
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 21, 251-280 (1980)

Straight-Line Program Length as a Parameter
for Complexity Analysis*

NANCY A. LYNCH

Georgia Institute of Technology, Atlanta, Georgia 30332

Received September 11, 1978; revised June 4, 1980

A definition is proposed for a size measure to be used as a parameter for algorithm analysis
in any algebra. The parameter is simply the straight-line program length in the associated free
algebra. This parameter generalizes the usual measures in basic arithmetic and string algebras,
as well as some apparently different measures used for data structure algorithms. Another use
is illustrated with an introduction to complexity-bounded group theory.

I. INT~00ucT10N

This paper continues the work in [9-l 21 directed toward the development of a
unified, relative framework for complexity theory. Those papers establish a natural
model for situations in which each data element is regarded as “atomic”; for example,
it can be copied in one computation step. The attractiveness of the model is
demonstrated by its use in stating and proving a variety of technical results, prin-
cipally involving data types whose elements are bit strings or natural numbers. It
would be useful to extend those ideas to.data types whose elements are not usually
regarded as atomic (such as matrices, graphs, or, storage-retrieval structures of
various kinds). This paper treats a problem that permeates the other work: How
should complexity bounds be stated for arbitrary operations on arbitrary data types?
More specifically, if algorithms for operations in data types such as groups or
matrices are to be classified as O(n), O(n’), or 0(2”), then what are appropriate
choices for the parameter n? Some choices in the literature seem to be ad hoc; this
paper is an attempt to unify them.

When one computes with bit strings or natural numbers, using some simple set of
basic operations, it is generally easy to express and to understand complexity bounds.
The number of basic operations performed is considered to be an order-of-magnitude
approximation to the “time” taken by the computation. For convenience, this number
is usually presented by a closed-form function t of the length n (or logarithm n) of the
input. Since lengths of strings and logarithms of numbers are considered to be natural
size measures on their respective domains, they’ are appropriate parameters for

* This work was partially supported by the National Science Foundation through Grants DCR 75-
02373 and MCS 77-15628 and U. S. Army Research Office Contract DAAG29-79-C-0155.

251
0022.0000/80/060251-30%02.00/O

Copyright ~? 1980 by Academic Press, Inc.
All rights of reproduction in anv form rewrvrd

252 NANCY A. LYNCH

complexity measurement. (Even in this simple situation, there might be algorithms for
which other parameters are more appropriate; the complexity of some numerical
algorithms might depend more naturally on the number of prime factors than on the
logarithm of a number.)

However, if one attempts to understand programs by imposing a multi-level,
hierarchical structure on them where possible, then one does not always want to think
of oneself as computing with low-level objects such as bit strings or natural numbers,
but often with higher-level objects. Similarly, one does not always want to count only
basic operations, but often more “complex” operations. Such as method of
understanding programs is suggested by the extensive recent research in formal
semantics, programming logics, and formal specification techniques for data
structures. In this case, it is not quite so obvious how to define and express
complexity bounds.

One first requires a suitable general model, capable of measuring realistically the
complexity of computations performed using either low-level or high-level objects and
operations. Second, one needs a general way of expressing these measurements in a
usable form. Uniformity of the model and of the complexity statements are important,
since complexity analyses of the separate levels of an algorithm should be combinable
in a straightforward way into a complexity analysis of the entire algorithm.

We are thus led to a general model for complexity measurement which is
inherently relative [9-121. Some of the features of our model are the following. Two
kinds of modularity are expressible-the definition of a new operation on a
previously defined data type, and the representation of an entirely new “higher4evel”
data type (with its associated operations) relative to a previously defined “lower-
level” data type. The new, higher-level data type is designated as represented and the
given lower-level data type as representing. (Thus, if one is given bit strings with a set
of operations and wishes to “imp]ement” a particular group, then he seeks a represen-
tation of the group’s elements and operations relative to the bit string data type. The
group is the represented data type, while the bit string data type is the representing
data type. Similarly, if one is given the natural numbers with zero, successor and
certain other operations and wishes to compute using integers with appropriate
operations, then he seeks a representation of the integers as natural numbers and
suitable representation of the integer operations in terms of the natural number
operations. The integers comprise the represented data type, while the natural number
data type is the representing data type.) The model is algebraic. In particular, data
types are assumed to be defined up to isomorphism. (Unlike [5,6, 131, however, we
are not concerned with particular techniques for specifying this definition.) Encodings
are not constrained a priori. Our point of view is that there is an inherent coding-
independent relative complexity for data types, which can be thought of as a trade-off
between the complexity of their various operations. The framework used is closer to
models of programming used in other branches of computation theory than is the
RAM- or Turing machine-style framework generally used in complexity theory.

As mentioned above, complexity analyses of the separate levels of an algorithm
should be combinable in a reasonably simple way to yield a complexity analysis for

STRAIGHT-LINE PROGRAM LENGTH 253

the entire algorithm. Furthermore, an analysis of the algorithm in terms of high-level
operations on high-level objects should not require knowledge of the lower-level
representation of those objects nor of the lower-level implementation of those
operations. In the extreme, an analysis which includes, for each input to the program,
the exact total number of each type of operation performed on each individual
element of the representing domain would satisfy these requirements. But recording
all of this information is not generally feasible, For convenience, one would prefer to
express as much information as possible about the analysis by a closed-form function
of some numerical parameter on the represented domain.

Hence, the following goal arises. For arbitrary data types, a parameter as natural
as length for bit strings and logarithm for natural numbers is required, upon which to
base complexity analysis. This parameter should be chosen in a uniform way for all
data types, in order to facilitate combination of analyses. It should generalize the
length and logarithm measures, so that results about bit strings and natural numbers
will be expressible. It should reside in the represented rather than in the representing
data type. This paper contends that a simple size measure, the length of a straight-line
program to generate an element, is an appropriate parameter.

Insistence that the size parameter reside in the represented rather than the
representing data type distinguishes this work from previous work on relative
complexity of algebras [2-4, 141. Definitions of the style used in those papers (i.e.,
parameters in the representing system) are somewhat easier to state than ours, but
evidence that they are less natural is provided by the difficulties encountered in those
papers. Intuitively, one wishes to measure the complexity of the accomplishment of a
certain task-the implementation of a new data type. If measures are based on size of
representing elements, then one observes the odd phenomenon that the task is deemed
“more efficiently accomplished” when the representing elements are chosen to be of
greater size! The actual numerical (time or space) complexity might be unchanged,
yet because it is expressed as a function of a larger parameter, a smaller function
might be used. The only way to make valid comparisons of complexity of various
ways of accomplishing the task is to base the compared measurements on a common
parameter, one derived from the task itself.

Our use of the straight-line program length parameter discussed in this paper
originates in [9, 111. There, the optimality of a standard coding of N into (0, 1)* is
proved in several different formulations, one of which is generalizable to arbitrary
algebras. Another complexity study using a version of this size parameter appears in
[171. Also, a disguised use of this parameter appears (for example) in the UNION-
FIND and INSERT-MEMBER-DELETE algorithms and lower bounds in [1, 181. If
“dictionaries” [I] and other such data structures are described in the many-sorted
algebraic framework of [5, 6, 131, then the “number of operations simulated”
parameter used in those results can be expressed formally as the size of an element in
an appropriate many-sorted algebra. All of this work way be regarded as evidence for
the naturalness of the measure, and this paper is intended to provide further evidence.

Following this section, the organization of the rest of the paper is as follows.
Section II contains notation, definitions with their technical motivation, and

254 NANCY A. LYNCH

elementary results. Section III contains theorems about combination of analyses.
Section IV contains, as an extended example, an introduction to a theory of
complexity for finitely-generated groups. This theory is a refinement of the
computable group theory of [161. Basic results are shown; they appear to be neater
and sharper than those obtained in previous attempts at developing such a theory.
Much work, however, remains to be done.

Another application of the present ideas appear in a companion paper [7]; there,
several numeric and bit-string algebras are classified by relative “accessibility”
complexity. Those results are useful primarily as coding-independent lower bounds on
computation time in ordinary programming languages. The apparent tradeoff between
accessibility complexity and number of representations is also examined in that
paper. Arguments about the sizes of neighborhood are used. The group theory results
and the results of [71 involve measurement of several different types of complexity;
however, all are expressed in terms of the same size parameter.

Reference [8] includes earlier versions of the present results, as well as the results
of [7].

II. NOTATION, DEFINITIONS, AND BASIC RESULTS

Size Parameter
Let N denote the set of natural numbers, including 0, (0, 1}* the set of binary

strings of finite length, Z the integers, and R the real numbers.
For x, y E N, let (x, v) denote f((x + y)’ + 3x + y). This function maps N*

bijectively onto N. Let n,, rr2: N-P N be total functions such that (xi(x), x2(x)) =x.
For x, JJE (0, l}*, let (x, y) denote the string x,0x,0 ... Oxk11y10y20 .a. Oyr, where
x=xl+..xk andy=y, . . . y,. This function maps ((0, 1 }*)’ injectively into {O, 1 }*.
Let rr,, z2: {0, l)* --) (0, I)* be partial functions such that (n,(x), z*(x)) = x. Both
pairing functions are extended to more than two arguments by repeated application.

An algebra ~4 = (Dam,, ; Fun,, ; Rel,,) is a set Dam., (the domain of &‘) together
with a set Fun, of partial functions (i.e., operations) and a set Rel,, of partial
relations on Dam,,. Constants are 0-ary functions. The members of Fun, and Rel,
are called basic functions and relations of &‘, We assume that every element of
Dom d can be generated by a finite number of applications of functions in Fun d (to
constants in Fun,).

Although Fun,& and Rel,, have been defined to be sets of functions and relations,
the same notation is sometimes used to represent corresponding sets of symbols for
those functions and relations. We rely on the reader to make such distinctions when
necessary.

Let {ui}zr be a set of formal variables, Fun a set of function symbols. Then
V Exp,(Fun), n E N, denotes the set of all well-formed expressions over the symbols
in Fun and (any subset of) {vr}~=, . VExp(Fun) denotes U,,, VExp,(Fun).

If &’ is an algebra, e E VExp,(Fun 4), then val(e) denotes the value of e when
evaluated in d. (val(e) may be undefined.) Let 9586 (-19) be the algebra having as
its domain the set of e in V Exp,(Fun y.) for which val(e) is defined, as its functions

STRAIGHT-LINE PROGRAM LENGTH 255

the set of free applications of function symbols in Fun, to elements of
VExp,(Fun,), and its relations defined as follows. Let each basic relation r on
Dam,,, (.d) be defined by r(el ,..., e,) = r(val(e,),..., val(e,)). Note that r(e, ,..., e,) is
defined if and only if r(val(e,),..., val(e,)) is defined, and similarly for basic functions.

