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I. INTRODUCTION 

The problem considered in this paper is a simplification of one arising in the study 
of distributed computer systems. A network is considered, in which are located a 
large number of “resources” and a large number of potential users of those resources. 
Each user requires a certain fixed set of resources (for instance, in order to execute a 
program). Each user’s needs are assumed to be known a priori. Users originate 
requests for their respective sets of resources asynchronously with respect to each 
other. The problem is to design an algorithm guaranteeing each user eventual control 
over its resources. One solution to this problem is considered to be better than 
another if users have shorter waiting times before receiving their resources. 

In an actual distributed computer system, there might be several interchangeable 
instances of some resources. However, one class of allocation strategies would bind 
each user to a particular (for example, the nearest) instance of each of its resources. 
The problem of this paper applies to this class of strategies. 

It is assumed that there are a very large number of widely distributed users, but 
that the problem is nevertheless “local” in two senses. First, it is possible to locate 
the resources in the network in such a way that they are generally “nearby” 
requesting users. Second, the resource-need pattern is not very highly “connected”: 
for instance, there are not very many resources for each user or users for each 
resource (at least, not very many compared to the total number which are present in 
the entire network). Under these two conditions, it seems reasonable that each user’s 
waiting time should not be a function of the size of the entire network, but rather a 
function of local parameters only (such as the maximum number of resources for 
each user and the maximum number of users for each resource). 

It is not always desirable to centralize control over all of the resources at one 
location in the network. That location would become a bottleneck, and moreover the 
delays inherent in long-distance communication would cause waiting time for the 

*This research was supported in part by the National Science Foundation under Grants MCS77- 
15628, MCS78-01689, MCS79-24370 and U.S. Army Research Office Contract DAA29-79-C-0155. 

0022.0000/81/050254-25502.00/O 
Copyright 0 1981 by Academic Press, Inc. 

All rights of reproduction in any form reserved. 

254 



RESOURCE ALLOCATION 255 

most distant users to depend on the size of the network. A better strategy in many 
cases seems to be to locate control of resources at various widely distributed points in 
the network, near their requesting users, and to have the users engage in a message 
protocol for securing their resources. 

If individual resources are located at different points, one must take care, in 
designing an allocation algorithm, that deadlock cannot occur: for example, if each of 
two users requires both of the same two resources, the algorithm should not allow 
each user to secure one resource and then wait indefinitely for the other resource. A 
usual solution to this problem is to define a global linear ordering of all of the 
resources in the network, and insure that each user secures its resources in increasing 
order according to this ordering. 

Although the above general strategy succeeds in preventing deadlock, it does not 
guarantee a fast solution to the allocation problem of this paper. Consider, for 
example, a large set of users, U= {ui : 1 Q i < n} and a correspondingly large set of 
resources R = ( ri: 1 < i < n + 1 }. Suppose that the resources are ordered according 
to their given indices, and each user ui requires resources Ti and T(+,. Suppose that 
the order of events which occur is: 

u, secures I,, r,,,, 

24 ,+ r secures r,_ , , then waits for r,, , 

ur secures rr, waits for r2. 

Then even after U, releases its resources, U, must wait for u”_,, u,_~,..., u, in turn to 
obtain and release their resources. A long “waiting chain” has been set up, of users 
waiting for each other to obtain and release resources in sequence. The waiting time 
for a user to obtain its resources can be proportional to the maximum possible length 
for such a chain, and possibly dependent on the total size of the network (even 
though there are a maximum of two resources for each user and two users for each 
resource). Since a solution is required in which the waiting time does not depend on 
the network size, it is apparent that the linear ordering strategy should be refined. 
That is, not just any linear ordering yields an efficient solution; criteria are needed for 
choosing a good linear ordering. 

This paper presents one criterion for choosing a good linear ordering of resources, 
and proves worst-case upper bounds on user waiting time for an algorithm using such 
an ordering. The upper bounds are independent of network size, and depend only on 
local parameters. 

The particular criterion and’ resulting algorithm may be of interest in themselves. 
Roughly similar criteria appear to be somewhat familiar to operating system 
designers, and the present paper makes appropriate conditions precise. Possibly a 
more important contribution of this paper, however, is its development of methods of 
analyzing time complexity of distributed alorithms. The methods used are simple, 
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tractable and generalizable. They are similar to those already familiar in ordinary 
sequential complexity theory. (See, for example, [ 11.) 

The major problem until now with carrying out complexity analysis for an 
asynchronous parallel environment has been the lack of a generally accepted model 
for the major components of the task: stating the problem, describing the solution, 
and measuring the complexity. In this paper, we use a simple automata-theoretic 
model for distributed systems first proposed in [8,9]. This model is tailored to the 
purposes of complexity analysis. (The earlier paper contains the basic automata- 
theoretic definitions and definitions for space measures, while the later paper also 
contains definitions for time measures.) Time measures used in that work are derived 
from those defined by Lamport [7] and Peterson and Fischer [ 1 I]. These basic tools 
are used in this paper to state the problem precisely, to describe the solution by 
showing how a “good linear ordering” of resources can be embedded into a precise 
algorithm, and to bound the time performance carefully. 

Techniques used are quite simple (as compared to queueing theory analysis, for 
example). Results are obtained to describe worst-case response time and also worst- 
case response under certain restrictions, such as a light load on the system. In prin- 
ciple, the techniques are extendable to obtain throughput bounds and bounds on 
average performance, but this paper does not contain any interesting results of these 
types. The general method of performing the analysis is to find the performance 
bottlenecks at each point during execution and bound the time necessary for their 
resolution; this technique has the advantage that it helps the designer to uncover 
unnecessary bottlenecks. (Two improvements in the algorithm of this paper, leading 
to a more efficient final version, were in fact discovered in this way.) The methods 
are suitable for use with modular decomposition of systems into subsystems, allowing 
combination of analysis of subsystems. Finally, the methods seem appropriate for use 
in the study of many types of distributed algorithms, such as those for distributed 
resource allocation, message transmission, and distributed data bases. 

II. RESOURCE PROBLEMS AND AN ABSTRACT SOLUTION 

In this section, we give formal definitions for the resource problems to be 
considered, and describe the criterion mentioned in the Introduction for a “good 
linear ordering” of resources. The problem and criterion are described at an abstract 
level, without reference to implementing algorithms. Later sections of the paper 
describe incorporation into an algorithm. 

A resource problem P is a quadruple (R(P), U(P), 9(P), p(P)), where R(P) and 
U(P) are disjoint, possibly infinite sets (of resources and users, respectively), where 
.9(P) is a mapping from U(P) to the set of finite nonempty subsets of R(P) 
(indicating the resources required by each user), where W(P) is a mapping from R(P) 
to finite nonempty subsets of U(P) (indicating the users for each resource), and where 
r E .!?(P)(u) if and only if u E F%(P)(r). 

Let rcommon(P) = { ( u, u’) E (U(P))‘: 9(P)(u) n 9(P)(d) # #}, and ucom- 
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man(P) = {(r, J) E (R(P))‘: %(P)(r) n %(P)(f) # 4}. That is, rcommon(P) describes 
users of common resources, and ucommon(P) describes resources with common 
users. 

We define a graph, graph(P), to represent resource problem P, as follows. Let 
graph(P) be the graph with R(P) as its node set and ucommon(P) as its edge set. 
(Note that a dual graph with U(P) as the node set and rcommon(P) as the edge set is 
also a natural representation for P, but this dual representation will not be used in 
this paper.) Let contention(P) denote max,,Ru,) 1 SY(P)(r)I, the maximum number of 
users for any resource. 

