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1. Introduction

Modern computers do not usually operate in isolation, but are connected to

other computers by data communication media. Networking software is pro-

vided to enable users and application programs located at different machines

to interact. This software is often complicated—in fact, it sometimes occupies

more of the resources used by system software than does the operating system

kernel. In order to control the complexity of networking software, and also to

enable different machines in a network to run different networking software, a

layered architecture is often used. There are many different layered architec-

tures in use in proprietary, governmental, and international networks [6, 12, 17,

18]. Although the exact choice of function for each layer differs in the various

networks, the general framework is always the same: Each layer acts according

to a protocol that uses the services of the next lower layer, in order to provide

enhanced features. For example, in the 0S1 architecture, the network layer

uses a service providing reliable communication between directly connected

machines, and provides communication between machines that are connected

only indirectly. A general account of layering can be found in [14].

Reliable delivery of information is one important service that is provided in

at least one layer in most layered networks. For example, the HDLC protocol

for the data link layer of the 0S1 architecture [18] provides reliable transfer of

data between directly connected machines, using the physical layer service of

an unreliable bit channel: The physical layer can generally corrupt, lose. or

duplicate messages, but the HDLC protocol guarantees exactly-once, FIFO

delive~. In layered architectures, data corruption is often detected using

checksums, and the loss of a message is compensated for by retransmission.

Such retransmissions can lead to the arrival of duplicate messages. Since a

reliable service must not pass duplicate messages to the higher layers, each

message is usually tagged with a sequence number, which is also mentioned in

the corresponding acknowledgment. Many algorithms have been developed

based on these ideas, such as the Alternating Bit Protocol [4], in which only the

low-order bit of the sequence number is actually used. Common protocols such

as HDLC use these algorithms.

Protocols based on tagging messages with a sequence number require each

end station to remember the current sequence number. If this information is

kept in volatile storage, and if a crash destroys that storage at one station, then

the protocol will be restarted at that station in its initial state, and therefore

will assign sequence number 1 (as initially) to the next message. If the other

station was still expecting a different sequence number, the first message after

the crash might not be delivered. (It might be treated like a retransmission of a

previous message and ignored. ) Thus, some mechanism is needed in the

protocol for one station to cause the other to reinitialize its sequence number

also.

One such mechanism is for the station on the machine that has crashed to

send a special control message to the other station. (In HDLC, this is a “Set

Normal Response Mode” (SNRM) message.) When this control message is

received, the other station reinitializes its sequence number and other data

structures. The control message is acknowledged by its recipient, and data

messages (or data acknowledgments) are sent by the station on the crashed

machine only after the reinitialization acknowledgment has been received. Of

course, the reinitialization message itself might be lost; to handle this possibil-
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ity, the crashed station uses a timeout to determine when to resend the

reinitialization message. The HDLC reinitialization protocol is based on the

ideas just sketched. In [3], Baratz and Segall examine this protocol, and find it

to be incorrect in that reliable delivery is not guaranteed even for messages

sent after reinitialization has completed. That is, it is possible for a pattern of

failure and message delay to cause an execution of the protocol in which a

sequence of data items is accepted from the higher layer at one end after

reinitialization, but the sequence delivered at the other end is different.

In [3], Baratz and Segall present an alternative mechanism for reinitializing

the sequence numbers and other data structures; their mechanism is applicable

to a wide range of reliable communication protocols. Their method involves

tagging the reinitialization control messages and their acknowledgments with a

bit whose value alternates between reinitialization episodes. This bit must be

remembered across crashes, and therefore it cannot be stored in volatile

memory. 1 13aratz and Segall conjecture that some nonvolatile storage is needed

in any protocol that reinitializes values so as to provide reliable data transfer

after reinitialization has completed. This paper is devoted to formalizing this

impossibility claim and proving it rigorously.

Formal correctness proofs for particular communication protocols are fairly

common in the study of computer networks, but there are few examples so far

of impossibility results. A survey of such results in distributed computation can

be found in [8]. Proving an impossibility result requires a formal model for

specifications in which one can describe the task being considered, a formal

model for implementations in which one can express any conceivable protocol

to perform the given task, and a definition of when a protocol (as described in

the model) is correct according to a specification (as described in the model).

In this paper, we use the input/output automaton model from [9] and [10] for

these purposes.

In order to state an impossibility result in the strongest form, one should

specify the task to be performed in as weak a fashion as possible; that is, the

specification should place few requirements on the protocol. (Of course, the

task must not be described so weakly that it becomes possible to accomplish it!)

In this paper, the task is reliable data communication using the unreliable

service of a lower layer. We use a weak specification for reliable data commu-

nication, which states that each message is delivered at most once, and that

every message sent after the last crash is delivered exactly once. This specifica-

tion does not include stronger guarantees such as reliable delive~ of messages

sent before a crash, or FIFO delivery of those messages that are delivered.

Although such properties are desirable for users of a reliable communication

service, they are not necessary for proving our impossibility result. The impossi-

bility result we give for the weak specification immediately implies correspond-

ing impossibility results for specifications with stronger guarantees.

Since the reliable layer uses the lower unreliable layer without knowledge of

the details of the lower layer’s implementation, a correct protocol is required

to work correctly with ez~e~ implementation of the unreliable layer. Thus, to

make the impossibility result as strong as possible, one should make the
description of the lower layer as strong as possible; this places fewer require-

1Since the value of this bit is not used during normal operation, there is little practical
disadvantage in keeping it on disk.
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ments on the protocol, since it is then required to work with fewer implementa-

tions of the unreliable layer, that is, those having strong constraints. We use a

strong specification for unreliable data communication, which allcnvs messages

to be lost, but does guarantee at-most-once FIFO delive~. The impossibility

result we state in terms of an unreliable layer with these strong guarantees

applies a fortiori to situations where the reliable layer must cope with a larger

range of faults in the unreliable layer.

As an example of the application of the impossibility result, the ISO

transport protocol class 4 and Internet TCP protocols provide ordered reliable

end-to-end sm.-vice using a network service that may lose or reorder data. Since

the requirements for reliable message delivery are stronger than those in our

result and the assumptions about the unreliable layer are weaker than those in

our result, our impossibility result applies to this situation. It implies that for

these protocols to guarantee to correctly initialize a connection after a crash,

there must be some information that survives the crash.

