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We present a new model for describing and reasoning about transaction-processing 
algorithms. The model provides a comprehensive, uniform framework for rigorous correctness 
proofs. The model generalizes previous work on concurrency control to encompass nested 
transactions and type-specific concurrency control algorithms. Using our model, we describe 
general conditions for a concurrency control algorithm to be correct-i.e., to ensure that 
transactions appear to be atomic. We also present a new concurrency control algorithm for 
abstract data types in a nested transaction system. The algorithm uses commutativity proper- 
ties of operations to allow high levels of concurrency. The results of operations, in addition 
to their names and arguments, can be used in checking for conflicts, further increasing 
concurrency. We show, using our general model, that the new algorithm is correct. We also 
present a read-update locking algorithm due to Moss and prove it correct. The correctness 
proofs for the algorithms are modular, in the sense that we consider a system structure 
consisting of many objects, with concurrency control and recovery performed independently 

* The work of the first and second authors was supported in part by the Oftice of Naval Research 
under Contract NOOO14-85-K-0168, by the National Science Foundation under Grant CCR-8611442, 
and by the Defense Advanced Research Projects Agency (DARPA) under Contract N00014-83-K-0125. 
The work of the fourth author was supported in part by the National Science Foundation under Grant 
CCR-8716884, and by The Defense Advanced Research Projects Agency (DARPA) under Contract 
NOO014-83-K-0125. 

65 
0022-0000/90 $3.00 

Copyright 0 1990 by Academic Press. Inc. 
All rights of reproduction in any form reserved. 



66 FEKETE ET AL. 

at each object. We define a condition on individual objects, called dynamic atomicity, which 
has the property that as long as all objects in the system are dynamic atomic, transactions will 
appear atomic. We then show that each algorithm, considered at a single object, ensures 
dynamic atomicity. This means that different algorithms can be used at different objects; as 
long as each ensures dynamic atomicity, global atomicity of transactions is guaranteed. 
c 1990 Academic Press. Inc. 

1. INTRODUCTION 

This paper has two main contributions. First, we present a comprehensive model 
for nested transaction systems. The model allows rigorous proofs of a wide variety 
of transaction-processing algorithms in a single uniform framework. The model 
generalizes most previous work on concurrency control to encompass nested trans- 
actions and type-specific concurrency control algorithms. We used the model to 
define correctness for nested transaction systems and also to discuss alternative 
correctness criteria. 

Second, we present a new concurrency control and recovery algorithm for 
abstract data types in a nested transaction system and prove it correct. The 
algorithm, which generalizes an algorithm developed by Weihl [42, 391 to handle 
nested transactions, uses commutativity properties of operations to achieve high 
levels of concurrency. The results of operations, in addition to their names and 
arguments, can be used in checking for conflicts, further increasing concurrency. 

As part of our development of the general model, we present a theorem that 
provides a general sufficient condition for a transaction-processing algorithm to be 
correct. This condition is analogous to the “absence of cycles” condition used in the 
more classical work on concurrency control (e.g., see [7]). We use the condition as 
the basis of the correctness proof of the algorithms presented in this paper. We have 
also used it in other work to prove the correctness of other algorithms. For 
example, in [2], we prove the correctness of Reed’s multi-version timestamping 
algorithm [34] and of a type-specific variation of Reed’s algorithm that uses the 
semantics of operations to permit more concurrency. 

The description and correctness proof of our algorithm are modular. We consider 
a system structure consisting of many objects, with concurrency control and 
recovery performed independently at each object. We define a condition on 
individual objects, called dynamic atomicity, with the property that as long as all 
objects in the system are dynamic atomic, transactions will appear atomic. We then 
show that our algorithm, when used to implement a single object, ensures dynamic 
atomicity. This means that our algorithm can be used at some objects and other 
algorithms at other objects in the same system; as long as each algorithm ensures 
dynamic atomicity, global atomicity of transactions is guaranteed. 

Dynamic atomicity is ensured by a wide range of concurrency control algorithms, 
including most popular variations on two-phase locking [9]. We also present the 
read-update locking algorithm developed by Moss [29] for nested transactions and 
prove that it ensures dynamic atomicity. 
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The generality of the model presented here is illustrated in part by the two 
algorithms that are described and verified in this paper and by the proofs 
of the timestamp-based algorithms (including multi-version algorithms) in [2]. 
In addition, with others we have used the model presented here to prove the 
correctness of algorithms for management of replicated data [ 121 and of orphan 
transactions [ 171. 

The remainder of this paper is organized as follows. We begin in Section 2 with 
some background on nested transactions and a brief discussion of related work. 
Then, in Sections 3 through 5, which constitute the first major part of this paper, 
we present our general model. In Section 3, we describe input/output automata, 
which provide the formal foundation for our work. In Section 4, we define correct- 
ness for a nested transaction system. Finally, in Section 5, we present our 
Serializability Theorem, which describes general sufficient conditions that can be 
used to prove the correctness of many concurrency control algorithms. 

In Sections 6 through 9, which constitute the second major part of this paper, we 
describe our new algorithm and Moss’ algorithm and prove them correct. In 
Section 6, we define dynamic atomicity and prove that it is a local atomicity 
property [42,40]-i.e., that if each object in a system is dynamic atomic, then the 
system is correct. In Section 7, we define the properties of operations, such as 
commutativity, that are used by the two algorithms to be presented later. Next, in 
Section 8, we present our new commutativity-based locking algorithm and prove it 
correct. Finally, in Section 9, we present the description and proof of Moss’s read- 
update locking algorithm. 

Finally, we conclude the paper in Section 10 with a summary and a discussion 
of future work. 

2. BACKGROUND 

The abstract notion of “atomic transaction” was originally developed to hide the 
effects of failures and concurrency in centralized database systems. It has since been 
generalized to incorporate a nested structure and has been applied to problems in 
both centralized and distributed systems. 

2.1. Atomic Transactions 

Roughly speaking, a transaction is a sequence of accesses to data objects; it 
should execute “as if” it ran with no interruption by other transactions. Moreover, 
a transaction can complete either successfully or unsuccessfully, by “committing” or 
“aborting.” If it commits, any alterations it makes to the database should be lasting; 
if it aborts, it should be “as if” it never altered the database at all. The execution 
of a set of transactions should be “serializable,” that is, equivalent to an execution 
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in which no transactions run concurrently and in which all accesses of committed 
transactions, but no accesses of aborted transactions, are performed. 

The original motivation for transactions was to provide a way of maintaining the 
consistency of a database. Maintaining consistency is difficult because the hardware 
can fail and because users can access the database concurrently. Transactions 
provide fault-tolerance by guaranteeing that either all or none of the effects of a 
transaction occur. Transactions also simplify the problems of concurrent access by 
synchronizing the access of concurrent users so that the users appear to access the 
database sequentially. The net effect is that one can guarantee that consistency is 
preserved by ensuring that each transaction, when run alone and to completion, 
preserves consistency. Given that each transaction preserves consistency, any serial 
execution of transactions without failures (i.e., where each transaction runs to 
completion) also preserves consistency. Since any serializable concurrent execution 
is equivalent to a serial execution without failures, any serializable concurrent 
execution also preserves consistency. 

Although much of the database literature focuses on preserving consistency, this 
alone is not enough. Consider, for example, a simple database system in which no 
transaction ever actually modifies the database. Such a database is always in a con- 
sistent state (assuming that the initial state is consistent), but it is not very useful. 
A useful system should also guarantee something about the connection between 
different transactions, and between transactions and the database state. For 
example, ordinary serializability requires the final state of the database to be the 
same as after a serial execution in which the same transactions occur. The “view 
serializability” condition insists in addition that accesses to data return the same 
values as in the equivalent serial execution. Also, either ordinary serializability or 
view serializability can be augmented by an “external consistency” condition, which 
requires that the order of transactions in the equivalent serial execution should be 
compatible with the order in which transaction invocations and responses occur. A 
discussion of several correctness conditions can be found in Chapter 2 of the book 
by Papadimitriou [33]. 

Recently, transactions have been explored as a way of organizing programs for 
distributed systems [23, 373. Here, their purpose is not just to provide a way of 
keeping the state of the database consistent but also to provide the programmer 
with mechanisms that simplify reasoning about programs. Failures and concurrency 
make it harder to reason about programs because of the complexity of the interac- 
tions among concurrent activities and because of the multitude of failure modes. 
(See, for instance, the banking example in [23].) Transactions help here by allow- 
ing the programmer to view a complex piece of code as if it is run atomically: it 
appears to happen instantaneously, and it happens either completely or not at all. 

2.2. Nested Transactions 

In order for transactions to be useful for general distributed programming, the 
notion needs to be extended to include nesting. Thus, in addition to accesses to 
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data objects, a transaction can also contain subtransactions. The transaction 
nesting structure can be described by a forest, with the top-level transactions at the 
roots and the accesses to data at the leaves. (We do not place any constraints on 
the structure of the transaction trees. For example, we do not require all the leaves 
to be at the same level. Instead, leaves may occur at any level, so that a top-level 
transaction might itself be a leaf representing a single data access, or it might 
invoke both a subtransaction and a data access as children.) The semantics of 
nested transactions generalize those of ordinary transactions as follows. Each set of 
sibling transactions or subtransactions is supposed to execute serializably. As with 
top-level transactions, subtransactions can commit or abort. Each set of sibling 
transactions runs as if all the transactions that committed ran in a serial order and 
all the transactions that aborted did not run at all. An external consistency property 
is also required for each set of siblings, ensuring that if a transaction waits for one 
child T to complete before invoking another child T’, then T is before T’ in the 
apparent serial order. 

Nested transactions provide a flexible programming mechanism. They allow the 
programmer to describe more concurrency than would be allowed by single-level 
transactions, by having transactions request the creation of concurrent sub- 
transactions. They also allow localized handling of transaction failures. When a 
subtransaction commits or aborts, the commit or abort is reported to its parent 
transaction. The parent can then decide on its next action based on the reported 
results. For example, if a subtransaction aborts, its parent can use the reported abort 
to trigger another subtransaction, one that implements some alternative action. 
This flexible mechanism for handling failures is especially useful in distributed 
systems, where failures are more common because of unreliable communication and 
where one node can keep running while another node is down. 

Nested transactions are useful in other ways in distributed systems. For example, 
they can be used to implement remote procedure calls with a “zero or once” seman- 
tics: the call appears to happen either zero or one times despite retransmissions of 
request messages caused by poorly chosen timeouts, lost acknowledgements, and 
other problems of unreliable communication. This is accomplished by treating 
incomplete or redundant calls as aborted subtransactions of the caller and by 
undoing their activity without aborting the successful call. For another example, 
nested transactions aid in the construction of replicated systems. The reading and 
writing of individual copies of data objects can be done as subtransactions; even if 
some of the copies fail to respond (causing their subtransactions to fail), the overall 
transaction can still succeed if enough of the copies respond. 

The idea of nested transactions seems to have originated in the “spheres of 
control” work of Davies [S]. Reed [34] developed the current notion of nesting 
and designed a timestamp-based implementation. Moss [29] later designed a 
locking implementation that serves as the basis of the implementation of the Argus 
programming language. The notion of nesting studied here is analogous to levels of 
procedural abstractions. A related but more complex notion of nesting, emphasizing 
levels of data abstraction, is used in System R and has been studied in a number 
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of papers, including work by Beeri et al. [S, 41, Moss et al. [30], and 
Weikum [44]. 

2.3. Transaction-Processing Algorithms 

Many algorithms have been proposed and used for implementing non-nested 
atomic transactions [9, 38, 201 and also for implementing nested transactions 
[34,29]. These algorithms make use of various techniques, including some based 
on locks, timestamps, multiple versions of data objects, and multiple replicas. The 
most popular algorithms in practice are probably “read-update” locking algorithms 
such as those in [9, 291, in which transactions must acquire read locks or update 
locks on data objects in order to access the objects in the corresponding manner. 
Update locks are defined to conflict with other locks on the same data object, and 
conflicting locks are not permitted to be held simultaneously. Thus, a transaction 
that updates a data object prevents or delays the operation of any other transaction 
that also wishes to update the same object. The recent book by Bernstein et al. [7] 
provides an excellent survey of many of the most important transaction-processing 
algorithms for non-nested transactions. 

While read-update locking is simple and widely used, in some situations it can 
result in poor performance. Many systems contain “concurrency bottlenecks”: for 
example, if the data is organized into a graph structure, the roots of the structure 
are likely to be accessed by most of the transactions. If read-update locking is used, 
a transaction that modifies the roots will prevent any other transaction from 
accessing the root until the modifying transaction commits and releases its lock. 
Thus, most transactions will be blocked for a significant period, and throughput 
will suffer. Examples of such situations arise in index structures (e.g., a B-tree) and 
in resource allocation problems (e.g., a free list of disk blocks). Concurrency 
bottlenecks also occur when the database contains data that summarizes other 
data, such as a record of the total assets of a bank. In such cases, most transactions 
that update the database will need to update the summary data and thus will 
exclude one another from concurrent activity if update locks need to be obtained 
on the summary data. 

In the last decade, many researchers have explored using type-specific con- 
currency control algorithm to avoid concurrency bottlenecks (e.g., see [19, 42, 40, 
39, 36, 1, 5, 4, 30, 43, 44, 311). Read-update locking itself is a simple example of 
such an algorithm: transactions executing read operations can be allowed to run 
concurrently without sacrificing atomicity. The correctness of this algorithm 
depends on type-specific properties of the transactions, namely, that certain opera- 
tions do not modify the state of the database. This example can be generalized to 
allow more concurrency than can be permitted by read-update locking. For exam- 
ple, operations on summary data such as the total assets of a bank often include 
increment, decrement, and read operations. Increment and decrement operations 
are executed by transactions that transfer money into or out of the bank. Using 
read-update locking, transactions executing increment and decrement operations 
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must exclude each other. However, it is possible to design more permissive 
concurrency control algorithms for this example, using the fact that increment and 
decrement operations commute to allow transactions executing them to run 
concurrently. (Cf. IMS Fast Path [ll].) 

In this paper we present and prove correct two algorithms: a read-update locking 
algorithm developed by Moss [29] and a new commutativity-based locking algo- 
rithm, which allows transactions to proceed concurrently as long as their opera- 
tions commute (in a precise sense to be defined below). Our commutativity-based 
locking algorithm generalizes most existing type-specific locking algorithms in 
several ways. First, it works for nested transactions. Second, it works for arbitrary 
abstract data types, including types whose operations may be both partial and non- 
deterministic. Third, it allows the results of operations, as well as their names and 
arguments, to be used in checking for conflicts; this gives the effect of a finer 
“granularity” of locking, thus providing more concurrency. The algorithm is based 
on one developed by Weihl [42, 391, generalized to handle nested transactions. 

2.4. Formal Models 

There are two reasons why a formal model is needed for reasoning about atomic 
transactions. First, the implementors of languages that contain transactions need a 
model with which to reason about the correctness of their implementations. Some 
of the algorithms that have been proposed for implementing transactions are com- 
plicated, and informal arguments about their correctness are not convincing. In 
fact, it is not even obvious how to state the precise correctness conditions to be 
satisfied by the implementations; a model is needed for describing the semantics of 
transactions carefully and formally. Second, if programming languages containing 
transactions become popular, users of these languages will need a model to help 
them reason about the behavior of their programs. 

Much of the prior work on formal models is summarized in [7]. This “classical” 
theory is primarily applicable to single-level transactions, rather than nested trans- 
actions. It treats both concurrency control and recovery algorithms, although the 
treatments of the two kinds of algorithms are not completely integrated. The theory 
assumes a system organization in which accesses are passed from the transactions 
to a “scheduler,” which determines the order in which they are to be performed by 
the database. The database handles recovery from transaction abort and media 
failure, so that each access to one data object is performed in the state resulting 
from all previous non-aborted accesses to that object. “Serializability” is defined in 
this model by requiring an execution of the same system to exist in which the trans- 
actions run one at a time (without interleaving of steps from different transactions) 
and perform the same steps. Proofs for some algorithms are presented, primarily 
based on one combinatorial theorem, the “Serializability Theorem.” This important 
basic theorem states that serializability is equivalent to the absence of cycles in a 
graph representing dependencies among transactions. 

There has also been some recent work extending some of the ideas of the classical 
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theory to encompass nested transactions involving levels of data abstraction 
[S, 4,441); this work is aimed at developing proof techniques for type-specific 
concurrency control algorithms, such as the commutativity-based locking algorithm 
presented later in this paper. 

The classical theory and its extensions to handle type-specific algorithms have 
several limitations that we have tried to avoid in our work. First, the notion of 
correctness, stated as it is in terms of the existence of a serial execution of the same 
system, is too restrictive. The implementation of the system does not serve as an 
adequate specification of the permissible serial executions, particularly when the 
specification permits operations to be nondeterministic but the implementation 
restricts the nondeterminism. In the approach we describe in this paper, we define 
the correctness of a system relative to a separate specification of the permissible 
serial executions. 

Second, the classical theory defines correctness for a particular system organiza- 
tion. In early work, such as [32], the interface between the scheduler and the 
database that is described is suitable for single-version locking and timestamp algo- 
rithms (in the absence of transaction aborts), but it is much less appropriate for 
other kinds of algorithms. Multi-version algorithms and replicated data algorithms, 
for example, maintain state information in a form that is quite different from the 
(single-copy latest-value) form used for the simple algorithms, and the appropriate 
interface between the scheduler and the database is also different. In later work, 
such as [ 18, 61, the interface between the scheduler and the database is changed to 
accomodate multi-version algorithms. In effect, a different model is used to define 
correctness for different classes of algorithms. It seems more appropriate and useful, 
in not unduly restricting possible implementations, to state correctness conditions 
in a way that does not depend on the details of a particular system organization 
and that does not require different definitions for different classes of algorithms. 

Third, most of the classical work ignores recovery. Typically, the informal 
assumption that “some underlying recovery mechanism ensures that aborted trans- 
actions have no effect” is captured formally by studying only executions in which 
all transactions commit. It the process, however, assumptions are made about the 
way in which the database processes operations; in particular, the database is 
assumed to use an “update-in-place” strategy, which requires basing recovery on 
some sort of “undo log.” (In the work that does include a model of recovery and 
aborts (e.g., [30, 15]), similar assumptions are made about the use of an update-in- 
place strategy for recovery.) As shown by Weihl [41], there are useful concurrency 
control and recovery algorithms based on other approaches to recovery that do not 
match the assumptions made in the classical theory (e.g., a “deferred-update” 
strategy, using intentions lists [21,28] for recovery). 

Furthermore, the different strategies for recovery place different constraints on 
concurrency control, so that there exist intuitively correct concurrency control algo- 
rithms that use intentions lists for recovery that do not work with undo logs and 
hence cannot be considered correct in a model that restricts recovery to an update- 
in-place strategy. 
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There are other aspects of the classical work that seem to make it difficult to 
extend to handle nested transactions. For example, there is no operational model 
(i.e., an execution model, or operational semantics) for transactions; instead, they 
are characterized using axioms about their executions. We have found many situa- 
tions in which such an operational model is useful. For example, it is possible for 
a transaction to create a subtransaction because of the fact that an earlier sub- 
transaction aborted; an operational model is helpful in capturing this dependency. 
Also, it is sometimes interesting to describe how the same transaction would behave 
in different systems. Such reasoning is facilitated by an operational model, such as 
the one used in this paper, that clarifies which actions occur under the transaction’s 
control, and which are due to activity of the environment. 

The model we present in this paper provides an explicit operational model for 
transactions and for the other components of a system. Our definition of correct- 
ness, described in detail later in the paper, relies on a specification of the acceptable 
behavior of a system in the absence of concurrency and failures; this specification 
is separate from the description of the system itself. Taking this approach allows us 
to give a single definition of correctness that applies to a wide range of systems, 
including both single-version and multi-version systems, as well as systems that use 
a wide range of methods for recovery. Our model includes explicit events for aborts; 
as discussed later in the paper, this avoids restrictive assumptions about recovery 
that are made in the classical theory. 

Another difference between our work and the “classical” work on concurrency 
control is that we include more events in our model. For example, we include 
separate events for the request by a transaction to perform an access to an object, 
the invocation of the access at the object, the completion of the access at the object, 
the decision by the system that the access is to be committed rather than aborted, 
and the report to the transaction of the results of the access. In the classical theory, 
these five separate events from our model would be represented by a single event. 
Partly because of the technical tools that we employ in this paper, we have found 
it convenient to distinguish these different events. In addition, the introduction of 
nesting and aborts into the model, both of which are missing in the classical theory, 
requires us to state certain properties that seem difficult to state without dis- 
tinguishing between these different events. At the same time, however, our model is 
more complex because of the greater level of detail. Some of this complexity may 
be inherent in the systems being studied, and some is certainly due to our desire to 
state definitions and results so that they -apply to as broad a range of systems as 
possible. 

In earlier work, Lynch [24] provided a complete proof of an exclusive locking 
algorithm for nested transactions, but the framework used there does not appear to 
extend easily to treat many other transaction-processing algorithms. The approach 
taken in this paper was started by Lynch and Merritt in [25], with an analysis of 
an exclusive locking algorithm, and developed further [lo], with an analysis of a 
read/write locking algorithm. In this paper we present a theory that is significantly 
more general than that used in this earlier work. 
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3. THE INPUT/OUTPUT AUTOMATON MODEL 

In order to reason carefully about complex concurrent systems such as those that 
implement atomic transactions, it is important to have a simple and clearly defined 
formal model for concurrent computation. The model we use for our work is the 
input/output automaton model [26,27]. This model allows careful and readable 
descriptions of concurrent algorithms and of the correctness conditions that they 
are supposed to satisfy. The model can serve as the basis for rigorous proofs that 
particular algorithms satisfy particular correctness conditions. 

This section contains an introduction to a simple special case of the model that 
is sufficient for use in this paper. Since we consider only properties of finite execu- 
tions in this paper, we omit aspects of the model that are concerned with describing 
and verifying “liveness” or “fairness” properties. 

3.1. Mathematical Preliminaries 

We rely on several basic mathematical concepts in this paper. To make the paper 
self-contained and to avoid confusion about possibly non-standard terminology, we 
summarize these concepts here. 

An irreflexive partial order is a binary relation that is irreflexive, antisymmetric, 
and transitive. Two binary relations R and S are consistent if their union can be 
extended to an irreflexive partial order (or in other words, if their union has no 
cycles). 

The formal subject matter of this paper is concerned with finite and infinite 
sequences describing the executions of automata. Usually, we will be discussing 
sequences of elements from a universal set of actions. Formally, a sequence /I of 
actions is a mapping from a prefix of the positive integers to the set of actions. We 
describe the sequence by listing the images of successive integers under the map- 
ping, writing /? = rci n2n3 . . . ’ Since the same action may occur several times in a 
sequence, it is convenient to distinguish the different occurrences. Thus, we refer to 
a particular occurrence of an action in a sequence as an event. Formally, an event 
in a sequence fi = n, rrc2 . . . of actions is an ordered pair (i, n), where i is a positive 
integer and n is an action, such that n;, the ith action in /?, is rc. 

If p is a sequence of actions and A is a set of actions, then /3 1 A, the projection 
of p on the set A, is the subsequence of p containing exactly the occurrences in b 
of actions in A. 

A set of sequences P is prefix-closed provided that whenever p E P and y is a 
prefix of B, it is also the case that y E P. Similarly, a set of sequences P is limit-closed 
provided that any sequence all of whose finite prefixes are in P is also in P. 

’ We use the symbols 8, -p, . . for sequences of actions and the symbols n, 4, and I) for individual 
actions. 
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3.2. Basic Definitions 

Each system component is modeled as an “I/O automaton,” which is a mathe- 
matical object somewhat like a traditional finite-state automaton. However, an I/O 
automaton need not be finite-state but can have an infinite state set. The actions of 
an I/O automaton are classified as either “input,” “output,” or “internal.” This 
classification is a reflection of a distinction in the system being modeled between 
events (such as the receipt of a message) that are caused by the environment, events 
(such as sending a message) that the component can perform when it chooses and 
that affect the environment, and events (such as changing the value of a local 
variable) that a component can perform when it chooses but that are undetectable 
by the environment except through their effects on later events. In the model, an 
automaton generates output and internal actions autonomously and transmits out- 
put actions instantaneously to its environment. In contrast, the automaton’s input 
is generated by the environment and transmitted instantaneously to the automaton. 
The distinction between input and other actions is fundamental, based on who 
determines when the action is performed: an automaton can establish restrictions 
on when it will perform an output or internal action, but it is unable to block the 
performance of an input action. 

3.2.1. Action Signatures 

A formal description of the classification of an automaton’s actions is given by 
an “action signature.” An action signature S is an ordered triple consisting of three 
pairwise-disjoint sets of actions. We write in(S), out(S), and int(S) for the three 
components of S, and refer to the actions in the three sets as the input actions, out- 
put actions, and internal actions of S, respectively. We let ext(S) = in(S) u out(S) 
and refer to the actions in ext(S) as the external actions of S. Also, we let 
local(S) = int(S) u out(S) and refer to the actions in local(S) as the locally 
controlled actions of S. Finally, we let acts(S) = in(S) u out(S) u int(S) and refer to 
the actions in acts(S) as the actions of S. 

An external action signature is an action signature consisting entirely of external 
actions, that is, having no internal actions. If S is an action signature, then the 
external action signature of S is the action signature extsig(S) = (in(S), out(S), a), 
i.e., the action signature that is obtained from S by removing the internal actions. 

3.2.2. Input/Output Automata 

An input/output automaton A (also called an I/O automaton or simply an 
automaton) consists of four components: 

l an action signature sig(A), 
. a set states(A) of states, 
l a nonempty set start(A) G states(A) of start states, and 
l a transition relation steps(A) E states(A) x acts(sig(A)) x states(A), with the 
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property that for every state s’ and input action 71 there is a transition (s’, 71, s) in 
steps(d).* 

Note that the set of states need not be finite. We refer to an element (s’, n, S) of 
steps(d) as a step of A. The step (s’, z, S) is called an input step of A if n is an input 
action, and output steps, internal steps, external steps, and locally controlled steps 
are defined analogously. If (s’, 71, s) is a step of A, then n is said to be enabled in 
s’. Since every input action is enabled in every state, automata are said to be input- 
enabled. The input-enabling property means that an automaton is not able to block 
input actions. If A is an automaton, we sometimes write acts(A) as shorthand for 
acts(sig(d)), and likewise for in(A), out(A), etc. An I/O automaton A is said to be 
closed if all its actions are locally controlled, i.e., if in(A) = @. 