EXAMPLE 2.1. The canonical example used here for a resource problem is the 
Dining Philosophers problem [4], generalized to any number n > 2 of philosophers. 
Dijkstra’s informally stated problem involves n philosophers sitting in a circle, a 
single fork between each pair of adjacent philosophers. Any philosopher may decide 
to eat at any time and requires both of his forks to do so, but he can only “pick up” 
one fork at a time. Philosophers act asynchronously. The problem is to program the 
philosophers in ways which guarantee certain conditions of fairness and absence of 
deadlock, in allowing philosophers to obtain their forks. We can formulate this 
problem as a resource problem as follows. 

Let R(P) = {r 1 ,..., r,}, WY = {u, ,..., u,}. Let @ represent addition “in a ring,” i.e., 
i@j=(i+j- l)modn+ 1. Let cR(P)(ui) = Pi9 rioI and %(P)(ri) = 
{“i@C-l)T uil* 

We motivate our general criterion for linear orderings by considering solutions for 
the Dining Philosophers problem. Consider first the total ordering < given by “ri < rj 
iff i cj.” If each philosopher secured his two needed resources in increasing order 
according to <, then a long waiting chain similar to the one described in the 
Introduction can be created, of u, waiting for u2 waiting for u3 .a. waiting for u,. If 
this ordering were used in an algorithm, it is reasonable to expect that u,‘s worst-case 
waiting time would be proportional to n. 

On the other hand, assume n is even and consider the total ordering 5 given by 
“ri 5 rj iff either (1) or (2) holds: (1) i is odd and j is even, (2) i <j and i = j mod 2.” 
If each philosopher secures his resources in increasing order according to S, then no 
waiting chain containing more than three users is ever created. (For example, it is 
possible for u2 to wait for uj (to obtain r3), while a3 is waiting for uq (to obtain r,); 
however, no longer chain is possible.) This strategy corresponds to alternate 
philosophers picking up their left and right forks first, respectively (and is apparently 
a “folklore” strategy [ 61). 

A way to see the difference between the two total orders < and 5 is to view the 
essential information as a partial rather than a total order. Consider the subrelation 
of 5 represented by the following Haase diagram (with minimal elements at the top): 
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This subrelation has an edge between any two resources with a common user. Thus, 
it suffices to specify the same waiting order as 5, for each user to secure its 
resources. (In particular, deadlock is certainly prevented.) But in addition, the 
maximum length of a waiting chain for the strategy based on this partial order is 
bounded by (a function of) the depth of the partial order. In the case of the total 
ordering <, no sufficient nontrivial partial suborders exist. 

A good solution for the Dining Philosophers problem with an odd number n of 
philosophers can similarly be based on the partial order 

This strategy corresponds to alternate philosophers picking up their left and right 
forks first, respectively, except that there is one point on the circle where two 
consecutive philosophers both pick up their left forks first. 

These observations can be generalized to arbitrary resource problems as follows. 
Define a coloring of a resource problem P to be a total mapping c: R(P) -+ N 
satisfying the condition “(I, ti) E ucommon(P) implies c(r) # c(f).” Let ]c] denote 
the largest number in the range of c. Let colors(P) denote the minimum value of 1 cl 
for any coloring c of P. (Thus, colors(P) is the chromatic number of graph(P).) 
Define firstpq, : U(P)-+ R(P) by lirstp,e(t() = r such that r E S(P)(u) and (Vr’ E 
9(P)(u))[c(r’) > c(r)]. Define next,,, : U(P) x R(P) + R(P) by next,,,(u, r) = r’ such 
that C(T) < c(r’), r’ E 9(P)(u) and (Vr” E 9(P)(u))[c(r”) < c(t) or c(T”) 2 c(r’)]. 
That is, first,,, and next,,, list the resources of each user in increasing order. First,,, 
is a total function, while next,,, is partial. They are well defined since c is injective on 
9(P)(u) for each U. 

A coloring c of a resource problem P can be used to define a partial ordering < on 
the resources of P, generated by {(ri, r2) E ucommon(P): c(rJ < c(rz)}. The strategy 
in which each user waits for its resources in increasing order according to < certainly 
avoids deadlock and, moreover, it seems reasonable that this strategy will exhibit 
waiting times dependent on Jc(. This strategy is basically the same as the 
“hierarchical resource allocation” strategy discussed in [2, Sect. 3.5.31. 

Thus, a linear ordering would be expected to be “good” if it is an extension of a 
partial ordering defined by a coloring c of P with I cl equal to (or approximately equal 
to) colors(P). The second locality condition mentioned in the Introduction, the limit 
to overlap in resource demands, is captured formally by the bounds contention(P) 
and colors(P). 

Within this formalism, the orderings for Example 2.1 can be determined by the 
following colorings. 
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Let 

and 

c(rJ = i, 

c’(ri) = 1 if n is even and i is odd, or 
if n is odd and i < n is odd, 

= 2 if i is even, 

= 3 if n is odd and i = n. 

Thus, c provides a linear order for the resources, while V’ provides a partial order of 
depth <3. In either case, resources with common users are comparable. However, c’ 
is minimum in the sense that 

Jc’ 1 = colors(P) = 2 if n is even, 

We consider some further examples. 
Example 2.1. 

EXAMPLE 2.2. k-Fork Philosophers. 
cp(P)(Ui)= {ri,riOl,...,riO(k-l)} and 

= 3 if n is odd. 

The first two are simple generalizations of 

Let R(P) and U(P) be as in Example 2.1, 

g%(P)(ri) = IUi@_(k_l)Y**, ui@(-l)v Ui}* 

Colors(P) = k + 1 (if n > k*). 

Contention(P) = k. 

EXAMPLE 2.3. 2-Dimensional Philosophers. The resource requirement pattern in 
a distributed system might not have a l-dimensional structure such as those of 
Examples 2.1 and 2.2. As a simplified example of a 2-dimensional pattern, let 
R(P)={r,:i=(i,,i,)EZ* and ii+& is even}, U(P) = {ul: i = (i,, iJ E 2’ and 
i, + i, is odd}, and S’(P)(q) = {r, : xi= 1 br - i,I = 1 }. Contention(P) = colors(P) = 4. 
Graph(P) is a diagonal grid. 

The remaining two examples will be used later to demonstrate situations in which 
our algorithm approaches its upper bound; they do not describe “local” resource 
requirement patterns for which the algorithm is well suited. 

EXAMPLE 2.4. k-Tree. Let A be an alphabet of k elements, a any distinguished 
element of A. Let R(P) = {r,: i E A*, 1 ij < k}, V(P) = {u,: i E Ak}, and let %(P)(r*) 
consist of all u[,,,~_,~,-~ for all a’ E A. The resources can be envisioned as forming a 
tree. For instance, if k = 3, A = { 1, 2, 3) and a = 1, the resources form a 3-ary tree, 
with users as indicated in Fig. 1. 

Contention(P) = k and colors(P) = k. (Letting c(r,) = Jil + 1 shows colors(P) Q k. 
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FIGURE 1 

Colors(P) cannot be less than k because I.W(P)(u,JI = k.) Graph(P) includes the tree 
as a subgraph. 