Whenever any function or relation is undefined, its “value” is written as co. Thus,
for x, ,..., x, E Dam,, , f(x, ,..., x,) = co indicates that f is undefined for the
arguments xi ,..., x,. For e E VExp,(Fun,,), val(e) = co indicates that val(e) is
undefined (i.e., e & Dom .fiirc (&. In formulas involving compositions, the “value” co
will always propagate outward. By convention, n (co for all n E N, and co < co.

The size parameter is now defined. If A, B G Dam,,, then size.,(A : B), (the size, in
&, of A relative to B) is given as follows:

(a) size,,(A : B) = 0 iff A c B.

(b) size,,(A : B) = k + 1 iff both of the following hold:
(bl) size,,(A : B) < k.

(b2) For some C c Dam,,, f E Fun.&, x, ,..., x, E C, it is the case that
A c cu {f(Xl,..., x,J] and size,,(C: B) = k.

(c) size&A : B) is otherwise undefined (and is said to be equal to co).

Thus, size,,(A: B) describes the number of steps required by a straight-line
program, given the values in B, to generate the values in A. Let size-&x: B) denote
size,,({x} : B), size,,(A) denote size,,(A : 0) and size.,(x) denote size.d{x} ; 0).
Clearly, only the functions in Fun d (and not the relations in Rel,) are needed to
determine the size measure. This definition is more general than that used, for
example, in [171; this level of generality was chosen for the naturalness of its use in
proofs.

If Fun is a set of function symbols and e E VExp(Fun) then
size(e) = size (YExp(Funj; FunV(v,,iCCI:.(e: {~~}ioo,~). That is, the size of e is the number of
steps required by a straight-line program to generate e from its formal variables.

THEOREM 2.1 (Basic properties of the size measure).
(a) If A, B, C G Dam,, and A E C, then size,,@ : B) < size JC: B).

(b) If A, B, C E Dom d and B G C, then size,,(A : B) > size &(A : C).
(c) (Triangle Inequality)

Zf A, B, C s Dam,,, then size,,(A : B) + size ,(B : C) > size,JA : C).
(d) IfA,BcDom,, then size,,(A : B) = size,,(A n B: B). (B is the

complement of B, Dom d - B.)

(e) Zf A, B, C G Dom d, then size -/‘(A U B : C) ,< size,,(A : C) + size JB : C).

(f) (A connection between size in an algebra and in its free version)
ZfA, B c Dom 6irr (.dj, then size,Jval(A): val(B)) < size,gi,, (,&(A : B).

(g) (Another such connection)
ZffA,BsDom,,, DsDornjicrcdj with val(D) = B, then there exists

C c Dam fiirc (.i) with val(C) = A and size ,(A : B) = size fier (.,,(C: 0).

256 NANCY A.LYNCH

(h) Let A, B, C E Dam,,. Then sized(A : B U C) < size(Dom,d; Fun,M; Rel,d)
(A : B) < size,,@ : B U C) + 1 Cl.

0) If xl ,..., x, E Dam ?ire (dJ and f(x, ,..., x,,) is defined, then
Size fie, (4j(f(x, ,..., 4) = size,,, (.d)(h ,..., x,1) + 1.

0) Zf Fun, c Fun,, and rf A c Dam,,, (,&), then size fiicr (BIdA > =
size?&, (d&o

ProojI Straightforward. Properties (i) and (j) indicate that there is no faster way
to generate terms in a free algebra than by first generating their subterms. d

Simulators

As in [9, 111, let r:A’ +A be a partial, surjective function, f and f’ partial
functions on A and A’, respectively. Then f’ is a ~-simulator of f if whenever
f(r(x,),..., r(x,)) is defined, then so is t(f’(x,,..., x,)) and their values are equal.
Similarly, if r and r’ are partial relations on A and A’, respectively, then r’ is a r-
simulator of r if whenever r(T(x,),..., r(x,)) is defined, r’(x, ,..., x,J is as well, and their
values are equal. Note that r is not required to be injective; multiple representations
are allowed for single objects.

EXAMPLE 2.1. Let tr : N+ 2 translate the natural numbers into integers by
letting even numbers represent nonnegative integers and odd numbers represent
negative integers: z,(2y) = y and 7,(2y - 1) = -y, y E N. Let r*: IV--+ Z translate the
same domains by decoding its argument into two natural numbers and taking the
difference: tZ((x, y)) = x - y. r2 is surjective but not injective.

Then the following functions f, and fi are a r,-simulator and a r,-simulator of
integer addition, respectively.

f,(x, Y) = x + Y if x and y are both even,
=x+y+ 1 ifxandyarebothodd,
=x-y- 1 ifxiseven,yisoddandx>y,
=y-x if x is even, y is odd and x < y,
=y-x- 1 ifyiseven,xisoddandy>x,
=x-y if y is even, x is odd and y < x.

f&Y)= (n,(x)+%(Y),%(x)+%(Y))-
Also, the following functions g, and g, are a r,-simulator and a r,-simulator of

unary minus, respectively.

g,(x) = 0 if x = 0,
=x- 1 if x > 0 is even,
=x+ 1 ifx>O is odd.

&) = (ah n,(x)).

STRAIGHT-LINE PROGRAM LENGTH 257

FLOWCHARTS AND EXPRESSION ASSIGNMENTS

In order to understand and express the relative complexity of two arbitrary
algebras, & and -cP’, we define a translation map between A? and M” to be a partial
surjective function t: Dam.,, + Dam,,. We wish to examine the “complexity” of r-
simulators of the basic functions and relations of s’. To establish a reasonable
meaning for this complexity, we must relate these simulators to the basic functions
and relations of &‘. This we do by specifying that the simulators be computable by
programs in some programming language using the basic functions and relations of
~2’. There are many possible choices of such languages; a simple flowchart
programming language is used in [9-121 to prove complexity upper and lower
bounds. In this paper, two languages are considered-flowcharts (again) and
expression assignments. The latter generalizes most programming languages and is
therefore useful for proving widely applicable lower bounds.

For an algebra ~4, a flowchart program P over ~2 is composed in the usual way
from a finite number of boxes of the types

copy:

Function:

Functmn Output: 1 Output := x, 1

Relation Output: [Output := TRUE1

[Output := FALSE 1

where f E Fun, and r E Reid and the x’s are variables. Output boxes have no
successors, relation boxes have two successors, and all others have one successor. A
flowchart is either a function flowchart, in which case all output boxes are function

258 NANCY A.LYNCH

output boxes, or a relation j7owchart, in which case all output boxes are relation
output boxes. There is exactly one start box. A flowchart P defines a partial function
fn, or a partial relation rel,.

EXAMPLE 2.2. A straightforward flowchart follows for the function f(x, y) = the
largest power of two not greater than x - y if x > y; x + 2y otherwise, over the
algebra JY = (N, 0, 1, +; <). Some abbreviations are used, but it is easy to convert
the given flowchart to the format specified in the definition.

start

&

lx,. x21 := (input,. inpq)

7 $
9 r x*+x4

w "0

x3 := x4 output := x3
x4 := x4+x4

Clearly, for every flowchart over an algebra M’ (as well as any program over J/ in
most other programming languages) there is an input-output-equivalent “tree
program” over &, constructed simply by unwinding loops. It may seem that tree
programs are as basic a language as one might wish to consider, but we find it
convenient to use even a further abstraction. The new rudimentary programming
language we define is based on “expression assignment” programs.

If & is an algebra, then e E VExp,(Fun $) defines a partial function

STRAIGHT-LINE PROGRAM LENGTH 259

fn,: (Dam,,)” --t Dom, ; &,(x1 ,..., xn) is the value in Dom,, if any, resulting when e
is evaluated with x1 ,..., x, replacing v1 ,..., u,, respectively. If d is an algebra, then an
nary expression assignment over S’ is a partial mapping E: (Dam,)” -+
VExp,(Fun,,). E can be regarded as a program as follows, if (x, ,..., x”) is in
domain(E), then E(x, ,..., x,,) is a formal expression over Fun,,u {ui}~=, which
describes a computation on n arbitrary inputs. This computation can be applied to
6 1 ,..., x,,), where each x, replaces the corresponding u,. A value in Dom, may result.
E defines a partial function fn,: (Dam,,)” + Dam.,, given by fnE(x,,..., x,) =
fnEcx,X.) (x, ,..., x,,). All expression assignments compute functions rather than
relations.

Every function flowchart (as well as practically every other function program)
yields a natural input-output-equivalent expression assignment. Intuitively, any input
vector (x1 ,..., x,) determines a path through the flowchart. If that path terminates, one
can extract from the path the expression which was applied to (x, ,..., XJ during the
computation, to build the output value. This expression, with the formal variables
(0 , ,..., u,,) as placeholders for the inputs, is the expression assigned to (x, ,..., x,). The
expression assignment thereby defined is called the derived expression assignment for
the original flowchart.

EXAMPLE 2.3. The derived expression assignment for the flowchart of
Example 2.2 is described. If x < y, then E(x, y) = ((u, + vZ) + vl). (That is, the value
assigned to inputs x, y E N is the formal expression given in the right-hand side of the
equality.) If x = J’ + 1, then E(x, y) = (the formal expression) 1. Finally, if x > y + 1,
then E(x, y) is a formal expression giving a fully expanded unary representation of
the largest power of two not greater than x-y; the particular expression is
symmetric, so that E(5,0)=(1+1)+(1+1) and E(8,0)=((1$1)+(1+1))+
((1 t 1) t (1 t 1)). Note that an assigned expression might or might not contain
formal variables ui. Note also that tests performed during the computation are not
explicitly represented in the expression assignment. Finally, note that expressions with
repeated subexpressions have those subexpressions written out repeatedly; thus, the
length of an assigned expression e might be much greater than size(e).

Relative Computability of Algebras

Before defining the relative complexity of two algebras, we define their relative
computability.

A mapping from one set of programs or functions to another is arity-preserving
provided the image of each program or function has the same number of arguments
as the program or function.

Write .d <z”F &” if 5 is a translation map between M’ and J’, B is a total, arity-
preserving mapping from Fun, to the set of expression assignments over ,rQ’, and
fn pC,J is a r-simulator off for each f E Fun,,. (Relations of M’ are unconstrained in
this weak definition.)

Let .4 be an arity-preserving total mapping from Fun y’ U Rel d to the set of

260 NANCY A.LYNCH

flowchart programs over J’. Then &’ <cp$?JS” provided & <:Tg& and (a) and
(b) hold.

