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A general theorem is proved which shows how a system of contending asynchronous 
processes with a special auxiliary supervisor process can be simulated by a system of 
contending processes without such a supervisor, with only a small increase in the shared space 
needed for communication. Two applications are presented, synchronization algorithms with 
different fairness properties requiring N + c and [N/2] + c (c a constant) shared values to 
synchronize N processes, respectively. 

I. INTRODUCTION 

There are many algorithms in the literature for ensuring that the execution of 
systems of asynchronous processes exhibits various types of synchronization. In a 
typical formulation, asynchronous processes have “critical regions” of their 
code-portions of code whose execution is to be restricted so that certain patterns of 
simultaneous access to critical regions by different processes do not occur. 
Synchronization protocols are executed by the processes prior to entry to their 
critical regions, in order to prevent forbidden access patterns from occurring. 

The simplest such restriction is that of Dijkstra’s mutual exclusion problem [ 1 1, 
which specifies that no pair of processes should have simultaneous access to their 
critical regions; algorithms satisfying this restriction are useful for arbitrating 
requests for exclusive access to a single shared resource. Dijkstra’s restriction can be 
generalized in a straightforward way, to specify that no more than I> 1 processes 
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should have simultaneous access to their critical regions. Algorithms satisfying this 
more general “l-exclusion” restriction are useful for arbitrating requests for exclusive 
access to one of 1 identical copies of a shared resource. 

The papers in [2-51 contain clever synchronization algorithms for mutual 
exclusion and I-exclusion, in an environment where a single shared var’iable serves as 
the only means of communication among the processes. The algorithms of these 
papers are designed so that only those processes which happen to be involved in 
conflicting demands for critical region access are available for participation in the 
synchronization protocols-there are no permanent, “dedicated” processes available 
to help achieve the synchronization. The algorithms of those papers are designed to 
minimize a certain “space” measure-the number of distinct values needed for the 
single shared variable. References 12-41 contain small-space algorithms for mutual 
exclusion with different fairness properties, while (5 ] contains corresponding small- 
space algorithms for I-exclusion. 

Unfortunately, so many programming tricks seem to be required to achieve the 
very small space bounds that several of these algorithms (such as Algorithm C of [5] 
and the algorithm of [3]) are very difficult to understand from their programs. There 
are many different activities being carried out at once-processes perform many 
different functions at different times during their protocols, and sometimes share 
responsibility for performing certain functions. This responsibility is sometimes 
passed from one process to another using the communication variable. The 
communication variable is used for many different purposes, and it must be ensured 
that those different uses do not block each other indefinitely or become confused. The 
resulting programs are very intricately intertwined sequences of parallel actions, 
difficult to understand in their entirety, but also apparently difficult to decompose 
into meaningful subprograms. It seems that considerable benefit would be provided 
by isolating capabilities generally useful for presenting such algorithms, and then 
proving general theorems to show how those capabilities can be achieved using the 
given model. This approach has two advantages: the resulting decomposition should 
be easier to understand than the original algorithms, and also, portions of the decom- 
position should be useful for presenting several different algorithms. 

In this paper, we isolate one general capability that seems very useful for 
presenting algorithms such as those in [2-51. A significant reduction in the length 
and amount of complication in some of those algorithms results from assuming the 
existence of a dedicated “supervisor process,” always available to aid in the 
synchronization of the other processes. If such a supervisor is available, a simplifying 
programming strategy is to push as much of the computation and decision-making as 
possible into the local computation of the supervisor, since properties of such local 
computation are well understood. Ideally, the non-supervisor processes would then 
have simple programs, their jobs reduced to carrying out communication with the 
supervisor to inform it of their critical region requirements and receive instructions 
for proceeding. The communication variable would be used only for the minimal 
communication necessary for this information exchange, and not for helping with 
computation that could be carried out locally. 
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In [24], the processes do, in effect, “simulate a supervisor” at various points in 
their code. However, the presentations in those papers tie the supervisor simulation 
responsibility to certain particular points in the process code, and do not attempt a 
clean separation between the basic algorithm and the supervisor function. 

Of course, the basic model assumed by [2-51 assumes that there are no dedicated 
supervisor processes, so in order to use such a capability, we must show how to 
simulate a supervisor process using only the allowed participating processes. The 
main theorem of this paper is a general small-space supervisor simulation theorem. 
We then give two applications of this simulation theorem, based on the FIFO mutual 
exclusion algorithm of [3] and the lockout-free, mutual exclusion Algorithm C of [4]. 
Not only can versions of those two mutual exclusion algorithms be presented more 
simply using this decomposition strategy, but as a bonus, this strategy makes these 
two algorithms immediately extendable to small-space f-exclusion algorithms. We 
present the generalizations to Z-exclusion. The two theorems provide space upper 
bounds for l-exclusion algorithms satisfying the two different fairness properties, 
bounds which are considerably better than those claimed in Theorem 4.1 of [5 1. 
Peterson [8] has independently obtained versions of the two l-exclusion algorithms of 
this paper. Only his version of the “executive” algorithm appears in detail in [ 8 ]; the 
ideas of the FIFO algorithms are sketched. The bounds claimed in [8] are sharper 
than ours, (N + I + 6 and [N/2J + I + 8, respectively), since a major effort of that 
paper is devoted to optimizing the constants. No decomposition of our type is used, 
however. 

We note that [5] also presents some of its results using a general supervisor 
simulation theorem. However, the simulation of that paper is different from the 
present one. That simulation is designed to build in immunity to a certain type of 
process failure, a consideration which is not treated by the present simulation. Conse- 
quently, that simulation is not as space-efficient as the present one. 

The algorithms presented in this paper are not trivial to understand, even with the 
given decomposition. There are still several types of communication going on using 
the same small-shared variable, and care must be taken to ensure that they do not 
interfere with each other. However, it seems that now the main strategy of each 
algorithm is reasonably easy to explain and that the main correctness arguments to 
be made involve the non-interference among the different communications being 
carried out in parallel. 

There is a cost incurred by the decomposition, of an additive constant number of 
values. It seems possible to save a few (around 10) values by very careful 
optimization, involving both levels of decomposition. In the interest of simplicity, we 
have accepted this extra cost. 

The remaining sections are organized as follows: Section II contains definitions 
and notation for processes, systems, and simulation, and for the correctness and 
fairness properties we wish to achieve. Theorem 1 is also stated, showing that our 
definition of simulation preserves all of our properties. Section III contains 
Theorem 2, the general simulation theorem, the restrictions required on the original 
supervisor system in order that it be simulable, a description of a high-level language 
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for presenting our algorithms, the program for the simulation and arguments for its 
correctness. Section IV contains the two applications: an N + 1+ 15valued FIFO I- 
exclusion algorithm and an ]N/2] + 1+ 18-valued I-exclusion algorithm avoiding 
lockout, each for N processes. Each algorithm is presented by first providing a 
version with a supervisor and then appealing to Theorems 1 and 2. In each case, 
detailed code is provided, the algorithm is explained informally and arguments are 
given for the non-interference of communications. 

II. DEFINITIONS AND NOTATION 

Processes and Systems 

The definitions in this section are special cases of those in [6], describing an 
environment in which a finite number of deterministic processes access a single 
shared communication variable. Access is by a test-and-set operation which reads the 
value of the variable and changes it in a single indivisible step. 

A variable x has an associated finite set of values, values(x), which the variable 
can assume. A variable action for x is a triple (u, x, v) with U, v E values(x); it 
represents the action of changing the value of x from u to v. act(x) is the set of all 
variable actions for x. 

A process p has an associated finite set of states, states(p), which it can assume. 
start(p) is a distinguished starting state. A process action for p is a triple (s, p, t) 
with s, t E states(p); it represents p going from state s to state t. act(p) is the set of 
all process actions for p. If P is a set of processes, then act(P) = U,,,, act(p). 
variable(p) is the single variable which p is permitted to access. 

Every process action occurs in conjunction with a variable action; the pair forms a 
complete execution step. That is, if P is a set of processes and x a variable, we let 
steps(P, x) = act(P) x act(x) be the set of execution steps. Oksteps is a subset of 
steps(p, variable(p)) describing the permissible steps of p. Oksteps is subject to the 
condition: for any s E states(p), u E values(variable(p)), there exist exactly one t, v 
with ((s, p, t), (u, variable(p), v)) E oksteps( Thus, processes are deterministic. We 
also use the alternative functional notation 6,(s, u) = (t, v) to express the fact that 
((s, p, t), (u, variable(p), v)) E oksteps( If P is a set of processes, then 
oksteps = l-l,,,, oksteps( 

A system of processes S has three components: proc(S), a finite set of processes, 
var(S), a variable which is variable(p) for all p E proc(S), and init E 
values(var(S)), an initial value for var(S). 