EXAMPLE 2.5. k-Nested Sets. R(P) = {ri : 1 ( i < k}, U(P) = {ui : 1 < i < k), 
and Z!(P)(ri) = {uj :j < i}. Contention(P) = colors(P) = k, and graph(P) is the 
complete graph on k vertices. 

It seems reasonable that one could design an efficient algorithm for a resource 
problem P, based on the partial ordering constructed from a small coloring of P. 
However, there is still quite a lot of work remaining to be done in describing a precise 
algorithm and in proving bounds on its performance. At the very high level of 
description of this section, many details have been ignored which could have 
significant impact on the running time of an algorithm. For example, the solution 
implemented in a network will probably utilize some type of message delivery system. 
It is likely that message system characteristics such as buffer sizes, message delivery 
time and message pickup time will affect the algorithm’s running time. Queueing 
policies for the various resources can also be significant, as well as other “implemen- 
tation details” such as relative order of certain communication and computation 
steps. One would hope that not too many such details would need to be considered, 
but until sufficient experience is gained in analyzing distributed systems to know 
which of these factors are important, it seems that all of these factors must be con- 
sidered. 

The remaining sections of the paper carry out the tasks of formalizing the 
algorithm and proving upper bounds on its performance. 
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III. FORMULATION OF THE COMPUTATIONAL PROBLEM 

A Model for Systems of Asynchronous Processes 

The formal model used to state the computational problem and describe the 
algorithm is that of [8,9]. Only a brief description is provided in this paper; the 
reader is referred to [8,9] for a rigorous treatment. 

The model is very low level (on the level of Turing machines). Since it is designed 
for complexity analysis, nothing is hidden which could affect execution costs. In 
particular, there is no built-in synchronization or queueing. The model is automata- 
theoretic in style. It is suitable for separate description of interface behavior and 
implementation of systems, so allows separation of the descriptions of problems and 
their solutions. 

The basic entities are processes and variables (for communication). An atomic 
execution step of a process involves accessing one variable and possibly changing the 
process’ state or the variable’s value or both. A system of processes is a set of 
processes, with certain of its variables designated as inter& and the others as 
external. Internal variables are to be used only by the given system. External 
variables are assumed to be accessible to an “environment” which can change the 
values between steps of the given system. 

The execution of a system of processes is described by a set of execution sequences. 
Each sequence is a (finite or infinite) list of steps which the system could perform 
when interleaved with appropriate actions by the environment. 

For describing the external behavior of a system of processes, certain information 
in the execution sequences is irrelevant. The external behavior of a system of 
processes is the set of sequences derived from the execution sequences by “erasing” 
information about process identity, changes of process state and accesses to internal 
variables. What remains is just the history of accesses to external variables. 

A distributed problem is any set of sequences of accesses to variables. A system is 
said to solve the problem if its external behavior is any subset of the given problem. 
(We do not require that the system exhibit all possible correct sequences, but only 
that every sequence which it does exhibit is correct.) 

One method for specifying a distributed problem, used in the examples of [8,9], is 
to describe first the set of correct sequences of accesses to the external variables by 
the environment and the system together, tagging each access by the label 
“environment” or “system” as appropriate, second the assumed external behavior of 
the environment of a system, and third the initialization of the external variables. 
Then a sequence of system accesses to external variables is acceptable provided when 
it is interleaved consistently with a correct sequence of environmental actions, the 
resulting sequence is correct for the environment and system together. The distributed 
problem is the set of acceptable sequences, and a system thus solves the problem if all 
of its external behavior sequences are acceptable. We follow this method for 
describing the requirements of our problem. 
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Interface Description for Resource Problems 

Our model is best suited for specification of interface behavior of systems and their 
components, rather than the “eating and thinking region” behavior described by 
Dijkstra. Direct formalization of region behavior for arbitrary resource problems 
does not seem to be particularly natural. Therefore, we formulate the problem in 
terms of external behavior. 

Fix resource problem P. For each u E U(P), there is an external variable EXT,, 
having values ‘E’ (empty), ‘A’ (ask) and ‘G’ (grant). We first describe the correct 
sequences of accesses to the external variables by the environment and system 
together. Allowed transitions at any EXT, are as in the following diagram: 

(That is, the environment can ask for resources, the system can grant resources, and 
the environment can return granted resources by resetting EXT, to empty (or 
immediately asking for the resources once again).) If the value of any EXT, stops 
changing, then the final value is ‘E’. (That is, the system must grant all requests, and 
the environment must return all resources.) Finally, if two variables, EXT, and 
EXT,,, are ever simultaneously equal to ‘G’, then (u, u’) 6~ rcommon(P). (That is, the 
same resource cannot be simultaneously granted at two different external variables.) 

Next, we describe correct external behavior for the environment: a correct 
environment is one that only makes allowed transitions as described above and which 
does not leave the variable at ‘G’. 

All external variables are initialized as ‘E’. The set of sequences of system accesses 
to the external variables which combine consistently with correct environment 
sequences to yield behavior satisfying the interface description comprises the 
distributed problem to be solved. 

Network Constraints 

In a distributed environment, there are usually network constraints in addition to 
interface requirements. These constraints involve number and location of processes, 
network connectivity and communication time. For the problem at hand, we 
constrain the solution to consist of user processes, one accessing each external 
variable, and (a disjoint set of) resource processes, one for each resource. For 
notational convenience, these processes are identified with the elements of 
U(P) U R(P). (Of course, one might imagine that several users or resources might be 
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located at the same place in the network, and might be the responsibility of a single 
process. It is simpler, and not essentially different, to allow one process for each user 
and resource, however.) 

These processes need to communicate, but the means of communication are not the 
subject of this paper. We would like to suppress as many details as possible about the 
communication. However, some information about the communication might be 
important for determining the performance of the algorithm. A compromise which is 
natural in this model is to specify another interface, of the user and resource 
processes with a “message system.” Then correctness of the complete algorithm will 
depend on correctness of the message system, and also complexity analysis of the 
complete algorithm will depend on certain complexity assumptions about the message 
system. 

Thus, an interface is assumed between the user and resource processes and a 
message system. Each process p communicates with the message system by two 
external variables, IN, and OUT,,. If M is a message alphabet, then the values of IN, 
are MU {‘NULL’}, while the values of OUT, are M x 290’“p’ U {‘NULL’} if 
p E V(P) and M X (%(P)(p) U .~(P)(~(P)(p)) U {‘NULL’} if p E R(R). (Intuitively, 
the second component of OUT values is an address or set of addresses. User 
processes can simultaneously broadcast the same message to any subset of the 
associated resource processes, while resource processes can only send messages one 
at a time to associated processes. The associated processes for resource processes are 
the processes of their users, and also the processes of all of the resources of those 
users.) 

We first describe the allowable sequences of accesses to the external variables IN, 
and OUT, by the environment (i.e., the user and resource processes) and the system 
( i.e., the message system) together. Allowed transitions at any IN, are in the 
following diagram: 

Allowed transitions at any OUT, are as in the following diagram: 

environment 
environment environment 01 
or system system 

:#N”LL 
system 
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If the value of any variable stops changing, the final value is ‘NULL’. Finally, 
messages “get delivered”-in any execution sequence, the “writes” by the message 
system to any INp variable must be of message values which are some permutation of 
the message values “read” (i.e., changed to ‘NULL’) by the system from the OUT 
variables, addressed to process p. (We do not specify any order for delivery, nor do 
we care how the message system operates.) 