(a) Each +7(f) is the derived expression assignment of flowchart S(f). (Thus,
fn /‘(f) = f%, a>

(b) If r E Rel,,, then Y(r) computes a r-simulator of T. When .Y is irrelevant,
write s@’ <zpc” JP for (3,Y)[& <t,‘,“i,? ~“1. When 8’ is irrelevant, write ~2 Gyp J/’
(resp. ~2 <f“” JP) for (%‘)[zZ <:s J’](resp. (38)[J <ypT J’]), The definition of
J&’ <:“P Cop’ requires simply that each basic function of J have a r-simulator whose
value is always in the algebraic closure of its arguments. The reader is referred to
19, 111 for further discussion of some of these definitions, as well as further
motivational remarks.

Conventions for the heavily embellished “<” are the following. Explicit mappings
pertaining to reducibilities appear below the symbol, while modifiers appear as
superscripts. Complexity bounds, to be introduced shortly, will be written after the
reducibility statement.

EXAMPLE 2.4. Let % = (Z; 0, 1, unary-, +;) and JV = (N; 0, 1, +, L-; =, <.
even). (Here, x 1 y = x - y if x > y; 0 otherwise.) Let t be r, of Example 2.1. Define
B as follows. a(O)() = 0, &(l)() = 1 + 1, g(unary-)(X) = 0 if x = 0, v, 1 1 if x > 0
is even, u1 + 1 if x > 0 is odd, 8(+)(x, y) = U, t uz if x and y are both even,
(vi t v2) t 1 if x and y are both odd, (u, 1 u,) 1 1 if x is even, 4’ is odd and x > J’,
o2 - v, if x is even, y is odd and x < y, (u, 10,) 2 1 if y is even, x is odd and 1’ > x,
and u1 L u2 if y is even, x is odd and y < x. Clearly, 8 <:“&K

Now define 9 by four flowcharts

&I output := 0 +7 x, := 1 +,

I5 output := x,

STRAIGHT-LINE PROGRAM LENGTH 261

P(unary-) pt+>

Left to the reader.

Yer
A(

“0
Output := 0 x, we” ?

Yes “0

x, := x 1-l x, := x,+1

Translation, Representation, and Simulation

The translation map t is from J’, the representing algebra, to &, the represented
algebra. For computability considerations this appears to be sufficient. However, for
complexity considerations it is helpful also to consider a “representation” map in the
other direction. Since r is permitted to be many-to-one (i.e., multiple representations
are allowed for single objects), the new mapping is not defined from Dam,, to
Dam,,, but rather from Dom fiirr (d) to Domd,. Intuitively, for every generation of
an element of Dam,,, a representing element of Dam,,, is selected.

If M’ is an algebra, Fun a set of function symbols, and F an arity-preserving total
mapping from Fun to the set of partial functions on Dom,, then a partial mapping
P,~: V Exp,(Fun) -+ Dam, is defined inductively as follows. If c is a constant sym-
bol, then pF(c) =Y(c)(). If e, ,..., e, E VExp,(Fun), then p 7Cf(e1 ,..., e,)) =
fl(f)@&J,-, P.&J).

EXAMPLE 2.5. Consider B = (Z; 0, 1, unary-, i-;> and JV = (N; 0, 1, +, 7[, ,
jz,, (>;). Let 5 be the translation map 72 defined in Example 2.1. Let X assign to
each f E Fun, a partial function as follows: X(0)() = 0, Y(l)() = 2,
ST(unary-)(x) = (q(x), Z,(X)), 3(+)(x, u) = (n,(x) + n,(y), &) + 74~)). Thus,
8 <-p Jr 172 *

Note that p,(l) = 2, pdl + 1) = 5, p7(--1) = 1, and p_,((l t 1) + (-1)) = 8.
Thus, p,(l)fp~((l + 1) + (-l)), so that different ways of generating an element of
the represented algebra can produce different representations in the representing
algebra.

262 NANCYA.LYNCH

In order to prove composition results in Section III, it is helpful also to define a
“simulation” map from Dom,yi,r (,dj to Dom Ale (,d,j. Intuitively, for every generation
of an element of Dom,, a simulating generation of a representing element in Dome,,
is selected.

Let Fun be a set of function symbols. If (e} U (ei: i E I} E VExp(Fun), then
e(e,) uJisl denotes the expression obtained by replacing in e, each occurrence of the
variable vi with expression e,, for all i E I. e(e’ 1 vi) is used to abbreviate e(e’ 1 Ui)is,/l.

If M’ is an algebra, Fun a set of function symbols and 8’ an arity-preserving total
mapping from Fun to the set of expression assignments over &, Xv) =fi,,f, for all
f, then a partial mapping ug: VExp,(Fun) + VExp,(Fun,) is defined inductively as
follows. If c is a constant symbol, then o,(c) = &(c)(). If e, ,..., e, E VExp,(Fun),
then o+4f(el 9-9 4) = a(f)@~e,),...,p.~e,))(ua(e,) I Vi)iE(*,...,n)-

If 8, Y are as in the preceding paragraph, pR will sometimes be written in place of
Pi.

Remark 2.1. If J/ <:f$ M”, then it is immediate from the definition of ug that
size9k cd&4.f(e, 9.-9 en)): u& ,,..., en))) Q size(6P(f)@~e,),...,p,~e,))) for every
e, ,..., e, E Dom~,cc (dj and f E Funs,,, (dQ) with f(e, ,..., e,) defined.

EXAMPLE 2.6. In Example 2.5, let B be the straightforward mapping which
assigns to each f E Fun, a (constant-valued) expression assignment as follows :
8(0)() = 0, W>() = 1 + 1, a(unary->(x> = Mu,), q(v,)), and a(+)(~, Y) =
(n,(v,) + xi(uJ, n2(v,) + rr2(v2)). (The values represented on the right-hand sides of
these equations are all formal expressions.) Clearly, B <:SJV and fn8(,, = R(f) for
all f.

Note that ax(l) = 1 t 1, udl + 1) = (X1(1 + 1) t 71,(1 t l),
q(l t 1) t Ql t I)), ux(-1)= (Ql t 1), ~~(1 t 1)), and ~~((1 t 1) t (-1))=
h(h(l + 1) + %(I + 11, q(1 t 1) t n,(l + 1))) t q((n,(l + I>, q(l t I))),
%((X,(l f 1) -I- n,(l + I), %(l + 1) t 741 + 1))) + %(b*(l + 117 %(I + 1)))).
Clearly, o,(l) f ~~((1 t 1) t (-l)), since they are different formal expressions. Thus,
different ways of generating an element of the represented algebra can produce
different ways of generating a representing element in the representing algebra.

THEOREM 2.2. Ifs/ <:rj -pP’, then the following diagram commutes:

Proof. Left to the reader. 1

STRAIGHT-LINE PROGRAM LENGTH 263

Relative Complexity of Algebras

The complexity of an algebra, -4, relative to another, J/I, is now defined. Several
types of complexity can be measured, but always expressed in terms of the same
parameter. The parameter to be used will be the size measure defined above, applied
to X+@‘). In [7], both running time and number of representations per element are
measured; here, running time only is considered.

For flowchart programs, there is a natural “path length” running time measure.
Namely, for flowchart program P with n inputs over algebra &‘, write
L,: (Dom,)” -+ N for the partial function giving the number of steps executed by the
flowchart on each possible n-tuple of inputs. This definition applies to both function
and relation flowcharts.

Let J and JS?” be arbitrary algebras, t : N --) R + (the non-negative real numbers), r
a translation map between & and J/‘, &’ a total, arity-preserving mapping from Fun
to the set of expression assignments over &‘, and 9 a total, arity-preserving
mapping from Fun,, U Rel,, to the set of flowcharts over M”. Write JS? <z,$y Y &”
with complexity t provided SZZ <vV%y,P JP and the following holds. For each
p E Fun, U Rel. of n arguments, and for all e, ,.,., e, E Dam,,,, C&j such that
de 6) , ,*a., is defined, it is the case that L,,,,,@~e,),...,p~e,)) <
tWefie, d{e, 9...T e,))). In particular, ifp is a constant symbol, then L,,(,,() < t(0).

Recall that pLF selects that representation in Dom J, which is produced for a
particular way of generating an object in Dom,. Thus, the running time of the given
flowcharts on these selected representations is bounded in terms of the original way
of generating the object. In this case, as in all other complexity bounds in this paper
and in [7], a resource of interest is bounded in terms of the size of the input values in
the represented algebra, and that size is measured in the associated free algebra. This
latter convention accomodates use of infinitely many representations in &” for each
element of -oP, by permitting longer computation times for those representations
which are only reached as a result of the simulation of longer sequences of operations
in J. This convention is consistent with the data structure results in [13, 181.
(Actually, in [11, the relations are counted in addition to the functions, a minor
technical difference for the situations considered here). t has its values in the reals
rather than in N because in [7], we consider functions such as t(n) = &.

Write +M’ <y$Y &” with complexity t provided (39) [.M <$!== ,.M” with
complexity t], and ,E9 <, “W d’ with complexity t provided (59) [& @’ JS?’ with
complexity t].

An equivalent way of stating the definition of “&’ <$55Y&” with complexity t” is
to use L f&p(e,),..., op(e,)) in place of L ~cp,@~(el),...,pZ(e,)) in the above
definition. This definition is equivalent because a flowchart computes in closely
corresponding ways over an algebra and over its free version.

It remains to give a definition for relative complexity using expression assignments.
For expression assignment E with n arguments over algebra s?, write
L,: (Dom,)” -P N for the partial function mapping (x1 ,..., x,) to size(E(x, ,..., x,)).
Now let J, &“, t, 7, GY be as in the definition of relative flowchart complexity. Write

264 NANCYA.LYNCH

d <:$ d” with strong complexity t provided ~4 <:ti d’, and the following
condition holds. For each f E Fun,, of 12 arguments and for all e, ,..., e, E Dom,fiirL (d1
for which f(e i,..., e,) is defined, it is the case that L,,,,@,(e,) ,..., Pde,)) <
fWkL t.dj(P i ,,.., e,})). In particular, if f is a constant symbol, this condition says
that size (a(f)()) < t(O). No conditions are specified for relations r E Rel,.

Another possible definition for relative complexity using expression assignments
uses the size measure in &’ for the resource being measured. Let &, M”, t, r, B be
as above. Write d <i:g d’ with weak complexity t provided ~4 <:y$&’ and the
following condition holds. For each f E Fun, of n arguments and all
e, ,..., e, E Dam,,,, (,,+,,) for which f(e, ,..., e,) is defined, it is the case that

size &Af(e 1 ,..., en)>: pdle I,...y en}>> Q tWfijibe ~.d~(h9-., enI)).