Let N denote the set of natural numbers, including 0. If A is any set, A *(A”) 
denotes the set of finite (infinite) sequences of A-elements. AcoU”t denotes A * VA”. 
Length: A ‘OUnt -+ N U {co } denotes the number of elements in a given sequence. Let P 
be a set of processes, x a variable. W(P, x) = (steps(P, x))~“““’ is the domain used to 
describe executions. 

It is convenient in this paper to use one device not included in the model of [6]: 
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We sometimes consider several distinct processes operating on a common local state. 
This seems quite natural for some algorithms, where a single process performs more 
than one logical function. A more understandable code can result from separating 
those functions into distinct processes. In the following definitions, the set Q 
represents such a set of processes operating on a common state. 

Let e E B(P, x), Q E P with start(p) = start(p’) for all p, p’ E Q. Define the latest- 
value function as follows: 

If length(e) = 0, then latest(Q, e) = start(p) for any p E Q. 
If 1 < length(e) < co, and e = e’((s, p, t), (a, x, u)), then 

latest(Q, e) = t if PE Q, 
= latest(Q, e’), otherwise. 

If length(e) = co, then latest(Q, e) = latest(Q, e’) provided e can be decomposed as 
e’e” and no p E Q appears in e”, and is otherwise undefined. 

If Q = (p], a singleton (the usual case), we write latest(p, e) instead of 
latest( ( p), e). 

Cooperative and Hierarchical Systems 

A worker is a process p for which states(p) is partitioned into subsets R(p), T(p), 
C(p), and E(p), (called the remainder, trying, critical, and exit regions of p, respec- 
tively), so that start(p) E R(p) and so that the following are true for any 
((s, P, 0, (u, x, u>) E oksteps( 

(a) s E R(p) implies t E T(p)U C(p), 

(b) s E T(p) implies t E T(p) U C(p), 

(c) s E C(p) implies t E E(p)U R(p), 

(d) s E E(p) implies t E E(p) U R(p). 

That is, a process in its remainder region (resp. critical region), if it takes a step, will 
either go directly to its critical region (resp. remainder region) or will enter its trying 
region (resp. exit region). Once in the trying region (resp. exit region), a process will 
remain in that region until it progresses to its critical region (resp. remainder region). 
We are not counting local steps taken by the processes while in their remainder or 
critical regions, but are only considering steps involving synchronization. 

A cooperative system is a system S of processes whose processes are all workers. 
A hierarchical system S is a system of processes in which all processes but two are 
workers, comprising workers(S); the remaining two processes, called manager(S) and 
clerk(S), have the property that states(manager(S)) = states(clerk(S)) and 
start(manager(S)) = start(clerk(S)). Let MC(S) = {manager(S), clerk(S)/. 

A cooperative system is the type of system assumed to be available in [2-5). A 
hierarchical system is an augmentation of a cooperative system which allows two 
additional processes. These processes will be allowed to share a common local state. 

The manager and clerk together comprise the “supervisor process” discussed in the 
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Introduction. For the algorithms we describe, the supervisor performs two distinct 
logical functions, and it is convenient to separate those two functions into those of 
two distinct processes, called a manager and a clerk. 

Let S be a cooperative system. An execution sequence for S is a sequence e E 
(oksteps(proc(S)))coU”t c B(proc(S), var(S)) for which the following conditions hold 
(let e = (ei)pJfth@), where e, = ((Si, pi, ti)> (Ui, var(S), vi))): 

(a) If p E proc(S) and there is some i with pi = p, then for the smallest such i 
it is the case that si = start(p,). If i < j, pi = pj, and there is no k, i < k < j with 
pk= pi, then ti=s. 

(b) If length;;) > 0, then ui = init( Also, ui = ui+ I for 1 < i < length(e). 

Thus, the states of processes and values of the variable are consistent from step to 
step. 

Let S be a hierarchical system. An execution sequence for S is a sequence e E 
(oksteps(proc(S)))Co”“t G a(proc(S), var(S)) for which the following conditions hold 
(notation is as above): 

(a) If p E workers(S) and there is some i with pi = p, then for the smallest 
such e, it is the case that si = start(p,). If i < j, pi = pj and there is no k, i < k < j 
with pk = pi, then ti = sj. 

(b) Same as (b) in the preceding definition. 
(c) If there is some i with pi E MC(S), then for the smallest such i it is the 

case that si = start(manager(S)) (=start(clerk(S))). If i < j, pi, pi E MC(S), and 
there is no k, i < k < j with pk E MC(S), then ti = sj. 

Thus, states of worker processes and values of the variable are consistent from step 
to step. Also, manager(S) and clerk(S) “share a state”: Values of the states of the 
pair of processes are consistent from step to step. 

An execution sequence e for a cooperative system s is admissible provided 
latest(p, e) E R(p) U C(p) for every p for which latest(p, e) is defined. An execution 
sequence e for a hierarchical system S is worker-admissible provided latest(p, e) E 
R(p) U C(p) for every b E workers(s) for which latest(p, e) is defined. An execution 
sequence e for a hierarchical system S is admissible provided it is worker-admissible, 
and provided if p E MC(S) and if there are only finitely many i with pi = p, then e is 
finite. 

Thus, admissibility requires workers to continue taking steps while they are in their 
protocols (but not necessarily while they are in their own code.) They are also not 
required to leave their critical regions. (This is a weakening of the requirements 
imposed in 12-41.) The manager and clerk are both required to continue taking steps 
as long as any workers take steps. If all workers halt, then the manager and clerk are 
permitted to halt also. 

Let S be a cooperative system, S a hierarchical system, and assume i: proc($ --f 
workers(S) is an isomorphism. Then we say that ,? simulates S provided for every 
admissible execution sequence P of S, there is an admissible execution sequence e of 
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S such that e exhibits the same set of region changes by the same (up to 
isomorphism i) worker processes in the same order, as F. 

Properties of Interest for Cooperative and Hierarchical Systems 

(C 1) l-Exclusion, 12 1. 

A cooperative (resp. hierarchical) system S violates l-exclusion provided there exist 
a finite execution sequence e of S and distinct pl,..., pr+, E proc(S) (resp. 
workers(S)) such that latest(p, e) E C(p) for all pi, i E [l + 11. S satisfies Z-exclusion 
provided it does not violate l-exclusion. 

(C2) No l-deadlock, I> 1. 

A cooperative (resp. hierarchical) system S exhibits l-deadlock provided there is an 
admissible execution sequence e of S such that: 

(a) all region changes eventually stop in e, and 

(b) either (bl) or (b2) holds: 

(bl) latest(p, e) E E(p) for some p E proc(S) (resp. workers(S)); 

(b2) latest(p, e) E T(p) for some p E proc(S) (resp. workers(S)) and at 
most l- 1 distinct p E proc(S) (resp. workers(S)) have 
latest(p, e) E C(p). 

S satisfies “no l-deadlock” provided it does not exhibit l-deadlock. 
Thus, the system should continue to make progress as long as either some process 

is in its exit region, or some process is in its trying region with sufficient available 
space in the critical region. The system is permitted to stop making progress with 
processes still in their trying regions, in the case that the critical region remains filled. 
This formulation is stronger than that in [2,4] and is similar to that in (51. 

(C3) No infinite bypass. 

A cooperative (resp. hierarchical) system S exhibits inJinite bypass provided there 
exist an admissible execution sequence e and p E proc(S) (resp. workers(S)) such 
that 

(a) latest(p, e) E T(p) U E(p),and 

(b) infinitely many region changes occur in e. 

S satisfies “no infinite bypass” provided it does not exhibit infinite bypass. 
In the literature (including [2,4]) a property called “no lockout” is usually 

formalized instead of (C3). “No lockout” is generally expressed in terms of each 
process making eventual progress. This requirement really includes two conditions: a 
condition which states that the system as a whole continues to make progress, and a 
condition which states that no process is indefinitely discriminated against in favor of 
other processes. Here, these two conditions are treated separately, as (C2) and (C3). 
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(C4) FIFO. 
A cooperative (resp. hierarchical) system S violates FIFO order provided there 

exist p, q E proc(S) (resp. workers(S)) and finite execution sequence e = e’e” of S 
such that (a) or (b) holds: 

(a) Both (al) and (a2) hold: 
(al) latest(p, e’) E T(p) and p does not change regions in e”, 
(a2) latest(q, e’) E R(q) and latest(q, e) E C(q). 