In practice, there are several ways in which systems cope with the limitation

expressed by the impossibility result. First, some existing protocols (such as

HDLC at the data link layer) simply behave incorrectly in some cases. The

“reliable” layer may lose a message in the face of certain (unlikely) combina-

tions of requests, crashes, and message delays. This is often accepted by system

designers on the basis that the errors only happen infrequently, and even when

they occur, higher layers of the system may be able to recover from the

problem. Second, some systems keep data that is not volatile, and so will

survive a crash of a machine on which the protocol is running. For transport

protocols, a hardware clock is sometimes used. This provides information about

the current time, and therefore does not return to the initial state when a crash

occurs. Another strategy involves keeping a counter known as an incarnation

number in nonvolatile disk storage, and incrementing it after each crash.

Transport layer control messages are tagged with the incarnation number,

which enables the protocol to recognize old connection requests. Third, some

systems require still stronger assumptions about the unreliable layer than we

use. For instance, some existing transport protocols insist that the network

layer enforce a known maximum time within which each message must be

delivered or destroyed. When the network layer is restricted in this way, correct

transport initialization protocols can be obtained, but at the cost of introducing

dependencies between the settings of time parameters in different layers.

Several of these techniques are described in more detail in [15].

There are several other impossibility results in the literature for communica-

tion problems. A sketch of a proof that no protocol can reliably provide either

delivery or notification of nondelivery for all messages, including those sent
before a crash, is given in [5]. There is a proof [7] that correct connection

establishment is impossible when the protocol has a particular form: A single

desynchronizing message is sent and acknowledged if no data message is

successfully delivered within a fixed timeout period, and each data message is

retransmitted after a (possibly different) timeout, until it is acknowledged. The

paper by Aho et al. [2] contains a number of impossibility results for syn-

chronous protocols, specifically, lower bounds for the number of states re-

quired to solve various communication problems. Afek et al. [1] provide an

impossibility proof for reliable transmission using a number of messages that is

bounded in the best case, regardless of past faults, when the messages have
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bounded headers and the unreliable layer can reorder data messages. Related

impossibility results concerning the use of bounded headers with non-FIFO

unreliable layers are found in [11], [15], and [16].

The rest of the paper is organized as follows: Section 2 contains a summary

of the relevant definitions from the input/output automaton model. Section 3

contains a specification of a reliable layer, which represents the reliable

communication task to be performed. Section 4 contains a specification of the

unreliable layer, which the protocol is assumed to have available for its use.

Section 5 defines what it means for a protocol to be correct according to the

given specifications. Finally, Section 6 contains the impossibility result.

2. The I/O Automaton Model

The input/output automaton model was defined in [9] as a tool for modeling

concurrent and distributed systems. We refer the reader to [9] and to the

expository paper [10] for a complete development of the model, plus motivation

and examples. Here, we provide a brief summary of those aspects of the model

that are needed for our results.

2.1. ACTIONS AND ACTION SIGNATURES. Fundamental to the model is the

identification of the actions possible between an entity and its environment,

and the separation of those actions into types depending on where the

occurrence is controlled. An entity has inputs that are under the control of the

environment, outputs that are under the control of the entity and detectable by

the environment, and internal actions that are controlled by the entity but not

detectable by the environment.

Formally, an action signature S is an ordered triple consisting of three

pairwise-disjoint sets of actions. We write in(S), out(S), and int(S) for the

three components of S, and refer to the actions in the three sets as the input

actions, output actions, and internal actions of S, respectively. We let ext(S) =

in(S) U out(S) and refer to the actions in ext(S) as the external actions of S.

We let acts(S) = in(S) U out(S) U int(S), and refer to the actions in acts(S)

as the actions of S.

2.2. INPUT \ OUTPUT AUTOMATA. In the 1/0 automaton model, a compu-

tational entity (either a whole system, or a process or node within a system) is

modeled by a state machine. Formally, an input/output automaton A (also

called an I/O auto?naton or simply an automaton) consists of five components:

(1) an action signature sig(xl),

(2) a set states(A) of states,
(3) a nonempty set start(A) C states( xl) of start states,

(4) a transition relation steps(A) c (states(A) x acts(sig(A)) x states(A)),
with the property that for every state s’ and input action m- there is a

transition (s’, m,s) in steps(A), and

(5) an equivalence relation part(A) on out(sig(A)) U int( sig(xl)), having at

most countably many equivalence classes.

For brevity, we write in(A) for in(sig( A)), out(A) for out(sig( A)), and so on.

We refer to an element (s’, m,s) of steps(A) as a step of A. If (s’, n,s) is a

step of A, then rr is said to be enabled in s{. Since every input action is

enabled in every state, automata are said to be input-enabled. The partition
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part(~) is an abstract description of the underlying components of the automa-

ton, and is used to define fairness.

An execution fragment of A is a finite sequence S[)ml Slnz . . . m-,,s,, or an

infinite sequence St,z-l .slm-~ .”’ m,,s,, . ~” of alternating states and actions of A

such that (s,, n-,+,, s, ~, ) ]s a step of A for every i. An execution fragment

beginning with a start state is called an execution.

A fair e.recuticm of an automaton ,4 is defined to be an execution a of A

such that the following condition holds for each class C of part(.4 ): If LY is

finite, then no action of C is enabled in the final state of a, while if a is

infinite, then either a contains infinitely mtiny events from C, or else a

contains infinitely many occurrences of states in which no action of C is

enabled. Thus, a fair execution gives “fair turns” to each class of part(A).

Informally, one class of part(A) typically consists of all the actions that are

controlled by a single subsystem within the system modeled by the automaton

A, and so fairness means giving each such subsystem regular opportunities to

take a step under its control, if any is enabled. In the common case that there

is no lower level of structure to the system modeled by A (when pard A )

consists of a single class), a fair execution is an execution in which infinitely

often the automaton is given an opportunity to take an action under its control

if any is enabled.