Next, we describe correct external behavior for the message system’s environment: 
a correct environment is one that only makes allowed transitions and does not leave 
any IN, variables # ‘NULL’. 

All variables are initialized as ‘NULL’. The acceptable system sequences are then 
defined as before. 

The reason for this particular choice of message system interface is that it seems to 
be the minimum natural interface needed to make our solution work as efficiently as 
it should. Thus, we have made this interface description part of the given conditions 
on the problem solution. 

The formal correspondence between resources and resource processes is a matter of 
convenience and is not intended to imply that the resources must be “located at” or 
“controlled by” the corresponding processes. The space of allowable solutions 
includes solutions in which control over the granting of a resource is shared by many 
different resource processes, and solutions in which one resource process controls 
many resources. 

The first locality condition mentioned in the Introduction stated that “it is possible 
to locate the resources in the network in such a way that they are generally nearby 
requesting users.” We will interpret this condition formally by hypothesizing a small 
time bound for the restricted communication guaranteed by the message system. 
Since the message system only guarantees communication with certain associated 
processes, it is reasonable to suppoSe that the worst-case time bound for such 
communication might be independent of the size of the entire network. In order to 
state this condition formally, it is necessary first to introduce a notion of “time” into 
the model. 

A Time Measure 

We base our time measure on those of [7, 10, Ill; a real-valued “time” is assigned 
to each step of an execution sequence, subject to certain constraints such as upper 
bounds on the duration of certain events. There may be many distinct allowable 
assignments of times for each execution sequence. (Note that if no lower bounds on 
duration of events are hypothesized, the set of possible execution sequences of the 
system is not restricted in any way by the constraints on time.) When an upper 
bound on time for required system behavior is proved, it must be shown to be an 
upper bound for all execution sequences and also for all allowable assignments of 
times for those executions. 

Formally, let R+ represent the nonnegative reals. A timing is a nondecreasing total 
mapping t: N + R ‘. (It is intended to represent an assignment of times to successive 
steps of an execution sequence.) Let P denote a fixed resource problem. Let, 9, A, 
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and y denote arbitrary implementations within our model of a correct resource 
allocation system, a correct message system and a correct environment for a resource 
allocation system, respectively, for P. (Correctness for -4 and y involves interface 
behavior only, while correctness for y implies also that its set of processes is 
V(P) UP(P) with external variables accessible to those processes specified in the 
previous subsection.) Let Q be the system constructed by combining A, <Y, and y. 
(In the notation of [8,9], the combined system is consist,f(SP 0-40 y), where 

Y={EXT,:uEU(P)}U{IN,:pEU(P)UR(P)}U{OUT,:~EU(P)UR(P)}, 
f(EXT,) = ‘E’ 

for all u E U(P) and f(IN,) =f(OUT,) = ‘NULL’ for all p E U(P) UP(P).) Let e 
denote an execution sequence of Q. 

Let sent(e, i, a,p,p’) denote the number of times message ‘u’ is placed in OUT,, 
addressed to process p’ (including broadcasts in which p’ is included among the 
addressees), in execution sequence e up to and including step i. Let 
collected(e, i, a,p,p’) be the number of times changes are made in variable OUT,, 
from values in which message “a” is addressed to process p’, up to and including step 
i. Let sentfrom(e, i, Q, p) denote C,, sent(e, i, u,p,p’), and similarly for 
collectedfrom(e, i, a, p). Let sentfrom(e, i, p) denote C, sentfrom(e, i, a, p), and 
similarly for collectedfrom(e, i,p). Let sentto(e, i, u,p) denote ,& sent(e, i, u,p’,p) 
and similarly for collectedto(e, i, a,~). Let deliveredto(e, i, u,p) be the number of 
times a transition to ‘u’ is made in IN,, up to and including step i. Let sentto(e, i,p) 
denote 2, sentto(e, i, a, p), and similarly for coflectedto(e, i, p) and deliveredto(e, i, p). 
Finally, let sent(e, i) denote C, sentto(e, i,p), and similarly for collected(e, i) and 
deliuered(e, i). 

Let requests(e, i, u) (resp. grunts(e, i, u), returns(e, i, u)) denote the number of 
changes to ‘A’ (resp. to ‘G, from ‘G’) at variable EXT, in execution sequence e, up to 
and including step i. If I/S U(P), then let requests(e, i, V) = CUEy requests(e, i, u), 
and similarly for grunts(e, i, V) and returns(e, i, v). Let requests 
(e, i) = request(e, i, U(P)) and similarly for grunts(e, i) and returns(e, i). 

It is now possible to state the necessary constraints on timings. Let 
J = (u, u, y, 6) E (Rt)4, and let t be a timing. Then t is cc9-admissible for e provided 
(a)-(d) hold. 

(a) u is an upper bound on process step time. Let p E U(P) U R(P) and let the 
execution steps involving actions of process p be indexed by p1 ,p2,.... Then t(pJ < o 
if p1 exists. Also, t(p,+ 1) - t(p,) < u for each i for which Pi and Pi+ 1 are both defined. 

(b) v is an upper bound on time for u user to return a grunted resource. 
If grants(e, i, u) = k, if returns(e,j, u) = k and returns(e,j- 1, u) < k, then 
t(j) - t(i) Q v. 

(c) y is an upper bound on message collection time. If sentfrom(e, i,p) = k, if 
collectedfrom(e,j,p) = k and collectedfrom(e,j - 1,~) < k, then t(j) - t(i) < y. 

571/23/2-11 
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(d) 6 is an upper bound on message delivery time. If sentto(e, i, a,p) = k, if 
deliveredto(e,j, a,p) = k and deliveredto(e,j - 1, a,p) < k, then t(j) - t(i) < S. 

The first locality condition mentioned in the Introduction is captured formally by 
the bound S. 6 is to be thought of as much smaller than the worst-case transmission 
time for a message system that could send messages between all processes in the 
entire distributed network. 

Note that, in general, some of these parameters might depend on others; for 
example, y and 6 might be functions of (T, since they might depend on the time taken 
by a process to pick up a delivered message. 

We now define the “worst-case response time” to be measured. Let T,(Ld, u) 
denote the supremum, for all execution sequences e of combined system %’ and all 
&-admissible timings t for e, of the quantity t(j) - t(i), where requests(e, i, u) = k, 
where grants(e,j, u) = k and grants(e,j - 1, u) < k. Let 7’,(d) denote 
supu T,bf', ~1. 

IV. THE GENERAL SOLUTION AND ITS WORST-CASE ANALYSIS 

General Strategy 

. We consider solutions in which each resource process maintains a FIFO queue of 
waiting users. It is easy to see that deadlock is prevented in a distributed resource 
allocation system if the resources are partially ordered by a coloring c of the resource 
problem P (as defined in Section II), if each user waits on queues for all of its 
resources in increasing order of resources, if it only waits for one resource at a time 
(i.e., until reaching the front of the associated queue), and if it remains on all its 
queues until it is first on all of them. In fact, if all granted resources are eventually 
returned, it is clear that each user eventually obtains all of its resources. 

A High-Level Language 

The high-level language used is (almost) the same as that used in (3,5]. 
Computation occurring within a lock-unlock pair occurs within a single execution 
step in the formal model. In the formal model, every step involves access to a 
variable. The local computation appearing in our language is combined into the 
previous lock-unlock pair in the formal model. (In [5], this computation was 
combined into the following lock-unlock pair, an alternative which would change the 
complexity analysis of our algorithm slightly.) The construct “waitfor (condition);” is 
an abbrevation for “A: lock; if 7 (condition) then [unlock; goto A];.” Subscripts are 
omitted from EXT, IN and OUT variables. 