(b) Both (bl) and (b2) hold: 
(bl) latest(p, e’) E E(p) and p does not change regions in e”, 
(b2) latest(q, e’) E C(q) and latest(q, e) E R(p). 

S satisfies FIFO provided it does not violate FIFO order. 
Thus, FIFO order is preserved through both the trying region and the exit region. 

Preservation of Properties by Simulation 

THEOREM 1. Let 9 be a cooperative system, S a hierarchical system, and assume 
3 simulates S. Then if S satisfies any of properties (C l)-(C4), it follows that 3 
satisfies the corresponding property (for the same value of 1). 

ProoJ All properties deal only with order of region changes, so the result is 
immediate from the definitions. I 

III. THE SIMULATION THEOREM 

General Strategy 

In this section, we present the main simulation theorem. We wish to start with as 
general a hierarchical system as possible and simulate it using a cooperative system. 
Each process of the cooperative system simulates one worker process of the original 
hierarchical system. In addition, one process of the cooperative system at a time has 
the responsibility of simulating the manager and clerk. The first process to enter its 
trying or exit region first assumes the responsibility of simulating both the manager 
and clerk. It continues the simulation of the manager and clerk as long as it remains 
in its protocol. At the point when it is about to leave the protocol and go to its 
critical or remainder region, it passes the responsibility of simulating the manager 
and clerk to another process in its trying or exit region, by a communication 
protocol. That process behaves similarly. If at any time, a process simulating the 
manager and clerk is about to leave its trying or exit region but there is no remaining 
process to assume the responsibility, the leaving process simply puts the necessary 
manager-clerk state information in the variable and goes to its critical or remainder 
region. That state information is then available so that any new process that enters 
can resume the simulation of the manager and clerk. 
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Unlike the simulations implicit in the algorithms of [ 2-4 1, the present simulation 
does not require processes in their critical regions to participate in manager-clerk 
simulation. This is because our formulation permits processes to halt in their critical 
regions. 

Restrictions on Hierarchical Systems 

Certain restrictions are necessary for this simulation to be carried out. 

DEFINITION. A hierarchical system 5’ is called r-regular (r an integer) provided it 
satisfies the following six properties: 

(1) If P E workers(S), (@, P, 0, ( a, X, v)) E oksteps and t E C(p) (resp. 
R(p)), then both (la) and (lb) hold. 

(la) s E T(p) (resp. E(p)) and u = u, and 
(lb) if w E values(x), then ((s, p, t), (w, x, w)) E oksteps( 

That is, the last operation of each worker’s protocol is a “NO-0P”. This requirement 
is necessary because a process about to enter its critical or remainder region can 
delay a long time while relinquishing its responsibility to simulate the manager and 
clerk, perhaps allowing other processes to change regions during the delay. It is not 
permissible for this delay to introduce orders of region changes not possible in the 
simulated hierarchical system. To prevent the introduction of new behavior, it is 
sufficient that the original system also have the possibility of a corresponding delay 
occurring with the same intervening region changes. Formally, this is made possible 
by requiring an extra, dummy step to occur. Since this step can occur at any time in 
the original hierarchical system, the new delay does not introduce any new orders of 
region changes. 

Let prelim(p) denote {s E states(p): there exists some ((s, p, t), (u, x, u)) E 
oksteps with t E C(p) U R(p)}. Thus, prelim(p) denotes states in T(p) U E(p) 
immediately before a “NO-0P” is executed. An arbitrary subset of 
states(manager(S)) = states(clerk(S)) . IS called safe(s). These states must satisfy 
several properties. 

(2) Let e be any execution sequence of S which is worker-admissible, and in 
which both clerk(S) and manager(S) appear infinitely many times. Then for infinitely 
many distinct prefixes e’ of e it is the case that latest(MC(S), e’) E safe(S). 

Thus, safe states can be made to occur by running the manager and clerk while the 
workers continue their normal operation. 

(3) Let e=e’e” be any finite execution sequence of S, and suppose 
latest(MC(S), e’) E safe(S) and manager(S) does not appear in e”. Then 
latest(MC(S), e) E safe(S). 

That is, only the manager’s own steps can cause its state to change from safe to 
unsafe. Thus, a safe state, once achieved, can be made to persist by stopping the 
manager. 
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(4) Let e = e’e” be any infinite execution sequence of S with 
latest(MC(S), e’) E safe(S), Assume e is worker-admissible, that manager(S) does 
not appear in e” but clerk(S) appears infinitely many times in e”. Then after some 
finite initial subsequence of e, all region changes stop and var(S) always has the 
value 0 (i.e., all variable actions past that point are of the form (0, var(S), 0)). 

Thus, stopping the manager at a safe state and allowing the clerk and workers to 
continue to run will eventually result in all activity ceasing and the shared variable 
becoming cleared for communication. 

(5) If ((s, p, t), (u, X, 0)) and ((s’, p, t’), (u, x, 0’)) E oksteps(clerk(S)), then 
v = v’. 

That is, the clerk always has the same effect on the variable, regardless of its own 
current state. This property makes it possible to simulate the effect of the clerk on the 
variable without knowing the clerk’s state. 

(6) [{s E states(manager(S)): s E safe(S), there is a finite execution sequence e 
of S with latest(MC(S), e) = s and for no p E workers(S) is it the case that 
latest(p, e) E T(p) U E(p)}1 = r. 

That is, there are only r different safe manager states which could exist at times when 
there is no process available for assuming responsibility for the simulation. Let this 
set of safe states be denoted by free(S). If S is r-regular, then strengthened versions of 
properties (2) (4), and (6) can be proved easily: 

DEFINITION. An execution sequence e of an r-regular hierarchical system S is 
semi-worker-admissible provided latest(p, e) E R(p) U C(p) U prelim(p) for every 
p E workers(S) for which latest(p, e) is defined. 

That is, semi-admissibility requires workers to continue taking steps while they are 
in their protocols, unless they are in preliminary states. Since a preliminary state can 
be transformed by a “NO-0P” into a critical or remainder state, the rest of the 
system cannot distinguish between a process being in a preliminary state and in its 
critical or remainder region. Thus, an r-regular system S satisfies the following three 
properties: 

(2’) Let e be any execution sequence of S which is semi-worker-admissible, 
and in which both clerk(S) and manager(S) appear infinitely many times. Then for 
infinitely many distinct prefixes e’ of e it is the case that latest(MC(S), e’) E safe(S). 

(4’) Let e = e’e” be any infinite execution sequence of S with 
latest(MC(S), e’) E safe(S). Assume e is semi-worker-admissible, that manager(S) 
does not appear in e” but clerk(S) appears infinitely many times in e”. Then after 
some finite initial subsequence of e, all region changes stop and var(S) always has the 
value 0 (i.e., all variable actions past that point are of the form (0, var(S), 0)). 

(6’) j{s E states(manager(S)): s E safe(S), there is a finite execution sequence e 



360 LYNCHANDFISCHER 

of S with latest@&?(S), e) = s and for no p E workers(S) is it the case that 
latest(p, e) E (T(p)UE(p)) - prelim(p)}l = r. 

A High-Level Language for Describing Processes 

Algorithms will be described in an Algol-like language similar to the ones used in 
[3,5, 7] but designed to make the translation into the basic model transparent. Added 
to the usual sequential programming constructs are two synchronization statements, 
lock and unlock. In addition, the construct “waitfor c” is used as an abbreviation for 
“while not C do [unlock; lock].” 

Lock and unlock statements always occur in pairs, an “unlock” followed 
immediately (syntactically) by a “lock.” Location counter values correspond to the 
points in the code immediately preceding each lock statement. States of the process p 
defined by a program corresponding to a particular location counter value together 
with values for all the program’s local variables, with one such combination 
designated as the start state. Transitions are defined as follows: If the program is 
started with its location counter and local variable values described by state s, and u 
as the value of the shared variable x and if the program is then run according to 
usual sequential programming rules, it might or might not reach an unlock statement. 
If it does, if t is the state describing the resulting location counter and local variable 
values, and if v is the new value of the shared variable, then let 6,(s, u) = (t, v). If it 
does not, then let 6,(s, u) = (s, u). (In general, of course, this decision is not effective, 
but still gives a well-defined answer. In actual execution, the values leading to the 
second alternative should never occur.) 