Note that an I/O automaton can be “nondeterministic,” by which we mean two 
things: that more than one locally controlled action can be enabled in the same 
state and that the same action, applied in the same state, can lead to different suc- 
cessor states. This nondeterminism is an important part of the model’s descriptive 
power. Describing algorithms as nondeterministically as possible tends to make 
results about the algorithms quite general, since many results about nondeter- 
ministic algorithms apply a fortiori to all algorithms obtained by restricting the 
nondeterministic choices. Moreover, the use of nondeterminism helps to avoid 
cluttering algorithm descriptions and proofs with inessential details. Finally, the 
uncertainties introduced by asynchrony make nondeterminism an intrinsic property 
of real concurrent systems, and so an important property to capture in our formal 
model of such systems. 

3.2.3. Executions, Schedules, and Behaviors 

When a system is modeled by an I/O automaton, each possible run of the system 
is modeled by an “execution,” an alternating sequence of states and actions. The 
possible activity of the system is captured by the set of all possible executions that 
can be generated by the automaton. However, not all the information contained in 
an execution is important to a user of the system, or to an environment in which 
the system is placed. We believe that what is important about the activity of a 
system is the externally visible events and not the states or internal events. Thus, 
we focus on the automaton’s “behaviors’‘-the subsequences of its executions con- 
sisting of external (i.e., input and output) actions. We regard a system as suitable 
for a purpose if any possible sequence of externally visible events has appropriate 
characteristics. Thus, in the model, we formulate correctness conditions for an I/O 
automaton in terms of properties of the automaton’s behaviors. 

Formally, an execution fragment of A is a finite sequence sgnls,rc2... rc,s, or 
infinite sequence sgnls,z2... rc,s “... of alternating states and actions of A such that 
(Si, xi+ 13 si+ 1 ) is a step of A for every i for which si+ 1 exists. An execution 

‘I/O automata, as defined in 1261, also include a fifth component, an equivalence relation on 
local(sig(ri)). This component is used for describing fair executions and is not needed for the results 
described in this paper. 
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fragment beginning with a start state is called an execution. We denote the set of 
executions of A by execs(A), and the set of finite executions of A by linexecs(A). 
A state is said to be reachable in A if it is the final state of a finite execution of A. 

The schedule of an execution fragment tl of A is the subsequence of a consisting 
of actions, and is denoted by sched(cr). We say that p is a schedule of A if /I is the 
schedule of an execution of A. We denote the set of schedules of A by scheds(A) 
and the set of finite schedules of A by finscheds(A). The behavior of a sequence /I 
of actions in acts(A), denoted by beh(P), is the subsequence of /I consisting of 
actions in ext(A). The behavior of an execution fragment a of A, denoted by beh(a), 
is defined to be beh(sched(a)). We say that /I is a behavior of A if /I is the behavior 
of an execution of A. We denote the set of behaviors of A by behs(A) and the set 
of finite behaviors of A by linbehs(A). 

An extended step of an automaton A is a triple of the form (s’, /I, s), where s’ and 
s are in states(A), fl is a finite sequence of actions in acts(A), and there is an execu- 
tion fragment of A having s’ as its first state, s as its last state, and /I as its schedule. 
(This execution fragment might consists of only a single state, in the case that p is 
the empty sequence.) If y is a sequence of actions in ext(A), we say that (s’, y, s) is 
a moue of A if there is an extended step (s’, j?, S) of A such that y = beh(/?). 

We say that a finite schedule p of A can leave A in state s if there is some finite 
execution c( of A with final state s and with sched(a) = j. We say that an action z 
is enabled after a finite schedule fl of A if there is a state s such that /I can leave 
A in state s and rr is enabled in S. 

If CI is any sequence of actions and A is an automaton, we write a 1 A for 
c[ 1 acts(A). 

3.3. Composition 

Often, a single system can also be viewed as a combination of several component 
systems interacting with one another. To reflect this in our model, we define an 
operation called “composition,” by which several I/O automata can be combined to 
yield a single I/O automaton. Our composition operator connects each output 
action of the component automata with the identically named input actions of any 
number (usually one) of the other component automata. In the resulting system, an 
output action is generated autonomously by one component and is thought of as 
being instantaneously transmitted to all components having the same action as an 
input. All such components are passive recipients of the input, and take steps 
simultaneously with the output step. 

3.3.1. Composition of Action Signatures 
We first define composition of action signatures. Let Z be an index set that is at 

most countable. A collection { Si}icl of action signatures is said to be strongly 
compatible3 if we have 

’ A weaker notion called “compatibility” is defined in [26], consisting of the first two of the three 
given properties only. For the purposes of this paper, only the stronger notion will be required. 
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1. out(Si) n out(Sj) = 0, for all i,je I such that i#j, 
2. int(Si) n acts(Sj) = 0, for all i, je I such that i # j, and 
3. no action is in acts(Si) for infinitely many i. 

Thus, no action is an output of more than one signature inthe collection, and inter- 
nal actions of any signature do not appear in any other signature in the collection. 
Moreover, we do not permit actions involving infinitely many component 
signatures. 

The composition S = n, E I Si of a collection of strongly compatible action 
signatures { Si} ie, is defined to be the action signature with 

l in(S)=UiE,in(Sj)-lJ;.,out(S,), 
l out(S) = uic, out(Si), and 
l int(S)= Uj,,int(Si). 

Thus, output actions are those that are outputs of any of the component signatures, 
and similarly for internal actions. Input actions are any actions that are inputs to 
any of the component signatures, but outputs of no component signature. 

3.3.2. Composition of Automata 

A collection {Ai}i,, of automata is said to be strongly compatible if their action 
signatures are strongly compatible. The composition A = nicl Ai of a strongly 
compatible collection of automata {Aj)j,I has the following components:4 

l sig(A)=FIjEIsk(Ai), 

l states(A) = nre, states(Ai), 
l start(A) = nisi start(Ai), and 
l steps(A) is the set of triples (s’, 7t, s) such that for all ieZ, (a) if ICE acts(Ai) 

then (s’[i], rr, s[i]) E steps(Ai), and (b) if z $ acts(A,) then s’[i] = s[i].’ 

Since the automata Ai are input-enabled, so is their composition, and hence their 
composition is an automaton. Each step of the composition automaton consists of 
all the automata that have a particular action in their action signature performing 
that action concurrently, while the automata that do not have that action in their 
signature do nothing. We will often refer to an automaton formed by composition 
as a “system” of automata. 

If LY=sg711s1... is an execution of A, let ~11 Ai be the sequence obtained by deleting 
zjsj, when nj is not an action of Ai, and replacing the remaining sj by sj[i]. Recall 
that we have previously defined a projection operator for action sequences. The two 
projection operators are related in the obvious way: sched(cl ) Ai) = sched(a) 1 Ai 
and, similarly, beh(cr 1 Ai) = beh(a) 1 Ai. 

4 Note that the second and third components listed are just ordinary Cartesian products, while the 
first component uses a previous definition. 

5 We use the notation s[i] to denote the ith component of the state vector S. 
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In the course of our discussions we will often reason about automata without 
specifying their internal actions. To avoid tedious arguments about compatibility, 
henceforth we assume that unspecified internal actions of any automaton are 
unique to that automaton and do not occur as internal or external actions of any 
of the other automata we discuss. 

All of the systems that we will use for modeling transactions are closed systems; 
that is, each action is an output of some component. Also, each output of a compo- 
nent will be an input of at most one other component. 

3.3.3. Properties of Systems of Automata 

Here we give basic results relating executions, schedules, and behaviors of a 
system of automata to those of the automata being composed. The first result says 
that the projections of executions of a system onto the components are executions 
of the components and similarly for schedules, etc. 

PROPOSITION 1. Let (Ai}i, t be a strongly compatible collection of automata, and 
let A = ni,, Ai. If a E execs(A) then a 1 Ai E execs(Ai) for all ie I. Moreover, the same 
result holds for finexecs, scheds, finscheds, behs, and finbehs in place of execs. 

Certain converses of the preceding proposition are also true. In particular, we can 
prove that schedules of component automata can be “patched together” to form a 
schedule of the composition, and similarly for behaviors. 

PROPOSITION 2. Let {Aj}i,I be a strongly compatible collection of automata, and 
let A=niG,Ai. 

1. Let /I be a sequence of actions in acts(A). rf /I 1 Ai E scheds(Ai) for all i E I, 
then /I E scheds(A). 

2. Let /? be a finite sequence of actions in acts(A). rf /I 1 Ai E linscheds(Ai) for 
all i E Z, then b E linscheds(A). 

3. Let /I be a sequence of actions in ext( A). Zf /? 1 A i E behs( A ;) for all i E Z, then 
/I E behs( A). 

4. Let p be a finite sequence of actions in ext(A). If /I ( Ai E finbehs(A;) for all 
i E I, then /3 E linbehs(A). 

The preceding proposition is useful in proving that a sequence of actions is a 
behavior of a composition A: it suffices to show that the sequence’s projections are 
behaviors of the components of A and then to appeal to Proposition 2. 

3.4. Implementation 

We define a notion of “implementation” of one automaton by another. Let A 
and B be automata with the same external action signature, i.e., with 
extsig(A) = extsig(B). Then A is said to implement B if linbehs(A) c finbehs(B). One 
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way in which this notion can be used is the following. Suppose we can show that 
an automaton B is “correct,” in the sense that its finite behaviors all satisfy some 
specified property. Then if another automaton A implements B, A is also correct. 
One can also show that if A implements B, then replacing B by A in any system 
yields a new system in which all finite behaviors are behaviors of the original system.6 

In order to show that one automaton implements another, it is often useful to 
demonstrate a correspondence between states of the two automata. Such a corre- 
spondence can often be expressed in the form of a kind of abstraction mapping that 
we call a “possibilities mapping,” defined as follows. Suppose A and B are automata 
with the same external action signature, and supposef is a mapping from states(A) 
to the power set of states(B). That is, if s is a state of A, f(s) is a set of states of 
B. The mapping f is said to be a possibilities mapping from A to B if the following 
conditions hold: 

1. For every start state s0 of A, there is a start state t, of B such that 
to E fboh 

2. Let s’ be a reachable state of A, t’ Ed a reachable state of B, and 
(s’, rc, s) a step of A. Then there is an extended step, (t’, y, t), of B (possibly having 
an empty schedule) such that the following conditions are satisfied: 

3. a. y 1 ext( B) = x 1 ext(A ), and 
b. t Ed. 

PROPOSITION 3. Suppose that A and B are automata with the same external action 
signature and there is a possibilities mapping, f, from A to B. Then A implements B. 

3.5. Preserving Properties 

Although automata in our model are unable to block input actions, it is often 
convenient to restrict attention to those behaviors in which the environment 
provides inputs in a “sensible” way, that is, where the environment obeys certain 
“well-formedness” restrictions. A useful way of discussing such restrictions is in 
terms of the notion that an automaton “preserves” a property of behaviors: as long 
as the environment does not violate the property neither does the automaton. Such 
a notion is primarily interesting for properties that are prefix-closed and limit- 
closed. Let @ be a set of actions and P be a nonempty, prefix-closed, limit-closed 
set of sequences of actions in @ (i.e., a nonempty, prefix-closed, limit-closed 
“property” of such sequences). Let A be an automaton with @n int(A) = 0. We 
say that A preserves P $8~ 1 A E tinbehs(A), n E out(A), and /3 1 @E P together imply 
that /?z 1 @E P. (Note that in the case CD n out(A) = 0, A trivially preserves P.) 

6A stronger and often useful notion of “A implements B” would require both finite and infinite 
behaviors of A to be behaviors of B, behs(A) c behs(l). As observed by Rosenkrantz et nl [35], this 
condition is too strong for us to use in defining correctness conditions for the locking algorithms 
considered in this paper. 
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Thus, if an automaton preserves a property P, the automaton is not the first to 
violate P: as long as the environment only provides inputs such that the cumulative 
behavior satisfies P, the automaton will only perform outputs such that the 
cumulative behavior satisfies P. Note that the fact that an automaton A preserves 
a property P does not imply that all of A’s behaviors, when restricted to CD, satisfy 
P; it is possible for a behavior of A to fail to satisfy P, if an input causes a violation 
of P. However, the following proposition gives a way to deduce that all of a 
system’s behaviors satisfy P. The proposition says that if all components of a system 
preserve P, then all the behaviors of the composition satisfy P. 

PROPOSITION 4. Let {Ai};,, be a strongly compatible collection of automata, and 
let A = nicl Ai. Let @ be a set of actions such that Q, n int(A) = @, and let P be a 
nonempty, prefix-closed, limit-closed set of sequences of actions in @. If every Ai 
preserves P, then A preserves P; if in addition, A is closed, then behs(A) I@ G P. 

4. SERIAL SYSTEMS AND CORRECTNESS 

In this section, we develop the formal machinery needed to define correctness for 
transaction-processing systems. Unlike much of the classical work on concurrency 
control, which defines correctness of a transaction-processing system in terms of the 
existence of a serial execution of the same system, we define correctness by first 
giving a separate specification of the permissible serial executions as seen by users 
of the system and then defining how executions of a transaction-processing system 
must relate to this specification.’ We specify the permissible serial executions in 
terms of a system of automata, called a “serial system.” A serial system has a struc- 
ture that looks much like a transaction-processing system but is constrained not to 
run transactions concurrently and not to allow aborted transactions to access data. 

4.1. Overview 

Transaction-processing systems consist of user-provided transaction code plus 
transaction-processing algorithms designed to coordinate the activities of different 
transactions. The transactions are written by application programmers in a suitable 
programming language. Transactions are permitted to invoke operations on data 
objects. In addition, if nesting is allowed, then transactions can invoke subtransac- 
tions and receive responses from the subtransactions describing the results of their 
processing. 

In a transaction-processing system, the transaction-processing algorithms interact 
with the transactions, making decisions about when to schedule subtransactions 
and operations on objects. In order to carry out such scheduling, the transaction- 

’ Work that has analyzed multi-version concurrency control algorithms (e.g., [6]) has taken a similar 
approach of using a separate specification of the serial executions, but has not developed a general 
structure that applies to a wide range of algorithms. 
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processing algorithms may manipulate locks, multiple copies of objects, and other 
data structures. In the system organization emphasized by the classical theory, the 
transaction processing algorithms are divided into a “scheduler algorithm” and a 
“database” of objects. The scheduler has the power to decide when operations are 
to be performed on the objects in the database, but not to perform more complex 
manipulations on objects (such as maintaining multiple copies). Although this 
organization is popular, it does not encompass all useful system designs. 

In this paper, each component of a transaction-processing system is described as 
an I/O automaton. In particular, each transaction is an automaton, and all the 
transaction-processing algorithms together comprise another automaton. Some- 
times, as when describing serial systems or explaining our algorithms, we will use 
a more detailed structure and present the transaction-processing algorithms as a 
composition of a collection of automata, one representing each object and one 
representing the rest of the system. 

It is not obvious how one ought to model the nested structure of transactions 
within the I/O automaton model. One might consider defining special kinds of 
automata that have a nested structure. However, it appears that the cleanest way 
to model this structure is to describe each subtransaction in the transaction nesting 
structure as a separate automaton. If a parent transaction T wishes to invoke a 
child transaction T’, T will issue an output action that “requests that T’ be 
created.” The transaction-processing algorithms receive this request, and at some 
later time they might decide to issue an action that is an input to the child T’ and 
that corresponds to the “creation” of T’. Thus, the different transactions in the 
nesting structure comprise a forest of automata, communicating with each 
other indirectly through the transaction-processing automaton. The highest level 
user-defined transactions, i.e., those that are not subtransactions of any other 
user-defined transactions, are the roots in this forest. 

It is actually more convenient to model the transaction nesting structure as a tree 
rather than as a forest. Thus, we add an extra “root” automaton as a “dummy 
transaction,” located at the top of the transaction nesting structure. The highest 
level user-defined transactions are considered to be children of this new root. The 
root can be thought of as modeling the outside world, from which invocations of 
top-level transactions originate and to which reports about the results of such 
transactions are sent; indeed, we will generally regard the boundary between this 
root transaction and the rest of the system as the “user interface” to the system. The 
use of the root transaction works out nicely in the formal development: in most 
cases, the reasoning we do about this dummy root transaction is the same as the 
reasoning we do about ordinary transactions, so that regarding the root as a trans- 
action leads to economy in our formal arguments. 

The main purpose of this section is to deline correctness conditions to be satisfied 
by transaction-processing systems. In general, correctness conditions for systems 
composed of I/O automata are stated in terms of properties of sequences of external 
actions, and we will follow that convention in this paper. Here it seems most 
natural to define correctness conditions in terms of the actions occurring at the 
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boundary between the transactions (including the dummy root transaction) and the 
transaction-processing automaton, for it is immaterial how the transaction- 
processing algorithms work, as long as the outside world and the transactions see 
“correct” behavior. 

We define correct behavior for a transaction-processing system in terms of the 
behavior of a particular and heavily constrained transaction-processing system, one 
that processes all transactions serially. We call such a system a “serial system.” 
Serial systems consist of transaction automata and “serial object automata” com- 
posed with a “serial scheduler automaton.” Transaction automata have already 
been mentioned above. Serial object automata serve as specifications for permissible 
object behavior. They describe the responses the objects should make to arbitrary 
sequences of operation invocations, assuming that later invocations wait for 
responses to previous invocations. Serial objects are much like the ordinary typed 
variables that occur in sequential programming languages; they serve the same 
purpose as the “serial specifications” for data objects used by Weihl [42,40]. 

The serial scheduler handles the communication among the transactions and 
serial objects and thereby controls the order in which the transactions take steps. 
It ensures that no two sibling transactions are active concurrently-that is, it runs 
each set of sibling transactions serially. The serial scheduler is also responsible for 
deciding if a transaction commits or aborts. The serial scheduler can permit a trans- 
action to abort only if its parent has requested its creation but it has not actually 
been created. Thus, in a serial system, all sets of sibling transactions are run serially 
and in such a way that no aborted transaction ever performs any steps. 

It is important to understand that serial systems are introduced solely to serve as 
the specification of the permissible serial behaviors. Since serial systems allow nd 
concurrency among sibling transactions and cannot cope with a transaction that 
fails after it has started running, they are not sufficiently general to serve directly 
as a model of real transaction-processing systems. However, they are quite adequate 
as a basis for the definition of correctness of more interesting systems. In later 
sections, we will describe some systems that do allow concurrency and recovery 
from transaction failures. (For example, they undo the effects of aborted trans- 
actions that have performed significant activity.) We prove that these systems are 
correct in the sense that certain transactions, in particular the root transaction, are 
unable to distinguish these systems from corresponding serial systems. In other 
words, it appears to these transactions as if all siblings run serially and that aborted 
transactions were never created. 

In the remainder of this section, we develop all the necessary machinery for detin- 
ing serial systems. First, we define a type structure used to name transactions and 
objects. Then we describe the general structure of a serial system-the components 
it includes, the actions the components perform, and the way that the components 
are interconnected. Next, we define several useful concepts involving the actions of 
a serial system. We then define the components of the serial system in detail and 
state some basic properties of serial systems. Finally, we use serial systems to state 
the correctness conditions that we will use for the remainder of this paper. 
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4.2. System Types 

We begin by defining a type structure that will be used to name the transactions 
and objects in a serial system. A system type consists of the following: 

. a set Y of transaction names, 

. a distinguished transaction name T,, E F-, 

l a subset accesses of F not containing TO, 
. a mapping parent: F - (TO} + F, which configures the set of transaction 

names into a tree, with TO as the root and the accesses as the leaves, 
. a set 3 of object names, 

l a mapping object: accesses + X, and 
. a set V of return values. 

Each element of the set “accesses” is called an access transaction name, or simply 
an access. Also, if object(T) =X we say that T is an access to X. 

In referring to the transaction tree, we use standard tree terminology, such as 
“leaf node, ” “internal node,” “child,” “ancestor,” and “descendant.” As a special 
case, we consider any node to be its own ancestor and its own descendant, i.e., the 
“ancestor” and “descendant” relations are reflexive. We also use the notion of a 
“least common ancestor” (lea) of two nodes. 

The transaction tree describes the nesting structure for transaction names, with 
TO as the name of the dummy “root transaction.” Each child node in this tree 
represents the name of a subtransaction of the transaction named by its parent. The 
children of TO represent names of the top-level user-defined transactions. The 
accesses represent names for the lowest level transactions in the transaction nesting 
structure; we will use these lowest level transactions to model operations on data 
objects. Thus, the only transactions that actually access data are the leaves of the 
transaction tree, and these do nothing else. The internal nodes model transactions 
whose function is to create and manage subtransactions (including accesses), but 
they do not access data directly. 

The tree structure should be thought of as a predefined naming scheme for all 
possible transactions that might ever be invoked. In any particular execution, 
however, only some of these transactions will actually take steps. We imagine that 
the tree structure is known in advance by all components of a system. The tree will, 
in general, be an infinite structure with infinite branching. 

Classical concurrency control theory, as represented, for example, in [7], con- 
siders transactions having a simple nesting structure. As modeled in our framework, 
that nesting structure has three levels: the top level consists of the root T,,, model- 
ing the outside world, the next level consists of all the user-defined transactions, 
and the lowest level consists of the accesses to data objects. 

The set 3 is the set of names for the objects used in the system. Each access 
transaction name is assumed to be an access to some particular object, as 
designated by the “object” mapping. The set V of return values is the set of possible 
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values that might be returned by successfully completed transactions to their parent 
transactions. 

If T is an access transaction name and u is a return value, we say that the pair 
(T, u) is an operation of the given system type. Thus, an operation includes a 
designation of a particular access to an object, together with a designation of the 
value returned by the access. 

4.3. General Structure of Serial Systems 

A serial system for a given system type is a closed system consisting of a “trans- 
action automaton” A, for each non-access transaction name T, a “serial object 
automaton” S, for each object name X, and a single “serial scheduler automaton.” 
Later in this section, we will give a precise definition for the serial scheduler 
automaton and will give conditions to be satisfied by the transaction and object 
automata. Here, we just describe the signatures of the various automata, in order 
to explain how the automata are interconnected. Figure 1 depicts the structure of 
a serial system. 

The transaction nesting structure is indicated by dotted lines between transaction 
automata corresponding to parent and child and between each serial object 
automaton and the transaction automata corresponding to parents of accesses to 
the object. The direct connections between automata (via shared actions) are 
indicated by solid lines. Thus, the transaction automata interact directly with the 
serial scheduler, but not directly with each other or with the object automata. The 
object automata also interact directly with the serial scheduler. 

Figure 2 shows the interface of a transaction automaton in more detail. Transac- 
tion T has an input CREATE(T) action, which is generated by the serial scheduler 
in order to initiate T’s processing. We do not include explicit arguments to a trans- 
action in our model; rather, we suppose that there is a different transaction for each 
possible set of arguments, and so any input to the transaction is encoded in the 

Scheduler 

FIG. 1. Serial system structure. 
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CREATE(T) REQUEST-COMMIT(T.v) 

T’ a child of T 

REQUEST-CREATE(T’) 
REPORT-ABORT(T) 

REPORT-COMMIT(T,v’) 

FIG. 2. Transaction automaton. 

name of the transaction, In addition, T has REQUESTCREATE actions for 
each child T’ of T in the transaction nesting structure; these are requests for crea- 
tion of child transactions and are communicated directly to the serial scheduler. At 
some later time, the scheduler might respond to a REQUEST-CREATE( T’) action 
by issuing a CREATE( T’) action, an input to transaction T’. Transaction T also 
has REPORT-COMMIT( T’, v’) and REPORT-ABORT( T’) input actions, by 
which the serial scheduler informs T about the fate (commit or abort) of its pre- 
viously requested child T’. In the case of a commit, the report includes a return 
value u’ that provides information about the activity of T’; in the case of an abort, 
no information is returned. Finally, T has a REQUEST-COMMIT(T, u) output 
action, by which it announces to the scheduler that it has completed its activity 
successfully, with a particular result as described by return value u. 

Figure 3 shows the object interface. Object X has input CREATE(T) actions for 
each T that is an access to X. These actions should be thought of as invocations 
of operations on object X. Object X also has output actions of the form 
REQUEST-COMMIT( T, v), representing responses to the invocations. The value 
u in a REQUEST-COMMIT( T, u) action is a return value returned by the object 
as part of its response. (We have chosen to use the “create” and “request-commit” 
notation for the object actions, rather than the more familiar “invoke” and 
“respond” terminology, in the interests of uniformity: there are many places in our 
formal. arguments where access transactions can be treated uniformly with non- 
access transactions, and so it is useful to have a common notation for them.) 

CREATE(T) REQUESTCOMMIT(l-.v) 

Tan access to X 

FIG. 3. Object automaton. 
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Figure 4 shows the serial scheduler interface. The serial scheduler receives the 
previously mentioned REQUEST-CREATE and REQUEST-COMMIT actions as 
inputs from the other system components. It produces CREATE actions as outputs, 
thereby awakening transaction automata or invoking operations on objects. It also 
produces COMMIT(T) and ABORT(T) actions for arbitrary transactions T # TO, 
representing decisions about whether the designated transactions commit or abort. 
For technical convenience, we classify the COMMIT and ABORT actions as out- 
put actions of the serial scheduler, even though they are not inputs to any other 
system component.’ Finally, the serial scheduler has REPORT-COMMIT and 
REPORT-ABORT actions as outputs, by which it communicates the fates of trans- 
actions to their parents. 

As is always the case for I/O automata, the components of a system are deter- 
mined statically. Even though we referred earlier to the action of “creating” a child 
transaction, the model treats the child transaction as if it had been there all along. 
The CREATE action is treated formally as an input action to the child transaction; 
the child transaction will be constrained not to perform any output actions until 
such a CREATE action occurs. A consequence of this method of modeling dynamic 
creation of transactions is that the system must include automata for all possible 
transactions that might ever be created, in any execution. In most interesting cases, 
this means that the system will include infinitely many transaction automata. 

4.4. Serial Actions and Well-Formedness 

The serial actions for a given system type are defined to be the external actions 
of a serial system of that type. These are just the actions listed in the preceding sub- 

REQUEST-CREATE(T) 

I 
Serial Scheduler Automaton 

CRf=TEo 
1 

REQUEST~C0MMWT.v) 

FIG. 4. Serial scheduler automaton. 

‘Classifying actions as outputs even though they are not inputs to any other system component is 
permissible in the I/O automaton model. In this case, it would also be possible to classify these two 
actions as internal actions of the serial scheduler, but then the statements and proofs of the ensuing 
results would be slightly more complicated. 
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section: CREATE(T) and REQUESTCOMMIT( T, u), where T is any transaction 
name and u is a return value, and REQUEST-CREATE(T), COMMIT(T), 
ABORT(T), REPORT-COMMIT( T, ) u , and REPORT_ABORT( T), where T # T,, 
is a transaction name and u is a return value.’ 

