
Impossibility of Reliable Communication in Crashes 1091

bounded headers and the unreliable layer can reorder data messages. Related

impossibility results concerning the use of bounded headers with non-FIFO

unreliable layers are found in [11], [15], and [16].

The rest of the paper is organized as follows: Section 2 contains a summary

of the relevant definitions from the input/output automaton model. Section 3

contains a specification of a reliable layer, which represents the reliable

communication task to be performed. Section 4 contains a specification of the

unreliable layer, which the protocol is assumed to have available for its use.

Section 5 defines what it means for a protocol to be correct according to the

given specifications. Finally, Section 6 contains the impossibility result.

2. The I/O Automaton Model

The input/output automaton model was defined in [9] as a tool for modeling

concurrent and distributed systems. We refer the reader to [9] and to the

expository paper [10] for a complete development of the model, plus motivation

and examples. Here, we provide a brief summary of those aspects of the model

that are needed for our results.

2.1. ACTIONS AND ACTION SIGNATURES. Fundamental to the model is the

identification of the actions possible between an entity and its environment,

and the separation of those actions into types depending on where the

occurrence is controlled. An entity has inputs that are under the control of the

environment, outputs that are under the control of the entity and detectable by

the environment, and internal actions that are controlled by the entity but not

detectable by the environment.

Formally, an action signature S is an ordered triple consisting of three

pairwise-disjoint sets of actions. We write in(S), out(S), and int(S) for the

three components of S, and refer to the actions in the three sets as the input

actions, output actions, and internal actions of S, respectively. We let ext(S) =

in(S) U out(S) and refer to the actions in ext(S) as the external actions of S.

We let acts(S) = in(S) U out(S) U int(S), and refer to the actions in acts(S)

as the actions of S.

2.2. INPUT \ OUTPUT AUTOMATA. In the 1/0 automaton model, a compu-

tational entity (either a whole system, or a process or node within a system) is

modeled by a state machine. Formally, an input/output automaton A (also

called an I/O auto?naton or simply an automaton) consists of five components:

(1) an action signature sig(xl),

(2) a set states(A) of states,
(3) a nonempty set start(A) C states(xl) of start states,

(4) a transition relation steps(A) c (states(A) x acts(sig(A)) x states(A)),
with the property that for every state s’ and input action m- there is a

transition (s’, m,s) in steps(A), and

(5) an equivalence relation part(A) on out(sig(A)) U int(sig(xl)), having at

most countably many equivalence classes.

For brevity, we write in(A) for in(sig(A)), out(A) for out(sig(A)), and so on.

We refer to an element (s’, m,s) of steps(A) as a step of A. If (s’, n,s) is a

step of A, then rr is said to be enabled in s{. Since every input action is

enabled in every state, automata are said to be input-enabled. The partition

1092 A. FE~ETE ET AI..

part(~) is an abstract description of the underlying components of the automa-

ton, and is used to define fairness.

An execution fragment of A is a finite sequence S[)ml Slnz . . . m-,,s,, or an

infinite sequence St,z-l .slm-~ .”’ m,,s,, . ~” of alternating states and actions of A

such that (s,, n-,+,, s, ~,)]s a step of A for every i. An execution fragment

beginning with a start state is called an execution.

A fair e.recuticm of an automaton ,4 is defined to be an execution a of A

such that the following condition holds for each class C of part(.4): If LY is

finite, then no action of C is enabled in the final state of a, while if a is

infinite, then either a contains infinitely mtiny events from C, or else a

contains infinitely many occurrences of states in which no action of C is

enabled. Thus, a fair execution gives “fair turns” to each class of part(A).

Informally, one class of part(A) typically consists of all the actions that are

controlled by a single subsystem within the system modeled by the automaton

A, and so fairness means giving each such subsystem regular opportunities to

take a step under its control, if any is enabled. In the common case that there

is no lower level of structure to the system modeled by A (when pard A)

consists of a single class), a fair execution is an execution in which infinitely

often the automaton is given an opportunity to take an action under its control

if any is enabled.