Write d <‘,“” z-4’ with strong (resp. weak) complexity I provided (38’)[~4 <zTg&’
with strong (resp. weak) complexity t].

Note that if Z/ <exp ~2’ Y7.P 7 then size,J$8(f(e, ,..., e,)): px({ei ,..., e,})),
<sizesLI c,d,,(aw(f(e, ,..., e,)): ois((e, ,..., e,})) by Theorems 2.1(f) and 2.2,
~p(&x(el),..., pr(e,)) by the definition of LBo, and Remark 2.1.Thus, d Qzf%d’
with strong complexity t implies that z+/ <‘,~$JP with weak complexity t.

THEOREM 2.3. If d <yp d’ with weak complexity t, then d <‘,“” d’ with
strong complexity t.

Proof. Intuitively, it sufftces to choose “shortest possible” expressions.
Specifically, 8’ is chosen so that J&’ <T,8, exp ~2’ with weak complexity t. Write
y’(f) = fngct,) for all J 8’ is constructed as follows.

Consider f E Fun.d with n arguments, and x, ,..., x, E Dam,,. If F(f)(xl ,..., x,,)
is undefined, then a(f)(x1 ,..., x,) is undefined. Otherwise, let
k = size,d,(sT’(f)(xI ,..., x,): {x ,,..., x~}). k is finite. Choose a k-step derivation of
fl’(f)(x1 ,***I x,) from (x ,,..., ~~1. Then Z(f)(xi ,..., x,) is the expression in
V Exp,(Fun,,,) describing this derivation.

