior of Transactions

In this subsection, we show that any sequence in pictures(/?, T, R) projects to
yield a finite behavior of each transaction automaton. Also, for T itself, each
sequence in pictures@, T, R) projects to yield /I 1 T.

LEMMA 31. Let b be a simple behavior, T a transaction name, and R a sibling
order that is suitable for fl and T. Suppose y E pictures@, T, R). Then y 1 T = /?) T, and
y 1 T’ is a prefix of /I 1 T’ for all transaction names T’.

Proof. By the definition of pictures, using Lemma 13 and the fact that the
directly affects relation orders all events in b with the same transaction. 1

LEMMA 32. Let b be a simple behavior, T a transaction name, and R a sibling
order that is suitable for /I and T. Suppose y E pictures(P, T, R). Then ‘J (T’ is a finite
behavior of A,. for every non-access transaction name T’.

Proof By Lemma 31 and Proposition 1. 1

5.53. Behavior of Serial Objects

Next we show that any sequence in pictures@, T, R) projects to yield a finite
behavior of each serial object automaton. We will use the view condition to show
this; thus, we must begin by relating the definitions of “view” and “pictures.”

LEMMA 33. Let p be a finite simple behavior, T a transaction name, and R a
sibling order suitable for p and T. Let 6 E ordered-visible@, T, R). Let X be an object
name. Then one of the following two possibilities holds:

1. 6 1 X is identical to view@, T, R, X).

2. T is an access to X and 6 1 X is the result of inserting a single CREATE(T)
event somewhere in the sequence view(fi, T, R,. X)

Proof The two constructions imply that 6 1 X and view@, T, R, X) have identi-
cal subsequences of REQUEST-COMMIT actions. The sequence view(fi, T, R, X)
contains exactly one CREATE(U) immediately preceding each REQUEST-COM-
MIT for U. Each such CREATE(U) also appears in 6 1 X, by the preconditions for
the simple database and the definition of visibility; moreover, the definition of
ordered-visible implies that each such CREATE(U) also appears immediately
preceding the corresponding REQUEST-COMMIT for U. Thus, the only possible
difference between 6 1 X and view@, T, R, X) is that 6)X might contain some extra
CREATE(U) events, without matching REQUEST-COMMIT events for U.

118 FEKETE ETAL.

Since 6 is a reordering of a subsequence of visible@, T), any such unmatched
CREATE(U) event must have U visible to T in /I. Since no REQUEST-COMMIT
for U appears in 6 1 X, none appears in visible(P, T) and hence none appears in p.
Simple database preconditions imply that no COMMIT(U) appears in j. There-
fore, it must be that U= T, and that T is an access to X. 1

LEMMA 34. Let b be a finite simple behavior, T a transaction name such
that T is not an orphan in B, and R a sibling order suitable for /I and T. Let
y E pictures@ T, R). Let X be an object name. Then y 1 X is either a prefix of
view(p, T, R, X) or else is a prefix of view(/?, T, R, X) followed by a single
CREATE(T) event.

Proof: By definition of pictures(fl, T, R), y is obtained as a prefix of a
sequence 6 E ordered-visible@, T, R). The previous lemma implies that 6 1 X and
view(/?, T, R, X) are identical except that an extra CREATE(T) event might appear
in 6 (X, and this can only occur in case T is an access to X.

If 6 1 X contains no extra CREATE events not present in view@ T, R, X), then it
is immediate by the construction of y as a prefix of 6 that y 1 X is a prefix of
view@, T, R, X), as needed. So suppose that 6 IX is the same as view@, T, R, X)
except that 6 IX contains an extra CREATE(T) event. Then the definition of
pictures implies that y I X is the prefix of 6 1 X ending with the CREATE(T) event.
Then y I X is a prefix of view@, T, R, X) followed by a single CREATE(T) event. [

LEMMA 35. Let /3 be a simple behavior, T a transaction name, R a sibling order
that is suitable for /I and T, and X an object name. Suppose that view(j3, T, R, X) is
a finite behavior of S,. Suppose y E pictures(B, T, R). Then y IX is a finite behavior
of SF

Proof: By Lemma 34 and the fact that inputs to S,, as with any I/O
automaton, are always enabled. 1

5.5.4. Behavior of the Serial Scheduler

Next, we show that any sequence in pictures@, T, R) is a behavior of the serial
scheduler.

LEMMA 36. Let /I be a finite simple behavior, T a transaction name such that T
is not an orphan in fi, and R a sibling order that is suitable for /I and T. Let
y E pictures@, T, R). Then y is a finite behavior of the serial scheduler.

Proof By definition of pictures@, T, R), y is obtained as a prefix of a sequence
6 E ordered-visible(B, T, R). That is, if no actions rc with transaction(z) = T appear
in visible(B, T) then y is empty. Otherwise, y is the prefix of 6 ending with the last
event in 6 that has a descendant of T as its hightransaction.

The proof is by induction on prefixes of y, with a trivial basis. Let y’rc be a prefix
of y with rc a single event, and assume that y’ is a behavior of the serial scheduler.

COMMUTATIVITY-BASED LOCKING 119

If rr is an input action of the serial scheduler, then the fact that inputs are always
enabled implies that y is a behavior of the serial scheduler. So assume that n is an
output action of the serial scheduler. Let s’ be the state of the serial scheduler after
y’. We must show that K is enabled in the serial scheduler automaton in state s’.

1. rc is CREATE(T’). We show that T’ E s’.createerequested - s’.created -
s’. aborted and that siblings(T’) n s’. created E s’. completed.

By the preconditions of the simple database and Lemma 14, a REQUEST-
CREATE(T’) event 4 precedes rc in j?. Then (4, n) E affects(b), so Lemma 30
implies that 4 is in y’. Thus T’ E s’. create-requested.

Since only one CREATE(Y) occurs in p, no CREATE(T) occurs in y’, so by
Lemma 8, T’ 4 s’. created.

Since by Lemma 12, T' is not an orphan in fl, no ABORT(T’) occurs in 8. Thus,
no ABORT(T’) occurs in y’, so by Lemma 8, T’ $ s’. aborted.

Suppose T” is a sibling of T’ that is in s’.created. Then CREATE(T”) occurs in
II’, by Lemma 14. Since the order of events in y is consistent with R,,,,,(P),
(T’, T”) $ R,,,,,. Since R,,,,, is suitable for /I and T, (T”, T’) E R,,,,,. If T is a
descendant of T”, then T and T’ are incomparable and so (T, T’) E R,,,,,. Since 6
is ordered consistently with Rev,,,(~), n follows all events 4 in 6 such that high-
transaction(4) is a descendant of T. But then the definition of pictures would
exclude 71 from y, a contradiction. Therefore, T is not a descendant of T”. Since T”
is visible to T in 1, a COMMIT(T”) event occurs in B. This COMMIT(T”) is in
visible(/?, T) and is ordered before z by R,,,,, (fi). Thus, COMMIT(T”) precedes n
in 6, and so COMMIT(T”) occurs in y’. Hence, T” E s’.completed.

2. z is COMMIT(T’). We show that (T’, v) E s’.commit-requested for some
V, and that T’ 4 s’. completed.

By the preconditions of the simple database, there is a value u such that a
REQUEST-COMMIT(T’, v) event 4 appears in fi. Then (4, rr)~affects(/I), so
Lemma 30 implies that 4 is in y’. Thus (T’, u) E s’.committrequested.

By Lemma 15, there is only one completion event for T’ in p and hence only one
in y. Hence, T’ 4 s’. completed.

3. n is ABORT(T’). We must show that T’ E s’.createerequested -
s’. completed - s’. created and siblings(T’) n s’. created E s’. completed.

By the preconditions of the simple database, a REQUEST-CREATE(T’) event
4 appears in /?. Then (4, z) E affects(p), so Lemma 30 implies that 4 is in y’. Thus,
T’ E s’. created-requested.

Since by Lemma 15 there is at most one completion event in 8, there can be no
completion event in y’. Thus, T’ $ s’. completed.

Also T’ is an orphan in 8, so by Lemma 12, T’ is not visible to T in j?. Thus
CREATE(T’) does not occur in visible(/I, T) and so also CREATE(T’) does not
occur in y. Thus, T’ $ s’. created.

The remainder of this case is identical to the first case above, when rt is
CREATE(T’).

120 FEKETEETAL.

4. x is a REPORT-COMMIT or REPORT-ABORT event for T’. By the
preconditions of the simple database and Lemma 14, a COMMIT or ABORT
event 4 appears in /?. Then (4, n) E affects@), so Lemma 30 implies that 4 is in y’.
Also, by Lemma 15 there is at most one report event in /I, so there can be no report
event in y’. Thus, T’ # s’. reported.

Thus, n is enabled in the serial scheduler in state s’. 1

5.5.5. Proof of the Main Result

We can now tie the pieces together to prove Theorem 27, the Serializability
Theorem.

Proof. Let y E pictures(/?, T, R). (Lemma 29 implies that this set is nonempty.)
Lemma 32 shows that y 1 T’ is a finite behavior of A,, for all non-access transaction
names T’. Lemma 35 shows that y 1 X is a finite behavior of S, for all object
names X. Lemma 36 implies that y is a finite behavior of the serial scheduler.
Proposition 2 implies that y is a finite serial behavior. Lemma 31 implies that
yIT=PIT. I

It is easy to see that the serial behavior y constructed to show serial correctness
for To also has the property that y 1 T= /lI T for all T visible to T,, in /?. Thus, if the
view condition holds for a suitable sibling order for To, then there exists a single
serial schedule that looks like p to all the transactions that commit to the top level.

6. DYNAMIC ATOMICITY

The Serializability Theorem gives a general sufficient condition for proving the
correctness of transaction-processing algorithms. In this section, we specialize the
ideas developed in the preceding section to the particular case of locking algo-
rithms. Locking algorithms serialize transactions according to a particular sibling
order, the order in which transactions complete. We define a property of objects,
called “dynamic atomicity,” that captures this aspect of locking algorithms. Our
definition of dynamic atomicity is phrased in terms of a system organization
consisting of a “generic object” automaton for each object name, which handles the
concurrency control and recovery for that object, and a single “generic controller”
automaton, which handles communication among the other components. We then
prove that a “generic system” in which all generic objects are dynamic atomic is
serially correct.

Our definition of dynamic atomicity for an object is phrased in terms of the
behaviors of all possible systems in which the object could be placed. At the end of
this section, we define another condition on objects, called “local dynamic
atomicity,” that is stated solely in terms of the behavior of an individual object and
suffices to ensure dynamic atomicity. In subsequent sections, we show that
particular algorithms ensure local dynamic atomicity.

As discussed earlier, proving that an algorithm is dynamic atomic gives more

COMMUTATIVITY-BASED LOCKING 121

than just the correctness of a single system. In particular, we can derive as
immediate corollaries the correctness of any system in which each object is dynamic
atomic. This affords useful modularity. For example, we can initially implement
each object in a system using a simple concurrency control and recovery algorithm
that provides relatively little concurrency. If some objects are “hot spots” or “con-
currency bottlenecks,” we can reimplement those objects using more sophisticated
algorithms that provide more concurrency. In implementing a particular object,
however, we do not need to be concerned with the other objects in the system;
instead, we simply need to show that the particular object ensures dynamic
atomicity.

6.1. Completion Order

The key property of locking algorithms is that they serialize transactions
according to their completion (commit or abort) order. This order is determined
dynamically. If /I is a sequence of actions, then we define completion(P) to be the
binary relation on transaction names containing (T, T’) if and only if T and T’ are
siblings and one of the following holds:

1. There are completion events for both T and T’ in b, and a completion
event for T precedes a completion event for T’.

2. There is a completion event for T in /I, but there is no completion event
for T’ in /I.

The following is easy to see:

LEMMA 37. If B is a simple behavior, then completion(p) is a sibling order.

The next few lemmas show that the completion order is suitable. The first shows
that events of one transaction T can affect (in the technical sense of the affects(B)
relation) events of an unrelated transaction T’ only if T completes before T’. In
order words, the chain in the directly-affects relation must involve the completion
event for T.

LEMMA 38. Let /I be a simple behavior and let R = completion(p). Let 7c and rc’
be distinct events in b with lowtransactions T and T’, respectively. If T is neither an
ancestor nor a descendant of T’ and (n, n’) 6 affects(B), then (n, 7~‘) E R,,,,,(/?).

Proof Since T is neither an ancestor nor a descendant of T’, there are siblings
U and U’ such that T is a descendant of U and T’ is a descendant of U’. Since rc
affects 71’ in /3, by Lemmas 21 and 22, there must be events 4 and 4’ in /I such that
4 is a REPORT event for U, 4’ is REQUEST-CREATE(U’), and (7t, Q), (4, d’),
and (#‘, 7~‘) are all in affects(p). Furthermore, the events 71, 4, @, and X’ occur in
fl in the indicated order.