The behaLior of an execution fragment a of A is the subsequence of a

consisting of external actions, and is denoted by bdd a). That is, be}z(a) is

formed by removing from the sequence a all states and also those actions in

i~zt(A). We say that /3 is a belzal’ior of .4 if ~ is the behavior of an execution

of A. We say that ~ is a jbir be/zaL)ior of A if ~ is the behavior of a fair

execution of A. When an algorithm is modeled as an 1/0 automaton, it is the

set of fair behaviors of the automaton that reflect the activity of the algorithm

that is important to users.

We say that a finite behavior ~ of A catz leaL1eA i~zstate s if there is a finite

execution a with (? as its behavior, such that the final state in a is s.

A fundamental operation that we sometimes apply to sequence ~ of actions

(or other elements), such as a behavior, is to take the subsequence consisting
of those actions that are in a set @ of actions. We call this the projectiorz of ~

on @, and denote it by /? I@. For brevity, we write ~ 1A for ~ lacts(A).

2.3. COMPOSITION. The most useful way of combining 1/0 automata is by

means of a composition operator, as defined in this subsection. This models the

way algorithms interact, as for example when the pieces of a communication

protocol at different nodes and a lower-level protocol all work together to

provide a higher-level service.
A collection {A,}, ~ , of automata is said to be strongly compatible if no action

is an output of more than one automaton in the collection, any internal action

of any automaton does not appear in the signature of another automaton in

the collection, and no action occurs in the signatures of an infinite number of

automata in the collection. Formally, we require that for all i,j e 1, i # j, we

have

(1) Oztt(AL) n OHt(~J) = 0,
(2) int(A,) n acts(Aj) = 0, and

(3) no action is in acts(A,) for infinitely many i.

1098 A. FEKETE ET AL.

fully delivered. Notice, as a consequence of this definition, that if a sequence Q

is in transit after ~, then so is any subsequence of Q.

LEMMA 42. If ~ is a finite ULL” -consistent sequence of unreliable layer

actions, Q is a sequence of packets that is in tra?mit after ~, and Q’ is a

sLlbseque?lce of Q, then Q’ is in transit after (3.

Another immediate consequence of the definition is the following lemma,

which says that as further packets are sent, they can be added to the sequence

in transit.

LEMMA 4,3. If ~ is a ji?tite UL1’ “-consistent sequence of unreliable layer

actions, q, ql . . . qk is in transit after ~, and q; q; “”” q; is a finite sequence of

packets, then the sequence

P’ = flsendp’{’’(q~) sendp[(’(q~) ~~~sendp’’i’(q~)

is a UL”i’ -consistent seqLlence and the sequence of packets q, q? “” ~ qk q; .”. q; is

in transit after ~‘.

The following lemma says that, any sequence of packets in transit can be

delivered without violating the specification of an unreliable layer.

LEMMA 4.4. If ~ is a jinite UL’l “-consistent sequence of unreliable layer

actions, and Q = qlql ““ q~ is a sequence of packets that is in trattsit ajler P,

then PrcLp”<’(ql)” rcip”” (qk) is a UL”’ -cotlsistent sequence.

Recall that a universal unreliable channel is an unreliable channel whose fair

behaviors are all the sequences allowed by the specification UL””, rather than

merely a subset of these. For our later work, it will be important to know that a

universal unreliable channel exists. We give the construction here, and leave it

to the reader to check that this automaton has the required behaviors. Note

that no property of the automaton is used in this paper other than the fact that

it is universal.

The 1/0 automaton ~“” has the inputs and outputs of ULL’”, and no

internal actions. The state of CL’” consists of a sequence qlleuc of packets, an

array count of integers indexed by packet values, and a array keep of infinite

sets of positive integers indexed by packet values. The initial states of the

automaton are those states in which q is empty and each entry count[p] is

zero. Thus, each initial state is determined by a value for the array keep.

The transition relation for the automaton e“” consists of all triples (s’, T, S)

described by the following code.~

sc??zdp~~J’(p)
Effect: count[p] + counf[p] + 1

if cou17t[p] ● keep[p], then append p to queue

Wp’’’’’(p)
Precondition: p is at head of queue
Effect: delete p from front of queue

The partition puts all the output actions of ~“” in a single class.

“ This style of dcscribmg 1/0 tiutomata hy giving preconditions (i.e., conditions on ,s’) and effects

(I.e., imperatives to be executed sequentially to transform s’ to gwe ,s) is used In [lo]. It K not
fundamental to the model, but is rather a notational convenience for describing sets of triples.