Clearly, fngtn =F’(f), so that J <ttg M’. In order to verify the complexity
bound, fix f E Fun,, of n arguments and e ,,..., e, E Dam.,,,, (-8’) such that f(e ,,..., e,)
is defined. Then L,(,,@,(e,) ,..., h(4) = L,,,,@,,(e,),...,p,,(e,)), =sh&J(lgf)
~~~,(e,>,...,p.,,(e,),..., p.&,>): PA@ 1 ,..., e,})) by the construction 3 
=size,fl,@,~(J(el ,..., e,)): PAe, y...y e,D) by definition of P.F, 9 
=size,,@,,(f(e, ,..., e,)): pd{e , ,..., e,))), Wizegio fm({e, y-.9 e,J)) by 
hypothesis. I 

Thus, d <t”” d’ with complexity t is sometimes written, without the adjective 
“weak” or “strong.” 

Note that J <:$Y &’ with complexity t implies that ~4 <‘,S.M” with strong 
complexity t, because a flowchart must execute at least enough steps to apply the 
expressions in its derived expression assignment to its inputs. A similar remark holds 
for most other programming languages in place of flowcharts. Several lower bounds 



STRAIGHT-LINE PROGRAM LENGTH 265 

on expression assignment complexity are proved in [7]; thus, they imply similar 
lower bounds for other programming languages. 

Note also that the definitions of this section treat operations with different numbers 
of arguments uniformly. 

III. COMPOSITION THEOREMS 

One goal of this work is the ability to combine complexity analyses of different 
levels of an algorithm; thus, theorems about composition of reducibilities are 
important. In this section, several composition results are proved for use in 
Section IV. 

Substitution of expression assignments is first described. Let J be an algebra, Fun 
a set of function symbols, and B a total, arity-preserving mapping from Fun to the 
set of expression assignments over d. Define inductively two partial mappings 
P/,~ : V Exp,(Fun) x (Dom d)” --) V Exp,(Fun) and vy,, : V Exp,(Fun) x (Dom d)” -+ 
Dam,/. The mapping pP,n produces, for each computation applying functions in Fun 
to n arguments, a corresponding computation applying functions in Fun,, to n 
arguments; the new computation depends not only on the original computation but 
also on the arguments in M’. The mapping v~,, produces the results of the 
computations given by ,u,,, . In the following let X denote x, ,..., x, and t? and J denote 
e, ,***, em and Y, ,..., Y,, respectively. Define pp,,(ui, X) = ui, 1 < i < n, and 
l~~,,(c,X) = a(~)( ) for each constant symbol c. If e, ,..., e, are in VExp,(Fun) and 
f E Fun has m arguments, then px,,(f(Z), 2) = (E4(f)(J))@,,.(ei, X) / ui), where each 
Yi = vp,n(eiT 9. Finally, VP&, f) = fn,,,,,,(-f). 

EXAMPLE 3.1. Consider Example 2.4. Let e be the expression (0, + 1) + (-vz) 

over %. Let x, = 2 and x, = 6. Then 

PC&~, 236) = 0,) v,,,(v,, 296) = 2. 

~p,~(v,, 2,6) = u2, ~,,2(~3, 2, 6) = 6, 

~r,z(l, 236) = 1 + 1, ~,,~(l, 296) = 2, 

~r,2(~, + 1,236) = (8(+)(2, 2))(t1, I v,)(l + 1 I 02) i~c,~(u, + 1,296) = 4. 
= (VI + u2)(v, I VA1 + 1 102) 

= u, + (1 t l), 

P~,~(-v,~ 2,6) = @Ww-W(u2 I v,) 
= (v, 2 l)(v, ) u,) = v, L 1, 

v,,,(-v,, 2, 6) = 5. 

~u,,,((v, t 1) + C-v,), 276) = (8(+)(49 5))(v, + (1 + 1) I VA@, L 1 1~2) 
= cut L v,)(v, + (1 + 1) I u,)(u* L ' Iu2> 

=(v,-l)L(U,+(l+l), 

v~,~((v, t 1) + (-v2). 2, 6) = 1. 



266 NANCY A.LYNCH 

The following theorem shows that the new mappings produce results which 
correspond naturally to the results of previously defined mappings. 

THEOREM 3.1. Assume M <<:yEp .M”, e, ,..., e, E DomAe, C,s’j, e E V Exp,(Fun +.), 
and de; I Ui)it(l,...,nl E Do~.c~~ w). Then (4 and (b) hold. 

(4 ~~,,(e,pp(el),...,p,(e,))(u,(ei) I Vi)iE(l,...,n) = O.de(ei I Vijic(l,...,n)). 

(b) Vp,n(e,pp(el),...)Px(e,)) = pde(ei I Ui)is(l,...,n,)* 

Proof Left to the reader. fl 

Now assume & &:~s=s” and J/’ <:YpR, &“. Define B @ 8’, a total, arity- 
preserving mapping from Fun, to the set of expression assignments over s”‘, by 
substitution from B and 8’: given f E. Fun,, of n arguments, x, ,..., x, E Dom d,,, 
define 8 0 ~'(f)(x,,...,x,j =~l~~,"(B(f)(r'(x~),..., 7'(x,J),x1,...,x,). 

A straightforward definition (here omitted) can also be given for substitution of 
flowcharts; then if d <z,$!“9Y’ and s/’ <<,“$,W,Y, &“I, a total, arity-preserving 
mapping 9 @ 9’ from Fun,, to the set of flowcharts over -6’ can be given. These 
definitions satisfy the following: 

THEOREM 3.2. (a) Zf JS? <:s M”, H” <z?p8, s”‘, 7" = 7 o 7' and 8”’ = 8’ 0 8’, 
then sf <:Y’+ JP. Moreover, the following diagram commutes: 



STRAIGHT-LINE PROGRAM LENGTH 267 

(b) rf J/ <,“,$,,J/’ and J’ @‘F,, ,., &‘I’, 7” = t 0 r’, 8” = 8 0 8’, 
9” = 9’ @ .P’, then & <!a,>,,, +, ~4’. 

Proof: Left to the reader. m 

Next, general theorems for composition of complexity-bounded expression 
assignment reducibilities are given. 

THEOREM 3.3. Assume J <~~JJ& with strong complexity t, and that 
size Ase ( cfl,,(oF(A)) < s(sizeY;‘, (,,(A)) fir all A G Dom,jier (.&). Assume S” ,<:lpFl .Y”’ 
with strong complexity t’, where t’ is nondecreasing. Then S? <:I$,, JS?” with strong 
complexity t”, where t” = z o z’, 8” = CY @ W’, arzd t’(n) = CrL’$-’ t’([s(n)J f i). 

Proof: J <:f$,, -c9”, by Theorem 3.2(a). It remains to show the complexity 
bound. 

Consider f E Fun,, of n arguments and e ,,..., e, E Dam,,, (,+‘) such that 
Sk , ,..., e,) is defined. Write m for sizeSee (.& (e, ,..., e,}). 

By hypothesis, Lp(,j@c(e,),..., px(e,)) < t(m). Thus, there exists a shortest sequence 
{A,};=, of subsets of VExp,(Fuq,,), k < t(m), with A,, = {II, ,..., un}, 
I@&,),..., px(e,)> E A,, and size (~ExP(Fun,~~~:Fun~~Ulu~l~~:) (A i+l:Ai)=l for all i, 
0 < i,< k - 1. For each i, there exists f;: E Fun,, of Ii arguments, with 
A i+ I = Ai U {&(a,,, ,..., a,,,,)) and a,,, ,..., a,,,, in A,. If e E VExp,(Fun,,‘), let sub(e) 
denote e(op.(ei) ( u&i. 

Let B, denote Sub(AJ, 0 < i < k. Then Bi+, = Bj U {Subuj(ai,I ,..., ai,,,))} = 
Bt U UXsWai,J9-.~ sub(ai*l,))l, where (sub(aj,l),.-., sub(ai.,,>} G Bi* Thus 
size,,,, C,d,JBi+ i : B,) < 1. We claim that sizeALe ,,,,(B,) < s(m) + i, 0 < i < k. This is 
because 
by 

size,Ytra ,d&,)a= size,gior o#W%)) = sizesz, (dr)(dk 3-s9 enI)) G s(m) 
hypothesis; also, size,Bac (d’,(Bi+ i) ( size_ti,, (.&B,) + size,%,, ,,,‘,(Bj+ i : Bj) < 

(s(m) -t i) + 1 for all i, 0 < i < k - 1. 
Thus, by the hypotheses, L,,,,,,@g,(sub(aj,,)),..., p8’(sub(ai,,J)) < t’([s(m)J + i). 
Now, ~8~~~f~@&3),...9 h@,)) = size01al,n(8(f)(t’@a,,(el)),..., %d4N7 

Pf&),..., p&e,)) by definition of B”, =HizeOlr,,“(~(f)(p~(e,),..., &A ~delL 
pc..(t$)) b; T;JP= 3.2(a), <cfZi slze(a’(f,)(v,~,,(ai,, 9 &&l),...9 ~~‘@,))~...~ 

pp,,(e,)))) by definition of ,u~‘,,, =cfZi size(8’(fj) 
$~~st/l$z, ,)i::., pi:tsub(a. )))) by Th eorems 3.1 and 
by the preceding paragraph:‘:C/$$-i t’([s(m)j + i). 

3.2(a), <C::d t’([s(m)j t i) 
1 

The next theorem provides a bound on size growth allowed by a simulation map. 

THEOREM 3.4. Assume & <<:$J/’ with strong complexity t, where t is 
nondecreasirig (and not identically equal to 0). Then for all A c DomAce ( d,, 
size fiec ( ,,,(ap(A)) < Cy!fiTrec w)(~)-’ t(i). 

Pro05 If sizeS4, ( dj (A) = co, then the sum is infinite and thus the inequality 
holds by convention. For A with size Yicr (,,(A) finite, we proceed by induction on 
size iier ( r’) (A 1. 



268 NANCYA.LYNCH 

If size saL ,,,,(A) = 0, then A = 0. Then o&4) = 0 and so sizegi,. (,/,(ox(A)) = 0. 
If size,,le ,,,,(A) = k + 1, k > 0, then there exists C c Dom,,,e, (.&), 

size,q,c (&)(C) = k, f E Fun,, of n arguments, e, ,..., e, E C, and A = CU 
Lfle 1 ,..., 41. Then size.gi,r (dt,(udA)) < sh,, (dl)(udC)) + sizeAre (df,bU(el v...3 
e,)): us(C)) by Theorem 2.l(a, c, d), which is at most CF!?t&,, (.M’W-~ t(i) + 
sizeaLe (dlddf@ ,,..., e,)): ug(C)) by inductive hypothesis. The final term is at 
most sizeAt. cdJudf(e, ,..., en>): od{e, ,..., en}>) by Theorem 2.1 (b), 
<t(sizefiet &{e, ,..., e,})) by hypothesis and Remark 2.1, <t(sizegi,, (Jp/,(C)) by 
Theorem 2.1(a) and the monotonicity of f. Collecting terms yields the result. 1 

Thus, a very general composition theorem for expression assignment programs can 
be stated. Although the bound seems messy (for instance, not in closed form), it 
sufftces in [7] to yield reasonably good closed form upper and lower bounds. 

THEOREM 3.5. Assume ~4 < ,:XP &’ with complexity t, where t is nondecreasing 
(and not identically equal to 0). Assume XZ” <, eY’ ~2” with complexity t’, where t’ is 
nondecreasing. Then & =Cexp ~4” LSD?’ with complexity t”, where t”(n) = 
,Ygy-’ t’([x;:; t(j)J t i). 

Proof Choose B such that JZ? <:~~xz” with strong complexity t. Let 
s(n) = Cyzd t(i). By Theorem 3.4, size,ee (dBl’)(uR(.d)) < s(size,,, (.&A)). BY 
Theorem 3.3, d <t$‘, LEg” with complexity t”. 1 

The following two theorems deal with composition of flowchart programs. 

THEOREM 3.6. Assume ilp <y,y,? s./’ with complexity t and that 
sizeAd, (dl,(~dA)) Q sWegi,e (dj(4) for all A 5 DomAle (d). Assume 
d’ <yw#‘,y! SF’ with complexity t’, where t’ is nondecreasing. Then S/ <f$” Y” SF’ 
with complexity t”, where r”=roz’, a”=B@g’, S”=S@S’ and 
t”(n) = C~~~1-l t’([s(n)] + i). 

Proof A treatment similar to that for Theorem 3.3 is left to the reader. 1 

THEOREM 3.7. Assume J/ < ,F”” J’ with complexity t, where t is nondecreasing 
(and not identically equal to 0). Assume Jr 6, n?wN’ with complexity t’, where t’ is 
nondecreasing. Then JZJ’ <z:JY &” with complexity t”, where t”(n) = 
C#-’ t’(p&l t(j)j + i). 

Proof. As for Theorem 3.5, using Theorems 3.4 and 3.6. I 

The final result of this section is used in Section IV, in the proofs of Theorems 4.3 
and 4.7. 

THEOREM 3.8. Let lop’, d” be algebras, &‘= (Dam,,,; Fun,,,U (c ,,..‘, ck}: 
Rel,‘). Assume SX?” <, t-tow J” with complexity t, where t is nondecreasing and 
unbounded. Then J <y”” s”’ with complexity t’, where t’(n) = t(n + c) for some 
constant c. 



STRAIGHT-LINE PROGRAM LENGTH 269 

Proof: Fix 8, 4 with M’ (~~~p~‘, where I is the identity function and 9(p) is 
the obvious one-step flowchart for every p E (Fun, U Rel,,) - (c, ,..., ck}. Then there 
exists a constant d such that size.,,, (d,,(ca(A)) (d + size~See ,,,(A) for all 
A z Dom,tz (d) * (This is because a,(A) is constructed from A by substitution of the 
expression a(~,)( ) for ci, I < i < k. The number of steps needed to generate all of the 
expressions in a,(A) is at most the number of steps needed to generate the finite 
number of expressions a(~,)( ), plus the number of steps required for A.) 

Fix 8’, 9’ such that M” <,“,T,?, M” with complexity t. Let 8” = Z @ 8, 
9” = 9 @ 9’. Choose c > d so that t(c) > ~5?.,,(,~,( ), 1 < i < k. We show that c has 
the required property. 

First, let p E Fun,d, U Rel,, have n arguments, and let e, ,..., e, E Dam,,. 1d such 
that p(e, ,..., e,) is defined. Then Y”(p) = S’(p). (Here, p is regarded as an operation 
both of &’ and of M”.) Thus, L .7ff(p)@B449...~ h&J) = L.~~(p)@84el)9...~ 
+@,N = L r”(p&&lh.-~ h&J) = L p~~,CP.+d~~(el>>~...~ pd~Ae,>>), 
~t(size.,,,(.~l)(bg((el y-.y e,}))) by hypothesis, (t(d + sizeyi,,(,&{e, ,..., e,})) by the 
bound calculated above and the monotonicity of t, < t(c + sizeS;rr(bd)({e, ,..., e,})) by 
the choice of c. 

On the other hand, if p = ci for some i, then the choice of c immediately yields the 
needed bound. 1 

IV. FLOWCHART COMPLEXITY OF GROUPS-AN EXTENDED EXAMPLE 

In this section, suggestions are given for using flowchart time complexity and our 