The behaLior of an execution fragment a of A is the subsequence of a

consisting of external actions, and is denoted by bdd a ). That is, be}z( a ) is

formed by removing from the sequence a all states and also those actions in

i~zt( A ). We say that /3 is a belzal’ior of .4 if ~ is the behavior of an execution

of A. We say that ~ is a jbir be/zaL)ior of A if ~ is the behavior of a fair

execution of A. When an algorithm is modeled as an 1/0 automaton, it is the

set of fair behaviors of the automaton that reflect the activity of the algorithm

that is important to users.

We say that a finite behavior ~ of A catz leaL1eA i~zstate s if there is a finite

execution a with (? as its behavior, such that the final state in a is s.

A fundamental operation that we sometimes apply to sequence ~ of actions

(or other elements), such as a behavior, is to take the subsequence consisting
of those actions that are in a set @ of actions. We call this the projectiorz of ~

on @, and denote it by /? I@. For brevity, we write ~ 1A for ~ lacts(A ).

2.3. COMPOSITION. The most useful way of combining 1/0 automata is by

means of a composition operator, as defined in this subsection. This models the

way algorithms interact, as for example when the pieces of a communication

protocol at different nodes and a lower-level protocol all work together to

provide a higher-level service.
A collection {A,}, ~ , of automata is said to be strongly compatible if no action

is an output of more than one automaton in the collection, any internal action

of any automaton does not appear in the signature of another automaton in

the collection, and no action occurs in the signatures of an infinite number of

automata in the collection. Formally, we require that for all i,j e 1, i # j, we

have

(1) Oztt( AL) n OHt(~J) = 0,
(2) int(A, ) n acts(Aj) = 0, and

(3) no action is in acts( A,) for infinitely many i.
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The composition A = II , ~ IA, of a strongly compatible collection of au-

tomata { A,}l., has the following components:

(1) irz(A) = L1 ,GIin(A, ) \ U ,= Iout(A, ), oLLt(A) = U ,6,0ut(A, ), and irzd A)

= U,~,illt(AL),
(2) states(A) = II, ~ ,states(A,)

(3) start(A) = 11, = ,start(AL)

(4) steps(A) is the set of triples (s,, m, S2) such that for all i =1, if m = acts(~,~

then (sl[i], m, sz[i]) ● steps(A, ), and if m # acts(Aj) then sl[i] = s2[z],-

and

(5) part(A) = U, e ,palt(A,).

Since the automata A, are input-enabled, so is their composition, and hence

their composition is an automaton. Each step of the composition automaton

consists of all the automata that have a particular action in their signatures

performing that action concurrently, while the automata that do not have that

action in their signatures do nothing. The partition for the composition is

formed by taking the union of the partitions for the components. Thus, a fair

execution of the composition gives fair turns to all of the classes within all of

the component automata. In other words, all component automata in a

composition continue to act autonomously. If a = S1)T, s, .”” is an execution of

A, let a IA, be the sequence obtained by deleting fi,s, when n-, is not an action

of A,, and replacing the remaining SJ by s,[ i].

The following basic results relate executions and behaviors of a composition

to those of the automata being composed. The first result says that the

projections of executions of a composition onto the components are executions

of the components, and similarly for behaviors, etc. The parts of this result

dealing with fairness depend on the fact that at most one component automa-

ton can impose preconditions on each action.

LEMMA 2.1. Let {A,}, ● ~ be a strongly compatible collectiotl of autot?lata, and

letA = II , ~, A,. If a is an execution of A, then a IA, is an execution of A, for all

i ● I. Moreover, the same result holds for fair executions, behaviors, and fair

behaliors in place of executions.

Certain converses of the preceding lemma are also true. Behaviors of

component automata can be patched together to form schedules or behaviors

of the composition.

LEMMA 2.2. Let {A,}, ● , be a strongly compatible collection of automata, and

let A=H , ~, A,. Let p be a sequence of actions in acts(A). If ~ IAl is a fair

behalior of A, for all i c I, then ~ is a fair behalior of A. A1.Yo, if B IA, is a

behavior of A, that can leale A, in state s,, for all i E I, then P is a behaljior of A

that can leave A in a state s where s[i] = S, for all i E I.

2.4. HIDING OUTPUT ACTIONS. we now define an operator that hides a

designated set of output actions in a given automaton to produce a new

automaton in which the given actions are internal. Namely, suppose A is an
1/0 automaton and @ L out(A) is any subset of the output actions of A.

Then we define a new automaton, hide@(A), to be exactly the same as A

except for its signature component. For the signature component, we have

2 We use the notation s[i] to denote the ~th component of the state vector s.
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irz(hi&Q,(A)) = irz(A), oudhide{O(A)) = cx~dA )\@, and int(hide,~(A)) =

irzt(#l) u 0.

2.5. SPECIFICATIONS. To specify an entity, we give a set of acceptable

patterns of interaction between the entity and its environment. Formally,~ a

specificatiolz T consists of two components:

(1) an action signature sig(T) having no internal actions, and

(2) a set behs(T) of sequences (finite or infinite) of elements of acts(sig(T)).
called the be}za.t’iors of T.

For brevity, we write in(T) for irz(sig( T)) and so on. We also write ~ IT for

@lacts(T).

2.6. AN AUTOMATON SATISFYING A SPECIFICATION. To express the fact that

an entity modeled by an automaton A is satisfactory for a task modeled by a

specification T, we use the following definition: We say that A satisfies T

provided in(A) = in(T), out(A) = out(T), and also every fair behavior of A is

an element of belzs(T).

3. The Reliable Layer

In this section, we give a specification for the weak type of reliable layer that

we wish to implement.

We assume that the reliable layer interacts with higher layers at two

endpoints, a tratzsmitting station and a receil’irzg station. The reliable layer

accepts messages from the higher layer at the transmitting station, and delivers

some of them to the higher layer at the receiving station. In this paper, we

consider the situation in which nodes may crash, losing the information in their

state. Therefore, the specification includes events that model these crashes,

and the reliability provided is only conditional on no later crash occurring.

That is, the reliable layer guarantees that every message that is sent is

eventually received, assuming that the end stations remain active. We do not

insist that the order of the messages be preserved, as discussed in Section 1.