Impossibility of Reliable Communication in Crashes 1099

FIG. 3. A reliable layer implementation.

Thus, i ● keep[p] means that the ith time packet value p is sent; it will

succeed in being delivered. The fact that each keep[p] is infinite ensures that

(UL5) is satisfied by fair behaviors of ~“”.

LEMMA 4.5. The automaton ~“” “M a unilersal unreliable channel.

5. Reliable Layer Implementation

h this section, we define a “reliable communication protocol,” which is

intended to be used to implement the reliable layer using the services provided

by the unreliable layer. A reliable communication protocol consists of two

automata, one at the transmitting station and one at the receiving station.

These automata communicate with each other using two unreliable channels,

one in each direction. They also communicate with the outside world, through

the reliable layer actions we defined in Section 3.

Figure 3 shows how two protocol automata and two unreliable channels

should be connected, in a reliable layer implementation.

5.1. RELIABLE COMMUNICATION PROTOCOLS. We define a reliable commu-

nication protocol syntactically, as two automata that have the correct action

names to be used in a system connected as in Figure 3.

A transmitting automaton is any 1/0 automaton having an action signature

as follows:

Input actions:

Se?ld(r?l), m E M
rcLp’’’(p), p E P

crash *

Output actions:
sendp’ ‘(p), p ~ P

In addition, there can be any number of internal actions. That is, a transmit-
ting automaton receives requests from the environment of the reliable layer to

send messages to the receiving station. It also receives packets over the

unreliable channel from the receiving station r, and notification of crashes at

the transmitting station. It sends packets over the unreliable channel to r.

1100 A. FEKETE ET AL.

Similarly, a receil’ing automaton is any 1/0 automaton having an action

signature as follows:

Input actions:

rcLp’’r(p), p = ~
crash ‘

Output actions:

Ship’’’, p = F’

rcL>(m), nz = M

Again, there can also be any number of internal actions. That is, a receiving

automaton receives packets over the unreliable channel from the transmitting

station t,and notification of crashes at the receiving station. It sends packets to

t over the unreliable channel to t,and it delivers messages to the environment

of the reliable layer.

A reliable communicatio?l protocol is a pair (At, A’”), where A’ is a transmit-

ting automaton and A“ is a receiving automaton.

We close this subsection with a lemma describing a useful property of

reliable communication protocols interacting with an unreliable layer. It says

that from any point in an execution, the system can continue to run in some

way, with no further crashes nor requests for message transfer, so that no

packets sent before that point are delivered after it.

Recall that for any specification T and sequence ~ we write ~ IT for

the subsequence of ~ consisting of actions of T. For brevity, we say that

~ is UL-consistent provided ~ IUL’” is UL’ ‘“-consistent and ~ lULr’ is UL” -

consistent.

LEMMA 5.1. Let (A’, A’) be a reliable communication protocol. Let a be

a finite UL-consistent execution of A = Al 0,4’. TjZC}I there exlsfs a fair UL.
consistent execution a ~ of A such that

(1) @ contains no send or crash erents, and

(2) /3 is UL-consistent

PROOF. (Sketch) The sequence ~ is constructed inductively, interleaving

transitions that involve actions from each equivalence class of the fairness

partition of A. However, whenever a sendp(p) event is added to the execution,

it is immediately followed by a corresponding rcLp(p) event. This is allowed by

A since rc~p(p) is an input to the composition, and UL-consistency is obviously

maintained. The dovetail ensures that the execution a/3 constructed is a fair

execution of A. Since every sendp event is followed by its corresponding rclp

event, it follows that the suffix ~ is UL-consistent. ❑

5.2. CORRECTNESS OF RELIABLE COMMUNICATION PROTOCOLS. Now we are

ready to define correctness of reliable communication protocols. Informally, we

say that a reliable communication protocol is “correct” provided that when it is

composed with any pair of unreliable channels (from t to r and from r to t,

respectively), the resulting system yields correct reliable layer behavior. This

reflects the fundamental idea of layering, that the implementation of one layer

should not depend on the details of the implementation of other layers, so that
each layer can be implemented and maintained independently. Formally, we