The Algorithm 

The complete code follows. It is a straightforward programming of the strategy 
already described. 
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Code for user process u 

do forever 
if STATUS = ‘E’ 

local: STATUS init ‘E’ 

then [lock; if EXT = ‘A’ then STATUS := ‘A’; unlock] 
else [waitfor (OUT = ‘NULL’); OUT := (u, {first,,,(u)}); unlock; 

waitfor (IN = ‘G’); IN := ‘NULL’; unlock; 
lock; EXT := ‘G’; unlock; 
waitfor (EXT # ‘G’); STATUS := EXT; unlock; 
waitfor (OUT = ‘NULL’); OUT := (‘RETURN’, 9(P)(u)); unlock]; 

STATUS is a flag which has value ‘A’ if u knows of a pending request to be 
serviced, ‘E’ otherwise. When u discovers a request to be serviced, it waits for its 
OUT variable to become empty, and then sends the identifier u to the first resource 
process, firstp,c(U). Then u waits for its IN variable to receive the information that all 
of u’s resources have been granted. It passes this information to the environment, 
waits for a return and broadcasts a ‘RETURN’ message to all associated resource 
processes. 

Code for resource process r 

do forever 

local: QUEUE init 0, MSG init ‘NULL’, 
J init ‘NULL’, STATUS init ‘E’ 

[lock; if IN # ‘NULL’ then [MSG := IN; IN :=‘NULL’]; unlock; 
if MSG E U then append MSG to QUEUE; 
if MSG = ‘RETURN’ then delete front of QUEUE; 
if (MSG E U and 1 QUEUE] = 1) or (MSG = ‘RETURN’ and 1 QUEUE I> 1) 
then [STATUS := ‘A’; J := front(QUEUE)]; 
if STATUS = ‘A’ 
then [lock; if OUT = ‘NULL’ then OUT := if next,,,(J, r) is defined then 

(J, next,,,(J, r)) else (‘G’, J); unlock; STATUS := ‘E’]; 
MSG := ‘NULL’] 

r maintains a QUEUE of users awaiting resource r, and processes all messages as 
it receives them. Whenever r receives a user identifier message, it appends that iden- 
tifier to the end of the QUEUE. Whenever r receives a ‘RETURN’ message, it deletes 
the first element of the QUEUE. Whenever a new user identifier u reaches the front of 
r’s QUEUE, r sets a STATUS flag to indicate that r must send a message for u, 
either requesting u’s next resource or granting u’s request (in the event that r is u’s 
last needed resource). Note that r can be delayed in sending this message because its 
OUT variable is not NULL. In this event, r continues picking up and processing its 
own inputs while waiting to send the message. 

It is easy to see that deadlock is avoided by this solution, and that each request 
eventually gets granted (provided all granted resources are eventually returned). In 
addition, if ]c] is small, this solution appears to limit the lengths of chains of waiting 
proceses, thereby providing an upper bound on running time. The remaining sections 
prove results to this effect. 
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Worst-Case Peformance 
We obtain a general theorem giving an upper bound on performance of our 

solution, a bound which is not directly dependent on total network size or total 
number of users. Let g(P, c) denote the combined system composed of our solution 
for resource problem P using coloring c, and any arbitrary correct message system 
and correct environment for a resource system. Let ~2 = (6, u, y, 6). 

THEOREM 1. TVlp,,,(~) ( (contention(P - 1) v t O(l c 1 contention(P) 
(0 + Y + 4). 

ProojI Since processes operate asynchronously, it is generally the case during 
execution that some parts of the system are waiting for work to be accomplished by 
other parts. (The waiting processes might be busy-waiting, or might be performing a 
considerable amount of work.) In the analysis, it is crucial that the key parts of the 
system be identified at each time during execution. 

The general analysis strategy is quite straightforward. The details, however, can be 
slightly tricky. This is because an asynchronous system provides no guarantees on 
how long it takes even “trivial” events to occur; thus, one must be careful to bound 
the time for each necessary event explicitly. For this reason, we provide a detailed 
analysis. 

Classify the resource processes into levels, each resource process r at level c(r). 
For 1 < i < [cl, <j < contention(P), let G,,j denote the supremum, over all execution 
sequences e and d-admissible timings t, of the time from when the identifier for any 
user u reaches position j from the front of a level > i resource process QUEUE, until 
the resources are next granted to u. A system of recurrences is obtained. 

First, consider arbitrary i and j > 2. Let a, be an execution step in which u reaches 
position j from the front of the QUEUE of a level > i process, r. Let u’ be the 
immediate predecessor of u on r’s QUEUE. By induction, within time at most Gi,j_, 
from t(ai) (as measured by timing t), the environment at u’ is granted its resources. 
Then within time at most V, the environment returns the resources (because of J/- 
admissibility), and then within time u, user process u’ detects the return. Also, within 
time y of t(a& the value (u’, {first,,,(u’)}) arising from this u’ request is removed 
from OUT,, . Thereafter, within time u, u’ broadcasts a ‘RETURN’ message, and 
then within 6 the ‘RETURN’ reaches IN,. Within u, the ‘RETURN’ is read by r and 
u’ is removed from r’s QUEUE, making u first. Then within Gi,, , u is granted its 
resources. We see that GIJ & max(y, G,,j_ I t v t a) t 20 t 6 + G,, 1, for j >, 2. 

Next, consider i > 2 and j = 1. Consider an execution step in which u reaches the 
front of the QUEUE of a level > i process, r. Within time y t 2u, a value (‘G’, u) or 
(u, nextp,c(u, r)) is placed in OUT,. If the value is (‘G’, u), then within 6 t 2u, the 
environment at u is granted its resources. If the value is (u, next,,,(u, r)), then within 
6 + 20, u is appended to the QUEUE of a level > i + 1 process, r’. At that moment, u 
is in position < contention(P) + 1 on the QUEUE of r’; each contender for resource 
r’ can appear at most once, with the single exception that the first user on the r’ 
QUEUE might appear twice. (This is because the first user might have its resources 
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granted, return them, and then request them again. The new request might arrive at r’ 
before the ‘RETURN’ message.) However, within time 6 t 0, u reaches a position < 
contention(P) on the r-’ QUEUE. Then within Gi+ r, contention(P), (the environment at) 
u is granted its resources. We see that Gi,r < y t 20 t max(b t 2a, 6 t 2a + 
6 + u + Gi+ I, contention(P) 7 ) i < [cl. That is, Gi,r < 7 t 26 + 50 t Gi+ 1, contention(p)T for 
i < 1~1. 