Thus, all computation, including local variable changes and control steps, is done 
while the shared variable is locked. The variations on the language used in [2,5, 7 ] 
allow local computation to be performed while the variable is unlocked. In this paper, 
where we allow more than one process to access the same local state, we wish to 
leave no room for ambiguous translation. 

Main Result 

THEOREM 2. Let S be an r-regular hierarchical system with Ivalues(var(S))l_= m. 
Then there is a cooperative system S which simulates S such that jvalues(var(S))l = 
m+r+4. 

Proof. The shared variable X of s has values(X) = values(var(S)) U {‘NEW’, 
‘SEND’, ‘ACK’, ‘DONE’} U free(S). We assume that the three sets of values in this 
union are all disjoint. We call the values in values(var(S)) the ordinary values, 
denoted ORD, those in {‘NEW’} U free(S) the selection values, denoted SEL, and 
those in {‘SEND’, ‘ACK’, ‘DONE’} the communication values, denoted COMM. 
init = start(manager(S)) E free(S). 

We describe a process p of !?. p has local variables as follows: 

P for the state of simulated process p E proc(S), 
MGR for the state of the manager (and clerk), 
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LIST for recording a list of X-values during a restricted mode of 
simulation of the clerk, 

c for holding a code being transmitted or received, 
FINISH for indicating the end of receipt of a message, 
M for holding an interrupted communication value. 

The initial value of P is start(p), and all other local variables are initialized at 0. The 
starting location counter value of ~7 is at the last lock statement of the program. 

The components of LIST will be denoted by L, , L, ,..., L,,,,,, , in the order in 
which they are placed in the list. We write mgr as an abbreviation for manager(S) 
and elk as an abbreviation for clerk(S). States are transmitted in unary; we assume 
code to be a function which assigns an integer to each manager state, and decode the 
corresponding decoding function. The subscripts 1 and 2 indicate the two components 
of a (state, variable-value) pair, respectively. 

0 

0 
0 

Q 
0 
8 
0 

0 

Process p 

while true do 
[while (P e prelim(p) and X & SEL) do 

[ifXECOMM then [MtX;X+O]; 
(P, 4 + S,(P, ‘q; 
if X=0 then (XtM;MtO]; 
unlock; lock]; 

if P c prelim(p) then 
[if X E free(S) then [MGR +X; X + O] 
else /*X = ‘NEW’*/ 

[M+‘ACK’;XtO; 
while FINISH = 0 do 

[if X = ‘SEND’ then [M + ‘ACK’; C t C + 11; 
if X = ‘DONE’ then FINISH + 1; 
X +- 0; if P & prelim(g) then (P, X) + 6,(P, X); 
LIST + LIST, x; 
X + (L(sta~(c~k), X)), ; 
if X=0 then [X+M,MtO]; 
unlock; lock] 

MGR + 41d... ~,d~,,ddecode(C), L,), U.., LILIST,); 
LIST + 0; C + 0; FINISH t 0] 

while P @ PreWP) do [(MC% Xl + S,,,(G,,,(MGR, X)); (P, X) e d,(P, x); unlock; lock]; 
while MGR & safe(s) do [(MGR, X) + 6,,,(6,,,(MGR, X)); unlock; lock]; 
while X# 0 do [(P. X) + 6&P, X); unlock; lock]; 
if MGR E free(S) then X t MGR 
else [X + ‘NEW’; C + code(MGR); 

while C > 0 do [waitfor X = ‘ACK’; X t ‘SEND’; C + C - 11; 
waitfor X = ‘ACK’; X + ‘DONE’]] 

else if M # 0 then [waitfor X = 0; X + M, M + 01; 
p + (&P(P, O)), ; 
unlock; lock] 

ALGORITHM A 

571/21/3-3 
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The regions of p are defined as follows: Any state s of p is in the same region as the 
state of p stored in the local variable P of state S. 

We use the facts in the following two paragraphs to justify the faithfulness of the 
simulation. 

The variable X is used both for simulating the actions of system S (when X has an 
ordinary value) and for coordination among processes simulating the manager and 
clerk (when X has a selection or communication value). Selection and 
communication values are only placed in X to replace the ordinary value of 0. Thus, 
if at any time a process sees a selection or communication value in X, and replaces it 
with 0 and simulates steps of system S, it will not cause any incorrect steps of S to 
be simulated. 

Property (5) implies that it is possible for a process to simulate steps of the clerk 
without knowing the clerk’s latest state. The correct effect on the variable X is 
obtained if the clerk step is simulated starting at an arbitrary clerk state. However, 
the proper effect on the clerk’s state must also be achieved. Provided no other process 
simulates a manager or clerk step in the meantime, it is possible for a process 
unaware of the clerk’s state to simulate the effect on X of several clerk steps, saving 
the X-values seen at each access. Then if the process later learns the state of the clerk 
prior to the enactment of these steps, it can apply 6,,, to this state and the sequence 
of saved X-values to bring the clerk state up-to-date. 

We now describe the operation of the algorithm. Process p is initially uninvolved in 
the simulation of the clerk and manager. It executes @ as long as p is not ready to 
leave its protocol (P 6Z prelim(p)) and ~7 has not been asked to simulate the manager 
and clerk (X 6Z SEL). While p is uninvolved, it will simulate steps of p, unlocking the 
variable between each step to allow other processes to take steps. While carrying out 
this simulation, p may occasionally see one of the communication values (indicating 
that responsibility for the manager and clerk is being passed from one process to 
another). If this occurs, p does not simply wait and try again. Instead, p interrupts the 
communication to simulate p’s step, using 0 as the presumed value of X and holding 
on to the communication value. p continues at subsequent steps to simulate p’s steps, 
but replaces the held communication value at the first opportunity. 

It is quite possible that p is never asked to help simulate the manager and clerk. 
Then p might stay in @ forever (if p never reaches a preliminary state). Alternatively, 
p might leave @ when P E prelim(p). In this case, g simply waits (at 0) until it can 
replace any communication value it still holds, and can thereafter leave the protocol. 
Then p’s final step is a NO-OP, by property (1) so it is permissible for p to assume 
that the value of X is 0 for the last step of the protocol. 

In the more complicated case, p exits @ without having p ready to change regions 
(P IZ prelim(p)), upon being asked to simulate the manager and clerk(X E SEL). In 
this case, fl must execute 0. @ consists of a protocol @ to initialize the simulation of 
the manager and clerk, followed by Q which continues the simulation of both the 
manager and clerk, along withp. When p is about to change regions (P E prelim(p)) 
then p enters @-@ which transfer the control of the simulation of the manager and 
clerk elsewhere. We examine 0-0 in greater detail. 
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Q is a straightforward loop carrying out a simulation of the manager, clerk and p. 
@ is a loop which is executed until the manager enters a safe state. Q is a loop which 
is executed until the value of X reaches 0; ~9 attempts to achieve this effect by 
simulating the clerk but not the manager. @ is the actual transfer of manager-clerk 
state. In case the manager is in the restricted set free(s) of states, the state is simply 
left inX. Otherwise, an initial message ‘NEW’ is placed inX, followed by a 
communication protocol which sends the manager state, coded in unary. 

Although the simulation of the manager is to be allowed to be stopped temporarily, 
we wish to continue the simulation of the clerk even during the transfer of the 
manager state. Thus, some process must have responsibility for the clerk’s simulation 
during the transfer protocol. We choose to require the new intended recipient of the 
manager state to begin simulating the clerk immediately upon receipt of a selection 
value. Since this recipient does not have the clerk’s state available at the time the 
selection value is received, it simulates the clerk in the “temporary mode” discussed 
above, making the required changes to the variable X but saving the values of X it 
sees during the temporary mode simulation for later updating of the clerk’s state. 

We now consider @ the protocol for assuming the responsibility for simulating the 
manager and the clerk. If a state in free(S) is encountered, then ~7 is able to begin 
simulating immediately the manager and clerk. Otherwise, p must receive the 
communicated manager state. The protocol for receiving the state involves p 
simulating a step of p and a step of the clerk at every step of ~7. In addition, ~7 
participates in the communication protocol at every opportunity: when X= 0 and 
there is an acknowledgement to send, p sends it. After the state is received, it is 
updated with the list of saved X-values. 