say that a reliable communication protocol (A~, A’) is comect provided that the

following is true. For all C’ r and C” that are unreliable channels from t to r

Impossibility of Reliable Communication in Crashes 1101

and from r to t,respectively, hidecl,(ll) satisfies RL, where D is the composi-

tion of A’, xl’, Ct.’, and C”’, and @ is the subset of acts(D) consisting of sendp

and rcL1p actions. We need to hide the actions between the protocol and the

unreliable channels in order that the composition should have the signature

required for the reliable layer.5
The definition of correctness just given is somewhat difficult to work with,

because it involves universal quantification over all possible unreliable chan-

nels. We actually work with an alternative characterization, using only behav-

iors of the composition of At and A’.

THEOREM 5.2. Let (A’, A’) be a reliable communication protocol. Then the

following are equil)alent.

(1) (A’, A’) is con-ect.

(2) For elery fair behavior P of A = A’ o A’, if (3 is UL-consistent, then ~ is
RL-consistent.

PROOF. Let @ be the set of all sendp and rcup actions. For one direction of

implication, assume that (Al, A“) is correct. Let ~ be a fair behavior of A that

is UL-consistent. Let et’ and ~r’ f be the unreliable channels defined in

Section 4; Lemma 4.5 implies that these are universal unreliable channels.

Since ~ is ULf “-consistent, and ~t’ is a universal unreliable channel, it must

b: that ~ lULc” is a fair behavior of ~“’. Likewise, ~ \UL” is a fair behavior of

C“’. Then Lemma 2.2 gives that ~ is a fair behavior of D = A o ~t r o ~rt.

Therefore, ~ IRL is a fair behavior of hideo(D), since the actions of RL are

exactly the external actions of D that are not in 0. Since (Af, A’) is correct

and C“ and ~“f are unreliable channels from t to r and r to t,respectively,

any fair behavior of hideo(ll) is RL-consistent. Thus, (3 IRL is RL-consistent,

which implies that /3 is RL-consistent, as required.

Conversely, suppose that for every fair behavior ~ of A, if ~ is UL-

consistent, then ~ is RL-consistent. Let Ct. r and C“ f be arbitrary unreliable

channels from t to r and from r to t,respectively, and let D = A o Cf” o C”’.

We must show that hide@(D) satisfies RL.

Let /3’ be an arbitrary fair behavior of hide,~(D). Then there is a fair

behavior /3 of D such that ~‘ = ~ IRL. By Lemma 2.1, ~ ICt r is a fair behavior

of Ct”, and since Cf.’ is an unreliable channel, ~ ICt’ r is UL” ‘-consistent. That

is, ~ IULf’ r is ULt ‘-consistent. Likewise, ~ /UL” t is ULr’ ‘-consistent. Thus, ~ is

UL-consistent. By hypothesis, /3 is RL-consistent, and so ~’ is RL-consistent.

Thus, ~‘ = behs(RL), as required. ❑

5.3. CRASHING PROTOCOLS. In this subsection, we define a constraint for

reliable communication protocols: a “crashing” property, which says that a

crash at either the transmitting or receiving station causes the corresponding

protocol automaton to revert back to its start state (thereby losing all informa-

tion in its memory). This property models the absence of nonvolatile storage.

We say that a transmitting automaton A’ is crashing, provided that there is a

unique start state q., that (q, crash’, qO) is a step of At, for every q ● states(At),

and that these are the only crash! steps. Similarly, we say that a receiving

automaton A’ is crashing, provided that there is a unique start state q., that

5 Recall that in the 1/0 automaton model, actions between components of a system are outputs

of the system as a whole.

1102 A. FEKETE ET A1.

(q, crash’, q,]) is a step of A’, for every q E siates(xl’), and that these are the

only crasiz’ steps. A reliable communication protocol (At, A’) is said to be

crasizing, provided that At and A’ are both crashing.

6. The Impossibility Proof

A useful property for a reliable communication protocol would be the ability to

tolerate crashes of the machines on which it runs. We consider the case in

which a crash causes all the memory at the site to be lost; we model this by

having a crash cause the automaton at that site to revert to its initial state. In

this section, we present our impossibility result, that no correct reliable

communication protocol can tolerate arbitrary crashes (without access to some

nonvolatile memory).