In this subsection, we define some basic concepts involving serial actions. All the 
definitions in this subsection are based on the set of serial actions only and not on 
the specific automata in the serial system. For this reason, we present these delini- 
tions here, before going on (in the next subsection) to give more information about 
the systems components. 

We first present some basic definitions, and then we define “well-formedness” for 
sequences of external actions of transactions and objects. 

4.1.1. Basic Definitions 

The COMMIT(T) and ABORT(T) actions are called completion actions for T, 
while the REPORT-COMMIT( T, u) and REPORT-ABORT(T) actions are called 
report actions for T. 

With each serial action n that appears in the interface of a transaction or 
object automaton (that is, with any non-completion action), we associate a trans- 
action in the natural way: let T be any transaction name. If 71 is one of the serial 
actions CREATE(T), REQUEST-COMMIT( T, u), REQUEST-CREATE( T’), 
REPORT_COMMIT(T’, u’), or REPORT-ABORT(T’), where T’ is a child of T, 
then we define transaction to be T. If rc is a completion action, then transac- 
tion(z) is undefined. In some contexts, we will need to associate a transaction with 
completion actions as well as with other serial actions; since a completion action 
for T can be thought of as occurring “in between” T and parent(T), we will some- 
times want to associate T and sometimes parent(T) with the action. Thus, we 
extend the “transaction(n)” definition in two different ways. If rc is any serial action, 
then we define hightransaction to be transaction(n), if rt is not a completion 
action, and to be parent(T), if 7c is a completion action for T. Also, if rc is any serial 
action, we define lowtransaction to be transaction( if 7c is not a completion 
action, and to be T, if n is a completion action for T. In particular, 
hightransaction = lowtransaction = transaction(n) for all serial actions other 
than completion actions. 

We also require notation for the object associated with any serial action whose 
transaction is an access. If 7c is a serial action of the form CREATE(T) or 
REQUEST-COMMIT( T, u), where T is an access to X, then we define object(n) 
to be X. 

We extend the preceding notation to events as well as actions. For example, if rc 
is an event, then we write transaction(z) to denote the transaction of the action of 
which n is an occurrence. We extend the definitions of “hightransaction,” “lowtrans- 

9 Later in the paper, we will deline other kinds of systems besides serial systems, namely, simple 
systems and generic systems. These will also include the serial actions among their external actions; we 
will still refer to these actions as “serial actions” even though they appear in non-serial systems. 
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action,” and “object” similarly. We will extend other notation in this paper in the 
same way, without further explanation. 

Recall that an operation is a pair (T, v), consisting of an access transaction name 
and a return value. We can associate operations with a sequence of serial actions: 
if /I is a sequence of serial actions, we say that the operation (T, u) occurs in /I if 
there is a REQUEST-COMMIT(T, u) event in /I. Conversely, we can associate 
serial actions with a sequence of operations: for any operation (T, u), let per- 
form( T, u) denote the two-action sequence CREATE(T) REQUEST-COM- 
MIT(T, u), the expansion of (T, u) into its two parts. This definition is extended to 
sequences of operations in the natural way: if 5 is a sequence of operations of the 
form <‘(T, u), then perform(<) = perform perform( T, u). Thus, the “perform” 
function expands a sequence of operations into a corresponding alternating 
sequence of CREATE and REQUEST-COMMIT actions. 

Now we require terminology to describe the status of a transaction during execu- 
tion. Let fi be a sequence of serial actions. A transaction name T is said to be active 
in /I provided that /I contains a CREATE(T) event but no REQUEST-COMMIT 
event for T. Similarly, T is said to be live in /I provided that /I contains a 
CREATE(T) event but no completion event for T. (However, note that /I may 
contain a REQUEST-COMMIT for T.) Also, T is said to be an orphan in b if there 
is an ABORT(U) action in /I for some ancestor U of T. 

We have already used projection operators to restrict action sequences to 
particular sets of actions and to actions of particular automata. We now introduce 
another projection operator, this time to sets of transaction names. Namely, if /I is 
a sequence of serial actions and 42 is a set of transaction names, then fi 1% is defined 
to be the sequence /?I (7~: transaction(z) E %}. If T is a transaction name, we 
sometimes write p 1 T as shorthand for /I 1 {T}. Similarly, if /? is a sequence of 
serial actions and X is an object name, we sometimes write /?I X to denote 
p 1 {n: object(z) = X}. 

Sometimes we will want to use definitions from this subsection for sequences of 
actions chosen from some other set besides the set of serial actions-usually, a set 
containing the set of serial actions. We extend the appropriate definitions of this 
subsection to such sequences by applying them to the subsequences consisting of 
serial actions. Thus, if b is a sequence of actions chosen from a set @ of actions, 
define serial(p) to be the subsequence of p consisting of serial actions. Then we say 
that operation (T, u) occurs in /3 if it occurs in serial(p). A transaction T is said to 
be active in /I provided that it is active in serial(p) and similarly for the “live” and 
“orphan” definitions. Also, /?I % is defined to be serial@) 1 u2! and similarly for 
restriction to an object. 

4.42. Well-Formedness 

We will place very few constraints on the transaction automata and serial object 
automata in our definition of a serial system. However, we will want to assume that 
certain simple properties are guaranteed; for example, a transaction should not take 
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steps until it has been created, and an object should not respond to an operation 
that has not been invoked. Such requirements are captured by “well-formedness 
conditions,” properties of sequences of external actions of the transaction and serial 
object components. We define those conditions here. 

First, we define “transaction well-formedness.” Let T be any transaction name. A 
sequence p of serial actions rc with transaction(z) = T is defined to be transaction 
well-formed for T provided the following conditions hold: 

1. The first event in /I, if any, is a CREATE(T) event, and there are no other 
CREATE events. 

2. There is at most one REQUESTCREATE event in b for each child 
T’ of T. 

3. Any report event for a child T’ of T is preceded by 
REQUEST-CREATE( T’) in /I. 

4. There is at most one report event in B for each child T’ of T. 
5. If a REQUEST-COMMIT event for T occurs in /I, then it is preceded by 

a report event for each child T’ of T for which there is a REQUEST-CREATE( T’) 
in /I. 

6. If a REQUEST-COMMIT event for T occurs in /I, then it is the last event 
in B. 

In particular, if T is an access transaction name, then the only sequences that are 
transaction well-formed for T are the prefixes of the two-event sequence 
CREATE(T) REQUEST-COMMIT( T, u). For any T, it is easy to see that the set 
of transaction well-formed sequences for T is nonempty, prefix-closed, and limit- 
closed. 

It is helpful to have an equivalent form of the “transaction well-formedness” 
definition for use in later proofs. 

LEMMA 5. A sequence b of actions IJ% with transaction(4) = T is transaction well- 
formed for T if and only if f or every finite prefix yz of p, where z is a single action, 
the following conditions hold: 

1. If 7t is CREATE(T), then 
a. there is no CREATE(T) event in y. 

2. Ifrt is REQUEST-CREATE(T’) for a child T’ of T, then 
a. there is no REQUEST-CREATE(T’) event in y, 
b. CREATE(T) appears in y, and 
c. there is no REQUESTPCOMMIT event for T in y. 

3. Zf 7~ is a report event for a child T’ of T, then 
a. REQUEST-CREATE( T’) appears in y, and 
b. there is no report event for T’ in y. 
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4. Zf rt is REQUEST-COMMIT( T, u) for some value v, then 
a. there is a report event in y for every child of T for which there is a 

REQUEST-CREATE event in y, 
b. CREATE(T) appears in y, and 
c. there is no REQUEST-COMMIT event for T in y. 

Now we define “serial object well-formedness.” Let X be any object name. 
A sequence of serial actions n with object(z) = X is defined to be serial object 
well-formed for X if it is a prefix of a sequence of the form CREATE(T,) 
REQUESTpCOMMIT( T,, u,) CREATE( T,) REQUEST-COMMIT( T,, u,)..., 
where Ti # Tj when i # j. 

LEMMA 6. Suppose /3 is a sequence of serial actions II with object(n) = X. If /I is 
serial object well-formed for X and T is an access to X, then /3 1 T is transaction well- 
formed for T. 

Again, we give an equivalent form of the “serial object well-formedness” delini- 
tion that will be useful in later proofs. 

LEMMA 7. A sequence /? of actions C$ with abject(4) = X is serial object well- 
formed for X tf and only if for every finite prefix yn of /?, where rc is a single action, 
the following conditions hold 

1. If n is CREATE(T), then 
a. there is no CREATE(T) event in y, and 
b. there are no active accesses in y. 

2. Zfn is REQUEST-COMMIT(T, v) for a return ualue u, then 
a. T is active in y. 

We also say that a sequence 5 of operations (T, u) with object(T) =X is serial 
object well-formed for X if no two operations in C; have the same transaction name. 
Clearly, if t is a serial object well-formed sequence of operations of X, then per- 
form(<) is a serial object well-formed sequence of actions of X. Also, any serial 
object well-formed sequence of actions of X is a prefix of perform(<) for some serial 
object well-formed sequence of operations 5. 

4.5. Serial Systems 

We are now ready to define “serial systems.” Serial systems are composed of 
transaction automata, serial object automata, and a single serial scheduler 
automaton. There is one transaction automaton A, for each non-access transaction 
name T, and one serial object automaton S, for each object name X. We describe 
the three kinds of components in turn. 
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4.5.1. Transaction Automata 

A transaction automaton A, for a non-access transaction name T of a given 
system type is an I/O automaton with the following external action signature: 
Input: 

CREATE(T) 
REPORT-COMMIT( T’, u’), for every child T’ of T, and every return value u’ 
REPORT-ABORT(T’), for every child T’ of T 

output: 
REQUESTCREATE( for every child T’ of T 
REQUEST-COMMIT( T, u), for every return value v 

In addition, A, may have an arbitrary set of internal actions. We require A, to 
preserve transaction well-formedness for T, as defined in Sections 3.5 and 4.4.2. 
Except for this requirement, transaction automata can be chosen arbitrarily. Note 
that if /3 is a sequence of actions, then 6 1 T= p 1 ext(A.). 

As discussed earlier, the requirement that A, preserve transaction well-formed- 
ness for T does not mean that all behaviors of A, are transaction well-formed, but 
it does mean that as long as the environment of A, does not violate transaction 
well-formedness, A, will not do so. Notice that the only ways the environment can 
violate transaction well-formedness for T are by reporting the fate of a subtrans- 
action that was never requested or by generating duplicate CREATE(T) actions or 
report actions for children of T. 

Transaction automata are intended to be general enough to model the trans- 
actions defined in any reasonable programming language. Of course, there is still 
work required in showing how to define appropriate transaction automata for the 
transactions in any particular language. This correspondence depends on the special 
features of each language, and we do not describe techniques for establishing such 
a correspondence in this paper. 

4.5.2. Serial Object Automata 

A serial object automaton S, for an object name X of a given system type is an 
I/O automaton with the following external action signature: 

Input: 
CREATE(T), for every access T to X 

output: 
REQUEST-COMMIT( T, u), for every access T to X and every return value v 

In addition, S, may have an arbitrary set of internal actions. We require S, to 
preserve serial object well-formedness for X, as defined in Sections 3.5 and 4.4.2. 

As with transaction automata, serial object automata can be chosen arbitrarily as 
long as they preserve serial object well-formedness. However, as above, this does 
not mean that all behaviors of S, are serial object well-formed for X, but it does 
mean that as long as the environment of S, does not violate serial object well- 
formedness, S, will not do so. 
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Serial object automata are intended to be general enough to model any of the 
system-provided or user-defined types provided in modern programming languages, 
subject to the restriction that each operation involves only a single object. The 
“semantic information” about a data object that is used in some concurrency 
control algorithms is obtained from the serial object automaton. 

4.5.2.1. EXAMPLE: A BANK ACCOUNT. As an example, we describe a serial object 
BA representing the specification of a bank account. There are three kinds of 
accesses to B.4: 

l balance?: The return value for this kind of access gives the current balance. 
l deposit-$a: This increases the balance by $a. The only return value is 

“OK.” 
l withdraw-$b: This reduces the balance by $b if the result will not be 

negative. In this case the return value is “OK.” If the result of withdrawing would 
be to cause an overdraft, then the balance is left unchanged, and the return value 
is “FAIL.” 

The serial object automaton S,, is defined as follows. A state s of S,, has two com- 
ponents, s. pending, which is either null or an access to BA, and s. balance, which is 
an integer representing the current balance of the account. The transition relation 
consists of all triples (s’, rr, s) satisfying the pre- and post-conditions described 
below, where n is the indicated action. If a component of s is not mentioned in the 
effects, it is implicit that the value is the same in s’ and s. 

CREATE(T), for T an access to S,, 
Effect: 

s . pending = T 

REQUEST-COMMIT( T, “OK”), for T a deposit$a access to S,, 
Precondition: 

s’. pending = T 
Postcondition: 

s. pending = null 
s. balance = s’. balance + a 

REQUEST-COMMIT( T, “OK”), for T a withdraw-$b access to S,, 
Precondition: 

s’. pending = T 
s’. balance > b 

Postcondition: 
s. pending = null 
s. balance = s’. balance - b 
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REQUEST-COMMIT( T, “FAIL”), for T a withdraw-$b access to S,, 
Precondition: 

s’. pending = T 
s’. balance < b 

Postcondition: 
s . pending = null 

REQUESTCOMMIT( T, o), for T a balance? access to S,, 
Precondition: 

s’. pending = T 
s’. balance = v 

Postcondition: 
s. pending = null 

An invocation can occur at any time and is recorded as pending. A response to a 
pending deposit operation increments the current balance by the amount to be 
deposited. A response with value “OK” to a pending withdraw operation can be 
generated whenever the current balance is large enough to cover the requested 
withdrawal and decrements the current balance by the specified amount. If the 
current balance is too small to cover a requested withdrawal, then the response to 
the withdrawal must return the value “FAIL,” and the balance is not changed. 
Finally, a response v to a pending balance? operation can be generated whenever 
the balance is v. 

The ability to specify the behavior of an object using a serial object automaton 
is essential for modeling type-specific concurrency control algorithms. As discussed 
earlier, concurrency can be enhanced by using information about the semantics of 
operations-for example, that two operations commute-in synchronizing con- 
current transactions. When a system has a hot spot, such as an aggregate quantity 
(e.g., net assets for a bank or quantity on hand for an inventory system) or a data 
structure representing a collection, type-specific algorithms can be essential for 
achieving good performance. Many examples of type-specific algorithms can be 
found in the literature. In the second half of this paper, we describe a locking algo- 
rithms that uses the specifications of operations to allow operations that commute 
to run concurrently. 

4.5.3. Serial Scheduler 

There is a single serial scheduler automaton for each system type. It runs trans- 
actions according to a depth-first traversal of the transaction tree, running sets of 
sibling transactions serially. When two or more sibling transactions are available to 
run (because their parent has requested their creation), the serial scheduler is free 
to determine the order in which they run. In addition, the serial scheduler can 
choose nondeterministically to abort any transaction after its parent has requested 
its creation, as long as the transaction has not actually been created. In the context 
of this scheduler, the “semantics” of an ABORT(T) action are that transaction T 
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was never created. The scheduler does not permit any two sibling transactions to 
be live at the same time and does not abort any transaction while any of its siblings 
is live. We now give a formal definition of the serial scheduler automaton. 

The action signature of the serial scheduler consists of the following actions, for 
every transaction name T and return value u: 

Input: 
REQUEST-CREATE(T), T # T,, 
REQUEST-COMMIT( T, u) 

output: 
CREATE(T) 
COMMIT(T), T # To 
ABORT(T), T# T,, 
REPORT-COMMIT( T, v), T # To 
REPORTpABORT( T), T # To 

Each state s of the serial scheduler consists of six sets, denoted via record nota- 
tion: s. create-requested, s. created, s. commit-requested, s. committed, s. aborted, 
and s.reported. The set s.commit-requested is a set of operations. The others are 
sets of transactions. There is exactly one start state, in which the set createere- 
quested is {To}, and the other sets are empty. We use the notation s.completed to 
denote s.committed u s.aborted. Thus, s.completed is not an actual variable in the 
state, but rather a “derived variable” whose value is determined as a function of the 
actual state variables. 

The transition relation of the serial scheduler consists of exactly those triples 
(s’, rr, s) satisfying the preconditions and yielding the effects described below, where 
n is the indicated action. We include in the effects only those conditions on the state 
s that may change with the action. If a component of s is not mentioned in the 
effects, it is implicit that the set is the same in s’ and s. 

REQUEST-CREATE(T), T # To 
Effect: 

s.createerequested = s’. create-requested u { T} 

REQUEST-COMMIT( T, u) 
Effect: 

s. committrequested = s’. commit-requested u { (T, u)} 

CREATE(T) 
Precondition: 

T E s’. create-requested - s’. created 
T $ s’. aborted 
siblings( T) n s’. created E s’. completed 

Effect: 
s. created = s’. created u { T} 
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COMMIT(T), T# T,, 
Precondition: 

(T, V) E s’. commitrequested for some z) 
T 4 s’. completed 

Effect: 
s. committed = s’. committed u { T} 

ABORT(T), T # T,, 
Precondition: 

T E s’. create-requested - s’. completed 
T # s’. created 
siblings(T) n s’. created c s’. completed 

Effect: 
s. aborted = s’. aborted u { T} 

REPORT-COMMIT( T, u), T # To 
Precondition: 

T E s’. committed 
( T, u) E s’. commit-requested 
T $ s’. reported 

Effect : 
s. reported = s’. reported u { T} 

REPORT-ABORT(T), T # To 
Precondition: 

T E s’. aborted 
T 4 s’. reported 

Effect: 
s. reported = s’. reported u { T} 

The input actions, REQUEST-CREATE and REQUEST-COMMIT, simply 
result in the request being recorded. The COMMIT and REPORT output actions 
are relatively simple: a COMMIT action can occur only if it has previously been 
requested and no completion action has yet occurred for the indicated transaction, 
while the result of a transaction can be reported to its parent at any time after the 
COMMIT or ABORT has occurred. 

The other output actions, CREATE and ABORT, are the most interesting. A 
CREATE action can occur only if a corresponding REQUEST-CREATE has 
occurred and the CREATE has not already occurred. Moreover, it cannot occur if 
the transaction was previously aborted. Similarly, an ABORT action can occur only 
if a corresponding REQUEST-CREATE has occurred and no completion action 
has yet occurred for the indicated transaction. Moreover, it cannot occur if the 
transaction was previously created. The third precondition on the CREATE action 
says that the serial scheduler does not create a transaction until each of its 
previously created sibling transactions has completed (i.e., committed or aborted). 
That is, siblings are run sequentially. Similarly, the third precondition on the 
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ABORT action says that the scheduler does not abort a transaction while there is 
activity going on on behalf of any of’its siblings. That is, aborted transactions are 
dealt with sequentially with respect to their siblings. The combined effect of the 
preconditions on the CREATE and ABORT actions is that the scheduler does not 
consider a transaction for creation or abortion so long as a sibling is live. 

The following lemma describes simple relationships between the state of the serial 
scheduler and its computational history. 

LEMMA 8. Let b be a finite schedule of the serial scheduler, and let s be a state 
such that /I can leave the serial schedule in state s. Then the following conditions are 
true. 

1. TE s.create-requested if and only if T = TO or p contains a 
REQUEST-CREATE(T) event. 

2. TE s. created if and only if /? contains a CREATE(T) event. 

3. (T, v) E s.commit-requested if and only if fl contains a REQUESTCOM- 
MIT( T, v) event. 

4. TE s.committed zf and only if /3 contains a COMMIT(T) event. 

5. TE s.aborted zf and only if fl contains an ABORT(T) event. 

6. T E s. reported if and only if /; contains a report event for T. 

I. s.committedns.aborted= 0. 

8. s.reportedEs.committedvs,aborted. 

The following lemma gives simple facts about the actions appearing in an 
arbitrary schedule of the serial scheduler. 

LEMMA 9. Let j3 be a schedule of the serial scheduler. Then all of the following 
hold 

1. If a CREATE(T) event appears in /I for T # TO, then a 
REQUEST-CREATE(T) event precedes it in /?. 

2. At most one CREATE(T) event appears in /? for each transaction T. 

3. If a COMMIT(T) event appears in /I, then a REQUEST-COMMIT( T, v) 
event precedes it in p for some return value v. 

4. Zf an ABORT(T) event appears in /I, then a REQUEST-CREATE(T) event 
precedes it in /I. 

5. Zf a CREATE(T) or ABORT(T) event appears in /? and is preceded by a 
CREATE(T’) event for a sibling T’ of T, then it is also preceded by a completion 
event for T’. 

6. At most one completion event appears in /? for each transaction. 

I. At most one report event appears in /I for each transaction. 
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8. If a REPORT-COMMIT(T, ) v event appears in 8, then a COMMIT(T) 
event precedes it in /I. 

9. Zf a REPORT-ABORT(T) event appears in fi, then an ABORT(T) event 
precedes it in b. 

The final lemma of this subsection says that the serial scheduler preserves the 
well-formedness properties described earlier. 

LEMMA 10. 1. Let T be any transaction name. Then the serial scheduler 
.vreserves transaction well-formedness for T. 

2. Let X be any object name. Then the serial scheduler preserves serial object 
well-formedness for X. 

Proof 1. Let @ be the set of all serial actions 4 with transaction(d) = T. 
Suppose /?rc restricted to the actions of the serial scheduler is a finite behavior 
of the serial scheduler, rr is an output action of the serial scheduler, and /I I@ is 
transaction well-formed for T. We must show that flz I@ is transaction well-formed 
for T. If rc I# 0, then the result is immediate, so assume that rc E @, i.e., that 
transaction(z) = T. 

We use Lemma 5. We already know that b 10 is transaction well-formed for T, 
and so the four conditions of the lemma hold for all prefixes of p I@. Thus, we need 
only prove that the four conditions of the lemma hold for /?rc I,@. Since z is an out- 
put of the serial scheduler, 7c is either a CREATE(T) event or a report event for a 
child of T. If n: is CREATE(T), then since /Ire restricted to the actions of the serial 
scheduler is a schedule of the serial scheduler, Lemma 9 implies that no 
CREATE(T) occurs in /?. If rc is a REPORT event for a child T’ of T, then 
Lemma 9 implies that REQUEST-CREATE(T’) occurs in /I and no other 
REPORT for T’ occurs in /I. Then Lemma 5 implies that /%c I@ is transaction well- 
formed for T. 

2. The argument for this case is similar, using Lemma 7. i 

4.54. Serial Systems, Executions, Schedules, and Behaviors 

A serial system of a given system type is the composition of a strongly compatible 
set of automata indexed by the union of the set of non-access transaction names, 
the set of object names and the singleton set {SS) (for “serial scheduler”). 
Associated with each non-access transaction name T is a transaction automaton A 7 
for T. Associated with each object name X is a serial object automaton S, for X. 
Finally, associated with the name SS is the serial scheduler automaton for the given 
system type. When the particular serial system is understood from context, we will 
sometimes use the terms serial executions, serial schedules, and serial behaviors for 
the system’s executions, schedules, and behaviors, respectively. 

We show that serial behaviors are well-formed for each transaction and object 
name. 
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PROPOSITION 11. If /? is a serial behavior, then the following conditions hold. 

1. For every transaction name T, p 1 T is transaction well-formed for T. 
2. For every object name X, p 1 X is serial object well-formed for X. 

ProoJ For non-access transaction names T or arbitrary object names X, the 
result is immediate by Proposition 4, the definitions of transaction and object 
automata, and Lemma 10. 

Suppose that T is an access to X. Since /I 1 X is serial object well-formed for X, 
Lemma 6 implies that fll T is transaction well-formed for T. m 

A serial system runs sibling transactions serially. This does not mean, however, 
that the REQUEST-CREATE events and the REPORT events for siblings are 
serialized. For example, the following sequence could be a fragment of a serial 
behavior, where T and T’ are siblings: 

REQUEST-CREATE(T) 
REQUEST-CREATE( T’) 
CREATE(T) 
REQUEST-COMMIT( T, v) 
COMMIT(T) 
CREATE( T’) 
REQUEST-COMMIT( T’, v’) 
COMMIT( T’) 
REPORTCOMMIT( T’, u’) 
REPORT-COMMIT( T, v). 

Notice that the REQUEST-CREATE and REPORT events for T and T’ are inter- 
leaved, even though the CREATE and COMMIT events are serialized. 

Unless expressly stated, we henceforth assume an arbitrary but fixed system type 
and serial system, with A T as the transaction automaton associated with non-access 
transaction name T, and S, as the serial object automaton associated with object 
name X. In the next subsection, we show how this fixed serial system serves as the 
basis of our definition of correctness for actual transaction-processing systems. 

4.6. Correctness Conditions 

Now that we have defined serial systems, we can use them to define correctness 
conditions for other transaction-processing systems. It is reasonable to use serial 
systems in this way because of the particular constraints the serial scheduler 
imposes on the orders in which transactions and objects can perform steps. We con- 
tend that the given constraints correspond precisely to the way nested transaction 
systems ought to appear to behave; in particular, these constraints yield a natural 
generalization of the notion of serial execution in classical transaction systems. We 
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arrive at a number of correctness conditions by considering for which system com- 
ponents this appearance must be maintained: for the external environment r,,, for 
all transactions, or for all non-orphan transactions. 

To express these correctness conditions we define the notion of “serial correct- 
ness” of a sequence of actions for a particular transaction name. We say that a 
sequence /I of actions is serially correct for transaction name T provided that there 
is some serial behavior y such that /? 1 T = y 1 T.” (Recall that if T is a non-access, 
we have /I 1 T = /I 1 ext(A T) and y 1 T = y I ext(A T)). If T is a non-access transaction, 
the serial correctness for T of a sequence fl guarantees to implementors of A, that 
their code has encountered only situations that could arise in serial executions. 

Our intention in defining correctness for a system is to constrain its interactions 
with the external environment, which is modeled by the root transaction To. Thus, 
our fundamental correctness condition simply requires serial correctness for To. We 
might expect most systems to contain the same transaction automaton for To as in 
the serial system. (In other words, the external environment in the serial system will 
be the same as in the real transaction-processing system.) In fact, we have modeled 
many systems with a structure that is even closer to that of the serial system: as a 
system of automata containing an automaton A, for each transaction name T. 
However, our definition of correctness does not depend on these or other assump- 
tions. Such constraints may seem intuitively reasonable, but they are not needed for 
defining correctness. Furthermore, in our experience, most such constraints rule out 
some interesting systems. Thus, in defining correctness, we allow any system 
(modeled as an I/O automaton) to be considered as a candidate for a transaction- 
processing system. As a result, our definition of correctness does not constrain the 
internal structure of a transaction-processing system or even its interface with the 
external environment. 