The simple database preconditions and transaction well-formedness imply
that any completion event for U’ in p must occur after the unique

122 FEKETEET AL.

REQUEST-CREATE(V’) event. Similarly, by Lemma 15, 4 is preceded in b by a
unique completion event for U. Thus /? contains a completion event for U, which
precedes 4, which precedes 4’, which in turn precedes any completion event for U’.
Thus (U, U’) E R = completion(fl), and therefore (rr, n’) E R,,,,,(p). 1

Now we will prove that the two partial orders we have defined on the events of
/3 are consistent.

LEMMA 39. Let fl be a simple behavior and let R = completion(/I). Then Reyenl(B)
and affects(P) are consistent partial orders on the events of B.

Proof: Immediate by Lemmas 38 and 26. i

LEMMA 40. Let p be a simple behavior and T a transaction name. If T’ and T”
are siblings that are lowtransactions of actions in visible(B, T) then either (T’, T”) or
(T”, T’) E completion(fl).

Proof Since T’ and T” are distinct siblings, T is not a descendant of both T’
and T”. Without loss of generality, we will assume that T is not a descendant of
T’. Note that therefore the least common ancestor of T and T’ must be an ancestor
of parent(T’). There is an event rr in visible(P, T) such that lowtransaction = T’.
Thus either rt is a completion event for T’ or hightransaction must be T’. In the
case where hightransaction = T’, we must have that T’ is visible to T in 8, and
thus (since T’ is not an ancestor of T) that /3 contains a COMMIT(T’) event. Thus
in either case /? contains a completion event for T’, and so completion(fi) orders T’
and T”. 1

Now we can conclude that the completion order is suitable.

LEMMA 41. Let p be a finite simple behavior and T a transaction name. Then
completion(b) is suitable for B and T.

ProoJ: By Lemmas 40 and 39. i

6.2. Generic Systems

In this subsection, we give the system decomposition appropriate for describing
locking algorithms. We will formulate such algorithms as “generic systems,” which
are composed of transaction automata, “generic object automata,” and a “generic
controller.” The general structure of the system is the same as that given in Fig. 1
for serial systems.

The object signature for a generic object contains more actions than that for
serial objects. Unlike the serial object for X, the corresponding generic object is
responsible for carrying out the concurrency control and recovery algorithms for X,
for example, by maintaining lock tables. In order to do this, the automaton requires

COMMUTATIVITY-BASED LOCKING 123

information about the completion of some of the transactions, in particular, those
that have accessed that object. Thus, a generic object automaton has in its signature
special INFORM-COMMIT and INFORM-ABORT input actions to inform it
about the completion of transactions. These INFORM actions are not restricted to
mentioning only accesses to X, since the automaton will also need information
about the completion of ancestors of the accesses.

6.2.1. Generic Object Automata

A generic object automaton G, for an object name X of a given system type is an
I/O automaton with the following external action signature.

Input:
CREATE(T), for T an access to X
INFORM-COMMIT-AT(X)OF(T), for T# T,,
INFORM-ABORT-AT(X)OF(T), for T# T,

output:
REQUEST-COMMIT(T, v), for T an access to X and v a value

In addition, G, may have an arbitrary set of internal actions. G, is required to
preserve “generic object well-formedness,” defined as follows. A sequence /I of
actions rc in the external signature of G, is said to be generic object well-formed for
X provided that the following conditions hold.

1. There is at most one CREATE(T) event in fi for any transaction T.
2. There is at most one REQUESTPCOMMIT event in fi for any trans-

action T.
3. If there is a REQUEST-COMMIT event for T in 8, then there is a

preceding CREATE(7’) event in /3.
4. There is no transaction T for which both an INFORM-COM-

MIT-AT(X) OF(T) event and an INFORM-ABORT-AT(X) OF(T) event occur
in 1.

5. If an INFORM-COMMIT-AT(X event occurs in fl and T is an
access to X, then there is a preceding REQUEST-COMMIT event for T.

Generic object well-formedness is significantly less restrictive than serial object
well-formedness. Serial object well-formedness requires the CREATE and
REQUEST-COMMIT actions to alternate, so that only one access is active at a
time. Generic object well-formedness allows multiple simultaneously active accesses.
The only constraints are that CREATES and REQUEST-COMMITS not be
repeated, that a REQUEST-COMMIT be generated only if the access has already
been invoked by a CREATE, and that conflicting information about the completion
of transactions not be received by the object.

124 FEKETE ET AL.

6.2.2. Generic Controller

There is a single generic controller for each system type. It passes requests for the
creation of subtransactions to the appropriate recipient, makes decisions about the
commit or abort of transactions, passes reports about the completion of children
back to their parents, and informs objects of the fate of transactions. Unlike the
serial scheduler, it does not prevent sibling transactions from being live
simultaneously, nor does it prevent the same transaction from being both created
and aborted. Rather, it leaves the task of coping with concurrency and recovery to
the generic objects. (The generic controller should not be confused with the
“scheduler” component of some classical database architectures. In our formal
system decomposition, this scheduler has been decomposed into the controller and
the generic objects. The important scheduling events are controlled by the objects,
and the generic controller acts as a communication system, merely informing trans-
action and object automata of the occurrence of relevant events.)

The generic controller is very nondeterministic. It may delay passing requests or
reports or making decisions for arbitrary lengths of time and may decide at any
time to abort a transaction whose creation has been requested (but that has not yet
been completed). Each specific implementation of a system will make particular
choices from among the many nondeterministic possibilities. For instance, Moss
[29] devotes considerable effort to describing a particular distributed implementa-
tion of the controller that copes with node and communication failures yet still
commits a subtransaction whenever possible. Our results apply a fortiori to all
implementations of the generic controller obtained by restricting its nondeter-
minism.

The generic controller has the following action signature.

Input:
REQUEST-CREATE(T), T # TO
REQUEST-COMMIT(T, u)

output:
CREATE(T)
COMMIT(T), T# T,,
ABORT(T), T # TO
REPORT-COMMIT(T, u), T # TO
REPORT-ABORT(T), T # T,,
INFORM-COMMIT-AT(X) T# TO
INFORM-ABORT-AT(X)OF(T), T # TO

All the actions except the INFORM actions play the same roles as in the serial
scheduler. The INFORM-COMMIT and INFORM-ABORT actions pass infor-
mation about the fate of transactions to the generic objects.

Each state s of the generic controller consists of six sets: s.create-requested,
s. created, s. commit-requested, s. committed, s. aborted, and s. reported. The set
s.commit-requested is a set of operations, and the others are sets of transactions.

COMMUTATIVITY-BASED LOCKING 125

All are empty in the start state except for create-requested, which is {T,}. Define
s. completed = s. committed u s. aborted. The transition relation is as follows:

REQUEST-CREATE(T)
Effect:

s. create-requested = s’. create-requested u { T}

REQUEST-COMMIT(T, u)
Effect:

s. commit-requested = s’. commit-requested u { (T, u) }

CREATE(T)
Precondition:

T E s’. create-requested - s’. created
Effect:

s. created = s’. created u { T}

COMMIT(T), T# To
Precondition:

(T, u) E s’. commit-requested for some o
T $ s’. completed

Effect:
s. committed = s’. committed u (T}

ABORT(T), T # To
Precondition:

T E s’. create-requested - s’. completed
Effect:

s. aborted = s’. aborted u { T}

REPORT-COMMIT(T, v), T# To
Precondition:

T E s’. committed
(T, u) E s’. commit-requested
T $ s’. reported

Effect:
s. reported = s’. reported u { T}

REPORT-ABORT(T), T # To
Precondition:

T E s’. aborted
T 4 s’. reported

Effect:
s. reported = s’. reported u { T}

INFORM-COMMIT-AT(X)OF(T), T# To
Precondition:

T E s’. committed

126 FEKETE ET AL.

INFORM-ABORT-AT(X) T# TO
Precondition:

T E s’. aborted

Note that INFORM events may occur any number of times, once they are
enabled. This simplifies the description of some of the algorithms implemented in
the generic objects, which otherwise would have to store information about the
fates of completed transactions.

We have the following simple lemmas, the first relating a schedule of the generic
controller to the resulting states, and the second stating some simple properties of
schedules of the generic controller:

h3fMA 42. Let /I be a finite schedule of the generic controller, and let s be a state
such that /II can leave the generic controller in state s. Then the following conditions
are true:

1. T is in s.create-requested if and only tf T= TO or p contains a
REQUEST-CREATE(T) event.

2. T is in s. created if and only if j3 contains a CREATE(T) event.

3. (T, v) is in s.commit-requested if and only tf a contains a
REQUEST-COMMIT(T, v) event.

4. T is in s. committed if and only if b contains a COMMIT(T) event.

5. T is in s.aborted tf and only if/I contains an ABORT(T) event.

6. T is in s.reported if and only if j contains a report event for T.

I. s.committedn s.aborted= a.

8. s.reportedcs.committedvs.aborted.

LEMMA 43. Let fl be a schedule of the generic controller. Then all of the following
hold:

1. Zf a CREATE(T) event appears in /3, then a REQUEST-CREATE(T) event
precedes it in /3.

2. At most one CREATE(T) event appears in B for each transaction T.

3. Zf a COMMIT(T) event appears in /I, then a REQUEST-COMMIT(T, v)
event precedes it in /I for some return value v.

4. If an ABORT(T) event appears in fl, then a REQUEST-CREATE(T) event
precedes it in /I.

5. At most one completion event appears in b for each transaction.

6. At most one report event appears in j for each transaction.

7. Zf a REPORT-COMMIT(T, u) event appears in /I, then a COMMIT(T)
event precedes it in j3.

COMMUTATIVITY-BASED LOCKING 127

8. 1’ a REPORT-ABORT(T) euent appears in fl, then an ABORT(T) event
precedes it in /I.

9. If an INFORM-COMMIT-AT(X event appears in B, then a
COMMIT(T) everzt precedes it in 8.

10. Zf an INFORM-ABORT-AT(X euent appears in /I, then an
ABORT(T) event precedes it in fl.

6.2.3. Generic Systems

A generic system of a given system type is the composition of a strongly com-
patible set of automata indexed by the union of the set of non-access transaction
names, the set of object names and the singleton set {GC} (for “generic con-
troller”). Associated with each non-access transaction name T is a transaction
automaton AT for T, the same automaton as in the serial system. Associated with
each object name X is a generic object automaton G, for X. Finally, associated
with the name GC is the generic controller automaton for the system type.

The external actions of a generic system are called generic actions, and the execu-
tions, schedules, and behaviors of a generic system are called generic executions,
generic schedules, and generic behaviors, respectively. The following proposition says
that generic behaviors have the appropriate well-formedness properties. Its proof is
analogous to that of the similar result for serial behaviors.

PROPOSITION 44. If B is a generic behavior, then the following conditions hold.

1. For every transaction name T, p 1 T is transaction well-formed for T.

2. For every object name X, p 1 GX is generic object well-formed for X.

The following result says that if the INFORM events are removed from any
generic behavior, the result is a simple behavior.

PROPOSITION 45. Zf fl is a generic behavior then serial(b) is a simple behavior.

ProoJ By a straightforward induction on the length of prefixes of B.” i

The following variant of the corollary to the Serializability Theorem applies to
the special case where R is the completion order and the system is a generic system.

PROPOSITION 46. Let /I be a finite generic behavior and T a transaction name that
is not an orphan in /?, and let R = completion(/3). Suppose that for each object name
X, view(serial(/?), T, R, X) E linbehs(S,). Then fi is serially correct for T.

Proof: Immediate from Corollary 28, using Lemma 41, Proposition 45, and the
observation that completion(/?) = completion(serial(/?)). m

IS An alternative proof can be formulated in terms of the notion of implementation, using a
possibilities mapping.

571/41/l-9

128 FEKETE ET AL.

6.3. Dynamic Atomicity

Now we define the “dynamic atomicity” property for a generic object automaton;
roughly speaking, it says that the object satisfies the view condition using the com-
pletion order as the sibling order R. This restatement of the view condition as a
property of a generic object is convenient for decomposing correctness proofs for
locking algorithms: the Serializability Theorem implies that if all the generic objects
in a generic system are dynamic atomic, then the system guarantees serial correct-
ness for all non-orphan transaction names. All that remains is to show that the
generic objects that model the locking algorithms of interest are dynamic atomic.

Let G, be a generic object automaton for object name X. We say that G, is
dynamic atomic for a given system type if for all generic systems 9 of the given type
in which G, is associated with X, the following is true. Let /I be a finite behavior
of 9, R = completion(/I) and T a transaction name that is not an orphan in 8. Then
view(serial(/?), T, R, X) E finbehs(S,).

THEOREM 47 (Dynamic Atomicity Theorem). Let Y be a generic system in
which all generic objects are dynamic atomic. Let /I be a finite behavior of Y. Then
B is serially correct for every non-orphan transaction name.