We now sketch an argument for the correctness of the theorem. The number of 
values of the variable X is easy to check. We must show that s simulates S. Let F be 
any admissible execution sequence of 5 From e, define an execution sequence e of S 
by extracting from 2 all of the S-steps simulated. (Clerk steps simulated in temporary 

mode are counted as ordinary clerk steps.) The paragraphs following the code are 
used to justify the fact that e is, in fact, an execution sequence of S. Since regions ofp 
are defined to be the same as the regions of the simulated process p, and exactly the 
p-steps which appear in 2 are included in e, it is clear that the same set of region 
changes occur, in the same order. 

It remains to show that e is admissible. If not, then either 

(4 e is not worker-admissible, or 
(b) e is infinite and either 

(bl) the clerk only takes finitely many steps or 
(b2) the manager only takes finitely many steps. 

If F is finite, then admissibility of t? implies that each ~7 is in either its critical or 
remainder region at the end of Z. Then e is also finite, and each p E proc(S) is in 
either its critical or remainder region at the end ofe. Thus, in this case, e is 
admissible. Thus, we assume from now on that F is infinite. 
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Examination of the code shows that every step of each p simulates a step of the 
corresponding p except possibly for those steps at the beginning of which the value of 
P is in prelim(p). Thus, in e, workers do not halt except in their critical or remainder 
regions, or in preliminary states, so that e is semi-worker-admissible. Examination of 
the code also shows that the manager does not halt in e unless it halts in a safe state. 

We have ensured that some process is always responsible for simulating the clerk; 
since P is admissible and infinite, it follows that infinitely many clerk steps are 
simulated in e. Thus, the only ways in which e could fail to be admissible are if some 
process p stops in e in a preliminary state, or if e is infinite and the manager stops 
in e, in a safe state. 

We argue that the communication of the manager state cannot be interrupted in P. 
That is, once a process picks up a ‘NEW’ message, it is guaranteed eventually to 
receive the corresponding ‘DONE’ message. For if not, then there is some fixed 
communication value V which never gets delivered, in 5, to its intended recipient. 
Therefore, there must be infinitely many distinct steps of 2 after which V is located in 
the local variable M of some interrupting process. During this communication, the 
manager is stopped at a safe state in e. As we have already claimed, the clerk takes 
infinitely many steps in e. Also, e is semi-worker-admissible. By property (4’), all 
region changes eventually stop in e and the shared variable retains a value of 0 in e 
from some point onward. Thus, there is a point in P beyond which no further region 
changes occur and beyond which the simulated shared variable never takes on a 
value other than 0. After this point in 2, any process q holding value V in its local 
variable M will copy V into the shared variable X at the next step of cf, and V will 
never again be removed from the shared variable to be held in any process’ local 
variable M. This is a contradiction. 

We next argue that no process p can halt, in e, in a preliminary state. Assume the 
contrary: p continues to take steps in P since p remains in its trying or exit region and 
B is admissible. Then p must eventually continue looping forever in one of @-@ or 
0. We consider cases. 

If p loops in 0, then the manager and clerk each take infinitely many steps in e. 
Since e is semi-worker-admissible, property (2’) implies that the manager eventually 
reaches a safe state. This (together with property (3)) contradicts the assumption that 
p loops in 0. 

Ifp loops in @, property (4’) leads to a similar contradiction. 
If p loops in @ or 0, then either a ‘NEW’ message is sent which never reaches its 

destination, or else the communication of the manager state is interrupted. The latter 
possibility has already been ruled out. The former possibility cannot occur because 
property (6’) implies that if a ‘NEW’ message is put into X, there is some process in 
its trying or exit region, but not in a preliminary state, available to receive the 
message. 

We have thus argued that no process p halts in a preliminary state in e. 
Finally, we argue that the manager cannot stop in e, in a safe state. Assume the 

contrary, and consider a point in e beyond which the manager takes no steps. Since 
infinitely many clerk steps occur in e and e is worker-admissible, property (4) implies 
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that all region changes eventually stop in e and the shared variable retains a value of 
0 in e from some point onward. Thereafter, from some point onward, no processes 
are ever in preliminary states in e. After a corresponding point in e, the only 
possibilities are that there is a value in free(S) in the shared variable X, that some 
process is in loop a,, that a ‘DONE’ message has been sent but not received by its 
intended recipient and that a ‘DONE’ message has been received but the recipient 
process has not yet entered loop @. (Any other situation involves some process being 
in a preliminary state in e.) 

Assume that a value in free(S) is in X. There must be a process in its trying or exit 
region but not in a preliminary state (since .z? is infinite and if no processes are in their 
trying or exit regions then any process which takes a step would change regions). The 
next time such a process takes a step it will detect the selection value and simulate a 
manager step, a contradiction. 

If some process is in loop a, then (since its simulated process never again enters a 
preliminary state) its next step will simulate a manager step, a contradiction. 

We have already argued that the communication of the manager state does not get 
interrupted. Thus, a ‘DONE’ message which is sent is eventually received by its 
intended recipient. Finally, once a ‘DONE’ message is received, examination of the 
code shows that the recipient process will enter loop @ on the following step. 
Therefore, the manager does not halt in e, and so e is admissible. [ 

IV. APPLICATIONS 

The remainder of the paper presents two small-shared-variable Z-exclusion 
algorithms for hierarchical systems, and then appeals to Theorems 1 and 2 to obtain 
such algorithms for cooperative systems. We use many ideas from [2-41, but make a 
few changes in the interests of generality and simplicity. 

For example, we describe the two algorithms as much alike as possible. We make 
the trying and exit protocols identical, each simply a general protocol in which a 
process requests a region change. Since we have a manager and clerk available, we 
concentrate as much of the computation as possible in the manager and clerk, trying 
to avoid having work which could be handled locally involve the communication. 
Since none of the ideas involved in the local computation pose any difficulty, we do 
not describe all the local computation in operational detail, but simply summarize 
local steps. 

An N + I+ c FIFO l-exclusion Algorithm 

THEOREM 3. Let l> 1, N 2 2. There is an 1+ l-regular hierarchical system S 
with ] workers(S)] = N, and ]values(var(S))] = N + 10, satisfying l-exclusion (C 1), no 
Z-deadlock (C2), and FIFO (C4). 

Proof: Figure 1 depicts the (trying or exit) protocol of a worker process. A 
worker goes to the WAIT subregion (with a possible detour in the HOLD subregion). 



366 LYNCH AND FISCHER 

From there, it is eventually singled out to go to the TALK, subregion. There, it 
communicates its identity, its region (trying or exit) and other necessary information, 
to the manager. It then goes to MAIN,. The manager collects information from 
several workers in this way, until it finally decides some particular worker is to be 
permitted to go to its critical or remainder region. The manager then communicates 
with each worker from the MAIN subregion in turn, by singling it out to go to the 
TALK, subregion and from there, to the MAIN, subregion until the manager locates 
the chosen worker. At this point, the manager allows the chosen worker to change 
regions and then communicates with all the processes in the MAIN, subregion to 
send them back to the MAIN, subregion. 

The communication is carried out using a clever device from [3]. Each worker 
process, upon entering its trying or exit protocol, leaves its process number in X. If 
several processes enter in succession, each remembers the number of its predecessor 
as it leaves its own number inX. Periodically, the clerk replaces the process number 
in X with 0, adding that process number to the end of a “tail list” kept by the 
manager. The next worker entering its protocol after X has been set to zero does not 
know the number of its predecessor (but recognizes its ignorance). However, if the 
manager and all workers are free to communicate, it should be clear that together 
they can reconstruct the total arrival order. 

The shared variable X of S has values(X) = (O,..., NJ U {‘TALK,‘, ‘TALK,‘, 

CRITICAL OR REMAINDER REGION 

I HOLD 

0 TALK, 

t 

MAIN, 

1 

MAIN2 

TALK2 

i 
REMAINDER OR CRITICAL REGION 

FIG. 1. Trying or exit protocol for the FIFO algorithm. 
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‘SEND’, ‘ACK’, ‘DONE’, ‘YES’, ‘NO’, ‘MOVE’, ‘OK’}; init = 0. Elements of the 
first set in the union are called ordinary values and those of the second set are called 
communication values. Communication values are only placed in X to replace the 
ordinary value of 0. 