We consider a system to be serially correct for transaction name T provided all 
of its finite behaviors are serially correct for T. Then if T is a non-access transac- 
tion, serial correctness for T of a system containing A, guarantees to implementors 
of A, that their code will encounter only situations that can arise in serial execu- 
tions. 

The principal notion of correctness for a transaction-processing system that we 
use in our work is that of serial correctness for the root transaction To of all finite 
behaviors. This says that the “outside world” cannot distinguish between the given 
system and the serial system. However, many of the algorithms we study satisfy 
stronger correctness conditions. A fairly strong and possibly interesting correctness 
condition is the serial correctness of all finite behaviors for all non-access 
transaction names. Thus, neither the outside world nor any of the individual user 
transactions can distinguish between the given system and the serial system. Note 
that the definition of serial correctness relative to all non-access transactions does 
not require that all the transactions see behavior that is part of the same execution 

lo This condition is analogous to the “view serializability” condition of Yannakakis [45], extended to 
deal with operations other than reads and writes and with subtransactions. 
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of the serial system; rather, each could see behavior arising in a different serial 
execution. 

We will also consider intermediate conditions such as serial correctness for all 
non-orphan transaction names. This condition implies serial correctness for T, 
because the serial scheduler does not have the action ABORT(T,) in its signature, 
so T, cannot be an orphan. Most of the popular algorithms for concurrency control 
and recovery, including the locking algorithms in this paper, guarantee serial 
correctness for all non-orphan transaction names. Our Serializability Theorem gives 
sufficient conditions for showing that a behavior of a transaction-processing system 
is serially correct for an arbitrary non-orphan transaction name and can be used to 
prove this property for many of these algorithms. The usual algorithms do not 
guarantee serial correctness for orphans, however; in order to guarantee this as 
well, the use of a special “orphan management” algorithm is generally required. 
Such algorithms are described and proved correct in [17]. 

Note that each correctness condition discussed in this section can be applied to 
many different kinds of transaction-processing systems. All that is needed is that the 
system be modeled as an I/O automaton with appropriately named actions. Typi- 
cally, the system would contain an automaton AT for each non-access transaction 
name and one or more automata modeling the transaction management com- 
ponents. In this paper, and in most of our work, we place no restrictions on the 
transaction automata other than their preservation of transaction well-formedness. 
(More specialized algorithms could depend upon special properties of the transac- 
tion automata; for example, that transactions access objects in a particular order.) 
In fact, we place no constraints on the signature or structure of a transaction- 
processing system. All we require is that its behaviors satisfy the stated correctness 
condition, namely serial correctness for r,. 

5. THE SERIALIZABILITY THEOREM 

In this section, we present our Serializability Theorem, which embodies a fairly 
general method for proving that a concurrency control algorithm guarantees serial 
correctness. This theorem expresses the following intuition: a behavior of a system 
is serially correct provided that there is a way to order the transactions so that 
when the operations at each object are arranged in the corresponding order; the 
result is a behavior of the corresponding serial object. The correctness of many 
different concurrency control algorithms can be proved using this theorem; in this 
paper, we use it to prove correctness of two locking algorithms. 

This theorem is the closest analog we have for the classical Serializability 
Theorem of [7]. Both that theorem and ours hypothesize that there is some order- 
ing on transactions consistent with the behavior at each object. In both cases, this 
hypothesis is used to show serial correctness. Our result is somewhat more com- 
plicated, however, because it deals with nesting and aborts, and also with objects 
whose operations are more complex than simple reads and updates. In the first 
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subsection of this section, we give some additional definitions that are needed to 
accommodate these complications. 

We have tried to state our theorem to make it as widely applicable as possible. 
Thus, the theorem talks about sequences of actions, not about particular system 
organizations. However, not all sequences of actions are reasonable; the theorem 
applies to those sequences that could be behaviors of systems containing the trans- 
action automata A.. In other words, the projection of the sequence on each 
transaction must be a behavior of that transaction’s automaton. In addition, certain 
additional constraints, such as that a CREATE(T) action does not occur without 
a preceding REQUEST-CREATE(T) action, must also be satisfied. To capture 
these constraints on sequences of actions, we define “simple systems” in Section 5.2. 
Next, we define various orders on events and transactions that are used to reorder 
behaviors of real transaction-processing systems to show the existence of 
appropriate serial behaviors. Finally, we present the statement and proof of our 
Serializability Theorem. 

5.1. Visibility 

One difference between our result and the classical Serializability Theorem is that 
the conclusion of our result is serial correctness for an arbitrary transaction T, 
whereas the classical result essentially considers only serial correctness for To. Thus, 
it should not be surprising that the hypothesis of our result does not deal with all 
the operations at each object, but only with those that are in some sense “visible” 
to the particular transaction T. In this subsection, we define a notion of “visibility” 
of one transaction to another. This notion is a technical one, but one that is natural 
and convenient in the formal statements of results and in their proofs. Visibility is 
defined so that, in the usual transaction-processing systems, only a transaction T’ 
that is visible to another transaction T can effect the behavior of T. 

A transaction T’ can affect another transaction T in several ways. First, if T’ is 
an ancestor of T, then T’ can affect T by passing information down the transaction 
tree via invocations. Second, a transaction T’ that is not an ancestor of T can affect 
T through COMMIT actions for T’ and all ancestors of T’ up to the level of the 
least common ancestor with T; information can be propagated from T’ up to the 
least common ancestor via REPORT-COMMIT actions (and the associated return 
values) and, from there, down to T via invocations. Third, a transaction T’ that is 
not an ancestor of T can affect T by accessing an object that is later accessed by 
T; in most of the usual transaction-processing algorithms, this is only allowed to 
occur if there are intervening COMMIT actions for all ancestors of T’ up to the 
level of the least common ancestor with T. 

Thus, we define “visibility” as follows. Let p be any sequence of serial actions. If 
T and T’ are transaction names, we say that T’ is visible to T in /I if there is a 
COMMIT(U) action in /3 for every U in ancestors( T’) - ancestors(T). Thus, every 
ancestor of T’ up to (but not necessarily including) the least common ancestor of 
T and T’ has committed in /I. 
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Our definition of visibility has been chosen for ease of argument. Note, however, 
that it says that T’ is visible to T even in some situations where T’ cannot affect 
the behavior of T, for example when T’ follows T in /I. Intuitively, the definition 
includes all transactions that, as far as T can “see,” participate in the computation, 
either before or after T. 

Figure 5 depicts two transactions, T and T’, neither an ancestor of the other. If 
the transactions represented by all of the circled nodes have committed in some 
sequence of serial actions, then the definition implies that T’ is visible to T. 

The following lemma describes elementary properties of “visibility.” 

LEMMA 12. Let p be a sequence of actions, and let T, T’, and T” be transaction 
names. 

1. If T’ is an ancestor of T, then T’ is visible to T in b. 
2. T’ is visible to T in a if and only if T’ is visible to lca(T, T’) in 8. 
3. If T” is visible to T’ in p and T’ is visible to T in fl, then T” is visible to 

T in j3. 
4. If T’ is live in j3 and T’ is visible to T in j, then T is a descendant of T’. 
5. If T’ is an orphan in B and T’ is visible to T in 8, then T is an orphan in 8. 

We use the notion of “visibility” to pick, out of a sequence of actions, a sub- 
sequence consisting of the actions corresponding to transactions that are visible to 
a given transaction T. More precisely, if a is any sequence of actions and T is a 
transaction. name, then visible(/?, T) denotes the subsequence of /3 consisting of 
serial actions 71 with hightransaction visible to T in /I. Note that every action 
occurring in visible(/?, T) is a serial action, even if /I itself contains other actions. 
Note also that the use of “hightransaction” in the definition implies that if T’ is 
visible to T in /I and T” is a child of T’ that has an ABORT( T”) in /I, then any 
REQUEST-CREATE( T”), ABORT( T”) and REPORT-ABORT( T”) actions in B 
are included in visible@, T), but actions of T” are not.” 

FIG. 5. Visibility. 

” If T= T,,, visible(8, T) corresponds to the “committed projection” of /3 as defined in [7]. 
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The following easy lemma says that the “visible” operator on sequences picks out 
either all or none of the actions having a particular transaction. 

LEMMA 13. Let /? be a sequence of actions, and let T and T’ be transaction 
names. Then visible@, T) 1 T’ is equal to B 1 T’ if T’ is visible to T in /3, and is equal 
to the the empty sequence otherwise. 

5.2. Simple Systems 

It is desirable to state our Serializability Theorem in such a way that it can be 
used for proving correctness of many different kinds of transaction-processing 
systems, with radically different architectures. We therefore define a “simple 
system,” which embodies the common features of most transaction-processing 
systems, independent of their concurrency control and recovery algorithms and 
even of their division into modules to handle different aspects of transaction- 
processing. A “simple system” consists of the transaction automata together with 
a special automaton called the “simple database.” The simple database ensures a 
number of simple constraints, including the following: 

l A transaction is not created without first being requested. 
l A transaction does not both commit and abort. 
l A transaction does not commit without first requesting to commit. 
l A REPORT action does not occur for a transaction unless it is preceded 

by a corresponding completion action. 

However, the simple database does not include any constraints based on the seman- 
tics of the objects as specified by the serial system. In other words, the simple 
database is allowed to return arbitrary responses to accesses. 

In practice, a real transaction-processing system will obey all the constraints 
imposed by a simple system and will also impose additional constraints on the 
responses to accesses that guarantee serial correctness. Our Serializability Theorem 
is stated in terms of simple systems; it can be applied to any system that 
“implements” the simple system in the sense that each of its behaviors is a simple 
behavior. In our experience, many complicated transaction-processing algorithms 
can be modeled as implementations of the simple system. For example, a system 
containing separate objects that manage locks and a “controller” that passes infor- 
mation among transactions and objects can be represented in this way, and so our 
theorem can be used to prove its correctness. The same strategy works for a system 
containing objects that manage timestamped versions and a controller that issues 
timestamps to transactions. Later in this paper, we apply our Serializability 
Theorem to show that every behavior of certain locking systems is serially correct 
for non-orphan transactions. 
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5.2.1. Simple Database 

There is a single simple database for each system type. The action signature of 
the simple database is that of the composition of the serial scheduler with the serial 
objects: 

Input: 
REQUEST-CREATE(T), T # To 
REQUEST_COMMIT( T, u), T a non-access 

output: 
CREATE(T) 
COMMIT(T), T # To 
ABORT( ), T # To 
REPORT-COMMIT( T, v), T # To 
REPORT-ABORT(T), T # To 
REQUEST-COMMIT( T, u), T an access 

Note that actions such as CREATE(T) and REQUEST-COMMIT( T, u), for T 
an access transaction name, are outputs of the simple database but are not inputs 
of any transaction automaton. (The same is true for the COMMIT and ABORT 
actions.) Thus, they could be classified as internal actions of the simple database, 
but it turns out to be more convenient to treat them as outputs. 

States of the simple database are the same as for the serial scheduler, and the 
initial states are also the same. In particular, although the signature of the serial 
scheduler has been extended by adding the actions of the serial objects, no addi- 
tional state information about the objects occurs in the simple database. Intuitively, 
the behaviors of the simple database are “syntactically well-formed,” but are not 
constrained to satisfy any substantive “semantic” constraints, particularly as to the 
serial object actions. Semantic constraints are added in the statement of the 
Serializability Theorem, which specifies general sufficient conditions for the serial 
correctness of behaviors of the simple system. The transition relation is as follows: 

REQUEST-CREATE(T), T # T,, 
Effect : 

s. create-requested = s’. create-requested u { T} 

REQUEST-COMMIT( T, u), T a non-access 
Effect : 

s. commit-requested = s’. commit-requested u { ( T, u) } 

CREATE(T) 
Precondition: 

T E s’. create-requested - s’. created 
Effect: 

s. created = s’. created u { T} 
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COMMIT(T), T # TO 
Precondition: 

(T, u) E s’.commit-requested for some u 
T $ s’. completed 

Effect: 
s. committed = s’. committed u { T} 

ABORT(T), T # TO 
Precondition: 

T E s’. create-requested - s’. completed 
Effect : 

s. aborted = s’. aborted u { T} 

REPORT-COMMIT( T, II), T # T,, 
Precondition: 

T E s’. committed 
( T, u) E s’. commit-requested 
T $ s’. reported 

Effect : 
s. reported = s’. reported u { T} 

REPORTABORT( T), T # TO 
Precondition: 

T E s’. aborted 
T .$ s’. reported 

Effect: 
s. reported = s’. reported u { T> 

REQUEST-COMMIT( T, u), T an access 
Precondition: 

T E s’. created 
for all v’, (T, u’) $ s’. commit-requested 

Effect: 
s. commit-requested = s’. commit-requested u { ( T, u) } 

The next two lemmas are analogous to those previously given for the serial 
scheduler. 

LEMMA 14. Let B be a finite schedule of the simple database, and let s be a state 
that can result from applying b to the start state. Then the following conditions are 
true: 

1. T E s. create-requested if and only if T= TO or /I contains a 
REQUEST-CREATE(T) event. 

2. TE s. created if and only if /3 contains a CREATE(T) event. 
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3. (T, v) E s. commit-requested if and only if /I contains a REQUEST-COM- 
MIT( T, v) event. 

4. TE s. committed if and only if fi contains a COMMIT(T) event. 

5. TE s.aborted if and only ifB contains an ABORT(T) event. 

6. T E s.reported if and only if p contains a report event for T 

7. s.committedn s.aborted= a. 

8. s.reportedcs.committedvs.aborted. 

LEMMA 15. Let /3 be a schedule of the simple database. Then all of the following 
hold: 

1. If a CREATE(T) event appears in b for T # T,,, then a 
REQUEST-CREATE(T) event precedes it in p. 

2. At most one CREATE(T) event appears in p for each transaction T. 

3. rf a COMMIT( Tj event appears in fl, then a REQUEST-COMMIT( T, v) 
event precedes it in b for some return value v. 

4. Zf an ABORT(T) event appears in p, then a REQUEST-CREATE(T) event 
precedes it in p. 

5. At most one completion event appears in /I for each transaction. 

6. At most one report event appears in j3 for each transaction. 

7. If a REPORT-COMMIT(T, v) event appears in /I, then a COMMIT(T) 
event precedes it in 8. 

8. Jf a REPORT-ABORT(T) event appears in /I, then an ABORT(T) event 
precc&4 it in /I. 

9. Zf T is an access and a REQUEST-COMMIT( T, v) event occurs in p, then 
a CREATE(T) event precedes it in /?. 

10. If T is an access, then at most one REQUEST-COMMIT event for T 
occurs in 0. 

Thus, the simple database embodies those constraints that we would expect any 
reasonable transaction-processing system to satisfy-i.e., well-formedness and 
control-flow (communication) requirements. The simple database does not allow 
CREATE, ABORTS, or COMMITS without an appropriate preceding request, 
does not allow any transaction to have two creation or completion events, and does 
not report completion events that never happened. Also, it does not produce 
responses to accesses that were not invoked nor does it produce multiple responses 
to accesses. On the other hand, the simple database allows almost any ordering of 
transactions, allows concurrent execution of sibling transactions, and allows 
arbitrary responses to accesses. 

We do not claim that the simple database produces only serially correct 
behaviors; rather, we use the simple database to model features common to more 
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sophisticated systems. Such systems will usually include a controller (perhaps with 
constraints of its own) and complicated objects with concurrency control and 
recovery built into them. Such a system will have additional actions for com- 
munication between these objects and the controller. 

We now show that the simple database preserves transaction well-formedness. 

LEMMA 16. Let T be ay transaction name. Then the simple database preserves 
transaction well-formedness for T. 

Proof Let @ be the set of all serial actions 4 with transaction(4) = T. Suppose 
Prt restricted to the actions of the simple database is a finite behavior of the simple 
database, rc is an output action of the simple database, and /I I@ is transaction well- 
formed for T. We must show that Prr 10 is transaction well-formed for T. If n $ @, 
then the result is immediate, so assume that rc E @, i.e., that transaction(n) = T. 

We use Lemma 5. We already know that /I 1 Q, is transaction well-formed for T, 
and so the four conditions of the lemma hold for all prefixes of /3 I@. Thus, we need 
only prove the four conditions of the lemma hold for flrc I@. Since rc is an output 
of the simple database, rc is either a CREATE(T) event for an arbitrary transaction 
T, a REPORT event for a child of an arbitrary transaction T, or a 
REQUEST-COMMIT for T, where T is an access. If rr is CREATE(T), then since 
/3r restricted to the actions of the simple database is a schedule of the simple 
database, Lemma 15 implies that no CREATE(T) occurs in /I. If rt is a REPORT 
event for a child T’ of T, then Lemma 15 implies that REQUEST-CREATE( T’) 
occurs in /I and no other REPORT for T’ occurs in p. If rr is REQUEST-COM- 
MIT( T, u) and T is an access, then Lemma 15 implies that CREATE(T) occurs in 
p, and no REQUEST-COMMIT for T occurs in /I. Then Lemma 5 implies that 
/?rr I@ is transaction well-formed for T. 1 

5.2.2. Simple Systems, Executions, Schedules, and Behaviors 

A simple system is the composition of a strongly compatible set of automata 
indexed by the union of the set of non-access transaction names and the singleton 
set {SD} (for “simple database”). Associated with each non-access transaction 
name T is the transaction automaton AT for T, and associated with the name SD 
is the simple database automaton for the given system type. When the particular 
simple system is understood from context, we will often use the terms simple execu- 
tions, simple schedules, and simple behaviors for the system’s executions, schedules, 
and behaviors, respectively. 

PROPOSITION 17. Zf /I is a simple behavior and T is a transaction name, then fl[ T 
is transaction well-formed for T. 

Proof The result is immediate by Lemma 16 and the definition of transaction 
automata. 1 

The following is a basic fact about simple behaviors. 
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LEMMA 18. Let fl be a simple behavior. Let T and T’ be transaction names, where 
T’ is an ancestor of T. If T is live in B and not an orphan in p then T’ is live in p. 

Our Serializability Theorem is formulatd below in terms of simple behaviors; it 
provides a sufficient condition for a simple behavior to be serially correct for a 
particular transaction name T. 

5.3. Event and Transaction Orders 

Our general approach to showing that a system is correct is to extract a sub- 
sequence of each behavior of the system, reorder the subsequence in certain ways, 
and then show that the resulting sequence is a behavior of the serial system. We put 
two constraints on the reordering: first, it must preserve the order of certain events 
from the original behavior, and second, for certain pairs of transactions T and T’ 
it must order all events of T before all events of T’. The first constraint is captured 
by the notion of an “affects order,” while the second is captured by a “sibling 
order.” In this subsection we define these orders precisely and prove some simple 
facts about them. 

5.3.1. Affects Order 
We first define a partial order “affects(p)” on the events of a sequence p of serial 

actions. This will be used to describe basic dependencies between events in a simple 
behavior; any appropriate reordering of j3 will be required to be consistent with 
these dependencies. 

We define the affects relation by first defining a subrelation, which we call the 
“directly-affects” relation, and then taking its transitive closure. This decomposition 
will be useful to us later when we carry out proofs about the “affects” relation, since 
it is often easy to reason about “directly-affects.” For a sequence fi of serial actions, 
and events 4 and rr in /I, we say that 4 directly affects rc in fl (and that (4, rr) E 
directly-affects(P)) if at least one of the following is true. 

l transaction(d) = transaction(n) and 4 precedes rc in p” 
l 4 = REQUEST-CREATE(T) and r~= CREATE(T) 

l 4 = REQUEST-COMMIT( T, v) and ‘it = COMMIT(T) 
l 4 = REQUEST-CREATE(T) and 7c = ABORT(T) 
l 4 = COMMIT(T) and n = REPORT-COMMIT( T, v) 
l 4 = ABORT(T) and rc = REPORT-ABORT(T). 

LEMMA 19. If /? is a simple behavior and (4, 7~) E directly-affects(P), then 4 
precedes n in p. l3 

I2 This includes accesses as well as non-accesses. 
I3 Note that the actions of a simple system are exactly the serial actions. 
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Proof: The first case is obvious, so we consider only the last five cases of the 
definition. Transaction well-formedness implies that there cannot be two 
REQUEST-CREATE( 7’) events in /I for the same T and that there cannot be two 
REQUEST-COMMIT events for the same transaction. Also, Lemma 15 says that 
b does not contain two completion events for the same T. Hence, in each case 4 is 
the only occurrence of the appropriate action in /?. In each case, rc is an output of 
the simple database, and the simple database preconditions test for the presence of 
the appropriate preceding action. 1 

For a sequence /I of serial actions, define the relation affects@) to be the 
transitive closure of the relation-directly-affects(j). If the pair(#, rc) is in the relation 
affects(P), we also say that 4 affects rr in /I. The following is immediate. 

LEMMA 20. Let /? be a simple behavior. Then affects(p) is an irrefexive partial 
order on the events in /?. 

Proof: By Lemma 19, 4 directly affects n: in /3 only if 4 precedes n in /I. There- 
fore 4 affects rr in b only if 4 precedes rc in /I. Thus, affects(P) is irreflexive and 
antisymmetric. Since affects(b) is constructed as a transitive closure, the result 
follows. 1 

The conditions listed in the definition of “directly-affects” should seem a 
reasonable collection of dependencies among the events in a simple behavior. At a 
technical level, the justification for them is that we will use the affects relation to 
extract serial behaviors from a simple behavior satisfying certain conditions. The 
order of the events in the serial behavior will be consistent with the affects ordering. 
Thus, if p is a simple behavior and (4, rc) E affects(P), all the serial behaviors we 
construct that contain n will also contain 4, and 4 will precede 71 in each such 
behavior. The first case of the “directly-affects” definition is necessary because we 
are not assuming special knowledge of transaction behavior; if we included rt and 
not 4 in our candidate serial behavior, we would have no way of proving that the 
result included correct behaviors of the transaction automata. The remaining cases 
naturally parallel the preconditions of the serial scheduler; in each case, the pre- 
conditions of n as an action of the serial scheduler include a test for a previous 
occurrence of 4, so a sequence of actions with n not preceded by 4 could not 
possibly be a serial behavior. 

5.3.1 .l. EXAMPLE: AFFECTS ORDER. Recall that a serial system only constraints 
the CREATE and completion actions of siblings, not the REQUEST-CREATE 
and REPORT actions. For example, consider the following fragment of a simple 
behavior, where T and T’ are siblings: 

REQUEST-CREATE(T) 
REQUEST-CREATE( T’) 

CREATE(T) 
CREATE( T’) 
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REQUEST-COMMIT( T’, 11’) 
REQUEST-COMMIT( T, u) 
COMMIT(T) 
COMMIT( T’) 
REPORT-COMMIT( T’, u’) 
REPORT-COMMIT( T, u). 

Notice that T and T’ are not run serially. However, the events of T do not affect 
the events of T’, or vice versa. Thus, the following reordering of the sequence above 
is consistent with the affects relation for the sequence: 

REQUEST-CREATE(T) 
REQUEST-CREATE( T’) 
CREATE(T) 
REQUEST-COMMIT-( T, u) 
COMMIT(T) 
CREATE( T’) 
REQUEST-COMMIT( T’, u’) 
COMMIT( T’) 
REPORT-COMMIT( T’, u’) 
REPORT-COMMIT( T, u). 

In addition, this reordering is a schedule of the serial scheduler. This illustrates how 
we can reorder a simple behavior into a serial one without violating the affects 
ordering. 

5.3.1.2. PROPERTIES OF THE AFFECTS ORDER. The following lemmas contain some 
constraints on the kinds of events that can affect other events in a simple behavior. 
The first lemma shows that events of transactions in the subtree rooted at T can 
only affect events of transactions outside the subtree if they first affect a REPORT 
event for T. 

LEMMA 21. Let /? be a simple behavior and T a transaction name. Let q3 and n be 
euents of fi such that 4 affects rc in 8, lowtransaction is a descendant of T and 
lowtransaction is not a descendant of T. Then /I contains a REPORT event II/ 
ftir T, ~+3 affects $, and either n = II/ or II/ affects n. Furthermore, if I(/ is a 
REPORT-ABORT euent then 4 = ABORT(T). 

Proof. The existence of II/ follows from the observation that if 4’ directly affects 
n’ in fi, lowtransaction is a descendant of T and lowtransaction is not a 
descendant of T, then 4’ is a completion event for T and n’ is a corresponding 

571!41,1-8 
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REPORT event for T. Furthermore, by Lemma 15, 4’ is the only completion event 
for T and rc’ ( = rl/) is the only REPORT event for T in fl. 

By definition of the affects relation, 4 affects $ and either rc = @ or $ affects rt. 
The final property follows from the observation that no event of a descendant of T 
directly affects an ABORT event for T. 1 

The next lemma shows that events of transactions outside the subtree rooted 
at T can only affect events of descendants of T if they first affect a 
REQUEST-CREATE(T) event. Its proof is similar to that of the previous lemma. 

LEMMA 22. Let p be a simple behavior and T a transaction name, Let q4 and n be 
events of j3 such that q5 affects rt in 8, lowtransaction is not a descendant of T and 
lowtransaction is a descendant of T. Then either 4 is a REQUEST-CREATE(T) 
event or $ affects a REQUEST-CREATE(T) event for T that affects z 

Together, Lemmas 21 and 22 describe conditions under which the effects of 
events can “leave” or “enter” subtrees of the transaction tree. These conditions will 
be useful in later proofs. 

As before, we extend the “affects” definition to sequences fl of arbitrary actions 
by saying that 4 affects 7~ in b if and only if 4 affects rr in serial@). 

5.3.2. Sibling Orders 
The essential feature of any concurrency control mechanism is the choice of a 

consistent serialization order throughout the system. The type of serialization 
ordering needed for a nested transaction system is more complicated than that used 
in the classical theory. Instead of just arbitrary total orderings on transactions, we 
will use orderings that only relate siblings in the transaction nesting tree. We call 
such an ordering a “sibling order.” Interesting examples of sibling orders are the 
order of completion of transactions or an order determined by assigned timestamps. 
We define “sibling orders” in this subsection. (Note that a total order on all trans- 
actions is not appropriate, as subtransactions run concurrently with their parents 
in a nested system.) 

Let SIB be the (irreflexive) sibling relation among transaction names, for a 
particular system type; thus, (T, T’) E SIB if and only if T# T’ and parent(T) = 
parent( T’). If R E SIB is an irreflexive partial order then we call R a sibling order. 
Sibling orders are the analog for nested transaction systems of serialization orders 
in single-level transaction systems. Note that sibling orders are not necessarily total, 
in general; totality is not always appropriate for our results. 