Proof Immediate from Proposition 46 and the definition of dynamic
atomicity. 1

As discussed earlier, this proof structure can be used to yield much stronger
results than just the correctness of the locking algorithms in this paper. As long as
each object is dynamic atomic, the whole system will guarantee that any finite
behavior is serially correct for all non-orphan transaction names. Thus, we are free
to use an arbitrary implementation for each object, independent of the choice of
implementation for each other object, as long as dynamic atomicity is satisfied. For
example, a simple algorithm such as Moss’s can be used for most objects, while a
more sophisticated algorithm permitting extra concurrency by using type-specific
information can be used for objects that are “hot spots.” (That is, objects that are
very frequently accessed.) The idea of a condition on objects that guarantees serial
correctness was introduced by Weihl [42,40] for systems without transaction
nesting.

6.4. Local Dynamic Atomicity

In the previous subsection, we showed that to prove that a generic system
guarantees serial correctness for non-orphan transactions it is enough to check that
each generic object automaton is dynamic atomic. In this subsection, we define
another property of generic object automata called “local dynamic atomicity,”
which is a convenient sufficient condition for showing dynamic atomicity. For each
generic object automaton G, dynamic atomicity is a local condition in that it only
depends on G. However, the form in which the condition is stated may be difficult

COMMUTATIVITY-BASED LOCKING 129

to check directly: one must be able to verify a condition involving view(serial(/?), T,
completion(P), X) for all finite behaviors p of all generic systems containing G.
Local dynamic atomicity is defined more directly in terms of the behaviors of G.

First we introduce some terms to describe information about the status of trans-
actions that is deducible form the behavior of a particular generic object. Let G,
be a generic object automaton for X, /I a sequence of external actions of G,, and
T and T’ transaction names. Then T is locally visible at X to T’ in /I if B contains
an INFORM-COMMIT-AT(X)OF(U) event for every U in ancestors(T) -
ancestors(T’). Also, T is a local orphan at X in p if an INFORM-ABORT-
AT(X event occurs in b for some ancestor U of T. The following are
obvious facts about local visibility and local orphans.

LEMMA 48. Let G, be a generic object automaton for X. Let /3 be a sequence of
external actions of G,, and let T, T’, and T” be transaction names. If T is locally
visible at X to T’ in fi, and T’ is locally visible at X to T” in p, then T is locally
visible at X to T” in fi.

LEMMA 49. Let G, be a generic object automaton for X. Let p be a generic object
well-formed sequence of external actions of G,, and let T and T’ be transaction
names. If T is locally visible at X to T’ in 8, and T’ is not a local orphan at X in
/& then T is not a local orphan at X in /R

We now justify the names introduced above by showing some relationships
between the local properties defined above and the corresponding global properties.

LEMMA 50. Let /3 be a behavior of a generic system in which generic object
automaton G, is associated with X. If T is locally visible at X to T’ in /? 1 G, then
T is visible to T’ in p. Similarly, if T is a local orphan at X in p 1 G, then T is an
orphan in p.

Proof These are immediate consequences of the generic controller precondi-
tions, which imply that any INFORM-ABORT-AT(X)OF(T) event in /I must be
preceded by an ABORT(T) event and that any INFORM-COMMIT-
AT(X)OF(T) is preceded by COMMIT(T). 1

Next, we define a relation on accesses to X to describe some information about
the completion order that is deducible from the behavior of G,. Given a sequence
/I of external actions of G,, we define a binary relation local-completion(/?) on
accesses to X. Namely, (U, U’) E local-completion(/I) if and only if U# U’, p
contains REQUEST-COMMIT events for both U and U’, and U is locally visible
at X to U’ in B’, where p’ is the longest prefix of /I not containing the given
REQUEST-COMMIT event for U’. The intuition underlying this definition is that
(U, U’) is in local-completion(/?) if in any generic behavior y such that y 1 G, =
p 1 Gx, the ancestors of U and U’ that are siblings, say T and T’, respectively, must
complete in this order (i.e., T before T’).

130 FEKETE ET AL.

LEMMA 51. Zf p is a generic object well-formed sequence of external actions of a
generic object automaton for X, then local-completion(/?) is an irrejlexive partial
order on accesses to X.

Proof We must show that local-completion(P) is irreflexive, antisymmetric, and
transitive. Irreflexivity follows immediately from the definition.

Suppose that (Z’, T’) and (T’, T) are both in local-completion(fl). Then /I
contains a REQUEST-COMMIT event for each of T and T’, and generic object
well-formedness implies that there is only one of each. Since (T, T’) E local-comple-
tion(p), T is locally visible at X to T’ in the longest prefix b’ of /I not containing
the REQUEST-COMMIT for T’. Therefore, an INFORM-COMMIT for T occurs
in /I’, and generic object well-formedness implies that the REQUEST-COMMIT
for T precedes the REQUEST-COMMIT for T’ in /I. But the same reasoning
implies that the REQUEST-COMMIT for T’ precedes the REQUEST-COMMIT
for T in p, a contradiction. Therefore, local-completion(/?) is antisymmetric.

Now suppose (T, T’) and (T’, T”) are both in local-completion(fi). Let /3’ and 8”
be the longest prefixes of p not containing a REQUEST-COMMIT for T’ and not
containing a REQUEST-COMMIT for T”, respectively. As in the argument above,
the REQUEST-COMMIT for T’ must precede the REQUEST-COMMIT for T”
in /I, so /I’ is a prefix of /I”. Since T is locally visible at X to T’ in b’, T is locally
visible at X to T’ in /I”, and since T’ is locally visible at X to T” in /I”, Lemma 49
implies that T is locally visible at X to T” in B”. Thus (7’, T’) E local-comple-
tion@). 1

The relationship between the local-completion order and the true completion
order in a generic system is as follows.

LEMMA 52. Let fi be a behavior of a generic system in which generic object
automaton G, is associated with X. Let T and T’ be accesses to X. Zf (T, T’) E local-
completion(P 1 G,), and T’ is not an orphan in /I, then (T, T’) E RtranS, where
R = completion(P).

Proof By definition of local-completion(P), /?I G, contains a REQUEST-
COMMIT event for T’, and T is locally visible at X to T’ in /?‘I G,, where b’ is
the longest prefix of /I not containing the REQUEST-COMMIT for T’. Lemma 50
implies that T is visible to T’ in /I’.

Since fi is transaction well-formed for T’, it contains at most one REQUEST-
COMMIT event for T’, and so p’ does not contain a REQUEST-COMMIT event
for T’. By the controller preconditions and Lemma 43, /?’ does not contain a
COMMIT(T’) event. Since /?I G, is generic object well-formed, B’ contains a
CREATE(T’) event. Since T’ is not an orphan in /3, /I’ does not contain an
ABORT(T’) event. Therefore, T’ is live in b’.

Let U and U’ denote the siblings such that T is a descendant of U, and T’ is a
descendant of U’. Since T is visible to T’ in /I’, fi’ contains a COMMIT(U) event.

COMMUTATIVITY-BASED LOCKING 131

By Proposition 45 and Lemma 18, U’ must be live in /I’. Since fl’ contains a return
for U, and no return for U’, it follows that (U, U’) E R. Therefore
CT T’)~Rtrans. I

Notice that the global completion order is a total order on siblings that actually
complete. The local completion order, however, might be partial, since two siblings
might run descendant accesses before either sibling completes. In such a situation,
the object does not know which order the siblings completed in.

6.4.1. ExampEe: local-completion(p 1 G,) and completion(B)

One might expect local-completion(/I I G,) to be a subset of completion(&,,,.
Lemma 52 shows that most pairs (r, 7”) in local-completion(/?I G,) are also in
completion(P),,,,, , but only if T’ is not an orphan. The following example shows
why this assumption is necessary. Suppose T and T’ are accesses to X with parents
U and U’, respectively, and that U and U’ are siblings. Consider the following frag-
ment of a generic behavior (for brevity, we have omitted most of the REQUEST
actions):

CREATE(U’)

REQUEST-CREATE(T’)

ABORT(U’)

CREATE(U)
CREATE(T)
COMMIT(T)
INFORM-COMMIT-AT(X) OF(T)

COMMIT(U)
INFORM-COMMIT-AT(X)OF(U)

CREATE(T’)

REQUEST-COMMIT(T’, u’).

The generic controller allows an orphan transaction such as T’ to continue
running, so even after U’ has been aborted T’ can be created. (In fact, the
REQUEST-CREATE(Y) action could occur after the ABORT(U’) action, since
U’ can also keep running after ABORT(U’) occurs.) The fragment of this behavior
involving G, consists of the following sequence of actions:

CREATE(T)
INFORM-COMMIT-AT(X)OF(T)

INFORM-COMMIT-AT(X) OF(U)

CREATE(T’)

REQUEST-COMMIT(T’, u’).

132 FEKETE ET AL.

The definition of local-completion implies that (7’, T’) is in the local-completion
ordering. However, notice that U’ aborted before U committed, so (U’, U) is in the
global completion ordering. Hence, (T’, T) is in completion,,ans.

6.42. Local Views and Local dynamic Atomicity

Now we give a definition to describe how to reorder the external actions of a
generic object automaton according to a given local-completion order. Suppose p
is a generic object well-formed sequence of external actions of G, and T is a trans-
action name. Let local-views(/$ T) be the set of sequences defined as follows. Let Z
be the set of operations occurring in fi whose transactions are locally visible at X
to T in B. Then the elements of local-views(8, T) are the sequences of the form
perform(t), where < is a total ordering of Z in an order consistent with the partial
order local-completion(a) on the transaction components. The following is
straightforward from the definitions.

LEMMA 53. If /I is a generic object well-formed sequence of external actions of Gx
and T is a transaction name, then every element of local-views@, T) is serial object
well-formed.

We are finally ready to define “local dynamic atomicity.” We say that generic
object automaton GX for object name X is locally dynamic atomic if whenever p is
a finite generic object well-formed behavior of G, and T is a transaction name that
is not a local orphan at X in /?, then local-views@, T) c finbehs(S,). That is, the
result of reordering a behavior of G, according to the given local-completion order
is a finite behavior of the corresponding serial object automaton. The main result
of this subsection says that local dynamic atomicity is a sufficient condition for
dynamic atomicity.

THEOREM 54. Zf G, is locally dynamic atomic then G, is dynamic atomic.

Proof: Let 9 be a generic system in which G, is associated with X. Let fl be
a finite behavior of Y, R = completion(P) and T a transaction name that is not an
orphan in p. We must prove that view(serial(/?), T, R, X) E finbehs(S,). By defini-
tion, view(serial(B), T, R, X) = perform(t), where 5 is the sequence of operations
occurring in fl whose transactions are visible to T in fl, arranged in the order given
by Rtrans on the transaction component.

Let y be a finite sequence of actions consisting of exactly one INFORMCOM-
MIT-AT(X for each COMMIT(U) that occurs in /I. Then /?y is a behavior
of the system Y, since each action in y is an enabled output action of the generic
controller, by Lemma 42. Then /Iy 1 G, is a behavior of GX, and Proposition 44
implies that it is generic object well-formed.

Since INFORM-COMMIT-AT(X occurs in /?y 1 G, if and only if
COMMIT(U) occurs in fi, an access T’ to X is visible to T in fl if and only if it is
locally visible at X to T in fly 1 G,. Therefore, the same operations occur in
view(serial(fi), T, R, X) and in any sequence in local-views@ 1 GX, T). To show

COMMUTATIVITY-BASED LOCKING 133

that view(serial(/I), T, R, X) E local-views(/?y 1 GX, T), we must show that they can
appear in the same order.

If T’ is any access that is locally visible at X to T in fly 1 G,, then T’ is visible
to T in fi, so Lemma 12 implies that T’ is not an orphan in fl, and hence not an
orphan in fly. Also, note that completion(/?y) = completion(fi) = R. Then Lemma 52
implies that if accesses that are locally visible at X to T in by 1 G, are ordered by
local-completion(/?y 1 G,), they are also ordered in the same way by R,,,,,.

Thus, the sequence t can be obtained by taking those operations (T’, u’) such
that REQUEST-COMMIT(T’, u’) occurs in fly 1 GX and T’ is locally visible at X
to T in /3~lG,, and arranging them in an order that is consistent with local-
completion(fly I G,) on the transaction component. Thus, perform(t) is an element
of local-views(& 1 G,, T). Since G, is locally dynamic atomic, perform(<) is a finite
behavior of SX, as required. 1

7. PROPERTIES OF OPERATIONS AND OBJECTS

The correctness of the two algorithms in this paper depends on semantic informa-
tion about the types of serial object automata used in the underlying serial system.
For example, Moss’s algorithm provides special treatment for “read accesses,”
i.e., accesses that do not modify the state of the object. Also, our general
commutativity-based locking algorithm uses information about commutativity of
certain operations in order to determine the orders in which these operations are
permitted to occur. In this section, we provide the appropriate definitions for these
concepts.

We first define the important concept of “equieffectiveness” of two sequences of
external actions of a serial object automaton. Roughly speaking, two sequences are
“equieffective” if they can leave the automaton in states that are indistinguishable
to the outside world. We then define the notion of “commutativity” required for our
algorithm. Finally, we define “read accesses;” that is, we state the properties of read
accesses that are required for the correctness of Moss’s algorithm.