We first give the programs for the manager and clerk of S. The combined state of 
the manager and clerk has local variables 

NEXT 

$EUE 

TAILLIST 

WORKING 

c 
FINISH 

1 

J 

STATUS 
PRED 

for recording the number of a worker chosen to be permitted a 
requested region change, 

for recording the number of workers in their critical regions, 
for a queue of process numbers, status indicators (‘TRYING 

or ‘EXIT’), and tags (‘MAIN,’ or ‘MAIN,‘) of processes in 
the MAIN,, MAIN, and TALK, subregions, kept ordered 
by their order of entry to their trying or exit protocols, 

for a data structure designed to help form QUEUE. It contains 
a list of process numbers for tails of sublists eventually to 
be appended to QUEUE. 

for another data structure to help form QUEUE. It contains an 
unordered list of process numbers, status indicators 
(‘TRYING’ or ‘EXIT’) and predecessor numbers (for 
predecessors in the order of entry to trying or exit regions). 

for holding a code being received, 
for indicating the end of receipt of a message, 
for a received process number, 
for a received status indicator, and 
for a received predecessor number. 

All variables are initialized at 0. The starting location counter value of clerk(S) is the 
single lock statement of its program (implicit in the waitfor construct). The starting 
location counter value of manager(S) is the last lock statement of its program. 

Code and decode are similar to the corresponding functions in Algorithm A. The 
pair (TAILLIST, WORKING) is said to be complete provided for every process 
number p in TAILLIST, it is the case that WORKING contains a chain starting with 
p and ending with 0 (i.e., triples of the form (pi, ai, pi+ ,) appear in WORKING, for 
0 < i< j, where p,, = p and pj = 0). The statement “append (TAILLIST, 
WORKING) to QUEUE,” for a complete pair (TAILLIST, WORKING), means to 
combine the information represented in TAILLIST AND WORKING to form a total 
arrival order for the represented worker processes, and to append this order to the 
end of the QUEUE. The actual information added to the QUEUE, for each process, 
is just its process number together with its status (‘TRYING’ or ‘EXIT’, as recorded 
in WORKING) and the tag ‘MAIN,‘. 

The statement “NEXT t chosen process, if any,” means to decide based on the 
current QUEUE and CR count whether some process is to be permitted to change 
regions; if so then NEXT is set to the process number of the next such process, while 
if not, then NEXT is set to 0. The proper execution of this statement by the manager 
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is the key to all of the required properties (Cl), (C2), and (C4). That is, the manager 
must ensure that no more than I workers are ever allowed simultaneously into their 
critical regions, that FIFO order is not violated in either the trying or exit regions, 
that workers continue to move from their trying regions to their critical regions if 
there is room, and that workers continue to leave their exit regions in any case. To be 
definite, we might cause the manager to alternate between phases when it allows one 
worker in its exit region to go to its remainder region (if possible) and phases when it 
allows one worker in its trying region to go to its critical region (if possible). In the 
first phase, the manager lets the first worker in QUEUE with status ‘EXIT’ (if any) 
go to its remainder region. In the second phase, it only lets a worker go to its critical 
region if there is room (CR < I) and in this case it lest the first worker in QUEUE 
with status ‘TRYING’ (if any) go to its critical region. 

Other local action statements should be self-explanatory. 

Clerk(S) 

while true do [waitfor X E ( l,..., N); TAILLIST + TAILLIST, X, X + O] 
Manager(S) 

while true do 
0 Iwhile (TAILLIST, WORKING) is incomplete do 

[waitfor X = 0; X t ‘TALK ,‘; waitfor X = ‘OK’; X t ‘ACK’; 
while FINISH = 0 do 

(waitfor X E {‘SEND’, ‘DONE’); 
if X = ‘SEND’ then ]x + ‘ACK’; C t C + 1 ] else [FINISH l - I ; X t 0 ] ] 

(J, STATUS, PRED) + decode(C); C + 0; FINISH + 0; 
add (J, STATUS, PRED) to WORKING; 
if STATUS = ‘EXIT’ then CR + CR - 1; 
J+-0; STATUStO; PREDtO]; 

0 append (TAILLIST, WORKING) to QUEUE; TAILLIST t 0; WORKING + 0; 

0 NEXT + chosen process, if any; 
if NEXT # 0 then 

[while J # NEXT do 
[ waitfor X = 0; X + ‘TALK,‘; waitfor X = ‘OK’; X + ‘ACK’; 
while FINISH = 0 do 

[waitfor XE {‘SEND, ‘DONE’}; 
if X = ‘SEND’ then [X t ‘ACK’; C + C + 1) else FINISH + I] 

J + decode(C); C + 0; FINISH + 0; 
if J # NEXT then 

Ichange J’s tag to ‘MAIN,’ in QUEUE; 
Xt‘NO’; waitfor X=‘OK’; X+-O]] 

if NEXT’s status in QUEUE = ‘TRYING’ then CR + CR + 1; 
remove NEXT from QUEUE; X + ‘YES’; waitfor X = ‘OK’; X + 0; 
NEXT+O;J+O] 

0 while there is a process in QUEUE with tag ‘MAIN,’ do 
[waitfor X = 0; X e ‘MOVE’; waitfor X = ‘OK’; X + 0; 
change some tag in QUEUE from ‘MAIN,’ to ‘MAIN,‘] 

unlock; lock ] 

ALGORITHM B(i) 
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The clerk simply executes a loop which zeros the shared variable whenever it sees 
a process number, adding the number to the local TAILLIST. The manager executes 
loop 0, which assembles all the newly available process entry order information. 
That is, it repeatedly puts the value ‘TALK,’ into X, to initiate communication with 
an arbitrary worker process in the WAIT subregion, then executes a protocol to 
receive the worker’s process number, status and predecessor (in unary), decrementing 
the CR-count if the worker informs the manager that it is in the exit region. The 
manager continues executing @ until it has complete entry order information. (While 
the manager is accumulating this information, the clerk can continue to add process 
numbers to TAILLIST. However, since there are only finitely many workers, even- 
tually a time must be reached when (TAILLIST, WORKING) is complete.) 

The manager then executes 0, which adds the newly assembled information to the 
end of the QUEUE. It next executes 0; it decides whether a process is to be selected, 
and if so, attempts to locate it. The manager repeatedly puts the value ‘TALK,’ into 
X to initiate communication with an arbitrary worker process in the MAIN, 
subregion, then executes a protocol to receive the worker’s process number. As long 
as the process is not the correct one, the manager sends a response of ‘NO’ to it. 
When the correct process is encountered, the manager sends a response of ‘YES’. All 
of the incorrect worker processes involved in locating the correct process will end this 
phase of execution in the MAIN, subregion, so the manager executes @>, a loop 
which tells these processes, one by one, to return to the MAIN, subregion. 

Next, we give the program for process p E workers(S). Process p has local 
variables as follows: 

Z which stores a process number identifying p, in the range 
1 <Z<N, 

STATUS which holds the value ‘TRYING’ or ‘EXIT’, identifying the region 
of the protocol, 

PRED for recording the predecessor, 
c for holding a code being sent, and 
M for holding an interrupted communication value. 

The initial value of Z is an identifier for p, the initial value of STATUS is ‘EXIT’, and 
all other variables are initialized at 0. The starting location counter value ofp is the 
last lock statement of the program. 

Process p 

while true do 
0 (ifXE (O,...,N) then [PRED+X;XtI] 

else [MeX; Xtl, waitfor X=0; XtM; M-01; 

0 waitfor X = ‘TALK,‘; X + ‘OK’; C + code(1, STATUS, PRED); 
while C > 0 do [waitfor X = ‘ACK’; X t ‘SEND’; C t C - I]; 
waitfor X = ‘ACK’; X + ‘DONE’; 

@ MAIN,: waitfor X = ‘TALK,‘; X t ‘OK’; C + code(l); 
while C > 0 do [waitfor X = ‘ACK’; Xt ‘SEND’; C + C - 1 ]; 
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waitfor X = ‘ACK’; Xc ‘DONE’; 
waitfor X E (‘YES’, ‘NO’); 
if X = ‘NO’ then [X + ‘OK’; waitfor X = ‘MOVE’; X + ‘OK’; goto MAIN I 1; 
x t ‘OK’; 
unlock; lock; 

unlock; lock; STATUS t if STATUS = ‘TRYING’ then ‘EXIT’ else ‘TRYING’) 

ALGORITHM B(ii) 

The regions of p are defined as follows: Any state s of p for which the location 
counter is at the final lock statement of the program is in either the critical or 
remainder region; if the value of local variable STATUS in s is ‘EXIT’ then 
s E R(p), and if the value is ‘TRYING’ then s E C(p). In all other cases, s E 
T(p)UE(p); if the value of STATUS in s is ‘TRYING’ then s E 7’(p), and if it is 
‘EXIT’ then s E E(p). 