We describe the reliable layer formally as a specification RL. Let M be a

fixed alphabet of “nzessages.” The action signature sig( RL ) is illustrated in

Figure 1, and is given formally as follows:

Input actions

send(m), nz c M

crash [

cnmh ‘

Output actions:
rcl(m), m ~ M

The send(m) action represents the sending of message m on the reliable

layer by the transmitting station, and the rcL1(rzz) represents the receipt of

message )~z by the receiving station. The crashr and cra,dzr actions represent

notification that the transmitting or receiving station, respectively, has suffered

a hardware crash failure. In the distributed implementations of the reliable

layer to be considered later in the paper, these events will trigger the return to

~ This is a special case of a schedule WLOdL1[eas defined in [9].
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cvasht cTash’
, T

send

FIG. 1. The reliable layer.

initial state in the appropriate automaton. We refer to the actions in acts( RI,)

as reliable layer actions.

In order to define the set behs(RL), we define a collection of auxiliary

properties. These properties are defined with respect to B = n-~m-z “”” , a (finite

or infinite) sequence of reliable layer actions, and a total function cause from

the indices in ~ of rc~) events to the indices of send events. This function is

intended to model the association that can be set up between the event

modeling the receipt of a packet and the event modeling the sending of the

same packet. This function is needed to deal carefully with the fact that the

same data might be sent repeatedly, and in that case the sequence will contain

multiple occurrences of the same action.

The first property expresses the idea that an effect (i.e., a rcu event) must

occur after its cause (i.e., a corresponding send event).

(RL1) If m-, = rc~(rn), n-j = send(n), and cause(i) = j, then j < i (i.e., the
event T, precedes rr, in ~).

The next property indicates that messages are not corrupted.

(RL2) If ml = rc~’( n2 ), n, = send(n), and cause(i) = j, then m = n.

The next property indicates that messages are not duplicated.

(RI-3) The function cause is one-to-one (i.e., ca.use(il) # cause(iz) for il + i2).

So far, the properties listed have been safety properties; that is, when they

hold for a sequence they also hold for any prefix of that sequence. The final

property is a liveness property asserting when messages are required to be

delivered by the reliable layer. It says that all messages that are sent are

eventually delivered, provided no later crashes occur. We use the following

terminology: A crash interual is a maximal contiguous subsequence of ~ not

containing any crash[ or crash’ events; thus, the crash intervals of ~ are the

sequences of events between successive crash events, together with the se-

quence of events before the first crash and the sequence of events after the last

crash. We say that a crash interval of ~ is unbounded if it is not followed in ~

by a crash event.

(RL4) If n, is a send(rrz) event occurring in an unbounded crash interval in ~,

then there is an index j of an rcl’ event in ~ such that cause(j) = i.

We say that a sequence @ of reliable layer actions is RL-consistent provided

there exists a function cause such that all the conditions (RL1)–(RL4) are

satisfied. We extend the use of the term, and say that any sequence (possibly

including actions other than reliable layer actions, and possibly including
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sendp”,”

F1~ 2. Thcunreliablc layer.

states) is RLconsistent provided that the subsequence consisting of reliable

layer actions is.

Now we can define the specification RL. We have already defined sig( RL).

Let behs( RL) be the set of sequences ~ of reliable layer actions that are

RL-consistent.

4. The Unreliable Layer

In this section, we define the strong type of unreliable layer that we assume is

available for our protocols to use.

We again assume that there are two endpoints, a transmitting station and a

receiL1ing station. The unreliable layer accepts messages, which we call packets

in order to distinguish them from the messages of the reliable layer, from the

higher layer at the transmitting station, and delivers some of them at the

receiving station. We do not consider corruption, duplication, or reordering of

packets; the only faulty behavior we consider is loss of packets.

4.1. DEFINITIONS. We describe the unreliable layer formally as a specifica-

tion. Since construction of a reliable layer will generally need two unreliable

channels, carrying packets in opposite directions, we parametrize the specifi-

cation by an ordered pair (14, L) of names for the transmitting and receiving

stations, respectively. The specification is denoted by UL[’”. Let P be a fixed

alphabet of “packets.” The action signature sig(ULU”) is illustrated in Figure 2

and given formally as follows:

Input actions:

Se?ldp’” ‘ (p), p G P

Output actions:
rclp’’’’ (p), p e P

The sendp[” ( p) action represents the sending of packet p on the unreliable

layer by the transmitting station, and the rclp ‘”(p) represents the receipt of

packet p by the receiving station. We refer to the actions in acts( UL””) as

unreliable layer actions (for (u, z)).

In order to define the set of behaviors for the specification UE’I”, we again

define a collection of auxiliary properties. The properties are defined with
respect to a sequence B = mlm~ “-” of unreliable layer actions, and a function
cause from the indices in ~ of the rcLlp” 1’ events to the indices of sendp””

events. The first three properties are analogous to those for the unreliable
layer.

(UL1) If m, = mop”” (p), m, = serzdp’’’’(q), and cause(i) = j, then j < i (i.e.,
the event m, precedes ml in P).

(UL2) If n-, = mop “’’(p), T, = sendp”” (q), and cause(i) = j, then p = q.

(UL3) The function cause is one-to-one (i.e., cause(il ) + cause(i2) for il # i2).

The next property is the FIFO property. It says that those packets that are

delivered have their rcLp events occurring in the same order as their sendp
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events. Note that (UL4) may be true even if a packet is delivered and some

packet sent earlier is not delivered; there can be gaps in the sequence of

delivered packets representing lost packets.

(UL4) (FIFO) Suppose that cause(i) = j and cause(k) = 1. Then i < k if and
only if j <1.

The remaining property is the liveness property for the unreliable layer. It

says that if repeated send events occur for a particular packet value, then

eventually some copy is delivered.

(UL5) For any p, if infinitely many sendp””( p) actions occur in ~, then

infinitely many rcup’”” (p) actions occur in ~.

We say that a sequence ~ of unreliable layer actions is UL1’ “-consistent,

provided there exists a function cause such that all the conditions (UL1)-(UL5)

are satisfied. As before, we extend the use of the term, and say that any

sequence is UL”” -consistent provided that the subsequence consisting of

unreliable layer actions is. We have the following simple consequences of the

definitions.