7.1. Equieffectiveness

In this subsection, we define “equieffectiveness” of finite sequences of external
actions of a particular serial object automaton S,. The definition says that the two
sequences can leave S, in states that cannot be distinguished by any environment
in which S, can appear. Formally, we express this indistinguishability by requiring
that S, can exhibit the same behaviors as continuations of the two given sequences.

Let X be an object name, and recall that S, is a particular serial object
automaton for X. Let /3 and /I’ be finite sequences of actions in ext(S,). Then /I is
equieffectiue to fi’ (with respect to S,) if for every sequence y of actions in ext(S,)
such that both By and p’y are serial object well-formed for X, Br E beh(S,) if and
only if fi’y E beh(S,). Obviously, equieffectiveness is a symmetric relation, so that if

134 FEKETE ET AL.

/3 is equieffective to 8’ we often say that B and 8’ are equieffective. Also, any
sequence that is not serial object well-formed for X is equieffective to all sequences.
On the other hand, if B and b’ are serial object well-formed sequences for X and
B is equieffective to /I’, then if /3 is in beh(S,), /?’ must also be in beh(S,).

The following proposition says that extensions of equieffective sequences are also
equieffective.

PROPOSITION 55. Let X be an object name. Let p and p’ be equieffective sequences
of actions in ext(S,). Let y be a finite sequence of actions in ext(S,). Then /?y is
equieffective to b’y.

Equieffectiveness is not an equivalence relation, but we do have a restricted
transitivity result.

LEMMA 56. Let X be an object name, and let <, v] and 5 be three finite sequences
of operations of X that are serial object well-formed for X, such that every operation
in q appears in either 5 or i. If perform(<) is equieffective to perform(q), and per-
form(q) is equieffective to perform(i), then perform(l) is equieffective to perform(i).

Proof Suppose perform(<) and perform(q) are equieffective, and that per-
form(r) and perform(c) are equieffective. Let y be a sequence of external actions of
S, such that perform(5) y and perform(c) y are serial object well-formed for X, and
suppose that perform(c)y is a behavior of S,. We show that perform(c)y is a
behavior of S,.

By the definition of serial object well-formedness, y must be either of the form
perform(r) or perform(r) CREATE(T), where the first components of all the opera-
tions in t (and T as well, if appropriate) are distinct from the first components of
all the operations in 5 and [. By the condition on r,~, the first components of all the
operations in r (and T as well, if appropriate) are distinct from the first components
of the operations in q. Thus, perform(q)y is serial object well-formed. The definition
of equieffectiveness than implies that perform(q)y is a behavior of S,, and therefore
that perform(c)y is a behavior of S,, as needed. i

A special case of equieffectiveness occurs when the final states of two finite execu-
tions are identical. The classical notion of serializability uses this special case, in
requiring concurrent executions to leave the database in the same state as some
serial execution of the same transactions. However, this property is probably too
restrictive for reasoning about an implementation in which details of the system
state may be different following any concurrent execution after a serial one. (Rela-
tions may be’stored on different pages, or data structures such as B-trees may be
configured differently.) These details are irrelevant to the perceived future behavior
of the database. The notion of equieffectiveness formalizes this indistinguishability
of different implementation states.

COMMUTATIVITY-BASED LOCKING 135

1.2. Commutativity

We now define an appropriate notion of commutativity for operations of a par-
ticular serial object automaton. Namely, we say that operations (T, v) and (T’, v’)
commute, where T and T’ are accesses to X, if for any sequence of operations 5 such
that both perform([(T, v)) and perform(t(T’, 0’)) are serial object well-formed
behaviors of S,, then perform(r(T, v)(T’, v’)) and perform(t(T’, v’)(T, v)) are
equieffective serial object well-formed behaviors of S,.

A consequence of the definition of commutativity is the following extension to
sequences of operations.

PROPOSITION 57. Suppose that 5 and [’ are finite sequences of operations of X
such that each operation in [commutes with each operation in c’. If < is a finite
sequence of operations of S, such that perform and perform(<c’) are serial object
well-formed behaviors of S,, then perform((ii’) and perform({{‘i) are equieffective
serial object welLformed behaviors of S,.

The definition of commutativity given here is a variation of the notion of
“forward commutativity” due to Weihl [39], originally defined in [42], adapted to
the formal framework used in this paper. This definition is different from and
slightly more complicated than that often used in the classical theory, for two
reasons. First, we deal with objects whose accesses may be specified to be partial
and nondeterministic, that is, the return value may be undefined or multiply defined
from a given state. Second, as discussed in detail by Weihl L-411, the definition used
in the classical theory is appropriate for concurrency control and recovery algo-
rithms that use an “update-in-place” approach to abort recovery (with recovery
based on undo logs); the definition given here is appropriate for algorithms that use
a “deferred-update” approach to abort recovery (with recovery based on intentions
lists).

1.2.1. Example: Commutative Banking Operations

As an example, consider the serial object S,, described in Section 4.5.2. For this
object, it is clear that two serial object well-formed schedules that leave the same
final balance in the account are equieffective, since the result of each access depends
only on the current balance. We claim that if T and T’ are accesses of kind
deposit-$a and deposit$b, then the operations (T, “OK”) and (T’, “OK”) com-
mute. To see this, suppose that perform(t(T, “OK”)) and perform(<(T’, “OK”)) are
serial object well-formed behaviors of S,. This implies that t is serial object well-
formed and contains no operation with first component T or T’. Therefore, p =
perform(5(T, “OK”)(T’, “OK”)) and p’ = perform(c(T’, “OK”)(T, “OK”)) are serial
object well-formed. Also, since perform(r) is a behavior of SX, so are /I and B’,
since a deposit can always occur. Finally, the balance left after each of /I and p’ is
$(x + a + b), where $x is the balance after perform(r), so /I and /I’ are equieffective.

Also, if T and T’ are distinct accesses of kind withdraw-$a and withdraw-$b.
respectively, then we claim that (T, “OK”) and (T’, “FAIL”) commute. The

136 FEKETE ET AL.

reason is that if perform(t(T, “OK”)) and perform(c(T’, “FAIL”)) are both
serial object well-formed behaviors then we must have a <x < b, where $x is the
balance after perform(<). Then both perform(<(T, “OK”)(T’, “FAIL”)) and
perform(<(T’, “FAIL”)(T, “OK”)) are serial object well-formed behaviors of S,
that result in a balance of $(x - a), and so are equieffective.

On the other hand, if T and T’ are distinct accesses of the kind withdraw-.$a
and withdraw-$b, respecitively, then (T, “OK”) and (T’, “OK”) do not commute,
since if perform(<) leaves a balance of $x, where max(a, b) < x < a + b, then
perform(<(T, “OK”)) and perform(r(T’, “OK’)) can be serial object well-formed
behaviors of S,, but perform(r(T, “OK”)(T’, “OK”)) is not a behavior, since after
perform(c(T, “OK”)) the balance left is %(x - a), which is not sufficient to cover the
withdrawal of $b.

7.3. Transparent Operations

We now define the essential property that we will require of any read access. We
say that an operation (T, v) at X is transparent if for any finite sequence of opera-
tions 5 of S, such that perform(t(T, 0)) is a serial object well-formed behavior of
S,, perform(t(T, u)) and perform(t) are equieffective behaviors of S,. Thus, a
transparent operation does not affect the later behavior of the object automaton.
The following simple proposition shows that any subsequence consisting of trans-
parent operations can be removed from a behavior, resulting in a behavior equi-
effective to the original one.

PROPOSITION 58. Let n be a finite serial object well-formed sequence of operations
of X such that perform(n) is a behavior of S,, and let 5 be a subsequence of q such
that every operation in v] - 5 is transparent. Then perform(q) and perform(<) are
equieffective serial object well-formed behaviors of S,.

It is easy to see that transparent operations commute.

PROPOSITION 59. Let (T, u) and (T’, v’) be transparent operations of X such that
T# T’. Then (T, v) commutes with (T’, 0’).

Proof: Suppose 5 is a finite sequence of operations of X such that per-
form(<(T, u)) and perform(l(T’, v’)) are serial object well-formed behaviors of S,.
Then no operation in 5 has T or T’ as first component, and all the operations in
5 have distinct first components. Therefore perform(l(T, v)(T’, v’)) and per-
form(l(T’, u’)(T, u)) are serial object well-formed sequences of external actions of
S,. Now perform(<(T, 0)) and perform(C) are equieffective, since (T, v) is trans-
parent. Since perform(<)perform(T’, v’) is a behavior of S,, the definition of equi-
effectiveness implies that perform(<(T, v))perform (T’, v’) = perform(t(T, v)(T’, II’))
is also a behavior of S,. Similarly, the fact that (T’, u’) is transparent implies
that perform(<(T’, v’)(T, v)) is a behavior of S,. By Proposition 58, each of
perform(t(T, v)(T’, v’)) and perform(<(T’, v’)(T, v)) is equieffective to perform([).
Lemma 56 now shows that they are equieffective to each other, as required. [

COMMUTATIVITY-BASED LOCKING 137

8. GENERAL COMMUTATIVITY-BASED LOCKING

In this section, we present our general commutativity-based locking algorithm
and its correctness proof. The algorithm is described as a generic system. The
system type and the transaction automata are assumed to be fixed, and are the
same as those of the given serial system. The generic controller automaton has
already been defined. Thus, all that remains is to define the generic objects. We
define the appropriate objects here, and show that they are dynamic atomic.

8.1. Locking Objects

For each object name X, we describe a generic object automaton L, (a “locking
object”). The object automaton uses the commutativity relation between operations
to decide when to allow operations to be performed. Recovery is handled using
intentions lists [21, 281, which we generalize here to handle nested transactions.
When a transaction executes an operation (i.e., when a response is returned for an
access), the operation is recorded in the transaction’s intentions list. When a trans-
action commits (i.e., when an INFORM-COMMIT action occurs for the transac-
tion), the transaction’s list is appended to its parent’s. When a transaction aborts,
its intentions list is discarded. The response for an access is constrained so that the
resulting operation can be performed by the serial object from a state resulting from
executing the intentions lists of the access’s ancestors.

Automaton L, has the usual signature of a generic object automaton for X. A
state s of L, has components s.created, s.commit-requested, and s.intentions. Of
these, created and commit-requested are sets of transactions, initially empty, and
intentions is a function from transactions to sequences of operations of X, initially
mapping every transaction to the empty sequence A. When (T, v) is a member of
s. intentions(U), we say that U holds a (T, u)-fock. Given a state s and a transaction
name T we also define the sequence total(s, T) of operations by the recursive delini-

-tion total(s, T,) = s.intentions(T,), total(s, T) = total(s, parent(T))s.intentions(T).
Thus, total(s, T) is the sequence of operations obtained by concatenating the
values of intentions along the chain from T, to T, in order. The precondition
for REQUEST-COMMIT(T, u), where T is an access, explicitly references
semantic properties of serial object S,, ensuring that perform(total(s, T’)) is a
behavior of S, for any transaction T’. (The proof of this fact relies on the explicit
test in the precondition for REQUESTCOMMIT(T, u), which ensures that
perform(total(s, T)) is a behavior of S,, plus the test that (T, u) commutes with
operations performed by concurrent transactions.)

The transition relation of L, is given by all triples (s’, rc, s) satisfying the
following pre- and postconditions, given separately for each rc. As before, any
component of s not mentioned in the postconditions is the same in s as in s’.

CREATE(T), T an access to X
Effect:

s. created = s’. created u { T}

138 FEKETE ET AL.

INFORM-COMMIT-AT(X)OF(T), T # To
Effect:

s. intentions(T) = I
s. intentions(parent(T)) = s’. intentions(parent(T))s’.intentions(T)
s. intentions(U) = s’. intentions(U) for U # T, parent(T)

INFORM-ABORT-AT(X)OF(T), T # To
Effect :

s.intentions(ZJ) = A, U E descendants(T)
s.intentions(U) = s’.intentions(V), U 4 descendants(T)

REQUEST-COMMIT(T, u), T an access to X
Precondition:

T E s’. created - s’. commit-requested
(T, V) commutes with every (T’, u’) in s’.intentions(V),

where U $ ancestors(T)
perform(total(s’, T)(T, 0)) E hnbehs(S,)

Effect:
s. commit-requested = s’. commit-requested u { T}
s.intentions(T)= (T, u)
s. intentions(U) = s’. intentions(U) for U # T

Thus, when an access transaction is created, it is simply added to the set created.
When L, is informed of a commit, it passes any locks held by the transaction to
the parent, appending them at the end of the parent’s intentions list. When L, is
informed of an abort, it discards all locks held by descendants of the transaction.
A response containing return value u to an access T can be returned only if the
access has been created but not yet responded to, every holder of a “conflicting”
(that is, non-commuting) lock is an ancestor of T, and perform(T, u) can occur in
a move of S, from a state following the behavior perform(total(s’, T)). When this
response is given, T is added to commit-requested and the operation (T, u) is
appended to intentions(T) to indicate that the (T, u)-lock was granted. It is easy to
see that L, is a generic object for X, i.e., that L, has the correct external signature
and preserves generic object well-formedness.