Next,itiseasytoseethatG,,,,,<yt2ut6+2u=ytS+4u. 
Fmally, consider 7&, C) (~5). Let a, be an execution step in which (the 

environment at) u makes a request. Within time u from t(ar), the request is detected 
by user process u. Also, within time y from t(ar), OUT, becomes ‘NULL’. Thus, 
within time max(y, a) + u of ~(a,), the value (u, {first,,(u)}) is placed in OUT,. Then 
(as above) within 6 + 20 + 6 + u, u reaches position Q contention(P) on some 
QUEUE. Thus, Tqo,Cj (d) < max(y, U) t u t 6 + 2~ t 6 t u t Gl,contention(p) - That 
is, ~~cp, cJ (4 < max(% 0) t 26 + 4~ t G,, contention(P) + 
To summarize the inequalities, let u’ denote u t y t 6. Then for some constant k, 

we have Gi,j < ku’ t v t G,,j_ 1 t Gi,l for j > 2, Gi,r < kt.7’ t Gi+ 1, contention(p) for 
i < ICI, G, C,, , Q ku’, and r,,,,,,(M) < ku’ + Gl,content,on~P~. Letting u denote conten- 
tion(P), we have GiJ < (j - l)(ku’ •t V) +j Gi,, for i,j, and SO Gi,a < (2~ - 1)&u') + 
(u-l)v+uG,+,,,fori<~c~.Also,G,,,,~~(2u-l)(ku’)t(a-l)v.Thus,G,,,~ 
(1+u+u*+~+u “‘-*)((2u - l)(ku’) + (a - l)(v)) t d'-'G,,,,. = 
(1+a+u2t*~*+u’C’-’ )((2u - l)(ku’) + (a - l)(v)). Then TqCp, ,,(d) < ku’ t 
(1 tu+u*+ **a +a ‘+‘)((2u - l)(ku’) + (a - l)(v)) < 2klcl u”‘u’ + (a”’ - l)v, 
as required. ! 

Since we do not hypothesize any lower bounds on time for events to occur, there is 
no limit on the number of times competing users can get ahead of a particular user. 
However, Theorem 1 shows that the only way large numbers of processes can get 
ahead is by going fast; there is still a limit on the total time any particular user waits. 

COROLLARY 1. For some cy Tw=~~,~~ (d) < (contention(P)co’o’s(P’ - 1) v + 
O(colors(P) . contention(P)cO’o’s(p’(u t y + 6)). 

EXAMPLE 4.1. Dining Philosophers. Recall the colorings c and c’ from Example 
2.1. c yields a worst-case running time of (2” - 1) v + O(n2”(u t y t a)), while c’ 
yields the much better running time 7v t O(u t y t 6). Intuitively, the ordering 
yielded by c allows length n waiting chains to form, but c’ does not allow chains of 
length greater than 3. 

EXAMPLE 4.2. k-Fork Philosophers. A worst-case bound of (kk+’ - 1) 
v + O(kk+*(u + y + 6)) is obtained. If, however, the worse coloring c(rJ = i is used, 
one obtains a bound of (k” - 1) v + O(nk”(u + y t 6)). 

EXAMPLE 4.3. 2-Dimensional Philosophers. The bound is O(v + u + y + 6). 
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EXAMPLE 4.4. k-Tree. The bound is (kk - 1) v + O(kk(a + y + 6)). 

EXAMPLE 4.5 k-Nested Sets. The bound is (k, - 1) v t O(k’(u t y 

V. REALIZING THE UPPER BOUND 

f 4). 

It is not always clear how to produce “bad” execution sequences and “bad” &‘- 
admissible timings for which the bound derived in Theorem 1 is (approximately) 
realized. For instance, it does not seem possible to exhibit exponential dependence on 
n in Example 4.1 (Dining Philosophers). In this section, we sketch how to construct 
bad execution sequences and timings for k-Trees, k-Nested Sets and k-Fork 
Philosophers. In Section VI, we prove an alternative upper bound theorem which 
implies that such bad execution sequences and timings cannot be constructed for 
Example 4.1. 

EXAMPLE 5.1. k-Tree. Consider an execution sequence for a request from user 
ugk in which, whenever a user Y&+_[i, arrives on the QUEUE for a resource Ti, all of 
the other contenders for ri have just arrived very shortly before. This execution 
involves r&k waiting for kk - 1 distinct other users to obtain (sequentially) their 
resources. Thus, if a timing is constructed to maximize waiting times, a response time 
of at least (kk - 1) v is realized. Note that whenever the specified users arrive on the 
specified QUEUES, it is possible that the other contenders can all arrive as required. 
This is because these other contenders are only being required to arrive at their first 
resources, which they can do independently. 

EXAMPLE 5.2. k-Nested Sets. Let C(Ti) = i, 1 < i < k. Construct an execution 
sequence for a request for user u, in which whenever a user ui arrives on the QUEUE 
for a resource rj, j > i, it is the case that uj has just arrived very shortly before. This 
execution involves ui waiting for 2k-1 - 1 other requests to be granted. Unlike 
Example 5.1, however, many of these requests are from the same users. (For instance, 
for k = 5, the order of granted requests is given by u u u u u u u u u u u 54535452545 

u3u5u4u5u, .) Thus, if a timing is constructed to maximize waiting times, a response 
time of at least (2k - 1) v is realized. Again, the required arrivals are possible because 
we are only requiring contenders to arrive at their first resources. There is sufficient 
independence in the operation of the system to allow the arrivals to occur. 

In both of these examples above, a permutation of the values of c will make it 
impossible to construct execution sequences and timings with exponential dependence 
on k. (For instance, for Example 5.2, simply reversing the order of the resources will 
make the dependence on k quadratic, as we will show in Section VI.) 

Neither of the examples above is of the “local” type for which this algorithm is 
intended. However, one can easily construct an example with a “local” flavor which 
approaches the upper bound by patching together multiple instances of Examples 5.1 
or 5.2. 

EXAMPLE 5.3. k-Fork Philosophers. Let c(r,) = i, 1 <i < n, as in Example 4.3. 
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We construct an execution sequence for a request of u,, using only ui,..., 24,-k+,. 
Whenever a user ui, 1 < i < n - k, arrives on the QUEUE for a resource rj, 
i <j ,< n - k + 1, it is the case that uj has just arrived. Then, for example, if k = 3 
and n = 7, the order of granted requests is u 5 4 5 3 5 4 15 4 5 3 u u u u u u u u u u u 1’ In general, if 

f(k, n) is the number of requests for which u, waits, then one can calculatef(k, n) as 
follows. 

Consider a slightly modified resource problem P’ having R(IY) = {pi,...,‘,,}, 
U(P’) = {u, )...) u”}, and S(P’)(ri)= { uj : i - k + 1 <j < i}. (Thus, modular arithmetic 
is eliminated and so the first few resources have fewer than k users if k > 1). Let 
c(ri) = i. We construct an execution sequence for a request of ui : whenever ui, 
1 < i < n - 1, arrives on the QUEUE for a resource rj, i <j Q n, it is the case that Uj 

has just arrived. If g(k, n) denotes the total number of requests granted in this 
execution up to and including the initial u, request, thenf(k, n) = g(k, n - k + 1) - 1 
for n&2k- 1. Then wecan see thatg(k, l)= l,g(k,n)=Cy:ig(i,i)+ 1 for n<k, 
and g (k, n) = Cy:j_k+, g(k, i) + 1 for n > k. This Fibonacci-style bound shows that 

f(k, n) is Q(k’@), so that a response time of R(k”lk)(v) is realized. 

VI. A SPECIAL CASE 

A case analysis for the coloring c of the Dining Philosophers Example 2.1 shows 
(in contrast with Example 5.3) that no execution exhibiting exponential dependence 
on Ic( is possible. Also, for example, changing only the ordering of the colors in 
Example 5.2 changes the dependence on ICI from exponential to quadratic. Thus, 
while Theorem 1 yields the required independence of network size, it does not tell the 
entire story. 