The main idea of our proof is to assume the existence of a reliable

communication protocol that is both correct and crashing, and to find two

finite executions, a and 6, that leave both the transmitting and receiving

automata in the same states, although in a every message has been delivered

and in & there is an undelivered message. The protocol must eventually deliver

the missing message in any fair extension of & in which no more crashes occur,

even if no further messages are submitted by the environment. Then a

corresponding extension of a will cause some message to be delivered,

although every message sent had already been delivered. This contradicts the

claimed correctness of the protocol.

In our proof, a contains the sending and delivery of a single message, while

& contains many crash events and ends with the sending of a message that is

not delivered. The construction of d from a is given in Lemma 6.3, using the

following observation: It is possible to find a behavior that can leave the end

stations in the same states that they have after step k of the execution a, but

where a particular sequence of packets (which are received by one station in

the first k steps of a) are in transit. This is shown carefully in Lemma 6.2 by

induction. The induction step (which is Lemma 6.1) uses the fact that the

inputs, up to step k of a, of a given station depend on outputs of the other

station up to step k – 1.

We now begin the rigorous proof, following the sketch above. We first

establish some notation. For x c {t, r}, we define ~ so that i = {t, r} and

~ + 1, that is, ~ = r and ~ = t.For a finite execution a = St)T,Sl “.. n,, s,, of

A’ ~ A’, x = {t,r},and an integer k, O < k s n, we define the following:

—in(~, .x, k) is the sequence of packets received by AX during ml mz . . . ~L,

the first k steps of a,

—OM(a, x, k) is the sequence of packets sent by .4’ during the first k steps of
a,

—state(a, x, k) is the state of A‘ in Sk,

—ext(a, x, k) is the sequence of external actions of A-’ during the first k steps

of 0!.

Note that if a is UL-consistent, then in(a, x, k) is a subsequence of

cd a!, .7, A – 1).

The first lemma is used for the inductive step in the inductive proof of

Lemma 6.2. Speaking informally, we use it to “pump up” the sequence of

packets waiting in the channels, as illustrated in Figure 4. If a behavior can
leave the system so that in transit from ~ to x, there is a sequence of packets

Impossibility of Reliable Communication in Crashes 1103

I

I
L———— —___

—
–1

I

o~

AZ:S

— –d

r“””—————

jtat$J&-?-d
L———_ _—— _

I
— — --l

FIG.4. Illustration for Lemma 6.1.

that is the same as the sequence of packets delivered

reference execution, then we can extend the behavior
across that channel in a

by crashing the destina-
tion station A’ and replaying that station’s part of the reference e~ecution, and

this can leave the system so that a sequence of packets is in transit in the other

direction, equal to the packets sent by A’ in the reference execution.

LEMMA 6.1. Let (A’, At) be a crashing reliable communication protocol. Let

a = Sore,s, “”” T,, s,, be a finite UL-consistent execution of A = Al o A’ sLlch that

no crash euents occur in rr, .,. v,,. Suppose x e {t, r], k is an integer with

O < k < FZ and ~ is a finite UL-consistent behalior of A with the following

properties:

(1) /3 can leale A in a state where the state of A’ is s, and

(2) the sequence ird a, x, k) of packets is in transit from .t to x after p.

Let y = crash’ext(a, x, k], a sequence of actions of A‘. Then we hale the

following properties of fly:

(~) By is a finite UL-consistent behal’ior of A,

(2) fly can lea[w A in the state where the state of AF is s, and the state of A’ is
state(a, x, k), and

(3) the sequence out(a, x, k) of packets is in transit fror?~ x to Y after By.

PROOF. As notation, let ql, qz etc. denote the packets such that in(a, X, k)

= ql!?2 “”” ql. We consider the sequence @y.

Now ~ylAX is just (@1A ‘)crash ‘(ext(a, x, k)). Since ~ IAX is a behavior of

AX, crash’ is an input of A’ that takes A’ to its initial state, and ext(a, x, k) is

the behavior of an execution fragment of A’ that starts in the initial state of

Ax and ends in state(a, x, k), we deduce that By IA‘ is a finite behavior of A’
that can leave A’ in state state(a, x, k).

Also, fly IAz is just ~ IAz which is a finite behavior of Ax that can leave AX

in state s. By Lemma 2.2, By is a finite behavior of A that can leave A in the

state where the state of A“i is s and the state of A’ is state(a, x, k).