LEMMA 4.1

(1) Suppose P and y are UL” “-consistent. Then By is UL” “-consistent.

(2) Suppose P is UL1’1’ -consistent and ~‘ is a prefix of p. Then ~‘ is UL”” -

consistent,

Now we define the specification UL’””. We have already defined sig(UL” “).

Let behs( UL[’”) be the set of sequences ~ of unreliable layer actions that are

UL”’ ‘-consistent.

We define an unreliable channel from LL to L’ to be any 1/0 automaton that

satisfies ULU”. Thus, C is an unreliable channel if it has the external actions

appropriate for the specification, and also every fair behavior satisfies the

conditions above (for some choice of the function cause). An unreliable

channel with the largest set of fair behaviors is called “universal;” formally, a

unil’ersal Llnreliabk channel is an unreliable channel whose set of fair behaviors

is exactly the set of ULU “-consistent sequences.

4.2. PROPERTIES OF THE UNRELIABLE LAYER. In this subsection, we give

some basic properties of the unreliable layer and of unreliable channels.

We first define the idea of a sequence of packets being “in transit” after a

behavior of the unreliable layer. If ~ = m-, Tz .00 is a finite .UL’” “-consistent

sequence, we say that a sequence of packets Q = ql qz “”” qk 1s in transit after

p, provided there is a function cause such that properties (UL1)-(UL5) hold

for P and cause, and also there are indices il, i2, ..., i/, with the following

properties:

—il <iz < .“” <i~,

— 7r, = se,zdP1’L’(qJ) for each j, 1< j < k, and

—fo; any index j of a rcz,p’” u event in ~, cause(j) < i,.

That is, a sequence of packets is in transit after ~ if it is a subsequence of the

collection of packets sent after the sending of the last packet that is success-
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fully delivered. Notice, as a consequence of this definition, that if a sequence Q

is in transit after ~, then so is any subsequence of Q.

LEMMA 42. If ~ is a finite ULL” -consistent sequence of unreliable layer

actions, Q is a sequence of packets that is in tra?mit after ~, and Q’ is a

sLlbseque?lce of Q, then Q’ is in transit after (3.

Another immediate consequence of the definition is the following lemma,

which says that as further packets are sent, they can be added to the sequence

in transit.

LEMMA 4,3. If ~ is a ji?tite UL1’ “-consistent sequence of unreliable layer

actions, q, ql . . . qk is in transit after ~, and q; q; “”” q; is a finite sequence of

packets, then the sequence

P’ = flsendp’{’’(q~) sendp[(’(q~) ~~~sendp’’i’(q~)

is a UL”i’ -consistent seqLlence and the sequence of packets q, q? “” ~ qk q; .”. q; is

in transit after ~‘.

The following lemma says that, any sequence of packets in transit can be

delivered without violating the specification of an unreliable layer.

LEMMA 4.4. If ~ is a jinite UL’l “-consistent sequence of unreliable layer

actions, and Q = qlql ““ q~ is a sequence of packets that is in trattsit ajler P,

then PrcLp”<’(ql)” rcip”” (qk ) is a UL”’ -cotlsistent sequence.

Recall that a universal unreliable channel is an unreliable channel whose fair

behaviors are all the sequences allowed by the specification UL””, rather than

merely a subset of these. For our later work, it will be important to know that a

universal unreliable channel exists. We give the construction here, and leave it

to the reader to check that this automaton has the required behaviors. Note

that no property of the automaton is used in this paper other than the fact that

it is universal.

The 1/0 automaton ~“” has the inputs and outputs of ULL’”, and no

internal actions. The state of CL’” consists of a sequence qlleuc of packets, an

array count of integers indexed by packet values, and a array keep of infinite

sets of positive integers indexed by packet values. The initial states of the

automaton are those states in which q is empty and each entry count[p] is

zero. Thus, each initial state is determined by a value for the array keep.

The transition relation for the automaton e“” consists of all triples (s’, T, S)

described by the following code.~

sc??zdp~~J’(p)
Effect: count[ p] + counf[ p] + 1

if cou17t[ p] ● keep[ p], then append p to queue

Wp’’’’’(p)
Precondition: p is at head of queue
Effect: delete p from front of queue

The partition puts all the output actions of ~“” in a single class.

“ This style of dcscribmg 1/0 tiutomata hy giving preconditions (i.e., conditions on ,s’) and effects

(I.e., imperatives to be executed sequentially to transform s’ to gwe ,s) is used In [lo]. It K not
fundamental to the model, but is rather a notational convenience for describing sets of triples.
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FIG. 3. A reliable layer implementation.

Thus, i ● keep[p] means that the ith time packet value p is sent; it will

succeed in being delivered. The fact that each keep[ p] is infinite ensures that

(UL5) is satisfied by fair behaviors of ~“”.

LEMMA 4.5. The automaton ~“” “M a unilersal unreliable channel.

5. Reliable Layer Implementation

h this section, we define a “reliable communication protocol,” which is

intended to be used to implement the reliable layer using the services provided

by the unreliable layer. A reliable communication protocol consists of two

automata, one at the transmitting station and one at the receiving station.

These automata communicate with each other using two unreliable channels,

one in each direction. They also communicate with the outside world, through

the reliable layer actions we defined in Section 3.

Figure 3 shows how two protocol automata and two unreliable channels

should be connected, in a reliable layer implementation.

5.1. RELIABLE COMMUNICATION PROTOCOLS. We define a reliable commu-

nication protocol syntactically, as two automata that have the correct action

names to be used in a system connected as in Figure 3.

A transmitting automaton is any 1/0 automaton having an action signature

as follows:

Input actions:

Se?ld(r?l ), m E M
rcLp’’’(p), p E P

crash *

Output actions:
sendp’ ‘(p), p ~ P

In addition, there can be any number of internal actions. That is, a transmit-
ting automaton receives requests from the environment of the reliable layer to

send messages to the receiving station. It also receives packets over the

unreliable channel from the receiving station r, and notification of crashes at

the transmitting station. It sends packets over the unreliable channel to r.
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Similarly, a receil’ing automaton is any 1/0 automaton having an action

signature as follows:

Input actions:

rcLp’’r(p), p = ~
crash ‘

Output actions:

Ship’’’, p = F’

rcL>(m), nz = M

Again, there can also be any number of internal actions. That is, a receiving

automaton receives packets over the unreliable channel from the transmitting

station t,and notification of crashes at the receiving station. It sends packets to

t over the unreliable channel to t,and it delivers messages to the environment

of the reliable layer.