The locking object L, is quite nondeterministic; implementationsi of L, can be
designed that restrict the nondeterminism in various ways, and correctness of such
algorithms follows immediately from the correctness of L,, once the implementa-
tion relationship has been proved, for example, by using a possibilities mapping.

As a trivial example, consider an algorithm expressed by a generic object that is
just like L, except that extra preconditions are placed on the REQUEST-COM-
MIT(T, u) action, say requiring that no lock at all is held by any non-ancestor of
T. (This corresponds to exclusive locking.) Every behavior of this generic object is
necessarily a behavior of L, (although the converse need not be true). That is, this

I6 Recall that “implementation” has a formal definition, given in Section 3.4. The “implementation”
relation only relates external behaviors but allows complete freedom in the choice of automaton states.

COMMUTATIVITY-BASED LOCKING 139

object implements L, and so is dynamic atomic (since, as shown below, L, is
dynamic atomic).

For another example, note that our algorithm models both choosing a return
value and testing that no conflicting locks are held by non-ancestors of the access
in question as preconditions on the single REQUEST-COMMIT event for the
access. Traditional database management systems have used an architecture in
which a lock manager first determines whether an access is to proceed or be
delayed, and then another component determines the response later. In such an
architecture, it is infeasible to use the return value in determining which activities
conflict. We can model such an algorithm by an automaton in which the granting
of locks by the lock manager is an internal event whose precondition tests for
conflicting locks using a “conflict table,” where the conflict table requires a lock for
access T to conflict with a lock for access T’ whenever there are any return values
u and v’ such that (T, v) does not commute with (T’, v’). Then we would have a
REQUEST-COMMIT action whose preconditions include that the return value is
appropriate and that a lock had previously been granted for the access. If we do
this, we obtain an object that can be shown to be an implementation of L,, and
therefore its correctness follows from that of L,.

Many slight variations on these algorithms can be considered, in which locks are
obtained at different times, recorded in different ways, and tested for conflicts using
different relations; so long as the resulting algorithm treats non-commuting opera-
tions as conflicting, it should not be hard to prove that these algorithms implement
L,, and so are correct. Such implementations could exhibit much less concurrency
than L,, because they use a coarser test for deciding when an access may proceed.
In many cases the loss of potential concurrency might be justified by the simpler
computations needed in each indivisible step.

Another aspect of our algorithm that one might wish to change in an implemen-
tation is the complicated data structure maintaining the “intentions,” and the
corresponding need to replay all the operations recorded there when determining
the response to an access. In the next section, we will consider an algorithm that
is able to summarize all these lists of operations in a stack of versions of the serial
object, at the cost of reducing available concurrency by using a conflict relation in
which all updates exclude one another.

8.2. Correctness Proof

In this subsection, we prove several lemmas about L,, leading to the theorem
that L, is dynamic atomic. The first lemma says that the ordering of operations in
the “total” sequences does not change during execution of L,; its proof is
straightforward.

LEMMA 60. Let /II/l2 be a finite generic object well-formed schedule of L,, such
that /?, can leave L, in state s’ and (s’, bz, s) is an extended step of L,. Let T,, T,,
U and V be transaction names. Suppose (T,, v,) precedes (T,, v2) in total(s’, U) and

140 FEKETE ET AL.

(T,, v2) occurs in total(s, V). Then (T,, ui) occurs in total(s, V) and precedes
(T,, 02) in total(s, V).

We next introduce a definition to describe the information L, uses about
visibility. If B is a sequence of actions of L, and T and T’ are transaction names,
we say that T is lock-visible at X to T’ in p if /I contains a subsequence /I’ consisting
of an INFORM-COMMIT-AT(X)OF(U) event for every UE ancestors(T) -
ancestors(T’), arranged in ascending order (so the INFORM-COMMIT for
parent(U) is preceded by that for U). Lock-visibility is similar to local-visibility,
with the added constraint that the INFORM actions occur in leaf-to-root order.
The following lemma characterizes the contents of the various intentions lists in
terms of lock visibility.

LEMMA 61. Let b be a finite generic object well-formed schedule of L,. Suppose
that /? can leave L, in state s.

1. Let T be an access to X such that REQUEST-COMMIT(T, v) occurs in fl
and T is not a local orphan at X in /?, and let T’ be the highest ancestor of T such
that T is lock-visible to T’ at X in fl. Then (T, u) is a member of s.intentions(T’).

2. Zf (T, u) is an element of s.intentions(T’) then T is a descendant of T’,
REQUEST-COMMIT(T, u) occurs in 8, and T’ is the highest ancestor of T to which
T is lock-visible at X in /I

3. Zf T’ is not a local orphan at X in fi, then s.intentions(T’) consists of
exactly the operations (T, u) such that T is a descendant of T’, REQUEST-COM-
MIT(T, v) occurs in 0, and T’ is the highest ancestor of T to which T is lock-visible
at X in /?.

We also define a binary relation lock-completion(B) on accesses to X, where
(U, U’) E lock-completion(/?) if and only if U # U’, /I contains REQUEST-COM-
MIT events for both U and U’, and U is lock-visible to U’ at X in /I’, where J? is
the longest prefix of /I not containing the given REQUEST--COMMIT event
for U’. The following simple lemmas relate lock-visibility and the lock-completion
order to local visibility and the local completion order. They follow immediately
from the definitions.

LEMMA 62. Let B be a generic object well-formed sequence of actions of L,. Then
lock-completion(J) is an irreflexive partial order.

LEMMA 63. Let fi be a sequence of actions of L, and T and T’ transaction names.
Zf T is lock-visible at X to T’ in /I then T is locally visible at X to T’ in fl. Also lock-
completion(b) is a subrelation of local-completion(j?).

Now we relate the contents of the intentions lists to the lock-completion order.
Lemma 64 characterizes the operations in an intentions list, while Lemma 65
characterizes the order in which the operations appear in an intentions list.

COMMUTATIVITY-BASED LOCKING 141

LEMMA 64. Let /I be a generic object well-formed finite behavior of L,, and
suppose that a REQUEST-COMMIT(T, v) event 71 occurs in fi, where T is not a
local orphan at X in p. Let /?’ be the prefix of /? preceding z, and let s’ be the (unique)
state in which p’ can leave L,. Then the operations in total(s’, T) are exactly the
operations (T’, v’) that occur in /? such that (T’, T) flock-completion(/?).

Proof Lemma 61 implies that the operations in total(s’, T) are exactly those
(T’, v’) that occur in /I’ such that T’ is lock-visible to an ancestor of T in /Y. By
the definition of lock-completion@) and the generic object well-formedness of /I,
(T’, T) E lock-completion(P). 1

LEMMA 65. Let p be a generic object well-formed finite behavior of L, that can
leave L, in state s, and let T be any transaction name. Then the order of operations
in total(s, T) is consistent with lock-completion(P).

Proof: Suppose (T,, vi) and (T,, v2) are two operations in total(s, T) such
that (T,, T,) E lock-completion(/?). By the definition of lock-completion, T, is
lock-visible to T, at X in the longest prefix, fl,, of /I that does not include
REQUEST-COMMIT(T,, vz). Then Lemma 61, applied to fir, implies that
(T,, vi) is in the intentions list of an ancestor of T2 in the state si reached by /I,,
and by the effects of REQUEST-COMMIT(T,, vz), (T,, vr) precedes (T2, v2) in
total(s,, T2), where s2 is the state reached by /I,REQUESTCOMMIT(T,, vz). By
Lemma 60, (T,, vi) precedes (T,, v2) in total(s, T). Thus, the order of operations in
total(s, T) is consistent with lock-completion(P). 1

We now give the key lemma, which shows that certain sequences of actions,
extracted from a generic object well-formed behavior of L,, are serial object well-
formed behaviors of S,. The second conclusion, that certain such sequences are
equieffective, is needed to carry out the induction step of the proof of this lemma.

It is helpful to have an auxiliary definition. Suppose fl is a generic object well-
formed finite behavior of L,. Then a set Z of operations of X is said to be allowable
for /I provided that for each operation (T, v) that occurs in Z, the following condi-
tions hold:

1. (T, u) occurs in b.
2. T is not a local orphan in /I.
3. If (T’, u’) is an operation that occurs in b such that (T’, T) E lock-comple-

tion(B), then (T’, v’) E Z.

An allowable set of operations corresponds roughly to a set of operations whose
accesses either are or could become visible to some non-orphan transaction U.
Thus, each operation in the set must occur in p and must not be a local orphan
(since otherwise it could never be visible to a non-orphan). In addition, if T’ is
visible to T and T becomes visible to U, T’ also becomes visible to U, so if (T, v)
is in the set and T’ is visible to T, (T’, v’) should also be in the set. The third condi-

142 FEKETE ET AL.

tion only requires (T’, u’) to be in the set if T’ precedes T in the lock-completion
order; thus, we consider more sets of operations than just those whose accesses
could become visible to U. This only strengthens the next lemma, since it shows
that all allowable sets of operations for /I, when ordered consistently with lock-
completion(b), correspond to behaviors of S,.

LEMMA 66. Let /I be a generic object well-formed finite behavior of L, and let Z
be an allowable set of operations for /I, Let R = lock-completion(b).

1. If 5 is a total ordering of Z that is consistent with R on the transaction
components, then perform(4) E linbehs(S,).

2. If r and q are both total orderings of Z such that each is consistent with R
on the transaction components, then perform(t) and perform(q) are equieffective.

ProoJ: We use induction on the size of the set Z. The basis, when Z is empty,
is trivial. So let k > 1 and suppose that Z contains k operations and the lemma
holds for all allowable sets of (k - 1) operations. Let 5 be a total ordering of Z that
is consistent with R on the transaction component. Let (T, v) be the last operation
in 5, and let Z’ = Z - ((T, v)}. Let 5’ be the sequence of operations such that
5 = l’(T, v). Then Z’ is an allowable set of (k - 1) operations, since Z is, and there
is no operation (T’, v’) in Z such that (T, T’) E R. Also, 5’ is a total ordering of Z’
consistent with R.

Let fl’ be the longest prefix of /I not containing REQUEST-COMMIT(T, v), and
let s’ be the (unique) state in which /Y can leave L,. Let cl = total(s’, T), and let
c2 be some total ordering that is consistent with R of the operations in Z’ - [,
Lemma 64 implies that the operations in cl are exactly those (T’, v’) that occur in
fi such that (T’, T) E R, and Lemma 65 implies that the order of operations in [r
is consistent with R.

We show that (T, u) commutes with every operation (T”, v”) in 12. There are two
cases.

1. REQUEST-COMMIT(T”, v”) precedes REQUESTCOMMIT(T, v) in /I.
Then let U denote the highest ancestor of T” to which T” is lock-visible at X in
8’. By Lemma 61, (T”, 0”) Es’.intentions(U). By definition of c2, U is not an
ancestor of T. Therefore, by the preconditions for REQUEST-COMMIT(T, v),
which is enabled in state s’, (T, u) commutes with (T”, 0”).

2. REQUEST-COMMIT(T, u) precedes REQUEST-COMMIT(T”, v”) in b.
Then let /I” be the longest prefix of /I not containing REQUEST-COM-
MIT(T”, u”), and let t be the state in which 8” leaves L,. Also let U denote the
highest ancestor of T to which T is lock-visible at X in /I”, so that (T, v) E t.inten-
tions(U). U is not an ancestor of T”, since if it were, then the definition of lock-
completion implies that (T, T”) E R, contradicting the assumption that (T, v) is the
last operation in 4. Therefore, by the preconditions for REQUEST-COM-
MIT(T”, v”), which is enabled in state t, (T”, u”) commutes with (T, v).

COMMUTATIVITY-BASED LOCKING 143

Next, we claim that if (T’, v’) and (T”, v”) are operations in [i and c2, respec-
tively, then (T”, T’) 4 R. For if (T”, T’) E R, then since (T’, T) E R, by Lemma 62
we have also (T”, T) E R. Then the characterization of c, above implies that
(T”, v”) occurs in ii, a contradiction.

This claim implies that [it2 is also a total ordering of Z’ consistent with R. The
inductive hypothesis then implies that perform and perform([, cz) are equieffec-
tive serial object well-formed behaviors of S,.

By the preconditions for REQUEST-COMMIT(T, v), which is enabled in state
s’, perform(total(s’, T)(T, v)) = perform({,(T, u)) is a finite behavior of S,, and it is
clearly serial object well-formed, since fl is generic object well-formed. We also
showed above that perform([, cz) is a serial object well-formed behavior of S,.
Since (T, v) commutes with every operation in c2, we have by Proposition 57 that
perform([,[,(T, v)) is a serial object well-formed behavior of S,. Since per-
form([, cz) is equieffective to perform(r’), and since perform(5) = perform(t’(T, II))
is clearly serial object well-formed, the definition of equieffectiveness implies that
perform(<) is a behavior of S,. This completes the proof that perform(t) is a serial
object well-formed behavior of S,.