1104 A. FEKETE ET AL.

Now ylULZ’ is rcLp’ ‘(q,) . . . rcl’p ~’ ‘(ql) by construction. Since Q is in

transit from i to x after ~, we see by Lemma 4.4 that flylULi ‘ is ULi ‘-

consistent. Also, ylULX i consists of the sequence of sendp’7 actions in

r,’n-~ ““ T,. By Lemma 4.3, flylUL’~ is UL’ ~-consistent; thus, ~y is UL-con-

sistent. Lemmas 4.3. and 4.2 together imply that the sequence out(a, x, k) of

packets is in transit from x to .i after By. ❑

The next lemma says that we can find a behavior that can leave the protocol

in the same state as in any suitable execution a, and with the same sequence

of packets as those sent in a in transit in one of the channels.

LEMMA 6.2. Let (A’, A’) be a crasiling reliable communication protocol. Let

CY= S(,n,s, “” ~ rr,,s,, be a finite UL-consistent execution of A = At ~ A’ sLlch that

rlo crasil elents occur in 7r ~ . . v,,. Suppose x G {t, r} and k is an integer, with

O < k < n, such that either k = O or ~~ E acts(A ‘). Then there is a finite

sequence P with the following properties:

(1) ~ is a UL-consistent behalior of A,

(2) (? can lea[e A in the state where the state of A’ is state(a, x, k), and the state
of A1 is state(a, i, k), and

(3) the sequence out(CY,x, k) of packets is in transit from x to ,i after p.

PROOF. We use induction on k.

The base case, when k = O, is trivial, as state(a, x,0) is the initial state of

A‘, state(a, .t, O) is the initial state of Ax, and out(a, .7, 0) is the empty

sequence. Thus, we may take ~ to be the empty sequence of actions.

Now we suppose that k >0, and we assume inductively that the lemma is

true for all smaller values of k.

If all the actions n-l,..., Tk are in acts(A’), then out(a, ~, k) must be the

empty sequence, and therefore we deduce that in(a, x, k) is also empty. Also,

state(a, 2, k) must be equal to state(a, i?, O). Thus, the empty sequence ~, is a

finite UL-consistent behavior of A, PI can leave A’ in state state(a, i, k), and

in(a, x, k) is in transit from Z to x after ~l. We can therefore apply Lemma

6.1 to obtain ~ as an extension of @l.

Otherwise, let j be the greatest integer such that 1< j s k and n-~ =

acts(Az). Notice that in fact j < k, since fi~ = acts(AX). Then in(a, x, k) is a

subsequence of oat(a, ~, j), and state(a, 2, k) must equal state(a, ~, j). By

using the inductive hypothesis, we get a finite UL-consistent behavior ~, of A,

where ~1 can leave ,4Z in state state(a, 2, j), and the sequence out(a, 2, j) is

in transit from .i to x after PI. By Lemma 4.2, the subsequence in(a, x, k) is
also in transit from 2 to x after /31. We can therefore apply Lemma 6.1 to

obtain /3 as an extension of (31. ❑

We can now use Lemma 6.2 to find a behavior of a crashing reliable

communication protocol that can lead to states identical to those at the end of

a given execution, but in which a message has been sent but not received.

LEMMA 6.3. Let (A’, A’) be a crashing reliable communication protocol. Let

a = Sore,s, .”” T.s. be a finite UL -consistent execution of A = At o A‘ sl~ch that

beh(cr)ll?L = send(rn)rc~(m).

Impossibili~ of Reliable Communication in Crashes 1105

Tken there is a finite UL-consistent execution, &, of A with the following

properties:

(1) d IRL ends in send(m).

(2) 6 ends i?l a state in which the state of A’ is state(a, t, n) and the state of A“ is

state(a, r, n).

PROOF. Let k denote the greatest integer less than or equal to n such that

m~ = acts(A’). That is, k is the index of the last event in a that occurs at the

receiving station (since rc~~(m) is an action of A“, there is some k satisfying this

description). Lemma 6.2 yields a finite UL-ccmsistent behavior ~’ of A with

the following properties: ~‘ can leave A in a state where the state of A’ is

state(a, r, k), and the sequence out(a, r, k) of packets is in transit from r to t

after ~’.