A sibling order can be extended in two natural ways. First, if R is a binary 
relation on the set of transaction names (such as a sibling order), then let R,,,,, be 
the extension of R to descendants, i.e., the binary relation on transaction names 
containing (T, T’) exactly when there exist transaction names U and U’ such that 
T and T’ are descendants of U and U’, respectively, and (U, U’) E R. If R is a 
sibling order, R,,,,, echoes the manner in which the serial scheduler runs trans- 
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actions when it runs siblings with no concurrency, in the order specified by R.14 
Second, if /I is any sequence of actions, then R,,,,,,(j3) is the extension of R to serial 
events in /3, i.e., the binary relation on events in p containing (4, n) exactly when 
4 and 71 are distinct serial events in /? with lowtransactions T and T’, respectively, 
where (T, T’) E R,,,,, . (We use “lowtransaction” in this definition to ensure that 
completion actions are ordered along with the actions of the completing 
transaction.) 

The following are straightforward: 

LEMMA 23. Let R be a sibling order. Then R,,,,, is an it-reflexive partial order, 
and for any sequence j? of actions, R,,,,,(/I) is an irreflexive partial order. 

LEMMA 24. Let j3 be a sequence of actions and R a sibling order. Let 71 and 71’ be 
events of /I with lowtransactions U and U’, respectively. Let $ and $’ be events of /I 
with lowtransactions T and T’, respectively, where T is a descendant of U and T’ is 
a descendant of U’. If (71, n’) E R,,,,@) then ($, $‘) E R,,,,,(P). 

The concept of a “suitale sibling order” describes two basic conditions that will 
be required of the sibling orders to be used in our theorem. Given T, we want to 
find a serial behavior that includes the actions of transactions visible to T (i.e., that 
can be “seen” by T). Each set of siblings that appears in this serial behavior must 
be totally ordered, motivating the first condition below. The second condition 
asserts that R does not contradict the dependencies described by the affects relation. 
Formally, let fi be a sequence of actions and T a transaction name. A sibling order 
R is suitable for /I and T if the following conditions are met: 

1. R orders all pairs of siblings T’ and T” that are lowtransactions of actions 
in visible@, T). 

2. R,,,,,(/I) and affects(b) are consistent partial orders on the events in 
visible( /I, T). 

The use of lowtransaction in this definition ensures that ABORT events in 
visible(/?, T) are included in the events ordered by R,,,,,. We have the following 
extension of the first property above. 

LEMMA 25. Let /I be a simple behavior-and T a transaction name. If the sibling 
order R is suitable for /I and T, then R orders all pairs of siblings T’ and T” such 
that some descendant of each is the lowtransaction of an action in visible@, T). 

Proof The lemma follows from the following fact about simple behaviors: if a 
descendant of T is the lowtransaction of an action in a simple behavior fl, then T 
is the lowtransaction of some action in fl. i 

We next give a technical lemma that will be useful for proving that particular 
sibling orders are suitable. 

I4 A similar definition is used by Beeri et al. [S] and by Lynch [24]. 
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LEMMA 26. Let j be a simple behavior and let R be a sibling order satisfying the 
following condition: if (n, rc’) E affects(B) and lowtransaction is neither an ancestor 
nor a descendant of lowtransaction(rc’) then (71, 7~‘) E R,,,,,(P). Then R,,,,,(B) and 
affects(P) are consistent partial orders on the events of b. 

Proof: We prove this lemma by contradiction. If R,,,,,(/?) and affects(p) are not 
consistent, then there is a cycle in the relation R,,,,,(/3) u affects(p), and thus there 
must be some shortest cycle. Let rcO, rc,, z2, . . . . rr,- 1, rrn, = rcn, be such a shortest 
cycle, where for each i, (rc,, rt ;+ 1) E R,,,,,(P) u affects(P). In the following discussion 
we will use arithmetic modulo n for subscripts, so that if i = n, rr, + , is to be inter- 
preted as ni. We note that n > 1, since both R,,,,,(/?) and affects(p) are irreflexive. 

Since the relation R,,,,,(a) is acyclic, there must be at least one index i such that 
(xi, 7ci+ 1) E affects(p) and (rci, rrli+ 1) $ R,,,,,(j3). Let T and T’ be the lowtransactions 
of rci and xi+,, respectively. By hypothesis, T is either an ancestor or a descendant 
of T’. We consider two cases. 

1. T is an ancestor of T’. If the pair (7~~ i, rc,) is in affects(P), then by the 
transitivity of the affects relation, (rc- i, ni+ ,) E affects(b). On the other hand, 
if b- 1 3 nil E Lent(B), th en by Lemma 24, (rcel, rci+ i)~ R,,,,,(j?). In either 
situation, there is a shorter cycle in the relation R,,,,,,(/?) u affects(P), obtained by 
omitting n;. This contradicts our assumption that the cycle chosen is as short as 
possible. 

2. T is a descendant of T’. If the pair (n,, i, rtif2) is in affects(P), then by the 
transitivity of the affects relation, (7ci, rcif2) E affects(b). On the other hand, 
if (rci+ i, rcif2) E R,,,,,(fl), then by Lemma 24, (rc,, rci+?) E R,,,,,(j). In either 
situation, there is a shorter cycle in the relation R,,,,,(B) u affects(p), obtained by 
omitting n,, i. This contradicts the assumption that the cycle chosen is as short as 
possible. 

In every case, we have found a contradiction; thus, the assumption that the 
relation R,,,,,(B) u affects(P) contains a cycle must be wrong. 1 

5.4. The Serializability Theorem 

We now present the main result. It says that a simple behavior p is serially 
correct for a non-orphan transaction name T provided that there is a suitable 
sibling order R for which a certain “view condition” holds for each object name X. 
The view condition says that the portion of fl occurring at X that is visible to T, 
reordered according to R, is a behavior of the serial object S,. In order to make 
all of this precise, suppose B is a finite simple behavior, T a transaction name, R 
a sibling order that is suitable for fi and T, and X an object name. Let 5 be the 
sequence consisting of those operations occurring in b whose transaction com- 
ponents are accesses to X and are visible to T in /?, ordered according to R,,,,, on 
the transaction components. (Lemma 25 implies that this ordering is uniquely 
determined.) Define view(B, T, R, X) to be perform(t). 
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Informally, view@, T, R, X) rep-esentes the portion of the behavior p occurring 
at X that is visible to T, reordered according to R. Stated in other words, this 
definition extracts from /I the REQUEST-COMMIT actions for accesses to X 
that are visible to T; it then reorders those REQUEST-COMMIT actions accord- 
ing to R and then inserts an appropriate CREATE action just prior to 
each REQUEST-COMMIT action. The theorem uses a hypothesis that each 
view@, T, R, X) is a behavior of the serial object S, to conclude that /I is serially 
correct for T. 

THEOREM 27. (Serializability Theorem). Let /I be a finite simple behavior, T a 
transaction name such that T is not an orphan in B, and R a sibling order suitable for 
fi and T. Suppose that for each object name X, view@, T, R, X) E linbehs(S,). Then 
/I is serially correct for T. 

The theorem has a straightforward corollary that applies to other systems besides 
simple systems-in particular, to systems that have additional, non-serial actions in 
their signature. 

COROLLARY 28. Let {Bi}i,I b e a strongly compatible set of automata and let 
B=nzt, Bi. Suppose that all non-access transaction names T are in the index set I 
and that A, and B, are identical automata for all such T. 

Let j3 be a finite behavior of B, T a transaction name that is not an orphan in p 
and R a sibling order suitable for serial(p) and T. Suppose that the following condi- 
tions hold: 

1. serial(p) is a simple behavior. 
2. For each object name X, view(serial@), T, R, X) E linbehs(S,). 

Then /I is serially correct for T. 

(Recall that our definition of serial correctness for T only requires that each finite 
behavior of the given system look to T like a serial behavior. An alternative delini- 
tion would require the same for all behaviors, not just finite behaviors. However, 
for T# TO, the proof of the Serializability Theorem does not work for all behaviors: 
the reordering that is carried out in the construction of y need not always produce 
a sequence, in the case of a transaction that carries out an infinite amount of com- 
putation. In fact, this is not just an anomaly of our proof; transaction management 
systems based on locking algorithms do not satisfy this stronger condition, an 
observation first made by Rosenkrantz et al. [35]. In the most interesting case, 
where T= TO, the stronger condition does hold, and the proof of the Serializability 
Theorem can be modified to give the result.) 

We use the Serializability Theorem and its corollary later in this paper to reason 
about two locking algorithms, and in [2] to prove correctness of timestamp algo- 
rithms. The rest of this section contains a careful (and somewhat technical) proof 
of the Serializability Theorem. The reader who is more interested in the applica- 
tions of this theorem than in its proof may wish to go on to later sections without 
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reading the rest of this section. Nothing in the rest of this section is needed for 
understanding the rest of the paper. 

5.5. Proof of the Serializability Theorem 

This subsection is devoted to a proof of the Serializability Theorem. We define 
several technical terms, such as “ordered-visible” and “pictures,” to use in the proof. 
These definitions are not used elsewhere in the paper. 

The general strategy is as follows. Given a finite simple behavior /?, a non-orphan 
transaction T, and a suitable sibling order R, we must produce a serial behavior y 
that looks the same as fi to T, i.e., such that p 1 T = y 1 T. The construction of y is 
done in three steps. First, visible@, T), the portion of /I visible to T, is extracted 
from /?. Second, this sequence is reordered according to R and affects@). (There 
may be many ways of doing this.) The set of all acceptable reorderings is called 
ordered-visible@, T, R). Third, we take a prefix y of a sequence in ordered- 
visible@, T, R) that includes all events of T. The set of all acceptable such prefixes 
is called pictures@, T, R). We argue that each element of pictures@, T, R) is a serial 
behavior by showing separately that its projections are behaviors of the transaction 
automata, of the serial object automata, and of the serial scheduler, and then 
applying Proposition 2; since the projection of an element of pictures(/?, T, R) on T 
is the same as b 1 T, the desired result follows. 

5.5.1. Pictures 

If fl is a finite simple behavior, T a transaction name, and R a suitable sibling 
order for /I and T, then define ordered-visible@, T, R) to be the set of reorderings 
of visible@, T) that are consistent with affects@) u R,,,,,(P). Also, define 
pictures(/?, T, R) to be the set of all sequences y obtained as follows. If no actions 
rc with transaction = T appear in visible@, T) then y is the empty sequence. 
Otherwise, take a sequence 6 in ordered-visible@, T, R). Then y is the prefix of 6 
ending with rc, where rc is the last event in 6 such that hightransaction is a 
descendant of T. 

LEMMA 29. Let fi be a finite simple behavior, T a transaction name, and R a 
suitable sibling order for p and T. Then ordered-visible@, T, R) and pictures(/?, T, R) 
are nonempty sets of sequences. 

Proof By the fact that R is suitable for p and T. 1 

LEMMA 30. Let /I be a finite simple behavior, T a transaction name, and R a 
sibling order that is suitable for /I and T. Let y E pictures(/?, T, R). If 4 and n are 
events of /I, 4 affects 71 in /I and n is an evect of y, then I$ is an event in y, and $ 
precedes rt in y. 

Proof: Since affects(P) is the transitive closure of the finite relation directly- 
affects(P), it suffices to prove the lemma in the case that I$ directly affects rt in 8. 
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Since 7c is in visible(/?, T), examination of the six cases of the definition of directly- 
affects(P) shows that 4 is also in visible(fi, T). By definition, y is a prefix of a 
sequence 6 in ordered-visible(B, T, R). Since 6 is ordered consistently with 
affects(p), 4 precedes rc in 6. Therefore, 4 is in y. 1 

5.5.2. Behavior of Transactions 

In this subsection, we show that any sequence in pictures(/?, T, R) projects to 
yield a finite behavior of each transaction automaton. Also, for T itself, each 
sequence in pictures@, T, R) projects to yield /I 1 T. 

LEMMA 31. Let b be a simple behavior, T a transaction name, and R a sibling 
order that is suitable for fl and T. Suppose y E pictures@, T, R). Then y 1 T = /? ) T, and 
y 1 T’ is a prefix of /I 1 T’ for all transaction names T’. 

Proof. By the definition of pictures, using Lemma 13 and the fact that the 
directly affects relation orders all events in b with the same transaction. 1 

LEMMA 32. Let b be a simple behavior, T a transaction name, and R a sibling 
order that is suitable for /I and T. Suppose y E pictures(P, T, R). Then ‘J ( T’ is a finite 
behavior of A,. for every non-access transaction name T’. 

Proof By Lemma 31 and Proposition 1. 1 

5.53. Behavior of Serial Objects 

Next we show that any sequence in pictures@, T, R) projects to yield a finite 
behavior of each serial object automaton. We will use the view condition to show 
this; thus, we must begin by relating the definitions of “view” and “pictures.” 

LEMMA 33. Let p be a finite simple behavior, T a transaction name, and R a 
sibling order suitable for p and T. Let 6 E ordered-visible@, T, R). Let X be an object 
name. Then one of the following two possibilities holds: 

1. 6 1 X is identical to view@, T, R, X). 

2. T is an access to X and 6 1 X is the result of inserting a single CREATE(T) 
event somewhere in the sequence view(fi, T, R,. X) 

Proof The two constructions imply that 6 1 X and view@, T, R, X) have identi- 
cal subsequences of REQUEST-COMMIT actions. The sequence view(fi, T, R, X) 
contains exactly one CREATE(U) immediately preceding each REQUEST-COM- 
MIT for U. Each such CREATE(U) also appears in 6 1 X, by the preconditions for 
the simple database and the definition of visibility; moreover, the definition of 
ordered-visible implies that each such CREATE(U) also appears immediately 
preceding the corresponding REQUEST-COMMIT for U. Thus, the only possible 
difference between 6 1 X and view@, T, R, X) is that 6 )X might contain some extra 
CREATE(U) events, without matching REQUEST-COMMIT events for U. 
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Since 6 is a reordering of a subsequence of visible@, T), any such unmatched 
CREATE(U) event must have U visible to T in /I. Since no REQUEST-COMMIT 
for U appears in 6 1 X, none appears in visible(P, T) and hence none appears in p. 
Simple database preconditions imply that no COMMIT(U) appears in j. There- 
fore, it must be that U= T, and that T is an access to X. 1 

LEMMA 34. Let b be a finite simple behavior, T a transaction name such 
that T is not an orphan in B, and R a sibling order suitable for /I and T. Let 
y E pictures@ T, R). Let X be an object name. Then y 1 X is either a prefix of 
view(p, T, R, X) or else is a prefix of view(/?, T, R, X) followed by a single 
CREATE(T) event. 

Proof: By definition of pictures(fl, T, R), y is obtained as a prefix of a 
sequence 6 E ordered-visible@, T, R). The previous lemma implies that 6 1 X and 
view(/?, T, R, X) are identical except that an extra CREATE(T) event might appear 
in 6 (X, and this can only occur in case T is an access to X. 

If 6 1 X contains no extra CREATE events not present in view@ T, R, X), then it 
is immediate by the construction of y as a prefix of 6 that y 1 X is a prefix of 
view@, T, R, X), as needed. So suppose that 6 IX is the same as view@, T, R, X) 
except that 6 IX contains an extra CREATE(T) event. Then the definition of 
pictures implies that y I X is the prefix of 6 1 X ending with the CREATE(T) event. 
Then y I X is a prefix of view@, T, R, X) followed by a single CREATE(T) event. [ 

LEMMA 35. Let /3 be a simple behavior, T a transaction name, R a sibling order 
that is suitable for /I and T, and X an object name. Suppose that view(j3, T, R, X) is 
a finite behavior of S,. Suppose y E pictures(B, T, R). Then y IX is a finite behavior 
of SF 

Proof: By Lemma 34 and the fact that inputs to S,, as with any I/O 
automaton, are always enabled. 1 

5.5.4. Behavior of the Serial Scheduler 

Next, we show that any sequence in pictures@, T, R) is a behavior of the serial 
scheduler. 

LEMMA 36. Let /I be a finite simple behavior, T a transaction name such that T 
is not an orphan in fi, and R a sibling order that is suitable for /I and T. Let 
y E pictures@, T, R). Then y is a finite behavior of the serial scheduler. 

Proof By definition of pictures@, T, R), y is obtained as a prefix of a sequence 
6 E ordered-visible(B, T, R). That is, if no actions rc with transaction(z) = T appear 
in visible(B, T) then y is empty. Otherwise, y is the prefix of 6 ending with the last 
event in 6 that has a descendant of T as its hightransaction. 

The proof is by induction on prefixes of y, with a trivial basis. Let y’rc be a prefix 
of y with rc a single event, and assume that y’ is a behavior of the serial scheduler. 
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If rr is an input action of the serial scheduler, then the fact that inputs are always 
enabled implies that y is a behavior of the serial scheduler. So assume that n is an 
output action of the serial scheduler. Let s’ be the state of the serial scheduler after 
y’. We must show that K is enabled in the serial scheduler automaton in state s’. 

1. rc is CREATE( T’). We show that T’ E s’.createerequested - s’.created - 
s’. aborted and that siblings( T’) n s’. created E s’. completed. 

By the preconditions of the simple database and Lemma 14, a REQUEST- 
CREATE( T’) event 4 precedes rc in j?. Then (4, n) E affects(b), so Lemma 30 
implies that 4 is in y’. Thus T’ E s’. create-requested. 

Since only one CREATE(Y) occurs in p, no CREATE(T) occurs in y’, so by 
Lemma 8, T’ 4 s’. created. 

Since by Lemma 12, T' is not an orphan in fl, no ABORT( T’) occurs in 8. Thus, 
no ABORT( T’) occurs in y’, so by Lemma 8, T’ $ s’. aborted. 

Suppose T” is a sibling of T’ that is in s’.created. Then CREATE( T”) occurs in 
II’, by Lemma 14. Since the order of events in y is consistent with R,,,,,(P), 
(T’, T”) $ R,,,,,. Since R,,,,, is suitable for /I and T, (T”, T’) E R,,,,,. If T is a 
descendant of T”, then T and T’ are incomparable and so (T, T’) E R,,,,,. Since 6 
is ordered consistently with Rev,,,(~), n follows all events 4 in 6 such that high- 
transaction(4) is a descendant of T. But then the definition of pictures would 
exclude 71 from y, a contradiction. Therefore, T is not a descendant of T”. Since T” 
is visible to T in 1, a COMMIT( T”) event occurs in B. This COMMIT( T”) is in 
visible(/?, T) and is ordered before z by R,,,,, (fi). Thus, COMMIT(T”) precedes n 
in 6, and so COMMIT( T”) occurs in y’. Hence, T” E s’.completed. 

2. z is COMMIT( T’). We show that (T’, v) E s’.commit-requested for some 
V, and that T’ 4 s’. completed. 

By the preconditions of the simple database, there is a value u such that a 
REQUEST-COMMIT(T’, v) event 4 appears in fi. Then (4, rr)~affects(/I), so 
Lemma 30 implies that 4 is in y’. Thus (T’, u) E s’.committrequested. 

By Lemma 15, there is only one completion event for T’ in p and hence only one 
in y. Hence, T’ 4 s’. completed. 

3. n is ABORT( T’). We must show that T’ E s’.createerequested - 
s’. completed - s’. created and siblings( T’) n s’. created E s’. completed. 

By the preconditions of the simple database, a REQUEST-CREATE(T’) event 
4 appears in /?. Then (4, z) E affects(p), so Lemma 30 implies that 4 is in y’. Thus, 
T’ E s’. created-requested. 

Since by Lemma 15 there is at most one completion event in 8, there can be no 
completion event in y’. Thus, T’ $ s’. completed. 

Also T’ is an orphan in 8, so by Lemma 12, T’ is not visible to T in j?. Thus 
CREATE(T’) does not occur in visible(/I, T) and so also CREATE(T’) does not 
occur in y. Thus, T’ $ s’. created. 

The remainder of this case is identical to the first case above, when rt is 
CREATE( T’). 
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4. x is a REPORT-COMMIT or REPORT-ABORT event for T’. By the 
preconditions of the simple database and Lemma 14, a COMMIT or ABORT 
event 4 appears in /?. Then (4, n) E affects@), so Lemma 30 implies that 4 is in y’. 
Also, by Lemma 15 there is at most one report event in /I, so there can be no report 
event in y’. Thus, T’ # s’. reported. 

Thus, n is enabled in the serial scheduler in state s’. 1 

5.5.5. Proof of the Main Result 

We can now tie the pieces together to prove Theorem 27, the Serializability 
Theorem. 

Proof. Let y E pictures(/?, T, R). (Lemma 29 implies that this set is nonempty.) 
Lemma 32 shows that y 1 T’ is a finite behavior of A,, for all non-access transaction 
names T’. Lemma 35 shows that y 1 X is a finite behavior of S, for all object 
names X. Lemma 36 implies that y is a finite behavior of the serial scheduler. 
Proposition 2 implies that y is a finite serial behavior. Lemma 31 implies that 
yIT=PIT. I 

It is easy to see that the serial behavior y constructed to show serial correctness 
for To also has the property that y 1 T= /lI T for all T visible to T,, in /?. Thus, if the 
view condition holds for a suitable sibling order for To, then there exists a single 
serial schedule that looks like p to all the transactions that commit to the top level. 

6. DYNAMIC ATOMICITY 

The Serializability Theorem gives a general sufficient condition for proving the 
correctness of transaction-processing algorithms. In this section, we specialize the 
ideas developed in the preceding section to the particular case of locking algo- 
rithms. Locking algorithms serialize transactions according to a particular sibling 
order, the order in which transactions complete. We define a property of objects, 
called “dynamic atomicity,” that captures this aspect of locking algorithms. Our 
definition of dynamic atomicity is phrased in terms of a system organization 
consisting of a “generic object” automaton for each object name, which handles the 
concurrency control and recovery for that object, and a single “generic controller” 
automaton, which handles communication among the other components. We then 
prove that a “generic system” in which all generic objects are dynamic atomic is 
serially correct. 

Our definition of dynamic atomicity for an object is phrased in terms of the 
behaviors of all possible systems in which the object could be placed. At the end of 
this section, we define another condition on objects, called “local dynamic 
atomicity,” that is stated solely in terms of the behavior of an individual object and 
suffices to ensure dynamic atomicity. In subsequent sections, we show that 
particular algorithms ensure local dynamic atomicity. 

As discussed earlier, proving that an algorithm is dynamic atomic gives more 
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than just the correctness of a single system. In particular, we can derive as 
immediate corollaries the correctness of any system in which each object is dynamic 
atomic. This affords useful modularity. For example, we can initially implement 
each object in a system using a simple concurrency control and recovery algorithm 
that provides relatively little concurrency. If some objects are “hot spots” or “con- 
currency bottlenecks,” we can reimplement those objects using more sophisticated 
algorithms that provide more concurrency. In implementing a particular object, 
however, we do not need to be concerned with the other objects in the system; 
instead, we simply need to show that the particular object ensures dynamic 
atomicity. 

6.1. Completion Order 

The key property of locking algorithms is that they serialize transactions 
according to their completion (commit or abort) order. This order is determined 
dynamically. If /I is a sequence of actions, then we define completion(P) to be the 
binary relation on transaction names containing (T, T’) if and only if T and T’ are 
siblings and one of the following holds: 

1. There are completion events for both T and T’ in b, and a completion 
event for T precedes a completion event for T’. 

2. There is a completion event for T in /I, but there is no completion event 
for T’ in /I. 

The following is easy to see: 

LEMMA 37. If B is a simple behavior, then completion(p) is a sibling order. 

The next few lemmas show that the completion order is suitable. The first shows 
that events of one transaction T can affect (in the technical sense of the affects(B) 
relation) events of an unrelated transaction T’ only if T completes before T’. In 
order words, the chain in the directly-affects relation must involve the completion 
event for T. 

LEMMA 38. Let /I be a simple behavior and let R = completion(p). Let 7c and rc’ 
be distinct events in b with lowtransactions T and T’, respectively. If T is neither an 
ancestor nor a descendant of T’ and (n, n’) 6 affects(B), then (n, 7~‘) E R,,,,,(/?). 

Proof Since T is neither an ancestor nor a descendant of T’, there are siblings 
U and U’ such that T is a descendant of U and T’ is a descendant of U’. Since rc 
affects 71’ in /3, by Lemmas 21 and 22, there must be events 4 and 4’ in /I such that 
4 is a REPORT event for U, 4’ is REQUEST-CREATE( U’), and (7t, Q), (4, d’), 
and (#‘, 7~‘) are all in affects(p). Furthermore, the events 71, 4, @, and X’ occur in 
fl in the indicated order. 

The simple database preconditions and transaction well-formedness imply 
that any completion event for U’ in p must occur after the unique 
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REQUEST-CREATE( V’) event. Similarly, by Lemma 15, 4 is preceded in b by a 
unique completion event for U. Thus /? contains a completion event for U, which 
precedes 4, which precedes 4’, which in turn precedes any completion event for U’. 
Thus (U, U’) E R = completion(fl), and therefore (rr, n’) E R,,,,,(p). 1 

Now we will prove that the two partial orders we have defined on the events of 
/3 are consistent. 

LEMMA 39. Let fl be a simple behavior and let R = completion(/I). Then Reyenl(B) 
and affects(P) are consistent partial orders on the events of B. 

Proof: Immediate by Lemmas 38 and 26. i 

LEMMA 40. Let p be a simple behavior and T a transaction name. If T’ and T” 
are siblings that are lowtransactions of actions in visible(B, T) then either (T’, T”) or 
(T”, T’) E completion(fl). 

Proof Since T’ and T” are distinct siblings, T is not a descendant of both T’ 
and T”. Without loss of generality, we will assume that T is not a descendant of 
T’. Note that therefore the least common ancestor of T and T’ must be an ancestor 
of parent( T’). There is an event rr in visible(P, T) such that lowtransaction = T’. 
Thus either rt is a completion event for T’ or hightransaction must be T’. In the 
case where hightransaction = T’, we must have that T’ is visible to T in 8, and 
thus (since T’ is not an ancestor of T) that /3 contains a COMMIT( T’) event. Thus 
in either case /? contains a completion event for T’, and so completion(fi) orders T’ 
and T”. 1 

Now we can conclude that the completion order is suitable. 

LEMMA 41. Let p be a finite simple behavior and T a transaction name. Then 
completion(b) is suitable for B and T. 

ProoJ: By Lemmas 40 and 39. i 

6.2. Generic Systems 

In this subsection, we give the system decomposition appropriate for describing 
locking algorithms. We will formulate such algorithms as “generic systems,” which 
are composed of transaction automata, “generic object automata,” and a “generic 
controller.” The general structure of the system is the same as that given in Fig. 1 
for serial systems. 