Now let r be any other total ordering of Z that is consistent with R on the
transaction component. Let YI, and y/* be the sequences of operations such that
v = q,(T, v) qz. Then ye, q2 is a total ordering of Z’ consistent with R. The inductive
hypothesis shows that perform(q,q,) is a serial object well-formed behavior of S,
and that it is equieffective to perform(Therefore, by Proposition 55, per-
form(q, q2(T, u)) is equieffective to perform(r).

Part 1 applied to q implies that perform(q) is a serial object well-formed behavior
of s,; therefore, its prefix perform(u,(T, v)) is also a serial object well-formed
behavior of S,.

By the characterization above for ii, every operation in ii has its transaction
component preceding T in R. Thus, since q is consistent with R, every operation in
i, is contained in vi. Thus, every operation in qz is contained in c2, and so (T, u)
commutes with every operation in q2. Therefore, perform(q) = perform(q,(T, v)qz)
is equieffective to perform(q,q,(T, u)), by Proposition 57.

Since perform(q) is equieffective to perform(q, q2(T, u)) and perform(u,q,(T, v))
is equieffective to perform({), Lemma 56 implies that perform(q) is equieffective to
perform(l), completing the proof. [

Now we can prove that locking objects are locally dynamic atomic.

PROPOSITION 67. L, is locally dynamic atomic.

Proof Let /I be a finite generic object well-formed behavior of L, and let T be
a transaction name that is not a local orphan at X in p. We must show that local-
views(/?, T) cfinbehs(S,). So let Z be the set of operations occurring in p whose
transactions are locally visible to T at X in /I. Let 5 be a total ordering of Z consis-
tent with local-completion(fl) on the transaction components. We must prove that
perform(t) is a behavior of S,.

271/41/l-10

144 FEKETEET AL.

We claim that Z is allowable for /?. To see this, suppose that (T’, u’) is an opera-
tion that occurs in Z. Then (T’, u’) occurs in 8. Since T’ is locally visible at X to
T in fi and T is not a local orphan at X in b, Lemma 49 implies that T’ is not a
local orphan at X in B. Now suppose that (T”, u”) is an operation that occurs in
/I and (T”, T’) E lock-completion(P). Then T” is lock-visible at X to T’ in /?, and
hence, by Lemma 63, is locally visible at X to T’ in /I. Therefore, (T”, II”) is in Z.

We also claim that the ordering of 5 is consistent with lock-completion(b) on the
transaction components. This is because the total ordering of r is consistent with
local-completion(/I), and Lemma 63 implies that lock-completion(/?) is a subrela-
tion of local-completion(/?).

Lemma 66 then implies that perform(r) is a behavior of Sx, as needed. 1

Finally, we can show the main result of this section.

THEOREM 68. L,Y is dynamic atomic.

Proof: By Proposition 67 and Theorem 54. m

An immediate consequence of Theorems 68 and the Dynamic Atomicity
Theorem is that if Y is a generic system in which each generic object is a locking
object, then Y is serially correct for all non-orphan transaction names.

9. Moss’s ALGORITHM

In this section, we present Moss’s algorithm for read-update locking [29] and its
correctness proof. Once again, the algorithm is described as a generic system, and
all that needs to be defined is the generic objects. We define the appropriate objects
here and show that they implement locking objects. It follows that they are
dynamic atomic.

9.1. Moss Objects

For each object name X, we describe a generic object automaton M, (a “Moss
object”). The automaton M, maintains a stack of “versions” of the corresponding
serial object Sx, and manages “read locks” and “update locks.”

The construction of M, is based on a classification of all the accesses to X as
either read accesses or update accesses. We assume that this classification satisfies
the property that every operation (T, u) of a read access T is transparent. If 5
is a sequence of operations of X, we let update([) denote the subsequence of 5
consisting of those operations whose first components are update accesses.
Proposition 58 implies that if perform(t) is a serial object well-formed behavior of
Sx, then perform(update(0) is also a serial object well-formed behavior of Sx, and
perform(update(c)) is equieffective to perform(t).

Mx has the usual action signature for a generic object automaton for X. A state
s of M, has components s. created, s. commit-requested, s. update-lockholders, and

COMMUTATIVITY-BASED LOCKING 145

s. read-lockholders, all sets of transactions, and s.map, which is a function from
s.update-lockholders to states of the serial object automaton S,. We say that a
transaction in update-lockholders holds an update-lock and, similarly, that a trans-
action in read-lockholders holds a read-lock. The start states of M, are those in
which update-lockholders = {T,,} and map(To) is a start state of the serial object
Sx, and the other components are empty.

If U is a finite set of transactions such that for all T and T’ in @, either T is an
ancestor of T’ or vice versa, then we define least(%) to be the unique transaction
in % that is a descendant of all transactions in +2. Some of the following actions
contain preconditions in which the function “least” is applied to the set s’.update-
lockholders. In case least(s’. update-lockholders) is undefined, the precondition is
assumed to be false.”

The transition relation of M, is as follows:

CREATE(T), T an access to X
Effect:

s. created = s’. created u { T}

INFORM-COMMIT-AT(X) OF(T), T # T,,
Effect:

if T E s’. update-lockholders
then

s. update-lockholders = (s’. update-lockholders - { T}) u { parent(T)}
s.map(parent(T)) = s’.map(T)
s. map(V) = s’. map(U) for U E s. update-lockholders - { parent(T) >

if T E s’. read-lockholders
then s. read-lockholders = (s’. read-lockholders - { T}) u {parent(T)}

INFORM-ABORT-AT(X) OF(T), T # TO
Effect:

s. update-lockholders = s’. update-lockholders - descendants(T)
s. read-lockholders = s’. read-lockholders - descendants(7’)
s. map(U) = s’. map(U) for all U E s. update-lockholders

REQUEST-COMMIT(T, u), T a read access to X
Precondition:

T E s’. created - s’. commit-requested
s’. update-lockholders E ancestors(T)
there is a state t of S, such that

(s’. map(least(s’. update-lockholders)), perform(T, u), t) is a move of S,
Effect :

s. commit-requested = s’. commit-requested u { T}
s. read-lockholders = s’. read-lockholders u { T}

I’ In fact, in all states s’ that arise in executions having generic object well-formed behaviors,
least(s’.update-lockholders) is defined.

146 FEKETE ET AL.

REQUEST-COMMIT(T, u), T an update access to X
Precondition:

T E s’. created - s’. commit-requested
s’. update-lockholders u s’. read-lockholders c ancestors(T)
there is a state t of SX such that

(s’.map(least(s’. update-lockholders)), perform(T, u), t) is a move of S,
Effect :

s. commit-requested = s’. commit-requested u { T}
s. update-lockholders = s’. update-lockholders u { T}
s,map(T)=t
s. map(V) = s’. map(V) for all U E s. update-lockholders - { T}.

When an access transaction is created, it is added to the set created. When M,
is informed of a commit, it passes any locks held by the transaction to the parent
and also passes any serial object state stored in map. When M, is informed of an
abort, it discards all locks held by descendants of the transaction. A response con-
taining return value v to an access T can be returned only if the access has been
created but not yet responded to, every holder of a conflicting lock is an ancestor
of T, and perform(T, V) can occur in a move of SX from the state that is the value
of map at least(update-lockholders). When this response is given, T is added to
commit-requested and granted the appropriate lock. Also, if T is an update access,
the resulting state is stored as map(T), while if T is a read access, no change is
made to map.

It is easy to see that M, is a generic object, i.e., that it has the correct external
signature and preserves generic object well-formedness. The following is also easy
to prove, using induction of the length of a schedule.

LEMMA 69. Let /I be a finite schedule of M,. Suppose that p can leave Mx in
state s. Suppose T E s. update-lockholders and T’ E s. read-lockholders u s. update-
lockholders. Then either T is an ancestor of T’ or else T’ is an ancestor of T.

Note that it is permissible to classify all accesses as update accesses. The Moss
object constructed from such a classification implements exclusive locking. Thus,
the results we obtain about Moss objects also-apply to exclusive locking as a special
case.

9.2. Correctness Proof

In this subsection, we show that M, is dynamic atomic. In order to show this,
we produce a possibilities mapping from M, to L, as defined in Section 3.4,
thereby showing that MX implements L,. Note that M, is not describable as a
simple special case of L X: the two algorithms maintain significantly different data
structures. Nevertheless, a possibilities mapping can be defined.

We begin by defining the mappingJ: Let f map a state s of M, to the set of states
t of L, that satisfy the following conditions:

COMMUTATIVITY-BASED LOCKING 147

1. s.created = t.created
2. s. commit-requested = t . commit-requested.
3. s.read-lockholders is the set of transaction names T such that t.inten-

tions(T) contains a read operation.
4. s.update-lockholders is the set of transaction names T such that t.inten-

tions(T) contains an update operation, together with T,.
5. For every transaction name T, perform(update(total(t, T))) is a finite

behavior of SX that can leave S, in the state s.map(T’), where T’ is the least
ancestor of T such that T’ E s. update-lockholders.

LEMMA 70. f is a possibilities mapping from M, to L,.

ProoJ: The proof involves checking the conditions in the definition of a
possibilities mapping. These checks are completely straightforward, but numerous
and tedious. For completeness, we include the details here, although the reader will
probably not wish to read them.

It is easy to see that t,, E f(s,), where s0 and to are start states of M, and L,,
respectively. Let s’ and t’ be reachable states of M, and L,, respectively, such that
t’ E f(d). Suppose (s’, 7c, s) is a step of M,. We produce t such that (t’, rc, t) is a step
of L, and t E f (s). We proceed by cases.

1. 7~ = CREATE(T), T an access to X. Since z is an input of L,, rc is enabled
in state t’. Choose t so that (t’, rc, t) is a step of L,. We show that t E f(s).

The effects of rr as an action of M, and L, imply that s.created =
s’.created u { T} and t.created = t’.created u (T}. Moreover, all of the other com-
ponents of s or t are identical to the corresponding components of s’ or t’, respec-
tively. Since t’ E f (s’), we have s’. created = t’.created, so that s. created = t .created,
thus showing the first condition in the definition off. The other conditions hold in
s and t because they hold in s’ and t’ and none of the relevant components are
modified by rr.

2. 7c = INFORM-COMMIT_AT(X)OF(U). Since 71 is an input of L,, 7c is
enabled in state t’. Choose t so that (t’, z, t) is a step of L,. We show that t E f(s).

The first and second conditions hold in s and t because they hold in s’ and t’ and
none of the relevant components are modified by 7~. The effects of rr as an action
of L, imply that t.intentions(IV) = t’.intentions(W) unless WE {U, parent(U)},
t. intentions(parent(U)) = t’. intentions(parent(U)) t’. intentions(U), and t . inten-
tions(U) = A. We consider two cases.

a. t’.intentions(U) contains a read operation. Then the set of transaction
names T such that t.intentions(T) contains a read operation is exactly the
set of T such that t’.intentions(T) contains a read operation, with U
removed and parent(U) added. Since t’ E f(s’), s’.read-lockholders is the
set of transaction names T such that t’.intentions(T) contains a read
operation; in particular, UE s’. read-lockholders. The effects of x as an
action of M, imply that s. read-lockholders = s’. read-lockholders - { U> u

148 FEKETE ET AL.

{parent(U)}. Thus, s.read-lockholders is exactly the set of T such that
t. intentions(T) contains a read operation.

b. t’. intentions(U) does not contain a read operation. Then the set of trans-
action names T such that t.intentions(T) contains a read operation is
exactly the set of T such that t’.intentions(T) contains a read operation.
Since t’ E f(Y), s’. read-lockholders is the set of transaction names T such
that t’.intentions(T) contains a read operation; in particular, U# s’.read-
lockholders. The effects of rc as an action of M, imply that s.read-
lockholders = s’. read-lockholders. Thus, s. read-lockholders is exactly the
set of T such that t.intentions(T) contains a read operation.

This shows the third condition. The proof of the fourth condition is analogous to
that for the third condition.

Finally, fix some transaction T and let T’ be the least ancestor of T such that
T’ E s. update-lockholders. The discussion is divided into subcases, depending on
the relation between T and U in the transaction tree.

a. U is an ancestor of T. Then total(t, T) = total(t’, T). Let T” be the least
ancestor of T in s’. update-lockholders. Since t’ E f(s), perform(update(to-
tal(t’, T))) is a finite behavior of S, that can leave S, in the state
s’. map(T”).

If U= T”, then the effects of n as an action of M, imply that s.update-
lockholders = s’.update-lockholders - {T”} u {parent(T”)}, so T’ =
parent(T”). Then s.map(T’) = s.map(parent(T”)) = s’.map(T”).