Process p, upon entry to its protocol, executes 0, which leaves p’s identifier in X, 
if a communication value is seen in X, p holds the communication value, waiting for 
the first opportunity to replace it in X. Next p executes 0. Process p waits (in the 
WAIT subregion) until it sees a ‘TALK,’ message from the manager. This is p’s 
signal to communicate its process number, status and predecessor process number to 
the manager. After this communication protocol is completed, p moves to the MAIN, 
subregion. Process p then executes 0. Then p waits in the MAIN, subregion until it 
sees a ‘TALK,’ message from the manager. This is p’s signal to communicate its 
process number to the manager. Process p waits for the manager’s decision, ‘YES’ or 
‘NO’, on whether p can change regions. If ‘NO’ is seen, p waits in subregion MAIN, 
for a ‘MOVE’ message, before returning to MAIN,. If ‘YES’ is seen, p executes a 
NO-OP and changes region. 

In the following paragraphs, we give further arguments for the claimed properties 
of Algorithm B. We rely to a certain extent on the reader’s understanding of the 
protocols to convince him of their correctness properties; we provide more detailed 
arguments to show that the various communications do not indefinitely block each 
other. 

We now outline why Algorithm B satisfies (Cl), (C2), and (C4) and is f + l- 
regular. Properties (Cl) and (C4) follow directly from the manager’s correct choice 
of a selection policy. Property (C2) also depends on a correct selection policy, but in 
addition requires us to argue that all communication values sent eventually reach 
their intended recipients (in spite of interruptions). 

For showing I + l-regularity, we define the safe manager states to be exactly those 
in which the location counter is at the final lock of the manager’s program. With this 
definition, it is easy to check properties (l), (3)-(5) of the definition of I+ l- 
regularity. To observe (6), note that the states of free(S) are exactly those in which 
the manager’s program counter is at the final lock, and in which NEXT, QUEUE, 
TAILLIST, WORKING, C, FINISH, J, STATUS, and PRED all have the value 0. 
Thus, there is exactly one free state for each possible value of CR, 0 < CR < 1. 
Verification of property (2) requires us to argue that all communication values sent 
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eventually reach their intended recipients; if this is so, then the manager will not 
remain indefinitely in any of parts 0, 0, 0, or @ of its code. 

Assume some communication value V does not reach its intended recipient, in 
some admissible execution sequence e of S. Then there must be infinitely many 
distinct steps of e after which V is located in the local variable M of some 
interrupting worker process. Eventually in e, no further region changes occur (since if 
communication is interrupted, the manager will stop allowing processes to change 
regions). Thereafter, from some point onward, the only values for X are 0 and V 
(since the clerk continues to operate, replacing process numbers in X with 0). After 
this point, any process p holding V in its local variable M will copy V into X at p’s 
next step, and V will never again be removed from X to be hold in any worker’s local 
variable M (since no further processes change region). This is a contradiction. 1 

COROLLARY 3.1. Let I> 1, N > 2. There exists a cooperative system S with- 
Iproc(S)I = N and \values(var(s))i = N t I + 15, satisfying l-exclusion (Cl), no I- 
deadlock (C2) and FIFO (C4). 

Proof: The proof is by Theorems l-3. (Note that some values of the shared 
variable need to be renamed in order to preserve disjointness of ordinary and 
communication values in the simulation construction.) m 

THEOREM 4. Let 12 1, N > 2. There is an I + l-regular hierarchical system S 
with 1 workers(S)] = N and 1 values(var(S))l = [N/2] t 13, satisfying l-exclusion (Cl), 
no l-deadlock (C2), and no infinite bypass (C3). 

Proof: This proof differs from the previous proof in the protocol up to the 
TALK, subregion, but keeps the same strategy for passing through and for managing 
the MAIN,, TALK,, and MAIN, subregions. The protocol used up to the TALK, 
subregion is based on the surprisingly space-efficient “executive protocol” of 
Algorithm C of [4]. Figure 2 depicts the (trying or exit) protocol of a worker process. 
Two additional subregions, EXEC and IDLE, which did not appear in the protocol 
for Algorithm B, are included in the present protocol. 

Each worker process, upon entering its trying or exit protocol, attempts to 
increment a counter kept in X by 1 in order to communicate its presence to the 
manager. (There are insufficiently many permissible values of X for each process to 
be able to leave a unique identifier in X, so the entry strategy of Algorithm B cannot 
be used.) If this increment succeeds, and if the worker subsequently encounters a 
‘TALK,’ message in X, the worker communicates its process number and status to 
the manager, and then proceeds to the MAIN, subregion, continuing from that point 
as in the previous algorithm. However, a difficulty arises if a worker attempting to 
increment the value in X sees that the maximum possible count ]N/2] is already 
there. In this case, the entering worker “becomes an executive,” resetting X to 0 and 
thereby temporarily hiding the presence of himself and ]N/2] other workers from the 
manager and clerk. The executive, in the EXEC subregion, sends out special STOP 
messages to cause ]N/2] workers in WAIT (plus perhaps some additional workers 
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FIG. 2. Trying or exit protocol for the algorithm which avoids infinite bypass. 

who enter their protocols in the meantime) to move to a separate IDLE subregion. 
The executive then proceeds to attempt the increment a second time. This time, 
having ensured that sufficiently many workers are “out of the way” (in the IDLE 
subregion), the executive encounters no difficulty and accomplishes the increment. 

Periodically, the clerk replaces the count in X with 0, adding the count found in X 
to a local variable COUNT of the manager. Thus, the manager always has a count of 
some of the workers in the WAIT and HOLD subregions, but is possibly missing 
some of those which are destined to receive STOP messages and go to the IDLE 
subregion, and some whose increments have not yet been replaced in X with 0, by the 
clerk. However, once the executive completes the protocol which sends all of the 
necessary workers to the IDLE subregion, and then completes its own increment of 
X, the manager’s count of the number of workers in the WAIT and HOLD 
subregions (including the executive) is missing only those whose increments are not 
yet recorded by the clerk. Then the manager is able to ensure that it converses with 
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each worker from the WAIT and HOLD subregions, one at a time, by sending 
‘TALK,’ messages as in the previous algorithm. 

When non-executive workers in the WAIT subregion encounter a ‘TALK,’ 
message, they respond with their process number and move to the MAIN, subregion, 
continuing as in the previous algorithm. When an executive in the WAIT subregion 
encounters a ‘TALK,’ message, it must do more, however. For each worker in the 
IDLE subregion, the executive sends a special ‘GO’ message to the worker (which 
will then move into the WAIT subregion) and increments X so that the clerk can 
record the presence of a new worker in the WAIT subregion. (Since these workers are 
being introduced by the executive one at a time, there is no danger of too many 
increments occurring at once and a worker attempting to increment a value of X= 
[N/2].) Only when all of the workers from IDLE have been integrated into the 
system in this way does the executive complete its executive function and respond to 
the manager with its process number. From that point onward, the executive behaves 
exactly like the other workers. The manager can thus assemble a QUEUE 
corresponding to the one in Algorithm B; however, the QUEUE in Algorithm C 
represents order of receipt of ‘TALK,’ messages rather than protocol arrival order. 

It must be noted that two executives cannot exist at once. From the time one 
worker becomes an executive until it responds to the manager with its process 
number, there are always at least [N/2] processes other than the executive in the 
WAIT, HOLD, and IDLE subregions. Thus, there are insufficiently many workers to 
cause another increment past [N/21 to occur. 

The shared variable X of S has values(X) = (0, l,..., [N/2] ) u {‘TALK,‘, ‘TALK,‘, 
‘SEND’, ‘ACK’, ‘DONE’, ‘YES’, ‘NO’, ‘MOVE’, ‘OK’, ‘STOP’, ‘GO’, ‘GONE’}; 
init = 0. Elements of the first set in the union are called ordinary values, and those 
of the second set except for ‘STOP’ are called communication values. Communication 
values are only placed in X to replace the ordinary value of 0. 