A reliable communicatio?l protocol is a pair (At, A’”), where A’ is a transmit-

ting automaton and A“ is a receiving automaton.

We close this subsection with a lemma describing a useful property of

reliable communication protocols interacting with an unreliable layer. It says

that from any point in an execution, the system can continue to run in some

way, with no further crashes nor requests for message transfer, so that no

packets sent before that point are delivered after it.

Recall that for any specification T and sequence ~ we write ~ IT for

the subsequence of ~ consisting of actions of T. For brevity, we say that

~ is UL-consistent provided ~ IUL’” is UL’ ‘“-consistent and ~ lULr’ is UL” -

consistent.

LEMMA 5.1. Let ( A’, A’) be a reliable communication protocol. Let a be

a finite UL-consistent execution of A = Al 0,4’. TjZC}I there exlsfs a fair UL.
consistent execution a ~ of A such that

(1) @ contains no send or crash erents, and

(2) /3 is UL-consistent

PROOF. (Sketch) The sequence ~ is constructed inductively, interleaving

transitions that involve actions from each equivalence class of the fairness

partition of A. However, whenever a sendp( p) event is added to the execution,

it is immediately followed by a corresponding rcLp( p) event. This is allowed by

A since rc~p( p) is an input to the composition, and UL-consistency is obviously

maintained. The dovetail ensures that the execution a/3 constructed is a fair

execution of A. Since every sendp event is followed by its corresponding rclp

event, it follows that the suffix ~ is UL-consistent. ❑

5.2. CORRECTNESS OF RELIABLE COMMUNICATION PROTOCOLS. Now we are

ready to define correctness of reliable communication protocols. Informally, we

say that a reliable communication protocol is “correct” provided that when it is

composed with any pair of unreliable channels (from t to r and from r to t,

respectively), the resulting system yields correct reliable layer behavior. This

reflects the fundamental idea of layering, that the implementation of one layer

should not depend on the details of the implementation of other layers, so that
each layer can be implemented and maintained independently. Formally, we

say that a reliable communication protocol ( A~, A’) is comect provided that the

following is true. For all C’ r and C” that are unreliable channels from t to r
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and from r to t,respectively, hidecl,(ll) satisfies RL, where D is the composi-

tion of A’, xl’, Ct.’, and C”’, and @ is the subset of acts(D) consisting of sendp

and rcL1p actions. We need to hide the actions between the protocol and the

unreliable channels in order that the composition should have the signature

required for the reliable layer.5
The definition of correctness just given is somewhat difficult to work with,

because it involves universal quantification over all possible unreliable chan-

nels. We actually work with an alternative characterization, using only behav-

iors of the composition of At and A’.

THEOREM 5.2. Let (A’, A’) be a reliable communication protocol. Then the

following are equil)alent.

(1) (A’, A’) is con-ect.

(2) For elery fair behavior P of A = A’ o A’, if (3 is UL-consistent, then ~ is
RL-consistent.

PROOF. Let @ be the set of all sendp and rcup actions. For one direction of

implication, assume that (Al, A“) is correct. Let ~ be a fair behavior of A that

is UL-consistent. Let et’ and ~r’ f be the unreliable channels defined in

Section 4; Lemma 4.5 implies that these are universal unreliable channels.

Since ~ is ULf “-consistent, and ~t’ is a universal unreliable channel, it must

b: that ~ lULc” is a fair behavior of ~“’. Likewise, ~ \UL” is a fair behavior of

C“’. Then Lemma 2.2 gives that ~ is a fair behavior of D = A o ~t r o ~rt.

Therefore, ~ IRL is a fair behavior of hideo( D), since the actions of RL are

exactly the external actions of D that are not in 0. Since ( Af, A’) is correct

and C“ and ~“f are unreliable channels from t to r and r to t,respectively,

any fair behavior of hideo(ll ) is RL-consistent. Thus, (3 IRL is RL-consistent,

which implies that /3 is RL-consistent, as required.

Conversely, suppose that for every fair behavior ~ of A, if ~ is UL-

consistent, then ~ is RL-consistent. Let Ct. r and C“ f be arbitrary unreliable

channels from t to r and from r to t,respectively, and let D = A o Cf” o C”’.

We must show that hide@(D) satisfies RL.

Let /3’ be an arbitrary fair behavior of hide,~(D). Then there is a fair

behavior /3 of D such that ~‘ = ~ IRL. By Lemma 2.1, ~ ICt r is a fair behavior

of Ct”, and since Cf.’ is an unreliable channel, ~ ICt’ r is UL” ‘-consistent. That

is, ~ IULf’ r is ULt ‘-consistent. Likewise, ~ /UL” t is ULr’ ‘-consistent. Thus, ~ is

UL-consistent. By hypothesis, /3 is RL-consistent, and so ~’ is RL-consistent.

Thus, ~‘ = behs( RL), as required. ❑

5.3. CRASHING PROTOCOLS. In this subsection, we define a constraint for

reliable communication protocols: a “crashing” property, which says that a

crash at either the transmitting or receiving station causes the corresponding

protocol automaton to revert back to its start state (thereby losing all informa-

tion in its memory). This property models the absence of nonvolatile storage.

We say that a transmitting automaton A’ is crashing, provided that there is a

unique start state q., that (q, crash’, qO) is a step of At, for every q ● states( At ),

and that these are the only crash! steps. Similarly, we say that a receiving

automaton A’ is crashing, provided that there is a unique start state q., that

5 Recall that in the 1/0 automaton model, actions between components of a system are outputs

of the system as a whole.
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(q, crash’, q,] ) is a step of A’, for every q E siates( xl’), and that these are the

only crasiz’ steps. A reliable communication protocol ( At, A’) is said to be

crasizing, provided that At and A’ are both crashing.