size parameter to classify finitely-generated (abbreviated, f.g.) computable groups. 
Work in [2, 3,4, 14, 161 on computable and complexity-bounded algebras is recon- 
sidered to see if our definitions might yield sharper and more natural complexity 
results. 

In [14, 161, the primary emphasis was on computability of the groups; where the 
latter paper does deal with complexity classification, it is only at a very high level 
(primitive recursive). In [2-4], the computability definitions of [ 161 are restricted in 
the most straightforward way (and also in a second, rather complicated way) to yield 
definitions for groups of different complexity. Application of very basic group- 
theoretic constructions seems to cause complexity in their straightforward definition 
to rise one level in the Grzegorczyk hierarchy, suggesting that this definition is not 
useful for low-order complexity. 

Some definitions from the earlier papers are restated in our notation, for 
comparison. A group .Y is called Rabin computable if there is an injection 
K: Dam,+ (0, I}* such that K(Dom,Y) is a recursive set, and such that 
2@(x), ~(y))[rc(x o y)] (and therefore L(K(x))[K(x-I)]) is recursive. (Here A: is 
Church’s lambda-notation: for example, ~(K(x), K(~))[K(x o y)] denotes the function 
mapping K(X) and K(Y) to K(X o y). Also, Dom,Y is the domain of g.) Thus, Rabin’s 
style of definition differs from ours in two ways. First, he specifies a recursiveness 
condition on the representing set, whereas we never place any constraints on that set. 



270 NANCY A. LYNCH 

Second, he does not permit multiple representations of elements, a situation we feel is 
very natural. 

Mal’cev’s work [ 141 is a general study of computable and primitive recursive 
algebras containing many different possible definitions and relationships between 
them. For computability, some of his definitions are equivalent to those we use; his 
definitions are generally more similar to ours than they are to Rabin’s. To be specific, 
a group ZY is called Mai’cev computable (MaPcev primitive recursive) if there exist a 
partial, surjective function r: (0, 1)” + Dam,, two partial recursive (resp. primitive 
recursive) function f, and f-r, and a partial recursive (resp. primitive recursive) 
relation r= such that fO, f-r and r= are r-simulators of 0, -’ and =, respectively. As 
in our work, no recursiveness constraints are placed on the representing set and 
multiple representations are permitted. However, the simulators f,, fpl and r= in the 
primitive recursive version of Mal’cev’s definition are required to be primitive 
recursive in the usual sense. Since primitive recursive functions are exactly those 
computable in primitive recursive time on a Turing machine, it follows that the 
primitive recursive restriction amounts to a complexity restriction on Y with 
parameter residing in (0, 1 )* rather than in Y, i.e., in the representing rather than the 
represented set. Thus, Mal’cev’s style differs from ours. 

Cannonito and Gatterdam [2,3,4] study complexity definitions based on a 
straightforward restriction of Rabin’s definition. Taking some liberties with, but (we 
hope) preserving the spirit of, their definition, we say that a group .Y is of CG 
complexity t (for total t: N-+ IV) if Y is Rabin computable, with K-(Dom,+)‘s charac- 
teristic function and total extensions of ~(K(x), K( y))[lc(x 0 y)] and A(K(x))[K(x- ')I 

all of (Turing) complexity t. Thus, a complexity constraint is placed on the 
representing set, only single representations are used, and parameters are based in the 
representing rather than in the represented system. A more restrictive definition “?Ya- 
standard“’ is not reproduced here because of its unwieldiness. 

Our style of definition is now specialized to the present case. Let 57 = ((0, 1 }*; E, 
0, 1, Osuc, lsuc, head, tail, reverse; =E, =O, =l), where E is the empty string, 
Osuc(x) = x0, lsuc(x) = xl, head(x) = E if x = E, the first symbol of x otherwise, and 
tail(x) = E if x = E, all except the first symbol of x otherwise. All partial recursive 
functions are computable by flowcharts over 9, and, in fact, such flowcharts can be 
designed to simulate multi-tape Turing machines with at most a multiplicative 
constant increase in running time. (Two variables can be used for each tape.) 
Moreover, flowcharts over 5Y can be simulated by multi-tape Turing machines, one 
tape per variable. Because of the sequential nature of Turing machines and the 
allowance of assignments in flowcharts, the running time may need to be (roughly) 
squared. For further discussion of the relationships between computability using 9 
and using machine models, the reader is referred to [9, 11, 121. 

A group Y=(Dom.,; (gi}ic,u (O --I *- 
27) is computable if 

~ <f;,, $-) (were { gi},s, is a set of generators for 

F = (Dom, ; g, ,..., g,, 0, -‘; =) (w$re (g, ,..., g, 
some r. A f.g. group 

} is a set of generators for g) is of 
complexity t, N --) N, if Y <, fl0w 9 with complexity t for some r. 

Results in this section deal primarily with finitely generated groups. For 



STRAIGHT-LINE PROGRAM LENGTH 271 

computability, all of the definitions can be seen to be equivalent, and are equivalent 
to solvability of the word problem. 

THEOREM 4.1. A Jg. group is computable iff its word problem (with respect to 
any finite set of generators) is solvable. 

ProoJ: Assume .Y is computable and {g, ,..., gk) is a set of generators. Then 
.F? = (Dom, ; g, ,..., g,, 0, -I; =) <,“+>!y 9 for some r, 8,9. Given two words over 
g, ,***, g,, ‘7 -1 3 of the form (g,rl)( gz*) . - . (gr’), where 1 < i, ,..., i, < k, 
m, ,..., m, E % - {0}, their equivalence is determined as follows. Their evaluation is 
simulated by applying the given r-simulators of gi,..., g,, 0, and -‘, and then the 7- 
simulator of = is applied. 

Conversely, assume the word problem with respect to {g, ,..., gk} is solvable, and 
let .!9 = (Dom, ; g, ,..., g,, 0, - ‘; =). Elements of V Exp,(Fun,) are coded into {0, 1 }* 
by an obvious binary coding a. Define r so that t(a(a)) = val(a) for all 
a E VExp,(Fun,). We claim that Z <,““” 9. This is because flowcharts for r- 
simulators of o and - * are trivial to construct, and a t-simulator of = can be 
constructed using the solvability of the word problem. 1 

THEOREM 4.2. Let F = (Dom, ; g, ,,.., g,, O, -l; =) be a group, g, ,..., g, a set of 
generators. Then F is computable iff F is Rabin computable iff r is MaPcev 
computable. 

ProoJ The equivalence of computability with Mal’cev computability is obvious. 
The equivalence of computability with Rabin computability follows from 
Theorem 4.1 together with a similar equivalence in [ 161 for Rabin computability. u 

Some added insight into the definitions can be obtained by a direct proof of the 
harder direction for Theorem 4.2; i.e. of the fact that computability implies Rabin 
computability. Assume 3’ (z,x,,9 9. Let a be as in the proof of Theorem 4.1. Then a 
partial recursive function p: (0, l)* + (0, 1 }* is defined, with p,(a) = P(a(a)) for all 
a E Domfiee (o). (To compute p(y), determine the expression a represented by y (if 
any), and then evaluate a, following the given r-simulators of g, ,..., gk, 0, - ‘.) 

Fix some effective enumeration of the elements of Dom,,cc (rj, Define K(X), for 
x E Dom, , as a(a), where a is the first element in the enumeration for which 
val(a) = x. Then K has the necessary properties for Rabin computability. For 
instance, we show that K(Dom,) is recursive. Given x E (0, l}*, check first that 
x E 4DO?fi,, (%) ). If not, then x & rc(Dom,). If so, let a(a) = x. Enumerate all 
elements of Dom,,ct (?) up to but not including a. For each expression b in turn, 
apply the given r-simulator of = to P(a(b)) and j?(a(a)) to determine whether 
@(a(b))) = @(a(a))). This is equivalent to determining if val(b) = val(a). If a “yes” 
answer is obtained, then x & K(Dom,), but if not, x E K(Dom,V). Similar arguments 
show the other properties. fl 

Next, consider complexity definitions. Our definition is equivalent to the Mal’cev 
definition at the primitive recursive level. To state this equivalence, we first show that 



212 NANCYA.LYNCH 

the complexity of a f.g. group in our definition is independent of the choice of finite 
sets of generators. 

THEOREM 4.3. Let .Y be a group, {g 1 ,..., gk} and (g; ,..., gb,) two sets of” 
generators. If (Dom,; g, ,..., g,, 0, - ‘; =) is of complexity t where is nondecreasing 
and unbounded, then (Dom,; g’, ,..., g;,, 0, -‘; =) is of complexity t’, where 
t’(n) = t(n + c), c some constant. 

Proof: Let d = (Dom, ; g, ,..., g,, g’, ,..., g;, , 0, - ‘; =), z/’ = (Dom 6 ; g, ,..., 
gk, ‘9 -*; =) and J” = 9. By Theorem 3.8, XZ’ <Few d” with complexity t’, where 
t’(n) = t(n + c) for some c. Thus, (Dom, ; g’, ,..., gb,, 0, - ‘; =) & d” with complexity 
t’. I 

Now the desired equivalence is shown. 

THEOREM 4.4. A f.g. group F is of primitive recursive complexity (with respect to 
any finite set of generators) z~F is Marcev primitive recursive. 

Proof. Roughly, if Y is Mal’cev primitive recursive, then the closure of the 
primitive recursive functions under unlimited iteration can be used to show that it is 
of primitive recursive complexity. Conversely, coding sequences of group operations 
by long strings keeps the simulators primitive recursive in the usual sense. 

In detail, assume g is Mal’cev primitive recursive. Let {g, ,..., gk} be any finite set 
of generators, and write g = (Dom,6, g, ,..., g,, O, -‘; =). Then g <few 9 for some 5, 
with the simulators of 0, -l, and = all primitive recursive, hence computable in 
primitive recursive time on Turing machines. Thus, they are also computable in 
primitive recursive time by flowcharts over 9. (However, the bound uses primitive 
recursiveness in the inputs to the flowcharts; i.e. using a parameter based in ~8.) 
Choose 9, 8’ so that Y(o), Y(-‘), and Y(=) are flowcharts over 9 with primitive 
recursive running time, and so that Y <~~‘&.5?. 

The closure of the primitive recursive functions under iteration implies that there 
exists primitive recursive p with p(size,,cc ,,(A)) > size,,, ,,(a,(A)) > size&,(A)) 
for all A C_ Dam,,, (Yj. The implication then follows. 

Conversely, assume Y = (Dom,; g, ,.,., g,, o, -‘; =) <r$Y 9 with primitive 
recursive complexity. A possible difficulty arises if size,g@,(a)) is very much smaller 
than size ,aeirr &) for some values of a. t is therefore modified to insure sufficiently 
long coding strings. Define a, p as in Theorems 4.1 and 4.2; that is, 
a: VExp,(FurrV) -+ (0, l}* is a direct binary encoding of expressions and 
P&) = P@(a)) for all a E DomAe (p). 

Define t’: (0, l}* --t Dam,, by r’(a(u)) = val(a). o and -’ have trivial primitive 
recursive z’-simulators, while simulation of = on a(u) and a(b) involves computing 
P@(a)) and B@(b)) d an using the given z-simulator of =. The time required is . . . . . . primitive recursive m size,,,, (m ({a, b}) and therefore primitive recursive in a(u) and 
a(b). I 

Similar arguments to those used so far can be used to show a similar equivalence 
with CG-primitive recursiveness [ 191. 



STRAIGHT-LINE PROGRAM LENGTH 213 

The apparent need for iteration closure in Theorem 4.3 suggests that it is unlikely 
the Mal’cev style definition could extend to any lower levels of complexity with sharp 