Theorem 1 allows for the possibility that a user will have to wait for the maximum 
number of competing processes on each queue. However, if two users contend for two 
different resources, then neither will ever have to wait for the other for the second of 
the two resources. Moreover, Theorem 1 does not take into account any special 
limitations on the resources needed by any particular user. The second theorem takes 
these factors into account. 

Define a tree waiftree(P, c, u) for a resource problem P, a coloring c and u E U(P) 
as follows. 

(1) pretree(P, c, u) 

The root node has a single son labelled by the resource firstp,c(u). The edge joining 
the root node to this son is labelled by u. 

For any node x labelled by any T, and any u’ E %(P)(r) with nextp,c(u’, r) deftned, 
there is a son of node x labelled by nextp,c(u’, r). If next,,,(u’, r) is undefined, there is 
a son of node x which is a dummy node. In either case, the edge joining x to this son 
is labelled by u’. 
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EXAMPLE 6.1. Dining Philosophers. Let n = 4. Pretree(P, c, UJ is as follows. 

EXAMPLE 6.2. k-Nested Sets. Let k = 4 and c’(ri) = 5 - i. Pretree(P, c’, u3) is 
as follows. 

(2) waittree(P, c, u) 

The non dummy, nonroot, nodes of pretree(P, c, U) are assigned tags consisting of 
sets of processes. If node x has label I, then the tag, A,, for x is the set of all 
U’ E %(P)(r) with the following property. For all ancestors y of x, where y is labelled 
by r’, if U’ E %@)(r’) then U’ labels the out-edge leaving y in the direction of node x. 
The resulting tagged tree is then pruned so that the only edges leaving any node are 
those labelled by processes included in the tag of that node. 

EXAMPLE 6.3. Dining Philosophers. Waittree(P, c, a,), for Example 6.1, is as 
follows: 
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The only user omitted from a tag is u,, omitted from the tag of the double circled 
node. uq is omitted because u, E P(P)@,) and u., does not label the edge leaving the 
son of the root in the direction of the double circled node. Only one (dummy) node is 
pruned from the tree. 

EXAMPLE 6.4. k-Nested Sets. Waittree(P, c’, UJ is as follows. 

A considerable amount of pruning occurs for this tree. 
Let subtree(P, c, u, x, a), where a E A,, denote the subtree of waittree(P, c, U) 

which has root x, a single edge e leaving x toward the leaves with label a, and 
contains all edges of waittree(P, c, U) below e. Let weight(P, c, u, x, a) denote the 
number of edges in subtree(P, c, U, x, a). Let weight(P, c, u, x, B), where B E A,, 
denote CacB weight@‘, c, U, x, a). Let weight(P, c, u, x) denote weight(P, c, U, x, A,) 
and let weight(P, c, u) denote weight(P, c, U, x), where x is the son of the root. 

THEOREM 2. T 4fp,c+‘, u) = 0 ((weight(P, c, u)) . (a + v + Y + 6)). 

ProofI Some additional vocabulary is required. Note that each request generates a 
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set of QUEUE entries which persist until ‘RETURN’ messages are received. A 
QUEUE entry is said to be active at step i of execution sequence e provided the 
request which generated it has not yet been granted at (i.e., immediately after) step i. 
The following is obvious. 

Claim 1. At any step i of an execution sequence e, any user u’ who has an entry 
active on the QUEUE for any resource r also has an entry which is first on the 
QUEUES for all r’ E I with c(J) < C(T). 

We next relate waittree(P, c, u) to the execution of the algorithm for a request for 
user u. 

Step i of execution sequence e is consistent with node x of waittree(P, c, u) 
provided each user which labels an edge above x has an entry which is active on the 
QUEUE of the resource labelling the lower (son) endpoint of that edge, at (i.e., 
immediately after) step i. (There can be at most one such active entry for each 
QUEUE.) The following claim shows how the pruning of pretree(P, c, u) carried out 
in defining waitree(P, c, u) preserves a sufficient portion of the tree to describe 
situations arising in actual execution. 

Claim 2. Let x be a node of waittree(P, c, u) labelled by resource r. Assume step i 
of execution sequence e is consistent with x. Let u’ be a user with an active entry on 
r’s QUEUE at step i. Then u’ E A,. 

Proof of Claim 2. Assume u’ 6Z A,. Then by definition of A,, there is an ancestor 
y or x, labelled by a resource r’, with u’ E %(P)(r’) and u” the label of the outedge 
leaving y in the direction of node x, u” # u’. By the definition of consistency, u” has 
an entry active on the QUEUE for some resource with a higher number than c(r’), at 
step i. By Claim 1, u” has an entry which is first on the QUEUE of r’ at step i. 
However, Claim 1 also implies that u’ has an entry which is first on the QUEUE of 
r’ at step i, a contradiction. 

The next claim, proved inductively, describes the relationship between the sizes of 
certain unions of subtrees of waittree(P, c, u), and the time until the granting of 
certain requests. Write 0’ = 0 + v t y t 6. 

Claim 3. Let x be a node of waittree(P, c, u) labelled by resource r. Let u’ be the 
label of the edge immediately above x. Assume step i of execution sequence e is 
consistent with x, and that u” is a user having an active entry a (not necessarily 
proper) predecessor of the active entry for u’ on r’s QUEUE at step i. Let B be the 
set of users having active entries which are predecessors of this entry of u” (including 
u” itself) on r’s QUEUE at step i. (By Claim 2, B G A,.) Let j be the step at which 
the request of u” which generated this active entry is granted. Let t be an &‘- 
admissible timing for e. Then t(j) - t(i) is O((weight(P, c, u, x, B))(d)). 

Proof of Claim 3. We use induction on the nodes x of waittree(P, c, u), starting at 
the lowest nodes and working towards the root. For each node x, we use induction on 
subsets B of A,, ordered by containment. Assume e, i, x, r, u’, u” and B are as above. 

There are three cases. 
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(1) The given active entry of u” is the first active entry on r’s QUEUE at step 
i, and nextp,c(U”, r) is undefined. 

Then since u” has reached the front of the QUEUE for its last needed resource, the 
request of u” is granted within time O(a’), as needed. 

(2) The given active entry of u” is the first active entry on r’s QUEUE at step 
i, and next,,,(u”, r) = J. 

Then within time O(a’), a step i’ is reached at which the same request of u” has 
generated an active entry on the QUEUE for r’. Then step i’ is consistent with node 
y, where y is the son of x reached by following the edge labelled by u”. Thereafter, by 
induction on nodes and by Claim 2, the time until the request of u” is granted is 
O((weight(P, c, u, ~))(a’)). The total time is, therefore, O((weight(P, c, u, y) + l)(u’)), 
as needed. 

(3) The first active entry on r’s QUEUE at step i is generated by u”’ # u”. 
Then by induction on subsets of A,, within time O((weight(P, c, u, x, {u”‘}))(u’)), a 

step i’ is reached at which the request of u”’ is granted, so that the given u”’ entry is 
inactive at (i.e., immediately after) step i’. Step i’ is still consistent with x, and 
B’ = B - {u”‘} is the set of users having active entries which are predecessors of the 
given entry of u” at step i’. Thereafter, by induction on subsets, the request of 2(” is 
granted within time O((weight(P, c, u, x, &))(a’)). The total time is, therefore, 
O((weight(P, c, u, x, {u”‘}) + weight@‘, c, u, x, B’))(u’)) = O((weight(P, c, u, x, B))(u’)), 
as needed. 