The object signature for a generic object contains more actions than that for 
serial objects. Unlike the serial object for X, the corresponding generic object is 
responsible for carrying out the concurrency control and recovery algorithms for X, 
for example, by maintaining lock tables. In order to do this, the automaton requires 
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information about the completion of some of the transactions, in particular, those 
that have accessed that object. Thus, a generic object automaton has in its signature 
special INFORM-COMMIT and INFORM-ABORT input actions to inform it 
about the completion of transactions. These INFORM actions are not restricted to 
mentioning only accesses to X, since the automaton will also need information 
about the completion of ancestors of the accesses. 

6.2.1. Generic Object Automata 

A generic object automaton G, for an object name X of a given system type is an 
I/O automaton with the following external action signature. 

Input: 
CREATE(T), for T an access to X 
INFORM-COMMIT-AT(X)OF( T), for T# T,, 
INFORM-ABORT-AT(X)OF( T), for T# T, 

output: 
REQUEST-COMMIT(T, v), for T an access to X and v a value 

In addition, G, may have an arbitrary set of internal actions. G, is required to 
preserve “generic object well-formedness,” defined as follows. A sequence /I of 
actions rc in the external signature of G, is said to be generic object well-formed for 
X provided that the following conditions hold. 

1. There is at most one CREATE(T) event in fi for any transaction T. 
2. There is at most one REQUESTPCOMMIT event in fi for any trans- 

action T. 
3. If there is a REQUEST-COMMIT event for T in 8, then there is a 

preceding CREATE( 7’) event in /3. 
4. There is no transaction T for which both an INFORM-COM- 

MIT-AT(X) OF( T) event and an INFORM-ABORT-AT(X) OF( T) event occur 
in 1. 

5. If an INFORM-COMMIT-AT(X event occurs in fl and T is an 
access to X, then there is a preceding REQUEST-COMMIT event for T. 

Generic object well-formedness is significantly less restrictive than serial object 
well-formedness. Serial object well-formedness requires the CREATE and 
REQUEST-COMMIT actions to alternate, so that only one access is active at a 
time. Generic object well-formedness allows multiple simultaneously active accesses. 
The only constraints are that CREATES and REQUEST-COMMITS not be 
repeated, that a REQUEST-COMMIT be generated only if the access has already 
been invoked by a CREATE, and that conflicting information about the completion 
of transactions not be received by the object. 
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6.2.2. Generic Controller 

There is a single generic controller for each system type. It passes requests for the 
creation of subtransactions to the appropriate recipient, makes decisions about the 
commit or abort of transactions, passes reports about the completion of children 
back to their parents, and informs objects of the fate of transactions. Unlike the 
serial scheduler, it does not prevent sibling transactions from being live 
simultaneously, nor does it prevent the same transaction from being both created 
and aborted. Rather, it leaves the task of coping with concurrency and recovery to 
the generic objects. (The generic controller should not be confused with the 
“scheduler” component of some classical database architectures. In our formal 
system decomposition, this scheduler has been decomposed into the controller and 
the generic objects. The important scheduling events are controlled by the objects, 
and the generic controller acts as a communication system, merely informing trans- 
action and object automata of the occurrence of relevant events.) 

The generic controller is very nondeterministic. It may delay passing requests or 
reports or making decisions for arbitrary lengths of time and may decide at any 
time to abort a transaction whose creation has been requested (but that has not yet 
been completed). Each specific implementation of a system will make particular 
choices from among the many nondeterministic possibilities. For instance, Moss 
[29] devotes considerable effort to describing a particular distributed implementa- 
tion of the controller that copes with node and communication failures yet still 
commits a subtransaction whenever possible. Our results apply a fortiori to all 
implementations of the generic controller obtained by restricting its nondeter- 
minism. 

The generic controller has the following action signature. 

Input: 
REQUEST-CREATE(T), T # TO 
REQUEST-COMMIT( T, u) 

output: 
CREATE(T) 
COMMIT(T), T# T,, 
ABORT(T), T # TO 
REPORT-COMMIT( T, u), T # TO 
REPORT-ABORT(T), T # T,, 
INFORM-COMMIT-AT(X) T# TO 
INFORM-ABORT-AT(X)OF( T), T # TO 

All the actions except the INFORM actions play the same roles as in the serial 
scheduler. The INFORM-COMMIT and INFORM-ABORT actions pass infor- 
mation about the fate of transactions to the generic objects. 

Each state s of the generic controller consists of six sets: s.create-requested, 
s. created, s. commit-requested, s. committed, s. aborted, and s. reported. The set 
s.commit-requested is a set of operations, and the others are sets of transactions. 
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All are empty in the start state except for create-requested, which is {T,}. Define 
s. completed = s. committed u s. aborted. The transition relation is as follows: 

REQUEST-CREATE(T) 
Effect: 

s. create-requested = s’. create-requested u { T} 

REQUEST-COMMIT( T, u) 
Effect: 

s. commit-requested = s’. commit-requested u { ( T, u) } 

CREATE(T) 
Precondition: 

T E s’. create-requested - s’. created 
Effect: 

s. created = s’. created u { T} 

COMMIT(T), T# To 
Precondition: 

(T, u) E s’. commit-requested for some o 
T $ s’. completed 

Effect: 
s. committed = s’. committed u ( T} 

ABORT(T), T # To 
Precondition: 

T E s’. create-requested - s’. completed 
Effect: 

s. aborted = s’. aborted u { T} 

REPORT-COMMIT( T, v), T# To 
Precondition: 

T E s’. committed 
(T, u) E s’. commit-requested 
T $ s’. reported 

Effect: 
s. reported = s’. reported u { T} 

REPORT-ABORT(T), T # To 
Precondition: 

T E s’. aborted 
T 4 s’. reported 

Effect: 
s. reported = s’. reported u { T} 

INFORM-COMMIT-AT(X)OF( T), T# To 
Precondition: 

T E s’. committed 
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INFORM-ABORT-AT(X) T# TO 
Precondition: 

T E s’. aborted 

Note that INFORM events may occur any number of times, once they are 
enabled. This simplifies the description of some of the algorithms implemented in 
the generic objects, which otherwise would have to store information about the 
fates of completed transactions. 

We have the following simple lemmas, the first relating a schedule of the generic 
controller to the resulting states, and the second stating some simple properties of 
schedules of the generic controller: 

h3fMA 42. Let /I be a finite schedule of the generic controller, and let s be a state 
such that /II can leave the generic controller in state s. Then the following conditions 
are true: 

1. T is in s.create-requested if and only tf T= TO or p contains a 
REQUEST-CREATE(T) event. 

2. T is in s. created if and only if j3 contains a CREATE(T) event. 

3. (T, v) is in s.commit-requested if and only tf a contains a 
REQUEST-COMMIT( T, v) event. 

4. T is in s. committed if and only if b contains a COMMIT(T) event. 

5. T is in s.aborted tf and only if/I contains an ABORT(T) event. 

6. T is in s.reported if and only if j contains a report event for T. 

I. s.committedn s.aborted= a. 

8. s.reportedcs.committedvs.aborted. 

LEMMA 43. Let fl be a schedule of the generic controller. Then all of the following 
hold: 

1. Zf a CREATE(T) event appears in /3, then a REQUEST-CREATE(T) event 
precedes it in /3. 

2. At most one CREATE(T) event appears in B for each transaction T. 

3. Zf a COMMIT(T) event appears in /I, then a REQUEST-COMMIT(T, v) 
event precedes it in /I for some return value v. 

4. If an ABORT(T) event appears in fl, then a REQUEST-CREATE(T) event 
precedes it in /I. 

5. At most one completion event appears in b for each transaction. 

6. At most one report event appears in j for each transaction. 

7. Zf a REPORT-COMMIT( T, u) event appears in /I, then a COMMIT(T) 
event precedes it in j3. 
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8. 1’ a REPORT-ABORT(T) euent appears in fl, then an ABORT(T) event 
precedes it in /I. 

9. If an INFORM-COMMIT-AT(X event appears in B, then a 
COMMIT(T) everzt precedes it in 8. 

10. Zf an INFORM-ABORT-AT(X euent appears in /I, then an 
ABORT(T) event precedes it in fl. 

6.2.3. Generic Systems 

A generic system of a given system type is the composition of a strongly com- 
patible set of automata indexed by the union of the set of non-access transaction 
names, the set of object names and the singleton set {GC} (for “generic con- 
troller”). Associated with each non-access transaction name T is a transaction 
automaton AT for T, the same automaton as in the serial system. Associated with 
each object name X is a generic object automaton G, for X. Finally, associated 
with the name GC is the generic controller automaton for the system type. 

The external actions of a generic system are called generic actions, and the execu- 
tions, schedules, and behaviors of a generic system are called generic executions, 
generic schedules, and generic behaviors, respectively. The following proposition says 
that generic behaviors have the appropriate well-formedness properties. Its proof is 
analogous to that of the similar result for serial behaviors. 

PROPOSITION 44. If B is a generic behavior, then the following conditions hold. 

1. For every transaction name T, p 1 T is transaction well-formed for T. 

2. For every object name X, p 1 GX is generic object well-formed for X. 

The following result says that if the INFORM events are removed from any 
generic behavior, the result is a simple behavior. 

PROPOSITION 45. Zf fl is a generic behavior then serial(b) is a simple behavior. 

ProoJ By a straightforward induction on the length of prefixes of B.” i 

The following variant of the corollary to the Serializability Theorem applies to 
the special case where R is the completion order and the system is a generic system. 

PROPOSITION 46. Let /I be a finite generic behavior and T a transaction name that 
is not an orphan in /?, and let R = completion(/3). Suppose that for each object name 
X, view(serial(/?), T, R, X) E linbehs(S,). Then fi is serially correct for T. 

Proof: Immediate from Corollary 28, using Lemma 41, Proposition 45, and the 
observation that completion(/?) = completion(serial(/?)). m 

IS An alternative proof can be formulated in terms of the notion of implementation, using a 
possibilities mapping. 

571/41/l-9 



128 FEKETE ET AL. 

6.3. Dynamic Atomicity 

Now we define the “dynamic atomicity” property for a generic object automaton; 
roughly speaking, it says that the object satisfies the view condition using the com- 
pletion order as the sibling order R. This restatement of the view condition as a 
property of a generic object is convenient for decomposing correctness proofs for 
locking algorithms: the Serializability Theorem implies that if all the generic objects 
in a generic system are dynamic atomic, then the system guarantees serial correct- 
ness for all non-orphan transaction names. All that remains is to show that the 
generic objects that model the locking algorithms of interest are dynamic atomic. 

Let G, be a generic object automaton for object name X. We say that G, is 
dynamic atomic for a given system type if for all generic systems 9 of the given type 
in which G, is associated with X, the following is true. Let /I be a finite behavior 
of 9, R = completion(/I) and T a transaction name that is not an orphan in 8. Then 
view(serial(/?), T, R, X) E finbehs(S,). 

THEOREM 47 (Dynamic Atomicity Theorem). Let Y be a generic system in 
which all generic objects are dynamic atomic. Let /I be a finite behavior of Y. Then 
B is serially correct for every non-orphan transaction name. 

Proof Immediate from Proposition 46 and the definition of dynamic 
atomicity. 1 

As discussed earlier, this proof structure can be used to yield much stronger 
results than just the correctness of the locking algorithms in this paper. As long as 
each object is dynamic atomic, the whole system will guarantee that any finite 
behavior is serially correct for all non-orphan transaction names. Thus, we are free 
to use an arbitrary implementation for each object, independent of the choice of 
implementation for each other object, as long as dynamic atomicity is satisfied. For 
example, a simple algorithm such as Moss’s can be used for most objects, while a 
more sophisticated algorithm permitting extra concurrency by using type-specific 
information can be used for objects that are “hot spots.” (That is, objects that are 
very frequently accessed.) The idea of a condition on objects that guarantees serial 
correctness was introduced by Weihl [42,40] for systems without transaction 
nesting. 

6.4. Local Dynamic Atomicity 

In the previous subsection, we showed that to prove that a generic system 
guarantees serial correctness for non-orphan transactions it is enough to check that 
each generic object automaton is dynamic atomic. In this subsection, we define 
another property of generic object automata called “local dynamic atomicity,” 
which is a convenient sufficient condition for showing dynamic atomicity. For each 
generic object automaton G, dynamic atomicity is a local condition in that it only 
depends on G. However, the form in which the condition is stated may be difficult 
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to check directly: one must be able to verify a condition involving view(serial(/?), T, 
completion(P), X) for all finite behaviors p of all generic systems containing G. 
Local dynamic atomicity is defined more directly in terms of the behaviors of G. 

First we introduce some terms to describe information about the status of trans- 
actions that is deducible form the behavior of a particular generic object. Let G, 
be a generic object automaton for X, /I a sequence of external actions of G,, and 
T and T’ transaction names. Then T is locally visible at X to T’ in /I if B contains 
an INFORM-COMMIT-AT(X)OF( U) event for every U in ancestors(T) - 
ancestors(T’). Also, T is a local orphan at X in p if an INFORM-ABORT- 
AT(X event occurs in b for some ancestor U of T. The following are 
obvious facts about local visibility and local orphans. 

LEMMA 48. Let G, be a generic object automaton for X. Let /3 be a sequence of 
external actions of G,, and let T, T’, and T” be transaction names. If T is locally 
visible at X to T’ in fi, and T’ is locally visible at X to T” in p, then T is locally 
visible at X to T” in fi. 

LEMMA 49. Let G, be a generic object automaton for X. Let p be a generic object 
well-formed sequence of external actions of G,, and let T and T’ be transaction 
names. If T is locally visible at X to T’ in 8, and T’ is not a local orphan at X in 
/& then T is not a local orphan at X in /R 

We now justify the names introduced above by showing some relationships 
between the local properties defined above and the corresponding global properties. 

LEMMA 50. Let /3 be a behavior of a generic system in which generic object 
automaton G, is associated with X. If T is locally visible at X to T’ in /? 1 G, then 
T is visible to T’ in p. Similarly, if T is a local orphan at X in p 1 G, then T is an 
orphan in p. 

Proof These are immediate consequences of the generic controller precondi- 
tions, which imply that any INFORM-ABORT-AT(X)OF( T) event in /I must be 
preceded by an ABORT(T) event and that any INFORM-COMMIT- 
AT(X)OF( T) is preceded by COMMIT(T). 1 

Next, we define a relation on accesses to X to describe some information about 
the completion order that is deducible from the behavior of G,. Given a sequence 
/I of external actions of G,, we define a binary relation local-completion(/?) on 
accesses to X. Namely, (U, U’) E local-completion(/I) if and only if U# U’, p 
contains REQUEST-COMMIT events for both U and U’, and U is locally visible 
at X to U’ in B’, where p’ is the longest prefix of /I not containing the given 
REQUEST-COMMIT event for U’. The intuition underlying this definition is that 
(U, U’) is in local-completion(/?) if in any generic behavior y such that y 1 G, = 
p 1 Gx, the ancestors of U and U’ that are siblings, say T and T’, respectively, must 
complete in this order (i.e., T before T’). 
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LEMMA 51. Zf p is a generic object well-formed sequence of external actions of a 
generic object automaton for X, then local-completion(/?) is an irrejlexive partial 
order on accesses to X. 

Proof We must show that local-completion(P) is irreflexive, antisymmetric, and 
transitive. Irreflexivity follows immediately from the definition. 

Suppose that (Z’, T’) and (T’, T) are both in local-completion(fl). Then /I 
contains a REQUEST-COMMIT event for each of T and T’, and generic object 
well-formedness implies that there is only one of each. Since (T, T’) E local-comple- 
tion(p), T is locally visible at X to T’ in the longest prefix b’ of /I not containing 
the REQUEST-COMMIT for T’. Therefore, an INFORM-COMMIT for T occurs 
in /I’, and generic object well-formedness implies that the REQUEST-COMMIT 
for T precedes the REQUEST-COMMIT for T’ in /I. But the same reasoning 
implies that the REQUEST-COMMIT for T’ precedes the REQUEST-COMMIT 
for T in p, a contradiction. Therefore, local-completion(/?) is antisymmetric. 

Now suppose (T, T’) and (T’, T”) are both in local-completion(fi). Let /3’ and 8” 
be the longest prefixes of p not containing a REQUEST-COMMIT for T’ and not 
containing a REQUEST-COMMIT for T”, respectively. As in the argument above, 
the REQUEST-COMMIT for T’ must precede the REQUEST-COMMIT for T” 
in /I, so /I’ is a prefix of /I”. Since T is locally visible at X to T’ in b’, T is locally 
visible at X to T’ in /I”, and since T’ is locally visible at X to T” in /I”, Lemma 49 
implies that T is locally visible at X to T” in B”. Thus (7’, T’) E local-comple- 
tion@). 1 

The relationship between the local-completion order and the true completion 
order in a generic system is as follows. 

LEMMA 52. Let fi be a behavior of a generic system in which generic object 
automaton G, is associated with X. Let T and T’ be accesses to X. Zf (T, T’) E local- 
completion(P 1 G,), and T’ is not an orphan in /I, then (T, T’) E RtranS, where 
R = completion(P). 

Proof By definition of local-completion(P), /?I G, contains a REQUEST- 
COMMIT event for T’, and T is locally visible at X to T’ in /?‘I G,, where b’ is 
the longest prefix of /I not containing the REQUEST-COMMIT for T’. Lemma 50 
implies that T is visible to T’ in /I’. 

Since fi is transaction well-formed for T’, it contains at most one REQUEST- 
COMMIT event for T’, and so p’ does not contain a REQUEST-COMMIT event 
for T’. By the controller preconditions and Lemma 43, /?’ does not contain a 
COMMIT(T’) event. Since /?I G, is generic object well-formed, B’ contains a 
CREATE(T’) event. Since T’ is not an orphan in /3, /I’ does not contain an 
ABORT(T’) event. Therefore, T’ is live in b’. 

Let U and U’ denote the siblings such that T is a descendant of U, and T’ is a 
descendant of U’. Since T is visible to T’ in /I’, fi’ contains a COMMIT(U) event. 
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By Proposition 45 and Lemma 18, U’ must be live in /I’. Since fl’ contains a return 
for U, and no return for U’, it follows that (U, U’) E R. Therefore 
CT T’)~Rtrans. I 

Notice that the global completion order is a total order on siblings that actually 
complete. The local completion order, however, might be partial, since two siblings 
might run descendant accesses before either sibling completes. In such a situation, 
the object does not know which order the siblings completed in. 

6.4.1. ExampEe: local-completion(p 1 G,) and completion(B) 

One might expect local-completion(/I I G,) to be a subset of completion(&,,,. 
Lemma 52 shows that most pairs (r, 7”) in local-completion(/?I G,) are also in 
completion(P),,,,, , but only if T’ is not an orphan. The following example shows 
why this assumption is necessary. Suppose T and T’ are accesses to X with parents 
U and U’, respectively, and that U and U’ are siblings. Consider the following frag- 
ment of a generic behavior (for brevity, we have omitted most of the REQUEST 
actions): 

CREATE( U’) 

REQUEST-CREATE( T’) 

ABORT( U’) 

CREATE(U) 
CREATE(T) 
COMMIT(T) 
INFORM-COMMIT-AT(X) OF( T) 

COMMIT(U) 
INFORM-COMMIT-AT(X)OF( U) 

CREATE( T’) 

REQUEST-COMMIT( T’, u’). 

The generic controller allows an orphan transaction such as T’ to continue 
running, so even after U’ has been aborted T’ can be created. (In fact, the 
REQUEST-CREATE(Y) action could occur after the ABORT(U’) action, since 
U’ can also keep running after ABORT( U’) occurs.) The fragment of this behavior 
involving G, consists of the following sequence of actions: 

CREATE(T) 
INFORM-COMMIT-AT(X)OF( T) 

INFORM-COMMIT-AT(X) OF( U) 

CREATE( T’) 

REQUEST-COMMIT( T’, u’). 
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The definition of local-completion implies that (7’, T’) is in the local-completion 
ordering. However, notice that U’ aborted before U committed, so (U’, U) is in the 
global completion ordering. Hence, (T’, T) is in completion,,ans. 

6.42. Local Views and Local dynamic Atomicity 

Now we give a definition to describe how to reorder the external actions of a 
generic object automaton according to a given local-completion order. Suppose p 
is a generic object well-formed sequence of external actions of G, and T is a trans- 
action name. Let local-views(/$ T) be the set of sequences defined as follows. Let Z 
be the set of operations occurring in fi whose transactions are locally visible at X 
to T in B. Then the elements of local-views(8, T) are the sequences of the form 
perform(t), where < is a total ordering of Z in an order consistent with the partial 
order local-completion(a) on the transaction components. The following is 
straightforward from the definitions. 

LEMMA 53. If /I is a generic object well-formed sequence of external actions of Gx 
and T is a transaction name, then every element of local-views@, T) is serial object 
well-formed. 

We are finally ready to define “local dynamic atomicity.” We say that generic 
object automaton GX for object name X is locally dynamic atomic if whenever p is 
a finite generic object well-formed behavior of G, and T is a transaction name that 
is not a local orphan at X in /?, then local-views@, T) c finbehs(S,). That is, the 
result of reordering a behavior of G, according to the given local-completion order 
is a finite behavior of the corresponding serial object automaton. The main result 
of this subsection says that local dynamic atomicity is a sufficient condition for 
dynamic atomicity. 

THEOREM 54. Zf G, is locally dynamic atomic then G, is dynamic atomic. 

Proof: Let 9 be a generic system in which G, is associated with X. Let fl be 
a finite behavior of Y, R = completion(P) and T a transaction name that is not an 
orphan in p. We must prove that view(serial(/?), T, R, X) E finbehs(S,). By defini- 
tion, view(serial(B), T, R, X) = perform(t), where 5 is the sequence of operations 
occurring in fl whose transactions are visible to T in fl, arranged in the order given 
by Rtrans on the transaction component. 

Let y be a finite sequence of actions consisting of exactly one INFORMCOM- 
MIT-AT(X for each COMMIT(U) that occurs in /I. Then /?y is a behavior 
of the system Y, since each action in y is an enabled output action of the generic 
controller, by Lemma 42. Then /Iy 1 G, is a behavior of GX, and Proposition 44 
implies that it is generic object well-formed. 

Since INFORM-COMMIT-AT(X occurs in /?y 1 G, if and only if 
COMMIT(U) occurs in fi, an access T’ to X is visible to T in fl if and only if it is 
locally visible at X to T in fly 1 G,. Therefore, the same operations occur in 
view(serial(fi), T, R, X) and in any sequence in local-views@ 1 GX, T). To show 
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that view(serial(/I), T, R, X) E local-views(/?y 1 GX, T), we must show that they can 
appear in the same order. 

If T’ is any access that is locally visible at X to T in fly 1 G,, then T’ is visible 
to T in fi, so Lemma 12 implies that T’ is not an orphan in fl, and hence not an 
orphan in fly. Also, note that completion(/?y) = completion(fi) = R. Then Lemma 52 
implies that if accesses that are locally visible at X to T in by 1 G, are ordered by 
local-completion(/?y 1 G,), they are also ordered in the same way by R,,,,,. 

Thus, the sequence t can be obtained by taking those operations (T’, u’) such 
that REQUEST-COMMIT( T’, u’) occurs in fly 1 GX and T’ is locally visible at X 
to T in /3~lG,, and arranging them in an order that is consistent with local- 
completion(fly I G,) on the transaction component. Thus, perform(t) is an element 
of local-views(& 1 G,, T). Since G, is locally dynamic atomic, perform(<) is a finite 
behavior of SX, as required. 1 

7. PROPERTIES OF OPERATIONS AND OBJECTS 

The correctness of the two algorithms in this paper depends on semantic informa- 
tion about the types of serial object automata used in the underlying serial system. 
For example, Moss’s algorithm provides special treatment for “read accesses,” 
i.e., accesses that do not modify the state of the object. Also, our general 
commutativity-based locking algorithm uses information about commutativity of 
certain operations in order to determine the orders in which these operations are 
permitted to occur. In this section, we provide the appropriate definitions for these 
concepts. 

We first define the important concept of “equieffectiveness” of two sequences of 
external actions of a serial object automaton. Roughly speaking, two sequences are 
“equieffective” if they can leave the automaton in states that are indistinguishable 
to the outside world. We then define the notion of “commutativity” required for our 
algorithm. Finally, we define “read accesses;” that is, we state the properties of read 
accesses that are required for the correctness of Moss’s algorithm. 

7.1. Equieffectiveness 

In this subsection, we define “equieffectiveness” of finite sequences of external 
actions of a particular serial object automaton S,. The definition says that the two 
sequences can leave S, in states that cannot be distinguished by any environment 
in which S, can appear. Formally, we express this indistinguishability by requiring 
that S, can exhibit the same behaviors as continuations of the two given sequences. 

Let X be an object name, and recall that S, is a particular serial object 
automaton for X. Let /3 and /I’ be finite sequences of actions in ext(S,). Then /I is 
equieffectiue to fi’ (with respect to S,) if for every sequence y of actions in ext(S,) 
such that both By and p’y are serial object well-formed for X, Br E beh(S,) if and 
only if fi’y E beh(S,). Obviously, equieffectiveness is a symmetric relation, so that if 
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/3 is equieffective to 8’ we often say that B and 8’ are equieffective. Also, any 
sequence that is not serial object well-formed for X is equieffective to all sequences. 
On the other hand, if B and b’ are serial object well-formed sequences for X and 
B is equieffective to /I’, then if /3 is in beh(S,), /?’ must also be in beh(S,). 

The following proposition says that extensions of equieffective sequences are also 
equieffective. 

PROPOSITION 55. Let X be an object name. Let p and p’ be equieffective sequences 
of actions in ext(S,). Let y be a finite sequence of actions in ext(S,). Then /?y is 
equieffective to b’y. 

Equieffectiveness is not an equivalence relation, but we do have a restricted 
transitivity result. 

LEMMA 56. Let X be an object name, and let <, v] and 5 be three finite sequences 
of operations of X that are serial object well-formed for X, such that every operation 
in q appears in either 5 or i. If perform(<) is equieffective to perform(q), and per- 
form(q) is equieffective to perform(i), then perform(l) is equieffective to perform(i). 

Proof Suppose perform(<) and perform(q) are equieffective, and that per- 
form(r) and perform(c) are equieffective. Let y be a sequence of external actions of 
S, such that perform( 5) y and perform(c) y are serial object well-formed for X, and 
suppose that perform(c)y is a behavior of S,. We show that perform(c)y is a 
behavior of S,. 