We first give the programs for the manager and clerk of S. The combined state has 
local variables 

NEXT, CR, C, FINISH, J, and STATUS as in Algorithm B(i), 
QUEUE for a queue of process numbers, status indicators (‘TRYING’ or 

‘EXIT’) and tugs (‘MAIN,’ or ‘MAIN,‘) of processes in the 
MAIN,, MAIN,, and TALK, subregions, kept ordered by their 
order of receipt of ‘TALK,’ messages, and 

COUNT to hold a number of workers known to be in WAIT and HOLD. 

All variables are initialized at 0. The starting location counter value of clerk(S) is its 
single lock statement and that of manager(S) is the last lock statment of its program. 

Code and decode are as before. The statement “add T to QUEUE” adds triple T to 
the end of the QUEUE. 

The manager code is identical to that of Algorithm B(i) from section @ onward; 
moreover, @ only differs from @ of B(i) in its decoding function, its disposition of 
the received triple and its handling of the variable COUNT. 
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Clerk(S) 

while true do (waitfor X E (l,..., [N/Z]); COUNT t COUNT +X; Xt 01 

Manager(S) 

0 while true do 
[while COUNT > 0 do 

[ waitfor X = 0; X t ‘TALK ,‘; waitfor X = ‘OK’; X e ‘ACK’; 
while FINISH = 0 do 

[waitfor X E (‘SEND’, ‘DONE’); 
if X=‘SEND’then [Xt‘ACK’; C+C+ l] else [FINISH + 1; X+0]] 

(J, STATUS) + decode(C); C + 0; FINISH + 0; 
add (J, STATUS, ‘MAIN,‘) to QUEUE; 
if STATUS = ‘EXIT’ then CR c CR - 1; 
COUNT t COUNT - 1; 
J-0; STATUStO]; 

0 append (TAILLIST, WORKING) to QUEUE; TAILLIST + 0; WORKING + 0; 

0 NEXT + chosen process, if any; 
if NEXT # 0 then 

[while J# NEXT do 
lwaitfor X = 0; X t ‘TALK,‘; waitfor X = ‘OK’; X t ‘ACK’; 
while FINISH = 0 do 

[ waitfor X E {‘SEND’, ‘DONE’I; 
if X = ‘SEND’ then [X t ‘ACK’; C + C + 11 else FINISH + I] 

J + decode(C); C + 0; FINISH + 0; 
if J # NEXT then 

[change J’s tag to ‘MAIN,’ in QUEUE; 
X + ‘NO’; waitfor X = ‘OK’; X + 0] ] 

if NEXT’s status in QUEUE = ‘TRYING’ then CR + CR + 1; 
remove NEXT from QUEUE; X + ‘YES’; waitfor X = ‘OK’: X + 0; 
NEXT+O;JtO] 

0 while there is a process in QUEUE with tag ‘MAIN,’ do 
[waitfor X = 0; X + ‘MOVE’; waitfor X = ‘OK’; X t 0: 
change some tag in QUEUE from ‘MAIN,’ to ‘MAIN,‘] 

unlock: lock] 

ALGORITHM C(i) 

Next, we give the program for process p E workers(S), p has local variables I, 
STATUS, C, and M as before, 

COUNT 

IDLERS 

used if p becomes an executive, to hold a count of workers to be 
sent to the IDLE subregion, 
to hold a count of workers which p has caused to enter the IDLE 
subregion. 

The initial value of Z is an identifier for p, in the range 1 < Z < ZV, the initial value of 
STATUS is ‘EXIT’, and all other variables are initialized at 0. The starting location 
counter value ofp is the last lock statement of the program. The worker code is iden- 
tical to that of Algorithm B(ii) from the middle of Section @ (of Algorithm C(i)) 
onward. 
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Process p 

0 while true do 
[if X= IN/21 then 

[Xt 0; COUNT + [N/21; 
while COUNT > 0 do 

[if X E {O,..., [N/21 - 1) then COUNT + COUNT + X else M + X, 
X+ ‘STOP’; IDLERS + IDLERS $1; COUNT + COUNT - 1; 
X # ‘STOP’]; 

waitfor 

if MfO then [waitfor X=0; XtM; MtOj]; 

if X = ‘STOP’ then [X+ 1; waitfor X = ‘GO’: X t ‘GONE’] 
else if X E (O,..., [N/21 - I } then X t X + 1 

else [M+-X; Xt 1; waitfor X=0; Xth4; M-01; 

waitfor X = ‘TALK ,‘; 
while IDLERS > 0 do 

IX t ‘GO’; waitfor X = ‘GONE’; X + 1; IDLERS + IDLERS - 1; waitfor X z 0 1; 
X + ‘OK’; C t code(1, STATUS); 
while C > 0 do [ waitfor X = ‘ACK’; X + ‘SEND’; C + C - 11; 
waitfor X = ‘ACK’; X t ‘DONE’; 

@ MAIN,: waitfor X = ‘TALK,‘; XC ‘OK’; C t code(l); 
while C > 0 do [ waitfor X = ‘ACK’; XC ‘SEND’; C t C - I 1; 
waitfor X = ‘ACK’; X + ‘DONE’; 
waitfor XE {‘YES’; ‘NO’}; 
if X = ‘NO’ then [X + ‘OK’; waitfor X = ‘MOVE’; X + ‘OK’; goto MAIN, 1; 
Xt’OK’; 

unlock; lock; 

unlock; lock; STATUS + if STATUS = ‘TRYING’ then ‘EXIT’ else ‘TRYING’] 

ALGORITHM C(i)) 

The regions of p are defined exactly as for Algorithm B(ii). 
Process p, upon entry to its protocol, first checks to see if it is to become an 

executive. If so, then the body of the main conditional in @ is executed, which sends 
‘STOP’ messages to as many workers as there are increments removed by p from X. 
Along the way, if additional increments are seen by p, those are also included in the 
number of workers to be idled. While executing the stopping protocol, p might see a 
communication value; if so, p holds the value until the end of the stopping protocol, 
and then replaces the value in X at the first opportunity. After completing the 
stopping protocol and replacing any communication values it might have picked up, p 

goes on to 0. (If p is not to become an executive, p goes immediately to @ upon 
entry to its protocol.) 

In 0, process p succeeds in incrementing the count in the variable X. In addition, if 
p sees a ‘STOP’ message, p goes to the IDLE subregion, from there waiting to be 
permitted to go to the WAIT subregion. (In this case, p is accepting a ‘STOP’ 
message intended originally for another process, but the interchange will not affect 
any of the desired properties of the algorithm.) If p sees a communication value, p 

holds the value in order to accomplish the increment, and later replaces that value in 
X at the first opportunity. 
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In 0, p waits for a ‘TALK,’ message. If p is not an executive (IDLERS = 0) then 
P is ready to transmit its process number and status. If p is an executive, then p first 
executes a protocol to send all workers in the IDLE subregion to the WAIT 
subregion, informing the manager of the result by setting X to 1 for each transfer of 
one process. After this protocol, p is ready to transmit its process number and status. 
From this point, the code is identical to that in Algorithm B(ii). 

As before, we rely on the reader’s understanding of the protocols to convince him 
of their correctness properties; we argue further why the various communications do 
not indefinitely block each other. 

We require Algorithm C to satisfy (Cl)-(C2), (C3) and to be I + l-regular. 
Properties (Cl) and (C3) depend on the manager’s correct choice of selection policy, 
while (C2) depends on both having a correct selection policy and the fact that all 
communication values and ‘STOP’ messages sent, eventually reach their intended 
recipients (in spite of interruptions). 

For showing I + l-regularity, we define the safe manager states as in the previous 
algorithm. Properties (l), (3)-(5) are again straightforward, and (6) follows as for 
Algorithm B. Property (2) again requires us to argue that all communication values 
and ‘STOP’ messages sent, eventually reach their intended recipients. 

But ‘STOP’ messages are never interrupted, and so must reach their intended 
recipients. Also, if some communication value X does not reach its intended recipient, 
in some admissible execution sequence e of S, then the same contradiction is reached 
as for Theorem 3. I 

COROLLARY 4.1. Let l>, 1, N > 2. There exists a cooperative system S with 
Iproc(S)I = N and Ivalues(var(S))l = [N/21 + f + 18, satisfying l-exclusion (Cl), no I- 
deadlock (C2), and no infinite bypass (C3). 

ProoJ: The proof is by Theorems 1, 2, and 4. a 
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