Thus, Claim 3 is true. Now, consider any request of u. Within time O(u’) of 
initiation, a step i is reached at which u obtains an active entry on the QUEUE for 
tirstp,C(U). Step i is consistent with the son of the root of waittree(P, c, u). Claim 3 
yields the result. 1 

EXAMPLE 6.5. Dining Philosophers. Generalizing Example 6.3, we see that 
coloring c provides a running time of O(n(u + v + y + a)), because of the size of the 
waittrees. This is in contrast to the exponential bound of Example 5.3. 

EXAMPLE 6.6. k-Nested Sets. Generalizing Example 6.4, we see that the 
coloring c’ provides a running time of O(n’(u + v + y + 0)). This is in contrast to 
Example 5.2. 

There are, of course, cases in which Theorem 2 does not provide improvement over 
Theorem 1. For example, for a k-tree, the waittree for coloring c of Example 2.4 and 
user u,~ follows the structure of the k-tree itself. (See the example for k = 3 in 
Example 2.4.) Thus, the waittree has more than kk edges. We also note that the given 
upper bound proportional to the size of the waittree cannot always be realized; by ad 
hoc arguments, it is often possible to eliminate still more waiting possibilities. 
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VII. REMARKS ON QUANTITIES OTHER THAN WORST-CASE RESPONSE TIME 

One might be interested in measures other than worst-case response time. For 
example, one can obtain an upper bound on “worst-case throughput” by measuring 
the rate at which requests are granted, assuming that each user always initiates a new 
request within some time E after the preceding request is returned. In outline, if 
d = (u, v, y, 6, E) E (9’)‘, then a timing is &-admissible provided 0, v, y, and 6 are 
as before and, in addition, the first request of each user is within E of the beginning, 
and each subsequent request is within time E of the previous return by that user. Then 
let Z$(-ts) denote the supremum of the quantity lim sup,_ t(i)/grants(e, i) for all 
execution sequences e of @ and all J-admissible timings t for e. An easy corollary 
to Theorem 1 says that T&(p,cj is 

o ICI contention(P)“‘(a + v + y + 6) + e 
n 

if IU(P))=n. 

Another interesting measure for many distributed algorithms is worst-case perfor- 
mance under assumptions of limited concurrency. Intuitively, if at most k requests are 
concurrent with a given request, then worst-case response time for the given request 
might be better than worst-case with unlimited concurrency, for small values of k. 
Analysis techniques for deriving such bounds are somewhat different from those used 
for Theorems 1 and 2. 

For the problem of this paper, it is probably not appropriate to consider limitations 
on concurrent requests throughout the network. Since the problem has a local flavor, 
it might be more appropriate to seek a worst-case bound in the presence of at most k 
concurrent “nearby” requests. For u E U(P), define pred(u) to be the set of users 
appearing as edge labels in waittree(P, c, a). (Thus, pred(u) represents all users which 
could delay the granting of a request of U, together with u itself.) Let &’ = (0, v, y, S) 
and use the definition of d-admissibility in Section III. Let T!&z, U, k) denote the 
supremum, for all execution sequences e and J-admissible timings t, of the quantity 
t(j) - t(i), where u makes a request at step i which is granted at step j, and where 
requests(e,j, pred(u)) ( k + returns(e, i, pred(u)). That is, there are at most k requests 
involving users in pred(u) active in the interval from i to j. It is not difficult to verify 
the following claim about our system @(P, c): if at any step of any execution 
sequence there is a request of user u pending, and if there is no request of a user in 
pred(u) currently granted, then within time O(Jcl(o + y + S)), some request by a user 
in pred(u) gets granted. Therefore, if there is a bound of k on such requests, the total 
time to grant the request of u is (k - 1) v + O(kl cl (CT + y + 6)). 

A refinement on the analysis outlined above might attempt to use the fact that the 
message system might also be guaranteed to perform at better than its worst-case 
performance under the limited usage deducible from the given limit on concurrent 
nearby user requests. The message system is performing a significant part of the work 
of the entire system, and its improved performance under light usage conditions might 
be expected to have a significant impact on the calculated bounds. In order to obtain 
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such a sharpened analysis, one needs to include more detailed bounds on the behavior 
of the message system in the admissibility vector, rather than just y and 6. Let 
J&’ = (a, v, y, 6, p) E (R +)5, and redefine a timing to be sf-admissible for an execution 
sequence e provided u, v, y, and 6 are as in Section 3, and ,u satisfies the following. 
For all k > 1 and all p, if sentto(eJ, p) < k + min(deliveredto(e, i, p), 
collectedto(e, i,p)) and if for no 1, i < 1 <j is the case that sentto(e, 1,~) = 
collectedto(e, 1, p) = deliveredto(e, 1, p), then t(/) - c(i) < kp. That is, we bound the 
length of time taken to collect and deliver at most k messages to a single process p. 

For simplicity, we assume a bound of the form kp, where p is to be thought of as 
much smaller than y and 6. Let T$(&‘, u, k) be defined to be the same as T&J&‘, u, k), 
except that the new definition of d-admissibility is used. We require another 
definition and a lemma in order to analyze our system g(P, c). For u E U(P), define 
res(u) to be the set of resources appearing as node labels in waittree(P, c, u). (Thus, 
res(u) represents all resources which could delay the granting of a request of u.) 

LEMMA 7.1. If r E res(u) and u’ E g(P)(r), then u’ E pred(u). 

Proof. Consider particular I E res(u). u’ E Z!(P)(r). Let y be any node of 
waittree(P, c, u) labelled by r. 

Let x be the highest node on the path from the root of waittree(P, c, u) to y such 
that label(x) E ,W(P)(u’). Then u’ EA,, be definition of A,. 4 

$‘cp,c+‘, u, k) can be bounded as follows. First, there may be an initial interval 
of O(o + y + 6) before all old ‘RETURN’ messages from nonconcurrent requests have 
been collected, delivered and processed. We analyze the remaining interval I until u’s 
request is granted. First imagine that all messages overlapping I which are addressed 
to users in p&(u) or to resources in res(u) take time zero until collection and 
delivery. With this assumption, the time for I is at most (k - 1) v + O(klcla). (The 
analysis is the same as that for T&p,c)(“pP, u, k).) W e must add to this bound the total 
time taken for all the relevant messages to be collected and delivered, which we 
calculate as follows. 

The given requests concurrent with the original request of u produce a set of at 
most k(2 ICI + 1) messages, all addressed either to users in pred(u) or to resources in 
res(u). Moreover, all messages which overlap interval I and are addressed to these 
users and resources are among this set of messages. This is because the only 
messages ever sent to a user process during the execution of the algorithm are ‘G 
messages originating from its own requests, and also the only messages ever sent to a 
resource process are ‘RETURN’ messages and requests from its users and from lower 
numbered resources of its users. But using Lemma 7.1, we see that all of these 
messages must be generated by requests from users in pred(u). Because I does not 
begin until the initial interval has elapsed, these requests must all be among the given 
concurrent requests. 

Now consider any particular destination process p in pred(u) or res(u), and assume 
that 1 of the Q k(2 ICI + 1) messages above are addressed to p. By admissibility, the 
total time for the 1 messages to p is at most 1~. Summing over all of the processes in 
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pred(u) U res(u) yields a total message time of at most 42 (cl + 1)~. Thus, the total 
timeisatmost(k-1) +O(o+y+6)+O(kIcl(a+~)). 
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