results. Mal’cev did not attempt such a definition. The more straightforward 
Cannonito and Gatterdam attempt leads to an iteration difficulty. For instance, a 
relationship is shown in [2-4] between the complexity of a group and that of its word 
problem. Because of the flavor of their definitions, a group of CG-complexity in Ek is 
only shown to have a word problem of complexity in Zk+i. (Classes refer to the 
Grzegorczyk hierarchy.) This gap arises because a word of length n might be 
represented in {0, 1 }* by a string of length f”(O), f E gk. This difficulty is discussed 
at length in [3]. (The reader is cautioned to refer to [3] for corrections to several of 
the results in [2] which are relevant to the present paper.) The more complicated “go- 
standard” definitions are used to circumvent this difficulty. Our definition avoids the 
iteration difficulty because of its choice of parameter; thus, we obtain several simple, 
fairly sharp complexity results. For example, our definition of group complexity is 
reasonably closely related to the complexity of the word problem, as might be 
expected from the simple proof of Theorem 4.1. 

Let e, denote the identity for group Y. 

THEOREM 4.5. Let 3’ = (Dom, ; g ,,..., g,, o, -I; =) be a group, {g, ,..., gk} a set 
of generators, t: N-t N total, nondecreasing and with t(n) > n for all n. 

(a) If F is of complexity t, then the word problem for F with respect to 
gl )--*) gk is solvable with (multi-tape Turing machine) complexity t’, where 
t’(n) = cn’t*(cn) for some constant c. 

(b) If the word problem for 3’ with respect to {g, ,..., gk} has complexity t (of 
the combined lengths of the words, on a multi-tape Turing machine), then ?F is of 
complexity t’, where t’(n) = t(c.2”) for some constant c. 

ProoJ (a) This follows roughly the proof of Theorem 4.1. 
It suffices to show how to check for equivalence with e,. A string of the form 

gr’ . . . fl’ is coded naturally as a binary string x, with the mi written in binary. 
Assume the length of string x is n. A relation flowchart is defined with 
Lp(x) < cnt(cn) for some constant c, where P outputs the answer to whether x 
evaluates to the group identity. A Turing machine is then obtained from P. 

Let 5 <‘Ow ,t,8,,9.9 with complexity t. For binary string x as above, choose 
a E mm Fiiirr (Y) representing a natural complete parenthesization of x so that 
size,ge,, (,+-,(a) < cn for some constant c. P follows the construction of y to obtain 
pB(y). There are at most (approximately) cn steps simulated, each involving 
application of r-simulators to p,-images of subsets of DomAe (R of sizegi,, (R < cn. 
Thus, the complexity of this part of P’s operation is at most cnt(cn). Then P applies 
the r-simulator of = to pg(a) and pg(eY). This involves application of a r-simulator to 
the p,-image of a set of elements of Dam,,, (9j of size,,, (gp) < cn + c, for some 
larger constant c. Thus, L&) < cn (for decoding x into its operations) + cnt(cn) + c 
(for generating Ps(eZ)) + t(cn + c) for some larger c. Assuming n > 1, this sum is at 
most cnt(cn) for some larger c, as needed. 



214 NANCY A.LYNCH 

A Turing machine is designed to simulate P, causing at most squaring of the 
runtime. 

(b) Let elements of Dom, be represented in {0, l}* by direct codings of free- 
group-reduced strings over {g , ,..., gk}, coded into binary as in (a). The simulators of 
o and -i are the straightforward ones; let B yield the corresponding expression 
assignments. Any a E Dom,,Lc (‘cj with size,%,, &a) < n has pg(a) of length < c . 2” 
for some constant c. (See Example 4.1 below.) An upper bound on the complexity of 
the simulators of o and - ’ is proportional to this length. The simulation of = is 
essentially the solution of the word problem, on words each of length c . 2”; thus, 
time t(2c . 2”) suffices, which is of the needed form for larger c. i 

While an exponential difference between the complexities is not negligible, it 
appears to be unavoidable because of the incompatability of the parameters involved. 
Namely, an expression (I E Domfic8 (Vj with size,%,, (v,(a) = n, can have its free- 
group-reduced representation of length about 2”. But on the other hand, the best we 
can say about a free-group-reduced string of legnth n is that it has a generating 
expression in Dom nac (c ) of size firc ( cj roughly n (not necessarily log n). 

EXAMPLE 4.1. Let F = (Dom, ; g, , g,, o, -I; =), and let (a,}:!, E Dom,AII (<) 
be defined as follows: a, = g, o g,, and a,, , = a, o a,. Then size,,ee ,,,(a,) = n + 2. 
However, the free-group reduced representation of a, is g, g, g, g, a.. g, g,, a string 
with 2” occurrences of generator symbols. 

Theorem 4.5 and claim GH5 of [3] show that our definitions and the CG “ga- 
standard” definitions agree for each class in the Grzegorczyk hierarchy from JYj 
upward. 

In the same vein as Theorem 4.5, a simple classification result is obtained. 

THEOREM 4.6. The free group over u finite set of generators is of complexity 
An[c . 2”] for some constant c. 

Proof Let F = (Dom, ; g, ,.,., g,, o, -‘; =) and code elements of Dom,,pt Cc) as 
string representations of their free-group reduced forms. The length of the represen- 
tation stays bounded as above, and that length dominates the complexity. 1 

Question. Can this bound be improved? 
The fact that simple algebraic constructions preserve complexity provides further 

evidence for the naturalness of our definitions. In the remainder of the paper, it is 
shown that complexity is preserved under taking subgroups (up to a linear factor), 
under taking arbitrary quotients (with no increase at all), under direct product (up to 
a linear factor), and under amalgamated free product (up to a double exponential). 
By contrast, the first and last of these four constructions cause rises of a level in the 
Grzegorczyk hierarchy when the CG definition is used to measure complexity. 

THEOREM 4.7. Let sv = (Dam, ; g ,,..., g,, 0, -I; =) be a group, {g, ,..., gk) a set 



STRAIGHT-LINE PROGRAM LENGTH 275 

of generators. Assume F is of complexity t, where t is nondecreasing and unbounded. 
Let R= (Dam,?; h, ,..., h,, 0, -‘; =) be subgroup of F with generating set {h, ,..., h,}. 
Then R is of complexity t’; where t’(n) = t(n + c) for some constant c. 

Proof. Let X = (Dom, ; g, ,..., g,, h, ,..., h,, 0, -‘; =). By Theorem 3.8, 
.X <f”” 9 with complexity t’, where t’ = t(n + c) for some c. Thus 2 <mow 9 with 
complexity t’. I 

In the following, =z denotes equivalence modulo 3, for normal subgroup 3, [x] 
denotes the equivalence class of x, and F/R denotes the quotient group. 

THEOREM 4.8. Let F be a group, (g,,...,g,} a set of generators, Z a normal 
subgroup, (Dom, g, ,..., g,, 0, -‘; =, s.~) <f”” 9 with complexity t. Then the 
quotient group (Dam,,,; [ gl],..., [ gk], 0, -‘; =) is of complexity t. 

Proof: Define r’(x) = [t(x)]. The given r-simulators for g, ,..., g,, 0, and -’ are 
also ?-simulators for [ gi],..., [ gk], o and -I, respectively. The given r-simulator of 
=y is the needed Y-simulator of =. 1 

THEOREM 4.9. Assume 27 = (Dom, ; g, ,..., g,, O, -‘; =) and &“= (Dom,; h, ,..., 
h ,, 02 -‘; =) (with {g, ,..., gk] and {hl,..., h,} respective sets of generators) are each of 
complexity t, where t is nondecreasing and not identically equal to 0. Then the direct 
product of F and R, F x3= (Dam,,,; (gi, e,z), 1 <i<k, (es<, hi), 
I,<i<l,o, -I; =) is of complexity t’, where t’(n) = cnt(n) for some constant c. 

Proof: Let F <z,>!,, 9 with complexity t, and Zz$‘W,,, ,., 9 with complexity t. 

Then r", F’, 9” will be defined so that S’ x R <<flF?,‘&,, ,.,, 9 with complexity t’. Let 
aEDomficc (Gxx)T and let b and b’ be the component expressions of a for F and X, 
respectively, with all explicit references to e, and e, eliminated. Then 
pAa> = (x, x’), where x = p,(b) if b E DornSec (<), a special code if b = e,, and 
similarly for x’, b’ and 8’. 7" is defined from pp,, so that the diagram in Theorem 2.2 
commutes. 0, -l, and = are Y-simulated using the given 7- and ?-simulators on the 
components; definitions for 8” and 9” from 8, 8’, .B and 9’ are straightforward. 

Assume a, a, E DoInfiec Ct X in, with b, b’, b,, and b\ their component expressions 
with e, and ey eliminated. Then the number of steps needed to compute the 7"- 
simulator of o on o,,,,(a) and or.(a,) is bounded by the complexity of coding and 
decoding the components, plus a constant (in case b or b, = e, or b’ or 6; = e& plus 
the complexity of r-simulating o on p,(b) and p&b’) and p,,(b;) (if b’, 
4 E Dom,ee &. 

The complexity of coding and decoding is proportional to the length of the 
representations, which is bounded by c(1 + Ipg(b)l + ]p,(b,)] + ]p&b’)( + ]p&b{)] + 
I/Mb 0 &)I + I/+# 0 WI), w h ere c is some constant. (Here, if any of the terms is 
undefined because the argument is ey or e,, then that term can simply be eliminated 
from the expression.) These lengths can be bounded as follows. Consider Ipa(b for 
example; lo,(b)] = size,@x(b)) < size;,,,, &ua(b)), <C~!~*~~(~(‘)-’ t(i) by Theo- 
rem 3.4, <size,gl,, ,,(b) . t(sizeg,er (,db)) < Sizefizcr (zxap3(a) ’ We,,, (3 xzdaN G 



276 NANCYA.LYNCH 

siz%. (~x~({a4) . Weii,, v~s--L{ a, a,})), as needed. The other lengths are 
similarly bounded. Thus, the total complexity of coding and decoding can be bounded 
by 4 + slze,,e (7x m (ia, 4 1)) . tWefi,, (6x m4(b a, I>)> for come c. The 
complexity of r-simulating 0 on p,(b) and p,(b,), is easily seen to be bounded by 
We,ez (t xk4(kh ~J)>~ and correspondingly for p$,(b’) and px(b’,). Thus, the total 
complexity for simulating o can be bounded as needed. 

Similar arguments for - ’ and = yield the required bound. 1 

As an example of a more complex construction, the final theorem bounds the 
complexity of the amalgamated free product of two groups in terms of the complexity 
of the component groups and that of certain basic mappings and relations involving 
the component groups. Let gi and Y2 be disjoint groups, &” a subgroup of ,Y,, and a 
a monomorphism of Z into FT. The amalgamated free product, F, * F&), is the 
quotient group of the free product of q and Y2 which results from identification of R 
with its image under a. Let canon,: Dam,, -+ Dam,, and canon,: Dam,,+ Dam,, be 
any two maps producing canonical representations of right cosets of 2’ and a(Z), 
respectively. Then Theorem 4.4 of [ 151 says that each element of Dom,l,,2(a) has a 
unique representation in the form hx, ..a x~, where h E Dom, and each xi is a 
canonical representative of a right coset in either g, or Y2, (but is not the represen- 
tative of Dom, or of a(Dom,)). Furthermore, two consecutive xi are not both in 
Dam,, or both in Domr2. This representation is called the canonical form for the 
given element of Dom,,*g2(o, (with respect to canoni and canon,). 

In the following, EA denotes the membership relation for set A, and o3 and -’ t 
denote the operations of group g. If x is a free-group-reduced word over the 
generators g, ,..., g,, then gen(x) denotes the sum of the absolute values of the 
exponents in x. 

THEOREM 4.10. Let X = (Dom,,U Domg,; h, ,..., h,, g ,,..., g,, g; ,..., gk, o$,, 
Of? > 

-1 -1 
82, a, a-’ ; =, eDom,, eDom,), where {hl,..., &I, 1 g, ,..., gr}, and 