Since the sequence in(a, t, n) is a subsequence of oz4t(a, r, k), Lemma 4.2

implies that in(a, t, n) is in transit from r to t after ~‘.

We now apply Lemma 6.1 to see that, for y = crash fext(a, t, n), ~’y is a

finite UL-consistent behavior of A, ~’y can leave A in the state where the

state of A“ is state(a, r, k), and the state of Af is state(a, t, n). We set

p = p’y.

We now note, using the definition of k, that state(a, r, k’) = state(a, r, n).

Since -y is crash’ext(a, t, n) and ext(a, t, n)lRL = (beh(a)l A’)l RL = send(m),

we have that ~ IRL ends in crash tsend(m). Let & be any finite execution of A

with beh(ii) = /3, that ends in the state where the state of A“ is state(a, r, k)

and the state of At is state(a, t, n). We know that such & must exist, because

/? can leave A in the indicated state. ❑

Finally, we can use the results above to prove our impossibility theorem.

THEOREM 6.4. There is no crashing reliable communication protocol that is

correct.

PROOF. Assume that (A’, A’) is such a protocol and let A = At o Ar.

First, we claim that there is a finite UL-consistent execution a = Soml S1 “”.

n.s~ of A such that beh(a)1RL = send(m)rcz,I(nz). The existence of such an a

is proved by starting with an execution of A containing the single action

send(m) (which exists since A is input-enabled), and then using Lemma 5.1 to

get a fair UL-consistent execution of A whose behavior contains send(m) and

no other send or crash events. By Theorem 5.2, the execution’s behavior must

be I? L-consistent. Since the action send(m) occurs in the behavior and is

followed by no crash events, property (RL4) implies that an rcu action appears,

and (RL2) shows that the action must be rcu(m). By (RL1), it must follow the

send(m) action, and (RL3) implies that no other z-cu event can appear. We

obtain the finite execution a by truncating this fair execution after the state

following the nm(rn) event. It follows that beh(a)l RL is send(m) rcu(m).

Next we appeal to Lemma 6.3 to obtain a finite UL-consistent execution
A

& = ;02-1s, “”” i?~ $~ of A with the following properties: beh(&) ends in

send(m), and state(ii, x, k) = state(a, x, n) for x = {t,r}.
By Lemma 5.1, there is a fair UL-consistent execution of A that extends &

and contains no additional send or crash events. The projection of this

extension on the reliable layer actions must satisfy (RL4). Since the final

serzd(m) of & occurs in the extension in an unbounded crash interval, by (RL4)

1106 A. FEKETE ET AL.

and (RL1) the suffix of the extension after & contains a rcl event. Let az be

the subsequence of this extension, starting at the action following the end of ~

and ending at the state after the first following rCLI event. We see that

a2 IRL = rc~’(nz’) for some rn’ (since the extension contains no send or crush

events), and that a2 is UL-consistent. Also, the sequence consisting of the final

state of & following by az is an execution fragment of A.

Since a and d end in the same state both in the transmitter and the

receiver, the sequence al = aa, is a finite execution of A. It is UL-consis-

tent since each of a and a~ are (using Lemma 4.1). Now be~z(al)l RL =

send(n7)l-cL’(n’z)rcL’(m’).

Now we use Lemma 5.1 to get a fair UL-consistent extension of a, with no

additional semi or crash events. The behavior of this extension contains exactly

one send event and at least two ret’ events. Clearly no function cause can be

found for this behavior that satisfies (RL3), so this behavior is not RL-con-

sistent. By Lemma 5.2, this contradicts the assumption that A is a correct

crashing reliable communication protocol. ❑

ACKNOWI.EDGMENTS. We thank Baruch Awerbuch and Robert Gallager for

many useful discussions. We also thank Jennifer Welch and Boaz Patt-Shamir

for their comments on several versions of the paper. Michael Fischer and

Lenore Zuck gave us many helpful ideas for the modeling of communication

service specifications.

REFERENCES

1. AFEK, Y., Amn’A., H., FEK~-rE, A., FtSCH~R, M,, L} iNCH, N., M,iNSOUR. Y, WANG, D,, ,AND

ZUCK. L. Reliable commumcat]on over unreliable channels. Tech Rep. YALE/DCS\TR-

S53. Yale Univ., Ncw Haven, Corm Also, ,1.ACAf, to appear.