By the definition of serial object well-formedness, y must be either of the form 
perform(r) or perform(r) CREATE(T), where the first components of all the opera- 
tions in t (and T as well, if appropriate) are distinct from the first components of 
all the operations in 5 and [. By the condition on r,~, the first components of all the 
operations in r (and T as well, if appropriate) are distinct from the first components 
of the operations in q. Thus, perform(q)y is serial object well-formed. The definition 
of equieffectiveness than implies that perform(q)y is a behavior of S,, and therefore 
that perform(c)y is a behavior of S,, as needed. i 

A special case of equieffectiveness occurs when the final states of two finite execu- 
tions are identical. The classical notion of serializability uses this special case, in 
requiring concurrent executions to leave the database in the same state as some 
serial execution of the same transactions. However, this property is probably too 
restrictive for reasoning about an implementation in which details of the system 
state may be different following any concurrent execution after a serial one. (Rela- 
tions may be’stored on different pages, or data structures such as B-trees may be 
configured differently.) These details are irrelevant to the perceived future behavior 
of the database. The notion of equieffectiveness formalizes this indistinguishability 
of different implementation states. 
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1.2. Commutativity 

We now define an appropriate notion of commutativity for operations of a par- 
ticular serial object automaton. Namely, we say that operations (T, v) and (T’, v’) 
commute, where T and T’ are accesses to X, if for any sequence of operations 5 such 
that both perform([( T, v)) and perform(t( T’, 0’)) are serial object well-formed 
behaviors of S,, then perform(r( T, v)( T’, v’)) and perform(t( T’, v’)( T, v)) are 
equieffective serial object well-formed behaviors of S,. 

A consequence of the definition of commutativity is the following extension to 
sequences of operations. 

PROPOSITION 57. Suppose that 5 and [’ are finite sequences of operations of X 
such that each operation in [ commutes with each operation in c’. If < is a finite 
sequence of operations of S, such that perform and perform(<c’) are serial object 
well-formed behaviors of S,, then perform( (ii’) and perform( {{‘i) are equieffective 
serial object welLformed behaviors of S,. 

The definition of commutativity given here is a variation of the notion of 
“forward commutativity” due to Weihl [39], originally defined in [42], adapted to 
the formal framework used in this paper. This definition is different from and 
slightly more complicated than that often used in the classical theory, for two 
reasons. First, we deal with objects whose accesses may be specified to be partial 
and nondeterministic, that is, the return value may be undefined or multiply defined 
from a given state. Second, as discussed in detail by Weihl L-411, the definition used 
in the classical theory is appropriate for concurrency control and recovery algo- 
rithms that use an “update-in-place” approach to abort recovery (with recovery 
based on undo logs); the definition given here is appropriate for algorithms that use 
a “deferred-update” approach to abort recovery (with recovery based on intentions 
lists). 

1.2.1. Example: Commutative Banking Operations 

As an example, consider the serial object S,, described in Section 4.5.2. For this 
object, it is clear that two serial object well-formed schedules that leave the same 
final balance in the account are equieffective, since the result of each access depends 
only on the current balance. We claim that if T and T’ are accesses of kind 
deposit-$a and deposit$b, then the operations (T, “OK”) and (T’, “OK”) com- 
mute. To see this, suppose that perform(t( T, “OK”)) and perform(<( T’, “OK”)) are 
serial object well-formed behaviors of S,. This implies that t is serial object well- 
formed and contains no operation with first component T or T’. Therefore, p = 
perform( 5( T, “OK”)( T’, “OK”)) and p’ = perform( c( T’, “OK”)( T, “OK”)) are serial 
object well-formed. Also, since perform(r) is a behavior of SX, so are /I and B’, 
since a deposit can always occur. Finally, the balance left after each of /I and p’ is 
$(x + a + b), where $x is the balance after perform(r), so /I and /I’ are equieffective. 

Also, if T and T’ are distinct accesses of kind withdraw-$a and withdraw-$b. 
respectively, then we claim that (T, “OK”) and (T’, “FAIL”) commute. The 
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reason is that if perform(t(T, “OK”)) and perform(c( T’, “FAIL”)) are both 
serial object well-formed behaviors then we must have a <x < b, where $x is the 
balance after perform(<). Then both perform(<( T, “OK”)( T’, “FAIL”)) and 
perform(<( T’, “FAIL”)( T, “OK”)) are serial object well-formed behaviors of S, 
that result in a balance of $(x - a), and so are equieffective. 

On the other hand, if T and T’ are distinct accesses of the kind withdraw-.$a 
and withdraw-$b, respecitively, then (T, “OK”) and (T’, “OK”) do not commute, 
since if perform(<) leaves a balance of $x, where max(a, b) < x < a + b, then 
perform( <( T, “OK”)) and perform( r( T’, “OK’)) can be serial object well-formed 
behaviors of S,, but perform(r( T, “OK”)( T’, “OK”)) is not a behavior, since after 
perform(c( T, “OK”)) the balance left is %(x - a), which is not sufficient to cover the 
withdrawal of $b. 

7.3. Transparent Operations 

We now define the essential property that we will require of any read access. We 
say that an operation (T, v) at X is transparent if for any finite sequence of opera- 
tions 5 of S, such that perform(t( T, 0)) is a serial object well-formed behavior of 
S,, perform(t( T, u)) and perform(t) are equieffective behaviors of S,. Thus, a 
transparent operation does not affect the later behavior of the object automaton. 
The following simple proposition shows that any subsequence consisting of trans- 
parent operations can be removed from a behavior, resulting in a behavior equi- 
effective to the original one. 

PROPOSITION 58. Let n be a finite serial object well-formed sequence of operations 
of X such that perform(n) is a behavior of S,, and let 5 be a subsequence of q such 
that every operation in v] - 5 is transparent. Then perform(q) and perform(<) are 
equieffective serial object well-formed behaviors of S,. 

It is easy to see that transparent operations commute. 

PROPOSITION 59. Let (T, u) and (T’, v’) be transparent operations of X such that 
T# T’. Then (T, v) commutes with (T’, 0’). 

Proof: Suppose 5 is a finite sequence of operations of X such that per- 
form(<( T, u)) and perform(l( T’, v’)) are serial object well-formed behaviors of S,. 
Then no operation in 5 has T or T’ as first component, and all the operations in 
5 have distinct first components. Therefore perform(l( T, v)( T’, v’)) and per- 
form(l( T’, u’)( T, u)) are serial object well-formed sequences of external actions of 
S,. Now perform(<(T, 0)) and perform(C) are equieffective, since (T, v) is trans- 
parent. Since perform(<)perform( T’, v’) is a behavior of S,, the definition of equi- 
effectiveness implies that perform(<( T, v))perform (T’, v’) = perform(t( T, v)( T’, II’)) 
is also a behavior of S,. Similarly, the fact that (T’, u’) is transparent implies 
that perform(<(T’, v’)( T, v)) is a behavior of S,. By Proposition 58, each of 
perform(t( T, v)( T’, v’)) and perform(<( T’, v’)( T, v)) is equieffective to perform([). 
Lemma 56 now shows that they are equieffective to each other, as required. [ 
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8. GENERAL COMMUTATIVITY-BASED LOCKING 

In this section, we present our general commutativity-based locking algorithm 
and its correctness proof. The algorithm is described as a generic system. The 
system type and the transaction automata are assumed to be fixed, and are the 
same as those of the given serial system. The generic controller automaton has 
already been defined. Thus, all that remains is to define the generic objects. We 
define the appropriate objects here, and show that they are dynamic atomic. 

8.1. Locking Objects 

For each object name X, we describe a generic object automaton L, (a “locking 
object”). The object automaton uses the commutativity relation between operations 
to decide when to allow operations to be performed. Recovery is handled using 
intentions lists [21, 281, which we generalize here to handle nested transactions. 
When a transaction executes an operation (i.e., when a response is returned for an 
access), the operation is recorded in the transaction’s intentions list. When a trans- 
action commits (i.e., when an INFORM-COMMIT action occurs for the transac- 
tion), the transaction’s list is appended to its parent’s. When a transaction aborts, 
its intentions list is discarded. The response for an access is constrained so that the 
resulting operation can be performed by the serial object from a state resulting from 
executing the intentions lists of the access’s ancestors. 

Automaton L, has the usual signature of a generic object automaton for X. A 
state s of L, has components s.created, s.commit-requested, and s.intentions. Of 
these, created and commit-requested are sets of transactions, initially empty, and 
intentions is a function from transactions to sequences of operations of X, initially 
mapping every transaction to the empty sequence A. When (T, v) is a member of 
s. intentions( U), we say that U holds a (T, u)-fock. Given a state s and a transaction 
name T we also define the sequence total(s, T) of operations by the recursive delini- 

-tion total(s, T,) = s.intentions( T,), total(s, T) = total(s, parent( T))s.intentions( T). 
Thus, total(s, T) is the sequence of operations obtained by concatenating the 
values of intentions along the chain from T, to T, in order. The precondition 
for REQUEST-COMMIT( T, u), where T is an access, explicitly references 
semantic properties of serial object S,, ensuring that perform(total(s, T’)) is a 
behavior of S, for any transaction T’. (The proof of this fact relies on the explicit 
test in the precondition for REQUESTCOMMIT( T, u), which ensures that 
perform(total(s, T)) is a behavior of S,, plus the test that (T, u) commutes with 
operations performed by concurrent transactions.) 

The transition relation of L, is given by all triples (s’, rc, s) satisfying the 
following pre- and postconditions, given separately for each rc. As before, any 
component of s not mentioned in the postconditions is the same in s as in s’. 

CREATE(T), T an access to X 
Effect: 

s. created = s’. created u { T} 
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INFORM-COMMIT-AT(X)OF( T), T # To 
Effect: 

s. intentions( T) = I 
s. intentions(parent( T)) = s’. intentions(parent( T))s’.intentions( T) 
s. intentions( U) = s’. intentions( U) for U # T, parent( T) 

INFORM-ABORT-AT(X)OF( T), T # To 
Effect : 

s.intentions( ZJ) = A, U E descendants(T) 
s.intentions( U) = s’.intentions( V), U 4 descendants(T) 

REQUEST-COMMIT(T, u), T an access to X 
Precondition: 

T E s’. created - s’. commit-requested 
(T, V) commutes with every (T’, u’) in s’.intentions( V), 

where U $ ancestors(T) 
perform(total(s’, T)( T, 0)) E hnbehs(S,) 

Effect: 
s. commit-requested = s’. commit-requested u { T} 
s.intentions(T)= (T, u) 
s. intentions( U) = s’. intentions( U) for U # T 

Thus, when an access transaction is created, it is simply added to the set created. 
When L, is informed of a commit, it passes any locks held by the transaction to 
the parent, appending them at the end of the parent’s intentions list. When L, is 
informed of an abort, it discards all locks held by descendants of the transaction. 
A response containing return value u to an access T can be returned only if the 
access has been created but not yet responded to, every holder of a “conflicting” 
(that is, non-commuting) lock is an ancestor of T, and perform( T, u) can occur in 
a move of S, from a state following the behavior perform(total(s’, T)). When this 
response is given, T is added to commit-requested and the operation (T, u) is 
appended to intentions(T) to indicate that the (T, u)-lock was granted. It is easy to 
see that L, is a generic object for X, i.e., that L, has the correct external signature 
and preserves generic object well-formedness. 

The locking object L, is quite nondeterministic; implementationsi of L, can be 
designed that restrict the nondeterminism in various ways, and correctness of such 
algorithms follows immediately from the correctness of L,, once the implementa- 
tion relationship has been proved, for example, by using a possibilities mapping. 

As a trivial example, consider an algorithm expressed by a generic object that is 
just like L, except that extra preconditions are placed on the REQUEST-COM- 
MIT( T, u) action, say requiring that no lock at all is held by any non-ancestor of 
T. (This corresponds to exclusive locking.) Every behavior of this generic object is 
necessarily a behavior of L, (although the converse need not be true). That is, this 

I6 Recall that “implementation” has a formal definition, given in Section 3.4. The “implementation” 
relation only relates external behaviors but allows complete freedom in the choice of automaton states. 
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object implements L, and so is dynamic atomic (since, as shown below, L, is 
dynamic atomic). 

For another example, note that our algorithm models both choosing a return 
value and testing that no conflicting locks are held by non-ancestors of the access 
in question as preconditions on the single REQUEST-COMMIT event for the 
access. Traditional database management systems have used an architecture in 
which a lock manager first determines whether an access is to proceed or be 
delayed, and then another component determines the response later. In such an 
architecture, it is infeasible to use the return value in determining which activities 
conflict. We can model such an algorithm by an automaton in which the granting 
of locks by the lock manager is an internal event whose precondition tests for 
conflicting locks using a “conflict table,” where the conflict table requires a lock for 
access T to conflict with a lock for access T’ whenever there are any return values 
u and v’ such that (T, v) does not commute with (T’, v’). Then we would have a 
REQUEST-COMMIT action whose preconditions include that the return value is 
appropriate and that a lock had previously been granted for the access. If we do 
this, we obtain an object that can be shown to be an implementation of L,, and 
therefore its correctness follows from that of L,. 

Many slight variations on these algorithms can be considered, in which locks are 
obtained at different times, recorded in different ways, and tested for conflicts using 
different relations; so long as the resulting algorithm treats non-commuting opera- 
tions as conflicting, it should not be hard to prove that these algorithms implement 
L,, and so are correct. Such implementations could exhibit much less concurrency 
than L,, because they use a coarser test for deciding when an access may proceed. 
In many cases the loss of potential concurrency might be justified by the simpler 
computations needed in each indivisible step. 

Another aspect of our algorithm that one might wish to change in an implemen- 
tation is the complicated data structure maintaining the “intentions,” and the 
corresponding need to replay all the operations recorded there when determining 
the response to an access. In the next section, we will consider an algorithm that 
is able to summarize all these lists of operations in a stack of versions of the serial 
object, at the cost of reducing available concurrency by using a conflict relation in 
which all updates exclude one another. 

8.2. Correctness Proof 

In this subsection, we prove several lemmas about L,, leading to the theorem 
that L, is dynamic atomic. The first lemma says that the ordering of operations in 
the “total” sequences does not change during execution of L,; its proof is 
straightforward. 

LEMMA 60. Let /II/l2 be a finite generic object well-formed schedule of L,, such 
that /?, can leave L, in state s’ and (s’, bz, s) is an extended step of L,. Let T,, T,, 
U and V be transaction names. Suppose (T,, v,) precedes (T,, v2) in total(s’, U) and 
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(T,, v2) occurs in total(s, V). Then (T,, ui) occurs in total(s, V) and precedes 
(T,, 02) in total(s, V). 

We next introduce a definition to describe the information L, uses about 
visibility. If B is a sequence of actions of L, and T and T’ are transaction names, 
we say that T is lock-visible at X to T’ in p if /I contains a subsequence /I’ consisting 
of an INFORM-COMMIT-AT(X)OF( U) event for every UE ancestors(T) - 
ancestors(T’), arranged in ascending order (so the INFORM-COMMIT for 
parent(U) is preceded by that for U). Lock-visibility is similar to local-visibility, 
with the added constraint that the INFORM actions occur in leaf-to-root order. 
The following lemma characterizes the contents of the various intentions lists in 
terms of lock visibility. 

LEMMA 61. Let b be a finite generic object well-formed schedule of L,. Suppose 
that /? can leave L, in state s. 

1. Let T be an access to X such that REQUEST-COMMIT( T, v) occurs in fl 
and T is not a local orphan at X in /?, and let T’ be the highest ancestor of T such 
that T is lock-visible to T’ at X in fl. Then (T, u) is a member of s.intentions( T’). 

2. Zf (T, u) is an element of s.intentions(T’) then T is a descendant of T’, 
REQUEST-COMMIT( T, u) occurs in 8, and T’ is the highest ancestor of T to which 
T is lock-visible at X in /I 

3. Zf T’ is not a local orphan at X in fi, then s.intentions(T’) consists of 
exactly the operations (T, u) such that T is a descendant of T’, REQUEST-COM- 
MIT( T, v) occurs in 0, and T’ is the highest ancestor of T to which T is lock-visible 
at X in /?. 

We also define a binary relation lock-completion(B) on accesses to X, where 
(U, U’) E lock-completion(/?) if and only if U # U’, /I contains REQUEST-COM- 
MIT events for both U and U’, and U is lock-visible to U’ at X in /I’, where J? is 
the longest prefix of /I not containing the given REQUEST--COMMIT event 
for U’. The following simple lemmas relate lock-visibility and the lock-completion 
order to local visibility and the local completion order. They follow immediately 
from the definitions. 

LEMMA 62. Let B be a generic object well-formed sequence of actions of L,. Then 
lock-completion(J) is an irreflexive partial order. 

LEMMA 63. Let fi be a sequence of actions of L, and T and T’ transaction names. 
Zf T is lock-visible at X to T’ in /I then T is locally visible at X to T’ in fl. Also lock- 
completion(b) is a subrelation of local-completion(j?). 

Now we relate the contents of the intentions lists to the lock-completion order. 
Lemma 64 characterizes the operations in an intentions list, while Lemma 65 
characterizes the order in which the operations appear in an intentions list. 
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LEMMA 64. Let /I be a generic object well-formed finite behavior of L,, and 
suppose that a REQUEST-COMMIT(T, v) event 71 occurs in fi, where T is not a 
local orphan at X in p. Let /?’ be the prefix of /? preceding z, and let s’ be the (unique) 
state in which p’ can leave L,. Then the operations in total(s’, T) are exactly the 
operations (T’, v’) that occur in /? such that (T’, T) flock-completion(/?). 

Proof Lemma 61 implies that the operations in total(s’, T) are exactly those 
(T’, v’) that occur in /I’ such that T’ is lock-visible to an ancestor of T in /Y. By 
the definition of lock-completion@) and the generic object well-formedness of /I, 
(T’, T) E lock-completion(P). 1 

LEMMA 65. Let p be a generic object well-formed finite behavior of L, that can 
leave L, in state s, and let T be any transaction name. Then the order of operations 
in total(s, T) is consistent with lock-completion(P). 

Proof: Suppose (T,, vi) and (T,, v2) are two operations in total(s, T) such 
that (T,, T,) E lock-completion(/?). By the definition of lock-completion, T, is 
lock-visible to T, at X in the longest prefix, fl,, of /I that does not include 
REQUEST-COMMIT( T,, vz). Then Lemma 61, applied to fir, implies that 
(T,, vi) is in the intentions list of an ancestor of T2 in the state si reached by /I,, 
and by the effects of REQUEST-COMMIT(T,, vz), (T,, vr) precedes (T2, v2) in 
total(s,, T2), where s2 is the state reached by /I,REQUESTCOMMIT(T,, vz). By 
Lemma 60, (T,, vi) precedes (T,, v2) in total(s, T). Thus, the order of operations in 
total(s, T) is consistent with lock-completion(P). 1 

We now give the key lemma, which shows that certain sequences of actions, 
extracted from a generic object well-formed behavior of L,, are serial object well- 
formed behaviors of S,. The second conclusion, that certain such sequences are 
equieffective, is needed to carry out the induction step of the proof of this lemma. 

It is helpful to have an auxiliary definition. Suppose fl is a generic object well- 
formed finite behavior of L,. Then a set Z of operations of X is said to be allowable 
for /I provided that for each operation (T, v) that occurs in Z, the following condi- 
tions hold: 

1. (T, u) occurs in b. 
2. T is not a local orphan in /I. 
3. If (T’, u’) is an operation that occurs in b such that (T’, T) E lock-comple- 

tion(B), then (T’, v’) E Z. 

An allowable set of operations corresponds roughly to a set of operations whose 
accesses either are or could become visible to some non-orphan transaction U. 
Thus, each operation in the set must occur in p and must not be a local orphan 
(since otherwise it could never be visible to a non-orphan). In addition, if T’ is 
visible to T and T becomes visible to U, T’ also becomes visible to U, so if (T, v) 
is in the set and T’ is visible to T, (T’, v’) should also be in the set. The third condi- 
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tion only requires (T’, u’) to be in the set if T’ precedes T in the lock-completion 
order; thus, we consider more sets of operations than just those whose accesses 
could become visible to U. This only strengthens the next lemma, since it shows 
that all allowable sets of operations for /I, when ordered consistently with lock- 
completion(b), correspond to behaviors of S,. 

LEMMA 66. Let /I be a generic object well-formed finite behavior of L, and let Z 
be an allowable set of operations for /I, Let R = lock-completion(b). 

1. If 5 is a total ordering of Z that is consistent with R on the transaction 
components, then perform( 4) E linbehs( S,). 

2. If r and q are both total orderings of Z such that each is consistent with R 
on the transaction components, then perform(t) and perform(q) are equieffective. 

ProoJ: We use induction on the size of the set Z. The basis, when Z is empty, 
is trivial. So let k > 1 and suppose that Z contains k operations and the lemma 
holds for all allowable sets of (k - 1) operations. Let 5 be a total ordering of Z that 
is consistent with R on the transaction component. Let (T, v) be the last operation 
in 5, and let Z’ = Z - ((T, v)}. Let 5’ be the sequence of operations such that 
5 = l’( T, v). Then Z’ is an allowable set of (k - 1) operations, since Z is, and there 
is no operation (T’, v’) in Z such that (T, T’) E R. Also, 5’ is a total ordering of Z’ 
consistent with R. 

Let fl’ be the longest prefix of /I not containing REQUEST-COMMIT( T, v), and 
let s’ be the (unique) state in which /Y can leave L,. Let cl = total(s’, T), and let 
c2 be some total ordering that is consistent with R of the operations in Z’ - [, 
Lemma 64 implies that the operations in cl are exactly those (T’, v’) that occur in 
fi such that (T’, T) E R, and Lemma 65 implies that the order of operations in [r 
is consistent with R. 

We show that (T, u) commutes with every operation (T”, v”) in 12. There are two 
cases. 

1. REQUEST-COMMIT( T”, v”) precedes REQUESTCOMMIT( T, v) in /I. 
Then let U denote the highest ancestor of T” to which T” is lock-visible at X in 
8’. By Lemma 61, (T”, 0”) Es’.intentions( U). By definition of c2, U is not an 
ancestor of T. Therefore, by the preconditions for REQUEST-COMMIT( T, v), 
which is enabled in state s’, (T, u) commutes with (T”, 0”). 

2. REQUEST-COMMIT( T, u) precedes REQUEST-COMMIT( T”, v”) in b. 
Then let /I” be the longest prefix of /I not containing REQUEST-COM- 
MIT(T”, u”), and let t be the state in which 8” leaves L,. Also let U denote the 
highest ancestor of T to which T is lock-visible at X in /I”, so that (T, v) E t.inten- 
tions(U). U is not an ancestor of T”, since if it were, then the definition of lock- 
completion implies that (T, T”) E R, contradicting the assumption that (T, v) is the 
last operation in 4. Therefore, by the preconditions for REQUEST-COM- 
MIT(T”, v”), which is enabled in state t, (T”, u”) commutes with (T, v). 
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Next, we claim that if (T’, v’) and (T”, v”) are operations in [i and c2, respec- 
tively, then (T”, T’) 4 R. For if (T”, T’) E R, then since (T’, T) E R, by Lemma 62 
we have also (T”, T) E R. Then the characterization of c, above implies that 
(T”, v”) occurs in ii, a contradiction. 

This claim implies that [it2 is also a total ordering of Z’ consistent with R. The 
inductive hypothesis then implies that perform and perform([, cz) are equieffec- 
tive serial object well-formed behaviors of S,. 

By the preconditions for REQUEST-COMMIT( T, v), which is enabled in state 
s’, perform(total(s’, T)( T, v)) = perform({,( T, u)) is a finite behavior of S,, and it is 
clearly serial object well-formed, since fl is generic object well-formed. We also 
showed above that perform([, cz) is a serial object well-formed behavior of S,. 
Since (T, v) commutes with every operation in c2, we have by Proposition 57 that 
perform([,[,( T, v)) is a serial object well-formed behavior of S,. Since per- 
form( [, cz) is equieffective to perform( r’), and since perform( 5) = perform( t’( T, II)) 
is clearly serial object well-formed, the definition of equieffectiveness implies that 
perform(<) is a behavior of S,. This completes the proof that perform(t) is a serial 
object well-formed behavior of S,. 

Now let r be any other total ordering of Z that is consistent with R on the 
transaction component. Let YI, and y/* be the sequences of operations such that 
v = q,( T, v) qz. Then ye, q2 is a total ordering of Z’ consistent with R. The inductive 
hypothesis shows that perform(q,q,) is a serial object well-formed behavior of S, 
and that it is equieffective to perform( Therefore, by Proposition 55, per- 
form(q, q2( T, u)) is equieffective to perform(r). 

Part 1 applied to q implies that perform(q) is a serial object well-formed behavior 
of s,; therefore, its prefix perform(u,( T, v)) is also a serial object well-formed 
behavior of S,. 

By the characterization above for ii, every operation in ii has its transaction 
component preceding T in R. Thus, since q is consistent with R, every operation in 
i, is contained in vi. Thus, every operation in qz is contained in c2, and so (T, u) 
commutes with every operation in q2. Therefore, perform(q) = perform(q,( T, v)qz) 
is equieffective to perform(q,q,(T, u)), by Proposition 57. 

Since perform(q) is equieffective to perform(q, q2( T, u)) and perform(u,q,( T, v)) 
is equieffective to perform({), Lemma 56 implies that perform(q) is equieffective to 
perform(l), completing the proof. [ 

Now we can prove that locking objects are locally dynamic atomic. 

PROPOSITION 67. L, is locally dynamic atomic. 

Proof Let /I be a finite generic object well-formed behavior of L, and let T be 
a transaction name that is not a local orphan at X in p. We must show that local- 
views(/?, T) cfinbehs(S,). So let Z be the set of operations occurring in p whose 
transactions are locally visible to T at X in /I. Let 5 be a total ordering of Z consis- 
tent with local-completion(fl) on the transaction components. We must prove that 
perform(t) is a behavior of S,. 

271/41/l-10 
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We claim that Z is allowable for /?. To see this, suppose that (T’, u’) is an opera- 
tion that occurs in Z. Then (T’, u’) occurs in 8. Since T’ is locally visible at X to 
T in fi and T is not a local orphan at X in b, Lemma 49 implies that T’ is not a 
local orphan at X in B. Now suppose that (T”, u”) is an operation that occurs in 
/I and (T”, T’) E lock-completion(P). Then T” is lock-visible at X to T’ in /?, and 
hence, by Lemma 63, is locally visible at X to T’ in /I. Therefore, (T”, II”) is in Z. 