If U# T” and UE s’. update-lockholders, then by definition of T”, U is
a strict ancestor of T”. Then s.map(T”) = s’.map(T”) and T” = T’, so
again s.map(T’) = s’.map(T”).

If U # T” and U is not in s’.update-lockholders, then s.update-
lockholders = s’.update-lockholders and s.map = s’.map; thus, T” = T’
and so s.map(T’) = s’.map(T”).

In each case, we have shown that s.map(T’) = s’.map(T”); therefore,
perform(update(total(t, T))) is a finite behavior of S, that can leave S, in
the state s. map(T’).

b. U is not an ancestor of T, but parent(U) is an ancestor of T. If UE
s’.update-lockholders then Lemma 69 implies that no transaction in
ancestors(T) - ancestors(parent(U)) can be in s’. update-lockholders u
s’.read-lockholders. The effects of rc as an action of M, therefore show
that T’ = parent(U). These effects also show that s.map(parent(U)) =
s’.map(U). Since t’ Ed, t’.intentions(IV) must be empty for all
WE ancestors(T) - ancestors(parent(U)). By the effects of rc as an action
of Lx, t. intentions(W) = t’.intentions(IV) unless W equals U or
parent(U), so t.intentions(W) is empty for all WE ancestors(T) -
ancestors(parent(U)). Thus, total(t, T) = total(t, parent(U)). The effects of
rr as an action of L, also show that total(t, parent(U)) = total(t’, U), so
that total(t, T) = total(t’, U). Since t’ E f(s’) and U is the least ancestor of
U in s’. update-lockholders, perform(update(total(t’, U))) is a finite

COMMUTATIVITY-BASED LOCKING 149

behavior of S, that can leave S, in state s’.map(U). The equalities we
have proved show that perform(update(total(t, 7’))) is a finite behavior of
Sx that can leave S, in state s.map(T’).

If U +! s’. update-lockholders then s. update-lockholders = s’. update-lock-
holders and s.map = s’. map. Thus, T’ is the least ancestor of T in s’. up-
date-lockholders, and s.map(T’) = s’.map(T’). Since t’ Ed, there are
no update operations in t’. intentions(U). Then the effects of 7c as an action
of L, imply that update(total(t, T)) = update(total(t’, T)). Thus,
perform(update(total(t, T))) = perform(update(total(t’, T))), which is, by
the fact that t’~f(.s’), a finite behavior of S, that can leave S, in state
s’.map(T’) = s. map(T’).

c. parent(U) is not an ancestor of T. The effects of rr ensure that T’ is the
least ancestor of T in s’. update-lockholders, s.map(T’) = s’.map(T’) and
total(t, T) = total(t’, T). The result follows immediately from the fact that
t’ E f(d).

This completes the demonstration of the fifth condition.

3. rc = INFORM-ABORT_AT(X)OF(U). Since rr is an input of L,, n is
enabled in state t’. Choose t so that (t’, rr, t) is a step of L,. We show that t Ed.

The first and second conditions hold in s and t because they hold in s’ and t’ and
none of the relevant components are modified by rc.

The effects of n as an action of L, imply that t.intentions(W) = t’.intentions(W)
unless W is a descendant of U, and t.intentions(W) = 2 if W is a descendant of U.
Thus, the set of transaction names T such that t .intentions(T) contains a read
operation is equal to the set of T such that t’.intentions(T) contains a read opera-
tion with the descendants of U removed. Similarly, the effects of rc as an action of
M, show that s. read-lockholders equals s’. read-lockholders with the descendants
of U removed. Since t’ Ed, the set of transaction names T such that t’.inten-
tions(T) contains a read operation equals s’.read-lockholders. Thus, the set of T
such that t .intentions(T) contains a read operation equals s.read-lockholders, as
required. This shows the third condition. The proof of the fourth condition is
analogous to that for the third condition.

Finally, fix some transaction T and let T’ be the least ancestor of T such that
T’ E s. update-lockholders. The discussion is divided into subcases, depending on
the relation between T and U.

a. U is an ancestor of T. Then total(t, T) = total(t’, parent(U)). The effects of
rc as an action of M, imply that s.update-lockholders = s’. update-lock-
holders - descendants(U) and s.map(W) = s’.map(W) if W is not a
descendant of U. Thus, T’ is an ancestor of parent(U), and in fact must
be the least ancestor of parent(U) in s’. update-lockholders. Since t’ E f(s’),
perform(update(total(t’, parent(U)))) . is a finite behavior of S, that can
leave S, in state s’.map(T’). Thus, perform(update(total(t, T))) is a finite
behavior of S, that can leave S, in state s.map(T’).

b. U is not an ancestor of T. The effects of rc ensure that T’ is the least

150 FEKETE ET AL.

ancestor of T in s’. update-lockholders, s. map(T’) = s’.map(T’) and
total(t, T) = total(t’, T). The result follows immediately from the fact that
t’ Ef(S’).

This completes the demonstration of the fifth condition.
4. rc = REQUEST-COMMIT(U, u), U a read access to X. We first show that

7t is enabled as an action of L, in state t’. That is, we must show that
UE t’.created - t’.commit-requested, that (U, u) commutes with every (V, u) in
t’.intentions(U’), where U’ $ ancestors(U), and that perform(total(t’, U)(U, u)) is in
finbehs(S,).

Since t’ E f(s’), t’. created = s’.created and t’. commit-requested = s’.commit-
requested. Since rt is enabled as an action of M, in state s’, we have that U E
s’. created - s’. commit-requested. Therefore, U E t’. created - t’. commit-requested.

Suppose (in order to obtain a contradiction) that there exist U’, I’, and u such
that U’ $ ancestors(U), (V, u) is in t’.intentions(U’), and (U, u) does not commute
with (V, v). Since U is a read access and read accesses are transparent, Proposi-
tion 59 implies that either U= I’ or else I/ is an update access. Lemma 61 implies
that U’ is an ancestor of V, so that we cannot have V= U. Therefore, V is an
update access. Since V is an update access and (I’, v) is in t’.intentions(U’), the fact
that t’ E f(s’) shows that U’ E s’. update-lockholders. Thus, since n is enabled in state
s’, U’ is an ancestor of U. This is a contradiction; thus, we have shown that if
U’ is not an ancestor of U and (V, u) is in t’.intentions(U’), then (U, u) and (I’, u)
commute.

Finally, let U’ = least(s’. update-lockholders). Since n is enabled in s’, U’ must be
an ancestor of U and is thus the least ancestor of U in s’.update-lockholders. There-
fore, the fact that t’Ef(s’) implies that perform(update(total(t’, U))) is a finite
behavior of S, that can leave S, in state s’.map(U’). Since x is enabled in s’, there
is a move of SX with behavior perform(U, u) starting from state s’.map(U’). Thus,
perform(update(total(t’, U)))perform(U, u) is a behavior of S,. Since perform(up-
date(total(t’, U))) is equieffective to perform(total(t’, U)), perform(total(t’, U))per-
form(U, u) = perform(total(t’, U)(U, u)) is in finbehs(S,), since it is serial object
well-formed.

Thus, n is enabled as an action of L, in state t’. Choose t such that (t’, rr, t) is
a step of L,. We show that t Ed.

The effects of rc imply that s. created = s’. created, t . created = t’. created,
s. commit-requested = s’. commit-requested u { U} and t . commit-requested =
t’. commit-requested u { U}. Since t’ E f(s’), we have t’. created = s’. created and
t’. commit-requested = s’.commit-requested. Thus, s.created = t.created and
s.commit-requested = t.commit-requested, so the first and second conditions hold.

The effects of 7t imply that i. read-lockholders = s’. read-lockholders u { U},
t. intentions(U) = t’. intentions(U)(U, u), and t .intentions(W) = t’. intentions(W) for
W# U. Since .t’ Ed, s’.read-lockholders is the set of transaction names T such
that t’. intentions(T) contains a read operation. Then s.read-lockholders = s’. read-
lockholders u {U}, which is exactly the set of transaction names T such that
t.intentions(T) contains a read operation, so the third condition holds.

COMMUTATIVITY-BASED LOCKING 151

It is easy to see that the fourth condition holds in s and t, because it holds in s’
and t’ and the only relevant component that is modified is that t.intentions(U) =
t’.intentions(U)(U, u), and (U, u) is a read operation.

For the final condition, consider any transaction T. Note that
perform(update(total(t, T))) = perform(update(total(t’, T))) and s.map = s’.map.
Since the fifth condition holds in s’ and t’, it is easy to see that it holds in s and t.

5. 71 = REQUESTPCOMMIT(U, u), U an update access to X. We first show
that n is enabled as an action of L, in state t’. The proofs that UE t’.created -
t’.commit-requested and that perform(total(t’, U)(U, u)) is in finbehs(S,), are iden-
tical to the corresponding proofs for the read update case. We must show that
(U, u) commutes with every (V, u) in t’. intentions(U'), where U' $ ancestors(U). We
will show the stronger statement that if t’.intentions(U') is not the empty sequence,
then U' E ancestors(U). Since t’ Ed, if t’.intentions(U') is nonempty, then
U' E s’. read-lockholders u s’. update-lockholders. Thus, since x is enabled as an
action of M, in state s’, U' E ancestor(U).

Thus n is enabled as an action of L, in state t’. Choose t such that (t’, 7c, t)
is a step of L,. We show that t~f(s). The first two conditions follow as for
the read access case. The third condition holds in s and t because it holds in s’
and t’ and the only relevant component that is modified is that t.intentions(U) =
t’.intentions(U)(U, u), and (U, u) is an update operation.

The effects of rt imply that s. update-lockholders = s’.update-lockholders u {U},
t.intentions(U) = t’.intentions(U)(U, u), and t.intentions(IV) = t’.intentions(IV) for
W# U. Since t’ Ed, s’.update-lockholders is the set of transaction names T such
that t’.intentions(T) contains an update operation, together with To. Thus, s.up-
date-lockholders = s’.update-lockholders u { U}, which is exactly the set of T such
that t.intentions(T) contains an update operation, together with To. Thus, the
fourth condition is satisfied.

Finally, we show the fifth condition. Fix any transaction name T. If T# U, then
since U is an access, T is not a descendant of U; then the fifth condition holds in
s and t because it holds in s’ and t’ and none of the relevant components are
modified. So suppose that T= U.

The effects of n as an action of M, imply that s.map(U) is equal to some state
r of S, such that (s’.map(U'), perform(U, u), r) is a move of S,, where U'=
least(s’.update-lockholders); also, s.map(W) = s’.map(W) for all Wf U. Since all
members of s’.update-lockholders must be ancestors of U by the preconditions of
71 in M,, U' is the least ancestor of U in s’.update-lockholders, so the fact
that z’E~(s’) implies that perform(update(total(t’, U))) is a finite behavior of
S, that can leave S, in state s’.map(U’). Thus, perform(update(total(t’, U)))per-
form(U, ~4) is a finite behavior of SX that can leave S, in state s,map(U). But
perform(update(total(t’, U)))perform(U, u) = perform(update(total(t’, U)(U, u))) =
perform(update(total(t, U))). Thus, perform(update(total(t, U))) is a finite behavior
of S, that can leave S, in state s.map(U), as required. 1

PROPOSITION 71. M, implements L,.

152 FEKETEETAL.

Prooj By Lemma 70 and Theorem 3. 1

THEOREM 72. M, is dynamic atomic.

Proof By Proposition 71 and Theorem 68. 1

An immediate consequence of Theorems 72, 68 and the Dynamic Atomicity
Theorem is that if Y is a generic system in which each generic object is either a
Moss object or a locking object, then Y is serially correct for all non-orphan trans-
action names.

10. CONCLUSIONS

We have presented a formal model for reasoning about atomic transactions that
can include nested subtransactions and have used it to carry out an extensive
development of the important ideas about locking algorithms. First, we have stated
the correctness conditions to be satisfied by transaction-processing algorithms; we
have stated these at the user interface to the transaction-processing system. Second,
we have stated and proved a general Serializability Theorem that can be used to
show the correctness of transaction-processing algorithms. Third, we have defined
the concept of “dynamic atomicity,” a sufficient condition for satisfying the
hypotheses of the Serializability Theorem. Fourth, we have presented two locking
algorithms: a new general commutativity-based locking algorithm and a previously
known read-update locking algorithm. Fifth, we have provided complete correct-
ness proofs for both algorithms. We have proved the general algorithm correct by
showing that it satisfies the dynamic atomicity condition, and then we have proved
the read-update algorithm correct by showing that it implements the general algo-
rithm. All of these tasks have been quite manageable within the given framework.

The proofs we have constructed are modular. A system is modeled in terms of a
number of components, and our proofs follow the modular decomposition of the
system. Many interesting concepts are captured by formal definitions, and many
facts about these concepts are captured by formally stated lemmas. This modularity
makes the development much easier to understand than it would be without it.
Moreover, much of the machinery is reusable for presenting and verifying other
algorithms.