2 AHO. A., ULLhmi, J., WyNER. A., ,\ND YANNAKWS. M, Bounds on the size and transmission
rate of communication protocols. Compuf. Afatiz App/. 8 (1982). 205-214.

3. BARATZ, A., AND SEG~LL, A Reliable link mltidizatlon procedures. IEEE Trans. Commun.

COIlf-36 (Feb. 1988), 144-152
4, ELmmtrr, K., SCAN IL,I:tIUR~, R., AND WILKINSON, P, A note on rehable full-duplex trwrs-

mlssion over half-duplex links. Convnurz ACIIf 12, 5 (May 1969), 260–261

5 BELSNES, D. Single-message communication. IEEE Trwzs. Corromm. COkf-2J (Feb 1976).
190-193

6. C~ PER, R, J, Cornmu;ztcafmzs Architecture jbr Dzstrtbuted Systems. Addison-Wesley, Reading,
Mass , 1978,

7. LE L.ANN, G . AND L~ GOFF, H. Verificahon wrd evaluation of communication protocols.
Conzput. Netw. 2 (Feb. 1978), 50-69.

8. L~NCI I, N. A. A hundred impossibility proofs for dlstrzbuteci computing In Pwceedztz3s of’

8tlz A~Z~ZUCZ/,4 CM Syrzzposwf?~ o~z I%zczp/e,s oj Dz,\tr~buted CompufuzLq (Edmonton, Alberta,

Canada, Aug. 14-16). ACM, New York, 19X9, pp. 1-28.
Y. L~ NC’H, N, A , AND Tu 1‘rLiz,M. R. Hierarchical correctness proofs for distributed algorithms,

In PrwcedzngY oj t}le 6t}z ,4 Ht1uul A C’A1 ,~},rrzposuwz 0)1 Prulclpks of ,%’trzbuted Conlputliz,y

(Vancouver. B. C.. Canada. Aug. 1O-I2). ACM, Ncw York, 1987, pp. 137-151.
10. LINCW, N. A., AND TLI-ITIIE, M. R. An introduction to input/output automata. CJVI Q. .?, 3

(Sept. 1989), 219-246
I 1. M.ANSOUR. Y., AND SCHIWER. B. The in[ractabdlty of bounded protocols for non-FIFO

channels J .4CM .79, -! (Oct. 1992), 783–799,
12. MCQL!ILLAN, J. M,. AND WALDb IW,D C. The ARPA network design decisions. Cwnput.

Netw. 1 (Aug 1977). 243-289,
13, SUNSHINE, C., AND D,AI.AL. Y. Connection man~gement m transport protocols. Conzput

Nehi. 2 (Dec. 1978), 454–473,

1-1.TANFNBAZJM,A, Computer Networks, 2nd cd. Prentice-Hidl, Englewood Chffs, N.J , 1988

Impossibility of Reliable Communication in Crashes 1107

15. TEMPERO,E., AND LADNER, R. Tight bounds for weakly bounded protocols. In Proceedings

of the 9th Annual A CM Synzposzum on Principles of Distributed C’oi?zpating (Quebec City, Que..
Canada, Aug. 22-24). ACM, New York, 1990, pp. 205-218.

16. WANG, D., AND ZUCK, L. Tight bounds for the sequence transmission problem. In Proceed-

ings of the 8th Annual ACM Syrnposuon cm Principles of Distributed Computing (Edmonton,
Alberta, Canada, Aug. 14- 16). ACM, New York, 1989, pp. 73-84.

17. WECKER, S. DNA: The Digital Network Architecture. IEEE Trans. Commun. COM-28 (Apr.
1980), 510-526.

18. ZIMMERMANN, H. 0S1 reference model–The 1S0 model of architecture for open systems
interconnection. IEEE Trans. Conu-nun. COM-28 (Apr. 1980), 425–432.

RECEIVED SEPTEMBER 1990: REVISED APRIL 1992; ACCEPTED APRIL 1992

Journal of the As.omatmn for CmnpulIng M.ich; ncry. Vol 4[), No 5. No, m,hcr I W3