6. The Impossibility Proof

A useful property for a reliable communication protocol would be the ability to

tolerate crashes of the machines on which it runs. We consider the case in

which a crash causes all the memory at the site to be lost; we model this by

having a crash cause the automaton at that site to revert to its initial state. In

this section, we present our impossibility result, that no correct reliable

communication protocol can tolerate arbitrary crashes (without access to some

nonvolatile memory).

The main idea of our proof is to assume the existence of a reliable

communication protocol that is both correct and crashing, and to find two

finite executions, a and 6, that leave both the transmitting and receiving

automata in the same states, although in a every message has been delivered

and in & there is an undelivered message. The protocol must eventually deliver

the missing message in any fair extension of & in which no more crashes occur,

even if no further messages are submitted by the environment. Then a

corresponding extension of a will cause some message to be delivered,

although every message sent had already been delivered. This contradicts the

claimed correctness of the protocol.

In our proof, a contains the sending and delivery of a single message, while

& contains many crash events and ends with the sending of a message that is

not delivered. The construction of d from a is given in Lemma 6.3, using the

following observation: It is possible to find a behavior that can leave the end

stations in the same states that they have after step k of the execution a, but

where a particular sequence of packets (which are received by one station in

the first k steps of a) are in transit. This is shown carefully in Lemma 6.2 by

induction. The induction step (which is Lemma 6.1) uses the fact that the

inputs, up to step k of a, of a given station depend on outputs of the other

station up to step k – 1.

We now begin the rigorous proof, following the sketch above. We first

establish some notation. For x c {t, r}, we define ~ so that i = {t, r} and

~ + 1, that is, ~ = r and ~ = t.For a finite execution a = St)T,Sl “.. n,, s,, of

A’ ~ A’, x = {t,r},and an integer k, O < k s n, we define the following:

—in( ~, .x, k) is the sequence of packets received by AX during ml mz . . . ~L,

the first k steps of a,

—OM( a, x, k ) is the sequence of packets sent by .4’ during the first k steps of
a,

—state( a, x, k) is the state of A‘ in Sk,

—ext( a, x, k) is the sequence of external actions of A-’ during the first k steps

of 0!.

Note that if a is UL-consistent, then in( a, x, k) is a subsequence of

cd a!, .7, A – 1).

The first lemma is used for the inductive step in the inductive proof of

Lemma 6.2. Speaking informally, we use it to “pump up” the sequence of

packets waiting in the channels, as illustrated in Figure 4. If a behavior can
leave the system so that in transit from ~ to x, there is a sequence of packets
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FIG.4. Illustration for Lemma 6.1.

that is the same as the sequence of packets delivered

reference execution, then we can extend the behavior
across that channel in a

by crashing the destina-
tion station A’ and replaying that station’s part of the reference e~ecution, and

this can leave the system so that a sequence of packets is in transit in the other

direction, equal to the packets sent by A’ in the reference execution.

LEMMA 6.1. Let (A’, At) be a crashing reliable communication protocol. Let

a = Sore,s, “”” T,, s,, be a finite UL-consistent execution of A = Al o A’ sLlch that

no crash euents occur in rr, .,. v,,. Suppose x e {t, r], k is an integer with

O < k < FZ and ~ is a finite UL-consistent behalior of A with the following

properties:

(1) /3 can leale A in a state where the state of A’ is s, and

(2) the sequence ird a, x, k) of packets is in transit from .t to x after p.

Let y = crash’ext( a, x, k], a sequence of actions of A‘. Then we hale the

following properties of fly:

(~) By is a finite UL-consistent behal’ior of A,

(2) fly can lea[w A in the state where the state of AF is s, and the state of A’ is
state( a, x, k), and

(3) the sequence out( a, x, k) of packets is in transit fror?~ x to Y after By.

PROOF. As notation, let ql, qz etc. denote the packets such that in( a, X, k)

= ql!?2 “”” ql. We consider the sequence @y.

Now ~ylAX is just ( @1A ‘)crash ‘(ext( a, x, k)). Since ~ IAX is a behavior of

AX, crash’ is an input of A’ that takes A’ to its initial state, and ext( a, x, k) is

the behavior of an execution fragment of A’ that starts in the initial state of

Ax and ends in state( a, x, k), we deduce that By IA‘ is a finite behavior of A’
that can leave A’ in state state( a, x, k).

Also, fly IAz is just ~ IAz which is a finite behavior of Ax that can leave AX

in state s. By Lemma 2.2, By is a finite behavior of A that can leave A in the

state where the state of A“i is s and the state of A’ is state( a, x, k).
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Now ylULZ’ is rcLp’ ‘(q, ) . . . rcl’p ~’ ‘(ql) by construction. Since Q is in

transit from i to x after ~, we see by Lemma 4.4 that flylULi ‘ is ULi ‘-

consistent. Also, ylULX i consists of the sequence of sendp’7 actions in

r,’n-~ ““ T,. By Lemma 4.3, flylUL’~ is UL’ ~-consistent; thus, ~y is UL-con-

sistent. Lemmas 4.3. and 4.2 together imply that the sequence out( a, x, k) of

packets is in transit from x to .i after By. ❑

The next lemma says that we can find a behavior that can leave the protocol

in the same state as in any suitable execution a, and with the same sequence

of packets as those sent in a in transit in one of the channels.

LEMMA 6.2. Let ( A’, A’) be a crasiling reliable communication protocol. Let

CY= S(,n,s, “” ~ rr,,s,, be a finite UL-consistent execution of A = At ~ A’ sLlch that

rlo crasil elents occur in 7r ~ . . v,,. Suppose x G {t, r} and k is an integer, with

O < k < n, such that either k = O or ~~ E acts(A ‘). Then there is a finite

sequence P with the following properties:

(1) ~ is a UL-consistent behalior of A,

(2) (? can lea[e A in the state where the state of A’ is state( a, x, k), and the state
of A1 is state( a, i, k), and

(3) the sequence out( CY,x, k) of packets is in transit from x to ,i after p.

PROOF. We use induction on k.