We also claim that the ordering of 5 is consistent with lock-completion(b) on the 
transaction components. This is because the total ordering of r is consistent with 
local-completion(/I), and Lemma 63 implies that lock-completion(/?) is a subrela- 
tion of local-completion(/?). 

Lemma 66 then implies that perform(r) is a behavior of Sx, as needed. 1 

Finally, we can show the main result of this section. 

THEOREM 68. L,Y is dynamic atomic. 

Proof: By Proposition 67 and Theorem 54. m 

An immediate consequence of Theorems 68 and the Dynamic Atomicity 
Theorem is that if Y is a generic system in which each generic object is a locking 
object, then Y is serially correct for all non-orphan transaction names. 

9. Moss’s ALGORITHM 

In this section, we present Moss’s algorithm for read-update locking [29] and its 
correctness proof. Once again, the algorithm is described as a generic system, and 
all that needs to be defined is the generic objects. We define the appropriate objects 
here and show that they implement locking objects. It follows that they are 
dynamic atomic. 

9.1. Moss Objects 

For each object name X, we describe a generic object automaton M, (a “Moss 
object”). The automaton M, maintains a stack of “versions” of the corresponding 
serial object Sx, and manages “read locks” and “update locks.” 

The construction of M, is based on a classification of all the accesses to X as 
either read accesses or update accesses. We assume that this classification satisfies 
the property that every operation (T, u) of a read access T is transparent. If 5 
is a sequence of operations of X, we let update([) denote the subsequence of 5 
consisting of those operations whose first components are update accesses. 
Proposition 58 implies that if perform(t) is a serial object well-formed behavior of 
Sx, then perform(update( 0) is also a serial object well-formed behavior of Sx, and 
perform(update(c)) is equieffective to perform(t). 

Mx has the usual action signature for a generic object automaton for X. A state 
s of M, has components s. created, s. commit-requested, s. update-lockholders, and 
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s. read-lockholders, all sets of transactions, and s.map, which is a function from 
s.update-lockholders to states of the serial object automaton S,. We say that a 
transaction in update-lockholders holds an update-lock and, similarly, that a trans- 
action in read-lockholders holds a read-lock. The start states of M, are those in 
which update-lockholders = {T,,} and map( To) is a start state of the serial object 
Sx, and the other components are empty. 

If U is a finite set of transactions such that for all T and T’ in @, either T is an 
ancestor of T’ or vice versa, then we define least(%) to be the unique transaction 
in % that is a descendant of all transactions in +2. Some of the following actions 
contain preconditions in which the function “least” is applied to the set s’.update- 
lockholders. In case least(s’. update-lockholders) is undefined, the precondition is 
assumed to be false.” 

The transition relation of M, is as follows: 

CREATE(T), T an access to X 
Effect: 

s. created = s’. created u { T} 

INFORM-COMMIT-AT(X) OF( T), T # T,, 
Effect: 

if T E s’. update-lockholders 
then 

s. update-lockholders = (s’. update-lockholders - { T} ) u { parent( T)} 
s.map(parent( T)) = s’.map( T) 
s. map( V) = s’. map( U) for U E s. update-lockholders - { parent( T) > 

if T E s’. read-lockholders 
then s. read-lockholders = (s’. read-lockholders - { T} ) u {parent(T)} 

INFORM-ABORT-AT(X) OF( T), T # TO 
Effect: 

s. update-lockholders = s’. update-lockholders - descendants( T) 
s. read-lockholders = s’. read-lockholders - descendants( 7’) 
s. map( U) = s’. map( U) for all U E s. update-lockholders 

REQUEST-COMMIT(T, u), T a read access to X 
Precondition: 

T E s’. created - s’. commit-requested 
s’. update-lockholders E ancestors(T) 
there is a state t of S, such that 

(s’. map(least(s’. update-lockholders)), perform( T, u), t) is a move of S, 
Effect : 

s. commit-requested = s’. commit-requested u { T} 
s. read-lockholders = s’. read-lockholders u { T} 

I’ In fact, in all states s’ that arise in executions having generic object well-formed behaviors, 
least(s’.update-lockholders) is defined. 
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REQUEST-COMMIT( T, u), T an update access to X 
Precondition: 

T E s’. created - s’. commit-requested 
s’. update-lockholders u s’. read-lockholders c ancestors(T) 
there is a state t of SX such that 

(s’.map(least(s’. update-lockholders)), perform( T, u), t) is a move of S, 
Effect : 

s. commit-requested = s’. commit-requested u { T} 
s. update-lockholders = s’. update-lockholders u { T} 
s,map(T)=t 
s. map( V) = s’. map( V) for all U E s. update-lockholders - { T}. 

When an access transaction is created, it is added to the set created. When M, 
is informed of a commit, it passes any locks held by the transaction to the parent 
and also passes any serial object state stored in map. When M, is informed of an 
abort, it discards all locks held by descendants of the transaction. A response con- 
taining return value v to an access T can be returned only if the access has been 
created but not yet responded to, every holder of a conflicting lock is an ancestor 
of T, and perform( T, V) can occur in a move of SX from the state that is the value 
of map at least(update-lockholders). When this response is given, T is added to 
commit-requested and granted the appropriate lock. Also, if T is an update access, 
the resulting state is stored as map(T), while if T is a read access, no change is 
made to map. 

It is easy to see that M, is a generic object, i.e., that it has the correct external 
signature and preserves generic object well-formedness. The following is also easy 
to prove, using induction of the length of a schedule. 

LEMMA 69. Let /I be a finite schedule of M,. Suppose that p can leave Mx in 
state s. Suppose T E s. update-lockholders and T’ E s. read-lockholders u s. update- 
lockholders. Then either T is an ancestor of T’ or else T’ is an ancestor of T. 

Note that it is permissible to classify all accesses as update accesses. The Moss 
object constructed from such a classification implements exclusive locking. Thus, 
the results we obtain about Moss objects also-apply to exclusive locking as a special 
case. 

9.2. Correctness Proof 

In this subsection, we show that M, is dynamic atomic. In order to show this, 
we produce a possibilities mapping from M, to L, as defined in Section 3.4, 
thereby showing that MX implements L,. Note that M, is not describable as a 
simple special case of L X: the two algorithms maintain significantly different data 
structures. Nevertheless, a possibilities mapping can be defined. 

We begin by defining the mappingJ: Let f map a state s of M, to the set of states 
t of L, that satisfy the following conditions: 
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1. s.created = t.created 
2. s. commit-requested = t . commit-requested. 
3. s.read-lockholders is the set of transaction names T such that t.inten- 

tions(T) contains a read operation. 
4. s.update-lockholders is the set of transaction names T such that t.inten- 

tions(T) contains an update operation, together with T,. 
5. For every transaction name T, perform(update(total(t, T))) is a finite 

behavior of SX that can leave S, in the state s.map( T’), where T’ is the least 
ancestor of T such that T’ E s. update-lockholders. 

LEMMA 70. f is a possibilities mapping from M, to L,. 

ProoJ: The proof involves checking the conditions in the definition of a 
possibilities mapping. These checks are completely straightforward, but numerous 
and tedious. For completeness, we include the details here, although the reader will 
probably not wish to read them. 

It is easy to see that t,, E f(s,), where s0 and to are start states of M, and L,, 
respectively. Let s’ and t’ be reachable states of M, and L,, respectively, such that 
t’ E f(d). Suppose (s’, 7c, s) is a step of M,. We produce t such that (t’, rc, t) is a step 
of L, and t E f (s). We proceed by cases. 

1. 7~ = CREATE(T), T an access to X. Since z is an input of L,, rc is enabled 
in state t’. Choose t so that (t’, rc, t) is a step of L,. We show that t E f(s). 

The effects of rr as an action of M, and L, imply that s.created = 
s’.created u { T} and t.created = t’.created u (T}. Moreover, all of the other com- 
ponents of s or t are identical to the corresponding components of s’ or t’, respec- 
tively. Since t’ E f (s’), we have s’. created = t’.created, so that s. created = t .created, 
thus showing the first condition in the definition off. The other conditions hold in 
s and t because they hold in s’ and t’ and none of the relevant components are 
modified by rr. 

2. 7c = INFORM-COMMIT_AT(X)OF( U). Since 71 is an input of L,, 7c is 
enabled in state t’. Choose t so that (t’, z, t) is a step of L,. We show that t E f(s). 

The first and second conditions hold in s and t because they hold in s’ and t’ and 
none of the relevant components are modified by 7~. The effects of rr as an action 
of L, imply that t.intentions( IV) = t’.intentions( W) unless WE {U, parent(U)}, 
t. intentions(parent( U)) = t’. intentions(parent( U)) t’. intentions( U), and t . inten- 
tions( U) = A. We consider two cases. 

a. t’.intentions( U) contains a read operation. Then the set of transaction 
names T such that t.intentions( T) contains a read operation is exactly the 
set of T such that t’.intentions( T) contains a read operation, with U 
removed and parent(U) added. Since t’ E f(s’), s’.read-lockholders is the 
set of transaction names T such that t’.intentions(T) contains a read 
operation; in particular, UE s’. read-lockholders. The effects of x as an 
action of M, imply that s. read-lockholders = s’. read-lockholders - { U> u 
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{parent(U)}. Thus, s.read-lockholders is exactly the set of T such that 
t. intentions( T) contains a read operation. 

b. t’. intentions( U) does not contain a read operation. Then the set of trans- 
action names T such that t.intentions( T) contains a read operation is 
exactly the set of T such that t’.intentions(T) contains a read operation. 
Since t’ E f(Y), s’. read-lockholders is the set of transaction names T such 
that t’.intentions( T) contains a read operation; in particular, U# s’.read- 
lockholders. The effects of rc as an action of M, imply that s.read- 
lockholders = s’. read-lockholders. Thus, s. read-lockholders is exactly the 
set of T such that t.intentions( T) contains a read operation. 

This shows the third condition. The proof of the fourth condition is analogous to 
that for the third condition. 

Finally, fix some transaction T and let T’ be the least ancestor of T such that 
T’ E s. update-lockholders. The discussion is divided into subcases, depending on 
the relation between T and U in the transaction tree. 

a. U is an ancestor of T. Then total(t, T) = total(t’, T). Let T” be the least 
ancestor of T in s’. update-lockholders. Since t’ E f(s), perform(update(to- 
tal(t’, T))) is a finite behavior of S, that can leave S, in the state 
s’. map( T”). 

If U= T”, then the effects of n as an action of M, imply that s.update- 
lockholders = s’.update-lockholders - {T”} u {parent( T”)}, so T’ = 
parent( T”). Then s.map( T’) = s.map(parent( T”)) = s’.map( T”). 

If U# T” and UE s’. update-lockholders, then by definition of T”, U is 
a strict ancestor of T”. Then s.map(T”) = s’.map(T”) and T” = T’, so 
again s.map( T’) = s’.map( T”). 

If U # T” and U is not in s’.update-lockholders, then s.update- 
lockholders = s’.update-lockholders and s.map = s’.map; thus, T” = T’ 
and so s.map( T’) = s’.map( T”). 

In each case, we have shown that s.map( T’) = s’.map( T”); therefore, 
perform(update(total( t, T))) is a finite behavior of S, that can leave S, in 
the state s. map( T’). 

b. U is not an ancestor of T, but parent(U) is an ancestor of T. If UE 
s’.update-lockholders then Lemma 69 implies that no transaction in 
ancestors(T) - ancestors(parent( U)) can be in s’. update-lockholders u 
s’.read-lockholders. The effects of rc as an action of M, therefore show 
that T’ = parent(U). These effects also show that s.map(parent(U)) = 
s’.map( U). Since t’ Ed, t’.intentions( IV) must be empty for all 
WE ancestors(T) - ancestors(parent( U)). By the effects of rc as an action 
of Lx, t. intentions( W) = t’.intentions( IV) unless W equals U or 
parent(U), so t.intentions( W) is empty for all WE ancestors(T) - 
ancestors(parent( U)). Thus, total( t, T) = total( t, parent( U)). The effects of 
rr as an action of L, also show that total( t, parent(U)) = total( t’, U), so 
that total( t, T) = total( t’, U). Since t’ E f(s’) and U is the least ancestor of 
U in s’. update-lockholders, perform(update( total( t’, U))) is a finite 
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behavior of S, that can leave S, in state s’.map( U). The equalities we 
have proved show that perform(update(total(t, 7’))) is a finite behavior of 
Sx that can leave S, in state s.map( T’). 

If U +! s’. update-lockholders then s. update-lockholders = s’. update-lock- 
holders and s.map = s’. map. Thus, T’ is the least ancestor of T in s’. up- 
date-lockholders, and s.map( T’) = s’.map( T’). Since t’ Ed, there are 
no update operations in t’. intentions( U). Then the effects of 7c as an action 
of L, imply that update(total(t, T)) = update(total(t’, T)). Thus, 
perform(update(total(t, T))) = perform(update(total(t’, T))), which is, by 
the fact that t’~f(.s’), a finite behavior of S, that can leave S, in state 
s’.map( T’) = s. map( T’). 

c. parent(U) is not an ancestor of T. The effects of rr ensure that T’ is the 
least ancestor of T in s’. update-lockholders, s.map( T’) = s’.map( T’) and 
total(t, T) = total(t’, T). The result follows immediately from the fact that 
t’ E f(d). 

This completes the demonstration of the fifth condition. 

3. rc = INFORM-ABORT_AT(X)OF(U). Since rr is an input of L,, n is 
enabled in state t’. Choose t so that (t’, rr, t) is a step of L,. We show that t Ed. 

The first and second conditions hold in s and t because they hold in s’ and t’ and 
none of the relevant components are modified by rc. 

The effects of n as an action of L, imply that t.intentions( W) = t’.intentions( W) 
unless W is a descendant of U, and t.intentions( W) = 2 if W is a descendant of U. 
Thus, the set of transaction names T such that t .intentions( T) contains a read 
operation is equal to the set of T such that t’.intentions( T) contains a read opera- 
tion with the descendants of U removed. Similarly, the effects of rc as an action of 
M, show that s. read-lockholders equals s’. read-lockholders with the descendants 
of U removed. Since t’ Ed, the set of transaction names T such that t’.inten- 
tions( T) contains a read operation equals s’.read-lockholders. Thus, the set of T 
such that t .intentions( T) contains a read operation equals s.read-lockholders, as 
required. This shows the third condition. The proof of the fourth condition is 
analogous to that for the third condition. 

Finally, fix some transaction T and let T’ be the least ancestor of T such that 
T’ E s. update-lockholders. The discussion is divided into subcases, depending on 
the relation between T and U. 

a. U is an ancestor of T. Then total(t, T) = total(t’, parent(U)). The effects of 
rc as an action of M, imply that s.update-lockholders = s’. update-lock- 
holders - descendants(U) and s.map( W) = s’.map( W) if W is not a 
descendant of U. Thus, T’ is an ancestor of parent(U), and in fact must 
be the least ancestor of parent(U) in s’. update-lockholders. Since t’ E f(s’), 
perform(update(total(t’, parent(U)))) . is a finite behavior of S, that can 
leave S, in state s’.map( T’). Thus, perform(update(total( t, T))) is a finite 
behavior of S, that can leave S, in state s.map(T’). 

b. U is not an ancestor of T. The effects of rc ensure that T’ is the least 
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ancestor of T in s’. update-lockholders, s. map( T’) = s’.map( T’) and 
total(t, T) = total(t’, T). The result follows immediately from the fact that 
t’ Ef(S’). 

This completes the demonstration of the fifth condition. 
4. rc = REQUEST-COMMIT( U, u), U a read access to X. We first show that 

7t is enabled as an action of L, in state t’. That is, we must show that 
UE t’.created - t’.commit-requested, that (U, u) commutes with every (V, u) in 
t’.intentions( U’), where U’ $ ancestors(U), and that perform(total( t’, U)( U, u)) is in 
finbehs(S,). 

Since t’ E f(s’), t’. created = s’.created and t’. commit-requested = s’.commit- 
requested. Since rt is enabled as an action of M, in state s’, we have that U E 
s’. created - s’. commit-requested. Therefore, U E t’. created - t’. commit-requested. 

Suppose (in order to obtain a contradiction) that there exist U’, I’, and u such 
that U’ $ ancestors(U), (V, u) is in t’.intentions( U’), and (U, u) does not commute 
with (V, v). Since U is a read access and read accesses are transparent, Proposi- 
tion 59 implies that either U= I’ or else I/ is an update access. Lemma 61 implies 
that U’ is an ancestor of V, so that we cannot have V= U. Therefore, V is an 
update access. Since V is an update access and (I’, v) is in t’.intentions( U’), the fact 
that t’ E f(s’) shows that U’ E s’. update-lockholders. Thus, since n is enabled in state 
s’, U’ is an ancestor of U. This is a contradiction; thus, we have shown that if 
U’ is not an ancestor of U and (V, u) is in t’.intentions( U’), then (U, u) and (I’, u) 
commute. 

Finally, let U’ = least(s’. update-lockholders). Since n is enabled in s’, U’ must be 
an ancestor of U and is thus the least ancestor of U in s’.update-lockholders. There- 
fore, the fact that t’Ef(s’) implies that perform(update(total(t’, U))) is a finite 
behavior of S, that can leave S, in state s’.map( U’). Since x is enabled in s’, there 
is a move of SX with behavior perform( U, u) starting from state s’.map( U’). Thus, 
perform(update(total(t’, U)))perform( U, u) is a behavior of S,. Since perform(up- 
date(total( t’, U))) is equieffective to perform(total( t’, U)), perform(total( t’, U))per- 
form( U, u) = perform(total(t’, U)( U, u)) is in finbehs(S,), since it is serial object 
well-formed. 

Thus, n is enabled as an action of L, in state t’. Choose t such that (t’, rr, t) is 
a step of L,. We show that t Ed. 

The effects of rc imply that s. created = s’. created, t . created = t’. created, 
s. commit-requested = s’. commit-requested u { U} and t . commit-requested = 
t’. commit-requested u { U}. Since t’ E f(s’), we have t’. created = s’. created and 
t’. commit-requested = s’.commit-requested. Thus, s.created = t.created and 
s.commit-requested = t.commit-requested, so the first and second conditions hold. 

The effects of 7t imply that i. read-lockholders = s’. read-lockholders u { U}, 
t. intentions( U) = t’. intentions( U)( U, u), and t .intentions( W) = t’. intentions( W) for 
W# U. Since .t’ Ed, s’.read-lockholders is the set of transaction names T such 
that t’. intentions( T) contains a read operation. Then s.read-lockholders = s’. read- 
lockholders u {U}, which is exactly the set of transaction names T such that 
t.intentions(T) contains a read operation, so the third condition holds. 
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It is easy to see that the fourth condition holds in s and t, because it holds in s’ 
and t’ and the only relevant component that is modified is that t.intentions( U) = 
t’.intentions( U)( U, u), and (U, u) is a read operation. 

For the final condition, consider any transaction T. Note that 
perform(update(total(t, T))) = perform(update(total(t’, T))) and s.map = s’.map. 
Since the fifth condition holds in s’ and t’, it is easy to see that it holds in s and t. 

5. 71 = REQUESTPCOMMIT( U, u), U an update access to X. We first show 
that n is enabled as an action of L, in state t’. The proofs that UE t’.created - 
t’.commit-requested and that perform(total(t’, U)( U, u)) is in finbehs(S,), are iden- 
tical to the corresponding proofs for the read update case. We must show that 
(U, u) commutes with every ( V, u) in t’. intentions( U'), where U' $ ancestors(U). We 
will show the stronger statement that if t’.intentions( U') is not the empty sequence, 
then U' E ancestors(U). Since t’ Ed, if t’.intentions( U') is nonempty, then 
U' E s’. read-lockholders u s’. update-lockholders. Thus, since x is enabled as an 
action of M, in state s’, U' E ancestor(U). 

Thus n is enabled as an action of L, in state t’. Choose t such that (t’, 7c, t) 
is a step of L,. We show that t~f(s). The first two conditions follow as for 
the read access case. The third condition holds in s and t because it holds in s’ 
and t’ and the only relevant component that is modified is that t.intentions( U) = 
t’.intentions( U)( U, u), and (U, u) is an update operation. 

The effects of rt imply that s. update-lockholders = s’.update-lockholders u {U}, 
t.intentions( U) = t’.intentions( U)( U, u), and t.intentions( IV) = t’.intentions( IV) for 
W# U. Since t’ Ed, s’.update-lockholders is the set of transaction names T such 
that t’.intentions( T) contains an update operation, together with To. Thus, s.up- 
date-lockholders = s’.update-lockholders u { U}, which is exactly the set of T such 
that t.intentions( T) contains an update operation, together with To. Thus, the 
fourth condition is satisfied. 

Finally, we show the fifth condition. Fix any transaction name T. If T# U, then 
since U is an access, T is not a descendant of U; then the fifth condition holds in 
s and t because it holds in s’ and t’ and none of the relevant components are 
modified. So suppose that T= U. 

The effects of n as an action of M, imply that s.map( U) is equal to some state 
r of S, such that (s’.map( U'), perform( U, u), r) is a move of S,, where U'= 
least(s’.update-lockholders); also, s.map( W) = s’.map( W) for all Wf U. Since all 
members of s’.update-lockholders must be ancestors of U by the preconditions of 
71 in M,, U' is the least ancestor of U in s’.update-lockholders, so the fact 
that z’E~(s’) implies that perform(update(total(t’, U))) is a finite behavior of 
S, that can leave S, in state s’.map(U’). Thus, perform(update(total(t’, U)))per- 
form( U, ~4) is a finite behavior of SX that can leave S, in state s,map( U). But 
perform(update(total(t’, U)))perform( U, u) = perform(update(total(t’, U)( U, u))) = 
perform(update(total( t, U))). Thus, perform(update(total( t, U))) is a finite behavior 
of S, that can leave S, in state s.map(U), as required. 1 

PROPOSITION 71. M, implements L,. 



152 FEKETEETAL. 

Prooj By Lemma 70 and Theorem 3. 1 

THEOREM 72. M, is dynamic atomic. 

Proof By Proposition 71 and Theorem 68. 1 

An immediate consequence of Theorems 72, 68 and the Dynamic Atomicity 
Theorem is that if Y is a generic system in which each generic object is either a 
Moss object or a locking object, then Y is serially correct for all non-orphan trans- 
action names. 

10. CONCLUSIONS 

We have presented a formal model for reasoning about atomic transactions that 
can include nested subtransactions and have used it to carry out an extensive 
development of the important ideas about locking algorithms. First, we have stated 
the correctness conditions to be satisfied by transaction-processing algorithms; we 
have stated these at the user interface to the transaction-processing system. Second, 
we have stated and proved a general Serializability Theorem that can be used to 
show the correctness of transaction-processing algorithms. Third, we have defined 
the concept of “dynamic atomicity,” a sufficient condition for satisfying the 
hypotheses of the Serializability Theorem. Fourth, we have presented two locking 
algorithms: a new general commutativity-based locking algorithm and a previously 
known read-update locking algorithm. Fifth, we have provided complete correct- 
ness proofs for both algorithms. We have proved the general algorithm correct by 
showing that it satisfies the dynamic atomicity condition, and then we have proved 
the read-update algorithm correct by showing that it implements the general algo- 
rithm. All of these tasks have been quite manageable within the given framework. 

The proofs we have constructed are modular. A system is modeled in terms of a 
number of components, and our proofs follow the modular decomposition of the 
system. Many interesting concepts are captured by formal definitions, and many 
facts about these concepts are captured by formally stated lemmas. This modularity 
makes the development much easier to understand than it would be without it. 
Moreover, much of the machinery is reusable for presenting and verifying other 
algorithms. 

We have already used our model to present and prove correctness of several 
other kinds of transaction-processing algorithms, including timestamp-based algo- 
rithms for concurrency control and recovery [2] and algorithms for management 
of replicated data [ 121 and of orphan transactions [17]. Our treatment of 
timestamp algorithms is especially noteworthy because it parallels the work in this 
paper quite closely. 

Briefly, the paper [2] contains descriptions of two timestamp algorithms: Reed’s 
timestamp-based algorithm [34], designed for data objects that are accessible only 
by read and write operations, and a new general algorithm that accommodates 
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arbitrary data types. (This latter algorithm generalizes work by Herlihy [16] for 
single-level transactions.) These algorithms both involve assignment of ranges of 
timestamp values to transactions in such a way that the interval of a child transaction 
is included in the interval of its parent, and the intervals of siblings are disjoint. 
Responses to accesses are determined from previous accesses with earlier 
timestamps. 

These algorithms are proved correct using the Serializability Theorem of this 
paper. This time, the sibling order used is the timestamp order. Now the view 
condition says that the processing of accesses to X is “consistent” with the 
timestamp order, in that reordering the processing in timestamp order yields a 
correct behavior for S,. The Serializability Theorem implies that the timestamp 
algorithms are serially correct for all non-orphan transaction names. Again, each 
algorithm is described as the composition of object automata and a controller. 
Again, a local condition (“static atomicity”) is defined, this time saying that an 
object satisfies the view condition using the timestamp order. As long as each object 
is static atomic, the whole system is serially correct for non-orphan transactions. 
Again, we have the flexibility to implement objects independently as long as static 
atomicity is guaranteed. We show that both algorithms ensure static atomicity. 

There is much more that could be done using this model. For example, it would 
be interesting to model other kinds of locking algorithms, such as those using 
multigranularity locking [ 131, tree locking [3], and predicate locking [9]. Perhaps 
the dynamic atomicity and local dynamic atomicity conditions defined in this paper 
will prove useful for reasoning about these other algorithms as well. It would also 
be interesting to see if our Serializability Theorem can be used to prove correctness 
of other concurrency control algorithms besides those based on locking or 
timestamps. 

There are other areas of transaction-processing systems that contain subtle, com- 
plex algorithms that would benefit from a more rigorous analysis. For example, it 
would be interesting to use our framework to model some of the complex trans- 
action-processing algorithms that tolerate processor “crashes,” i.e., failures that 
obliterate the contents of volatile memory [14]. Similarly, algorithms that manage 
orphans resulting from node crashes in distributed systems [22] are complex, yet 
no rigorous proof exists. 

It would also be interesting to integrate our approach more closely with the 
classical approach, to try to combine the advantages of both. Our framework is 
more general than the classical model (b&ause of its integrated treatment of 
concurrency control and recovery and because it allows transactions to nest). On 
the other hand, our model includes more detail than the classical model, and so it 
may seem more complicated. For example, the classical Serializability Theorem is 
stated in simple combinatorial terms, while our Serializability Theorem involves a 
fine-grained treatment of individual actions. We wonder if there is a simple 
combinatorial condition similar to the hypothesis of the classical theorem (but 
taking suitable account of nesting and failures), that implies the general correctness 
conditions described in this paper. 
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