We have already used our model to present and prove correctness of several
other kinds of transaction-processing algorithms, including timestamp-based algo-
rithms for concurrency control and recovery [2] and algorithms for management
of replicated data [121 and of orphan transactions [17]. Our treatment of
timestamp algorithms is especially noteworthy because it parallels the work in this
paper quite closely.

Briefly, the paper [2] contains descriptions of two timestamp algorithms: Reed’s
timestamp-based algorithm [34], designed for data objects that are accessible only
by read and write operations, and a new general algorithm that accommodates

COMMUTATIVITY-BASED LOCKING 153

arbitrary data types. (This latter algorithm generalizes work by Herlihy [16] for
single-level transactions.) These algorithms both involve assignment of ranges of
timestamp values to transactions in such a way that the interval of a child transaction
is included in the interval of its parent, and the intervals of siblings are disjoint.
Responses to accesses are determined from previous accesses with earlier
timestamps.

These algorithms are proved correct using the Serializability Theorem of this
paper. This time, the sibling order used is the timestamp order. Now the view
condition says that the processing of accesses to X is “consistent” with the
timestamp order, in that reordering the processing in timestamp order yields a
correct behavior for S,. The Serializability Theorem implies that the timestamp
algorithms are serially correct for all non-orphan transaction names. Again, each
algorithm is described as the composition of object automata and a controller.
Again, a local condition (“static atomicity”) is defined, this time saying that an
object satisfies the view condition using the timestamp order. As long as each object
is static atomic, the whole system is serially correct for non-orphan transactions.
Again, we have the flexibility to implement objects independently as long as static
atomicity is guaranteed. We show that both algorithms ensure static atomicity.

There is much more that could be done using this model. For example, it would
be interesting to model other kinds of locking algorithms, such as those using
multigranularity locking [131, tree locking [3], and predicate locking [9]. Perhaps
the dynamic atomicity and local dynamic atomicity conditions defined in this paper
will prove useful for reasoning about these other algorithms as well. It would also
be interesting to see if our Serializability Theorem can be used to prove correctness
of other concurrency control algorithms besides those based on locking or
timestamps.

There are other areas of transaction-processing systems that contain subtle, com-
plex algorithms that would benefit from a more rigorous analysis. For example, it
would be interesting to use our framework to model some of the complex trans-
action-processing algorithms that tolerate processor “crashes,” i.e., failures that
obliterate the contents of volatile memory [14]. Similarly, algorithms that manage
orphans resulting from node crashes in distributed systems [22] are complex, yet
no rigorous proof exists.

It would also be interesting to integrate our approach more closely with the
classical approach, to try to combine the advantages of both. Our framework is
more general than the classical model (b&ause of its integrated treatment of
concurrency control and recovery and because it allows transactions to nest). On
the other hand, our model includes more detail than the classical model, and so it
may seem more complicated. For example, the classical Serializability Theorem is
stated in simple combinatorial terms, while our Serializability Theorem involves a
fine-grained treatment of individual actions. We wonder if there is a simple
combinatorial condition similar to the hypothesis of the classical theorem (but
taking suitable account of nesting and failures), that implies the general correctness
conditions described in this paper.

154 FEKETE ET AL.

ACKNOWLEDGMENTS

We thank Jim Aspnes and Jennifer Welch for their many helpful comments on the material in this
paper. We also thank the anonymous referees for their detailed and insightful comments and suggestions.

REFERENCES

1. J. E. ALLCHIN, “An Architecture for Reliable Decentralized Systems,” Ph. D. thesis, Technical
Report GIT-ICS-83/23, Georgia Institute of Technology, September, 1983.

2. J. ASPNE.S, A. FEI(ETE, N. LYNCH, M. MERRITT, AND W. WEIHL, A Theory of timestamp-based
concurrency control for nested transactions, in “Proceedings, 14th International Conference on Very
Large Data Bases, August 1988.”

3. R. BAYER AND M. SCHKOLNICK, Concurrency of operations on B-trees, Acta Inform. 9 (1977) l-21.
4. C. BEERI, P. A. BERNSTEIN, AND N. GOODMAN, “A Model for Concurrency in Nested Transaction

Systems,” Technical Report TR-86-03, Wang Institute, March, 1986.
5. C. BEERI, P. BERNSTEIN, N. GOODMAN, M. LAI AND D. SHASHA, A concurrency control theory for

nested transactions, in “Proceedings, 2nd ACM Symposium on Principles of Distributed Computing,
August, 1983,” pp. 45-62.

6. P. A. BERNSTEIN AND N. GOODMAN, Multiversion concurrency control-Theory and algorithms,
ACM Trans. D&abuse Systems 8, No. 4 (1983), 465483.

7. P. BERNSTEIN, V. HADZILACOS AND N. GOODMAN, “Concurrency Control and Recovery in Database
Systems,” Addison-Wesley, Reading, MA, 1987.

8. C. T. DAVIES, Recovery semantics for DB/DC system, in “Proceedings, 28th ACM National
Conference, 1973,” pp. 136141.

9. K. P. ESWARAN, J. N. GRAY, R. A. LORIE AND I. L. TRAIGER, The notions of consistency and
predicate locks in a database system, Comm. ACM 19, No. 11 (1976), 624633; November
IBMRJ1487, December 1974.

10. A. FEKETE, N. LYNCH, M. MERRITT, AND W. WEIHL, Nested transactions and read/write locking, in
“6th ACM Symposium on Principles of Database Systems, San Diego, CA, March, 1987,”
pp. 97-111; expanded version available as Technical Memo MIT/LCS/TM-324, Laboratory for
Computer Science, MIT, Cambridge, MA, April 1987.

11. D. GAWLICK, Processing hot spots in high performance systems, in “Proceedings, 30th IEEE
Computer Society International Conference, 1985,” pp. 249-251.

12. K. GOLDMAN AND N. LYNCH, Nested transactions and Quorum consensus, in “Proceedings, 6th
ACM Symposium on Principles of Distributed Computing, August 1987,” pp. 2741; expanded
version available as Technical Report MIT/LCS/TM-390, Laboratory for Computer Science, MIT,
Cambridge, MA, May 1987.

13. J. GRAY, R. LORIE, A. PUTZULO, AND J. TRAIGER, “Granularity of Locks and Degrees of Consistency
in a Shared Database,” Technical Report RJ1654, IBM, September 1975.

14. J. GRAY, R. L~RIE, A. P~TZULO AND J. TRAIGER, The recovery manager of the System R Database
Manager, ACM Comput. Surveys 13, No. 2 (1981), 223-242.

15. V. HADZILACOS, A theory of reliability in database systems, J. Assoc. Compur. Mach. 35, No. 1
(1988), 121-145.

16. M. HERLIHY, Extending multiversion time-stamping protocols to exploit type information, IEEE
Trans. Comput. C-36, April 1987.

17. M. HERLIHY, N. LYNCH, M. MERRITT, AND W. WEIHL, On the correctness of orphan elimination
algorithms,.in “Proceedings, 17th IEEE Symposium on Fault-Tolerant Computing, 1987” pp. 8-13;
Also, MIT/LCS/TM-329, MIT Laboratory for Computer Science, Cambridge, MA, May 1987;
J. Assoc. Comput. Mach., to appear.

18. P. KANELLAKIS AND C. PAPADIMITRIOU, On concurrency control by multiple versions, in
“Proceedings, 1982 ACM Symposium on Theory of Computing.”

COMMUTATIVITY-BASED LOCKING 155

19. H. F. KORTH, Locking primitives in a database system, J. Assoc. Comput. Much. 30, No. 1 (1983)
55-79.

20. H. KUNG AND J. ROBINSON, On optimistic methods for concurrency control, ACM Trans. Database
Systems 6, No. 2 (1981), 213-226.

21. B. LAMPSON, Atomic transactions, in “Distributed Systems: Architecture and Implementation”
(Goos and Hartmanis, Eds.), Lecture Notes in Computer Science, Vol. 105, pp. 246-265, Springer-
Verlag, Berlin, 1981.

22. B. LISKOV, R. SCHEIFLER, E. F. WALKER, AND W. WEIHL, Orphan detection (extended abstract), in
“Proceedings, 17th International Symposium on Fault-Tolerant Computing, IEEE, July 1987.”

23. B. LISKOV, Distributed computing in Argus, Comm. ACM 31, No. 3, March, (1988), 300-312.
24. N. LYNCH, Concurrency control for resilient nested transactions, Adv. Comput. Res. 3 (1986),

335-373.
25. N. LYNCH AND M. MERRITT, Introduction to the theory of nested transactions, in “International

Conference on Database Theory, Rome, Italy, September, 1986,” pp. 278-305; expanded version in
MIT/LCS/TR-367, July 1986; Theoret. Compuf. Sci., to appear.

26. N. LYNCH AND M. TUTTLE, Hierarchical correctness proofs for distributed algorithms, in
“Proceedings 6th ACM Symposium on Principles of Distributed Computing, August 1987,”
pp. 137-151; expanded version available as Technical Report MIT/LCS/TR-387, Laboratory for
Computed Science, MIT, Cambridge, MA, April 1987.

27. N. LYNCH AND M. TUTTLE, An introduction to input/output automata, in “Centrum voor Wiskunde
en Informatica Quarterly;” Technical Memo MIT/LCS/TM-373, Lab for Computer Science, MIT,
November 1988.

28. J. G. MITCHELL AND J. DION, A comparison of two network-based file servers, Comm. ACM 25,
No. 4 (1982), 233-245, (Special issue: Selected papers from the Eighth Symposium on Operating
Systems Principles).

29. J. E. B. Moss, “Nested Transactions: An Approach to Reliable Distributed Computing,” Ph.D.
thesis, Massachusetts Institute of Technology, 1981; Technical Report MIT/LCS/TR-260,
Laboratory for Computer Science, MIT, April 1981; also, published by MIT Press, Cambridge, MA,
March 1985.

30. J. Moss, N. GRIFFETH, AND M. GRAHAM, “Abstraction in Concurrency Control and Recovery
Management” (revised), Technical Report COINS 86-20, University of Massachusetts at Amherst,
May 1986.

31. P. E. O’NEIL, The escrow transactional method, ACM Trans. Database Systems 11, No. 4 (1986),
405430.

32. C. H. PAPADIMITRIOU, The serializability of concurrent database updates, J. Assoc. Cornput. Much.
26, No. 4, October, (1979), 631-653.

33. C. PAPADIMITRIOU, “The Theory of Concurrency Control,” Comput. Sci. Press, Rockville, MD, 1986.
34. D. P. REED, “Naming and Synchronization in a Decentralized Computer System,” Ph. D. thesis;

Massachusetts Institute of Technology, 1978; Technical Report MIT/LCS/TR-205, Laboratory for
Computer Science, MIT, September 1978.

35. D. J. ROSENKRANTZ, R. E. STEARNS, AND P. M. LEWIS, System level concurrency control for
distributed database systems, ACM Trans. Darabase Systems 3, No. 2 (1978), 178-198.

36. P. M. SCHWARZ AND A. Z. SPECTOR, Synchronizing shared abstract types, ACM Trans. Comput.
Systems 2, No. 3 (1984) 223-250.

37. A. SPECTOR AND K. S~EDLOW, “Guide to the Camelot Distributed Transaction Facility: Release 1,
October, 1987,” available from Carnegie-Mellon University, Pittsburgh, PA.

38. R. THOMAS, A majority consenus approach to concurrency control for multiple copy databases,
ACM Trans. Da/abase Sysfems 4, No. 2 (1979), 18&209.

39. W. E. WEIHL, Commutativity-based concurrency control for abstract data types, IEEE Trans.
Compur 37, No. 12 (1988), 148881505; MIT/LCS/TM-367, MIT.

40. W. E. WEIHL, Local atomicity properties: Modular concurrency control for abstract data types,
ACM Trans. Prograrnm. Lang. Sysfems, April (1989).

156 FEKETE ET AL.

41. W. E. WEIHL, The impact of recovery on concurrency control, in “Proceedings, ACM Symposium
on Principles of Database Systems, March 1989,” Assoc. Comput. Mach., Philadelphia, 1989.

42. W. E. WEIHL, “Specilication and Implementation of Atomic Data Types,” Ph. D. thesis,
Massachusetts Institute of Technology, 1984; Technical Report MIT/LCS/TR-314, Laboratory for
Computer Science, MIT, Cambridge, MA, March 1984.

43. G. WEIKUM AND H.-J. SCHEK, Architectural issues of transaction management in multi-layered
systems, in “Proceedings, Tenth International Conference on Very Large Data Bases, Singapore,
August 1984,” pp. 454465.

44. G. WEIKUM, A theoretical foundation of multi-level concurrency control, in “Proceedings, 5th ACM
Symposium on Principles of Database Systems, March 1986.”

45. M. YANNAKAKIS, Serializability by locking, J. Assoc. Comput. Much. 31, No. 2 (1984) 227-244.

Printed in Belgium