The base case, when k = O, is trivial, as state( a, x,0) is the initial state of

A‘, state( a, .t, O) is the initial state of Ax, and out( a, .7, 0) is the empty

sequence. Thus, we may take ~ to be the empty sequence of actions.

Now we suppose that k >0, and we assume inductively that the lemma is

true for all smaller values of k.

If all the actions n-l,..., Tk are in acts( A’), then out( a, ~, k) must be the

empty sequence, and therefore we deduce that in( a, x, k) is also empty. Also,

state( a, 2, k) must be equal to state( a, i?, O). Thus, the empty sequence ~, is a

finite UL-consistent behavior of A, PI can leave A’ in state state( a, i, k), and

in( a, x, k) is in transit from Z to x after ~l. We can therefore apply Lemma

6.1 to obtain ~ as an extension of @l.

Otherwise, let j be the greatest integer such that 1< j s k and n-~ =

acts(Az). Notice that in fact j < k, since fi~ = acts( AX). Then in(a, x, k) is a

subsequence of oat( a, ~, j), and state( a, 2, k) must equal state( a, ~, j). By

using the inductive hypothesis, we get a finite UL-consistent behavior ~, of A,

where ~1 can leave ,4Z in state state( a, 2, j), and the sequence out( a, 2, j) is

in transit from .i to x after PI. By Lemma 4.2, the subsequence in( a, x, k) is
also in transit from 2 to x after /31. We can therefore apply Lemma 6.1 to

obtain /3 as an extension of (31. ❑

We can now use Lemma 6.2 to find a behavior of a crashing reliable

communication protocol that can lead to states identical to those at the end of

a given execution, but in which a message has been sent but not received.

LEMMA 6.3. Let (A’, A’) be a crashing reliable communication protocol. Let

a = Sore,s, .”” T.s. be a finite UL -consistent execution of A = At o A‘ sl~ch that

beh(cr)ll?L = send(rn)rc~(m).
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Tken there is a finite UL-consistent execution, &, of A with the following

properties:

(1) d IRL ends in send(m).

(2) 6 ends i?l a state in which the state of A’ is state( a, t, n) and the state of A“ is

state( a, r, n).

PROOF. Let k denote the greatest integer less than or equal to n such that

m~ = acts(A’ ). That is, k is the index of the last event in a that occurs at the

receiving station (since rc~~(m) is an action of A“, there is some k satisfying this

description). Lemma 6.2 yields a finite UL-ccmsistent behavior ~’ of A with

the following properties: ~‘ can leave A in a state where the state of A’ is

state( a, r, k), and the sequence out( a, r, k) of packets is in transit from r to t

after ~’.

Since the sequence in( a, t, n) is a subsequence of oz4t( a, r, k), Lemma 4.2

implies that in( a, t, n) is in transit from r to t after ~‘.

We now apply Lemma 6.1 to see that, for y = crash fext( a, t, n), ~’y is a

finite UL-consistent behavior of A, ~’y can leave A in the state where the

state of A“ is state( a, r, k), and the state of Af is state( a, t, n). We set

p = p’y.

We now note, using the definition of k, that state( a, r, k’) = state( a, r, n).

Since -y is crash’ext( a, t, n) and ext(a, t, n)lRL = (beh(a)l A’)l RL = send(m),

we have that ~ IRL ends in crash tsend( m). Let & be any finite execution of A

with beh( ii ) = /3, that ends in the state where the state of A“ is state( a, r, k)

and the state of At is state( a, t, n). We know that such & must exist, because

/? can leave A in the indicated state. ❑

Finally, we can use the results above to prove our impossibility theorem.

THEOREM 6.4. There is no crashing reliable communication protocol that is

correct.

PROOF. Assume that (A’, A’) is such a protocol and let A = At o Ar.

First, we claim that there is a finite UL-consistent execution a = Soml S1 “”.

n.s~ of A such that beh( a )1RL = send(m )rcz,I(nz). The existence of such an a

is proved by starting with an execution of A containing the single action

send(m) (which exists since A is input-enabled), and then using Lemma 5.1 to

get a fair UL-consistent execution of A whose behavior contains send(m) and

no other send or crash events. By Theorem 5.2, the execution’s behavior must

be I? L-consistent. Since the action send(m) occurs in the behavior and is

followed by no crash events, property (RL4) implies that an rcu action appears,

and (RL2) shows that the action must be rcu(m). By (RL1), it must follow the

send(m) action, and (RL3) implies that no other z-cu event can appear. We

obtain the finite execution a by truncating this fair execution after the state

following the nm(rn) event. It follows that beh( a)l RL is send(m) rcu(m).

Next we appeal to Lemma 6.3 to obtain a finite UL-consistent execution
A

& = ;02-1s, “”” i?~ $~ of A with the following properties: beh( & ) ends in

send(m), and state( ii, x, k) = state(a, x, n) for x = {t,r}.
By Lemma 5.1, there is a fair UL-consistent execution of A that extends &

and contains no additional send or crash events. The projection of this

extension on the reliable layer actions must satisfy (RL4). Since the final

serzd(m) of & occurs in the extension in an unbounded crash interval, by (RL4)
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and (RL1) the suffix of the extension after & contains a rcl event. Let az be

the subsequence of this extension, starting at the action following the end of ~

and ending at the state after the first following rCLI event. We see that

a2 IRL = rc~’(nz’ ) for some rn’ (since the extension contains no send or crush

events), and that a2 is UL-consistent. Also, the sequence consisting of the final

state of & following by az is an execution fragment of A.

Since a and d end in the same state both in the transmitter and the

receiver, the sequence al = aa, is a finite execution of A. It is UL-consis-

tent since each of a and a~ are (using Lemma 4.1). Now be~z(al)l RL =

send(n7)l-cL’( n’z)rcL’( m’).

Now we use Lemma 5.1 to get a fair UL-consistent extension of a, with no

additional semi or crash events. The behavior of this extension contains exactly

one send event and at least two ret’ events. Clearly no function cause can be

found for this behavior that satisfies (RL3), so this behavior is not RL-con-

sistent. By Lemma 5.2, this contradicts the assumption that A is a correct

crashing reliable communication protocol. ❑
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