{ g: ,..., :L] are sets of generators for &‘, Yi and Y2, respectively. Assume X <y”” 9 
with complexity t, where t is nondecreasing. Let g, * g*(m) = (Dom,,,,Z(n); 
h , ,..., h,, g 1 ,..a, g,, g; ,***, g;, 0, -1; = 

>- 

Then for some c, p, * Z&) is of complexity t’, where t’(n) = cccnt(ccn). 

Proof. Fix 8, 9 so that X <~p;;19 9 with complexity t. Then r’, g’, 9’ must be 
defined so that s, * F&, <vO’& 9, 9 with complexity t’. 8’ is defined so that for a in 
Domae (F,*s2(*,) 3 p8,(u) is (a’ binary representation of) the free-group-reduced 
version of a. (In this proof, the binary representation of such a product and the 
product string itself will be referred to interchangeably. We rely on the reader to 
make the distinction when necessary.) o and -’ have the straightforward r’- 
simulators. The ?-simulation of = uses Theorem 4.4 of [ 151, as follows. 

Particular mappings, canon, and canon, are defined. Consider an enumeration of 



STRAIGHT-LINE PROGRAM LENGTH 277 

elements of Dom,,LI (,Kj in order of size,gir, (I). Given x E DomY (resp. Dam,,), 
canon,(x) (resp. canon,(x)) is defined to be val(a), where a is the first element of the 
enumeration having val(a) and x in the same right coset of Dom, (resp. a(DomS,)). 

A coding for a value x E Dom,V,*Y2Coj is a binary string of the form (h, x, ,..., xi), 
where the string r(h) t(xJ ... r(xj) is the canonical form of x with respect to the 
(fixed) mappings canon, and canon,. 

The Y-simulator of = uses the given r-simulators to translate the two expressions 
into codings of their values, working from right to left in each expression as in the 
proof in [ 151. Then it uses the r-simulator of = on the components of the two 
representations. 

In order to accomplish the needed translation, r-simulators of canon, and canon2 
will be helpful. We describe canon,. Given x E (0, 1 }*, apply the given r-simulator of 
sDom,, to determine if r(x) E Dom 9,. (It is possible that r(x) is undefined, in which 
case the r-simulator might diverge or give a meaningless answer.) If so, then begin 
enumerating the elements of Dom~,ec (Z) in order of size&,, C,Zj. For each 
u E DomfLe (.X) in turn, compute p,(a) by simulating the operations appearing in the 
expression a. Then apply the given r-simulators of sDomS,, -iyl, and sDom;, to 
determine if r(x) o,V,(r@e(a)))-lF1 E Dom#, i.e., if r(x) and val(a) are in the same 
right coset of 27 When a positive answer is obtained for an expression a, pdu) is the 
needed value. 

If x = pp(u) in this construction, where sizego, (,m(u) = n, then the simulator of 
canon, can be computed by a flowchart over 9 with a number of steps bounded by 
cPt(cn) for some constant c. This is because cnc” is an upper bound on the number 
of expressions that must be generated before a positive answer is obtained, for some 
constant c. At most n operations are simulated in computing ~~(a) for each a; each of 
these operations requires at most t(n) steps for its simulation. Also, ct(cn) bounds the 
time needed to apply the given r-simulators, for some c. The total complexity can be 
bounded as stated, for some (larger) c. Furthermore, the value a E Dom,,le CIj found 
by this procedure has size,,,, (,$)(a) < n. 

Next, the translation is described. Let II E Domgi,, C~,*yl,,,j, sizeA,~tg,*Fl.2(a,J(u) = n, 
x =~~,(a). x must be translated into a coding of its value. Note gen(x) < 2” (see 
Example 4.1). x is processed from right to left, one generator (or generator inverse) 
symbol at a time. After any suffix of x has been processed, that suffix will have been 
translated into a coding of its value. 

The rightmost symbol w is processed as follows. If w is h, or h;‘, 1 < i < k, then 
the coding is p,,(w). If w is gi or g;‘, 1 < i < I, then compute p8(w) and apply the 
given r-simulator of &Dom, to the result. If the answer “yes” is obtained, then pdw) 
is the coding. If “no” is obtained, apply the r-simulator of canon, described above to 
pa(w), obtaining y, where r(y) is the canonical representative of w’s right coset. Next, 
use the r-simulators of op., and -‘?I to obtain h, where val(w) = r(h) 03, r(y). The 
coding is (h, y). A similar construction is used if w is g; or (gj)- ‘, 1 < i < m, except 
that when a r-representation is obtained for a needed element of a(Dom,), the r- 
simulator of a-’ must be applied to yield a r-representation for the corresponding 
element of Dom,. 



278 NANCY A. LYNCH 

Since there are only finitely many generators, the time to process the rightmost 
symbol is bounded by a constant. 

Now consider the processing of a non-rightmost symbol w of x (assuming all 
symbols to its right have already been processed). Let (h, X, ,..., Xj) be the assumed 
coding of the value of the sufftx, and consider several cases. 

(1) w is hi or h;‘. Then combine px(w) with h using the r-simulator of 0 $,, 
obtaining y E (0, 1 }*. The new coding is (y, x, ,..., xj). 

(2) w is gi or gi’ and eitherj = 0 or t(xl) E Domy>. Then combine pAw) with 
h using the r-simulator of O~~, , obtaining y E (0, 1 }*. Apply the r-simulator of cDom y 
to y. 

(2a) r(y) E Dom v. Then the new coding is ( y, x, ,..., xj). 

(2b) T(Y) @ Dam‘,. Then apply the r-simulators of canon,, o y, and ’ +, as 
above to obtain z and h’, where 7(z) is the canonical representative of 7(y)% right 
coset, and 7(y) = s(k) o 6, 7(z). The coding is (h’, z, X, ,..., xj). 

(3) w is gi or g;’ and 7(x,) E Dam,,. Then combine pp(w) with h and also 
with x, using the r-simulator of o <, , obtaining y E (0, 1 }*. Proceed as in case (2) 
except that x1 is omitted from the final coding. 

(4) w is g; or (g;)-‘. Proceed analogously to (2) and (3), using the t- 
simulators of a and a-l where needed. 

We bound the complexity of the preceding construction. We claim that after any 
number n’ of the (<2”) symbols of x have been processed, the coding so far obtained 
is of the form (h, x , ,..., xj), where j < n’ and where each xi = P&), h = p,(b), and 
C/=, size, ficr (H)(“i) + sizefiee (n)(b) < C”’ for some constant c. This fact can be 
shown by induction on n’, using the size bound noted in the construction of the 
simulators for canon, and canon,. 

Thus, the entire construction involves applying r-simulators to elements of the form 
PF&), ~1 E DomAce (,K)y with size,,, (.w)(a> < c*“. There are a constant number of r- 
simulators applied for each symbol in the string, of which one (at most) is of canon, 
or canon, and all the others are of operations. in FurrK. Thus, the complexity is 
bounded above by 2”[ct(c2”) + c(c ) ‘” (c.c2”) t c . c’“)] for some (larger) c. (The term ( 
outside the brackets bounds the number of symbols in x, the first term within 
brackets bounds the simulation of the operations in Fun,X, and the second term 
within brackets bounds the simulations of canon1 or canon,.) This expression is 
bounded by ccflt(ccn) for some c. 

In order to complete the proof, we must bound the complexity of ?-simulating = 
on two expressions x = pp,(a) and x’ = ~~,(a’), where size %,, Cd ,*62C ,,((a, a’}) = n. 
Both x and x’ are translated as above, and then the r-simulator of = 9s used on the 
components of the two codings. The total complexity is bounded roughly by 
2 . c”“t(c’“) (to obtain the two codings) + 2” . t(c2”) (to check equality on all the 
components). The total complexity is bounded as needed, for some c. 1 

The hypothesis of Theorem 4.10 bounds the complexity of algebra ,W. which 



STRAIGHT-LINE PROGRAM LENGTH 279 

includes as operations not only the operations of both F, and FZ, but also the 
correspondence between their subgroups. Thus, for example, the parameter 
srze,,, (,n,(a) could be small for a with val(a) E Dom, requiring a large number of 
GFoperations for its generation. Since the hypothesized bound is given in terms of 
size ,+, ( ,+,), the hypothesis is fairly restrictive. 

The computational complexity of a group measured according to our definitions 
seems to be related to the complexity of the group measured in terms of algebraic 
decomposition. Thus, our definitions might be useful as classification tools for group 
theory. Similar complexity classification of other mathematical structures should also 
be of some interest and value. 

ACKNOWLEDGMENTS 

The author thanks Ann Yasuhara, Chee Yap and Michael Loui for their meticulous readings of the 
original manuscript and their very valuable suggestions for its revision. This paper is very much 
improved for their efforts. 

REFERENCES 

I. A.. AHO, J. HOPCROFT, AND J. ULLMAN, “The Design and Analysis of Computer Algorithms, 
Addison-Wesley, Reading, Mass., 1976. 

2. F. B. CANNONITO, Hierarchies of computable groups and the word problem, J. Symbolic Logic 31, 
No. 3, (1966). 

3. F. B. CANNONITO, The algebraic invariance of the word problem in groups, in “Word Problems,, 
(W. W. Boone, F. B. Cannonito, and R. C. Lyndon, Eds.) Studies in Logic and the Foundations of 
Mathematics, Vol. 71, North-Holland, Amsterdam, 1973. 

4. F. B. CANNONITO, AND R. W. GATTERDAM, The computability of group instructions, 2, in “Word 
Problems” (W. W. Boone, F. B. Cannonito, and R. C. Lyndon, Eds.), Studies in Logic and the 
Foundations of Mathematics, Vol 71, North-Holland, Amsterdam, 1973. 

5. J. GUTTAG, E. HOROWITZ, AND D. MUSSER, “Abstract Data Types and Software Validation,” 
Research Report 76-48, Information Sciences Institute, August 1976. 

6. J. GOGUEN, J. THATCHER, AND E. WAGNER, “An Initial Algebra Approach to the Specification, 
Correctness and Implementation of Abstract Data Types,” IBM Technical Report. 

7. N. A. LYNCH, Accessibility of Values as a Determinant of Relative Complexity of Algebras, 
submitted for publication. 

8. N. A. LYNCH, Straight-Line Program Length as a Parameter for Complexity Measures. 
“Proceedings 10th Annual Symposium on Theory of Computing, pp. 150-161, 1978. 

9. N. A. LYNCH, AND E. K. BLUM, Efficient reducibility between programming systems; preliminary 
report, in “Proceedings, 9th Annual Symposium on Theory of Computing, 1977,” pp. 228-238. 

10. N. A. LYNCH, AND E. K. BLUM, A difference in expressive power between flowcharts and recursion 
schemes, Mufh. Systems Theory 12, (1979), 205-211. 

1 I. N. A. LYNCH, AND E. K. BLUM, Relative computability and complexity of algebras. Mafh. Sysfems 
Theory, in press. 

12. N. A. LYNCH, AND E. K. BLUM, Relative complexity of operations on numeric and bit string 
algebras. Math. Systems Theory 13, (1980), 187-207. 

13. B. LISKOV, AND S. ZILLES, Specification techniques for data abstractions, SoJware Eng. SE-l, No. 
1 (1975) 7-19. 



280 NANCY A. LYNCH 

14. A. MAL’CEV, The Metamathematics of algebraic systems. “Studies in Logic and the Foundations of 
Mathematics,” Vol. 66, North-Holland, Amsterdam, 197 1. 

IS. W. MAGNUS, A. KARRASS, AND D. SOLITAR, “Combinatorial Group Theory, Presentations of 
Groups in Terms of Generators and Relations,” Vol.13, Interscience, New York, 1966. 

16. M. 0. RABIN, Computable algebra, General theory and theory of computable fields, Trans. 95 
(1960) 341-360. 

17. J. SIMON, On feasable numbers, Ninth Annual ACM Symposium on Theory of Computing, 1977. 
18. R. TARJAN, Reference machines requires non-linear time to maintain disjoint sets, Ninth Annual 

ACM Symposium on Theory of Computing, 1977. 
19. M. VALIEV, personal communication. 


