

1092 A. FEKETE ET AL.

part(A) is an abstract description of the underlying components of the automa-
ton, and is used to define fairness.
An execution fragment of A is a finite sequence s,m,$,7, *** m,S, OI an

infinite sequence s,m,s,m, - s, -~ of alternating states and actions of A4
such that (s, 7,.,, s,.,) is a step of A for every i. An execution fragment
beginning with a start state is called an execution.

A fair execution of an automaton A is defined to be an execution « of A4
such that the following condition holds for each class C of part(A): If « is
finite, then no action of C is enabled in the final state of «, while if « is
infinite, then either « contains infinitely many events from C, or else «
contains infinitely many occurrences of states in which no action of C is
enabled. Thus, a fair execution gives “fair turns” to each class of part(A).
Informally, one class of part(A) typically consists of all the actions that are
controlled by a single subsystem within the system modeled by the automaton
A, and so fairness means giving each such subsystem rcgular opportunities to
take a step under its control, if any is enabled. In the common case that there
is no lower level of structure to the system modeled by A (when part(4)
consists of a single class), a fair execution is an execution in which infinitely
often the automaton is given an opportunity to take an action under its control
if any is enabled.

The behavior of an execution fragment « of A is the subsequence of «
consisting of external actions, and is denoted by beh(«). That is, beh(a) is
formed by removing from the sequence « all states and also those actions in
int{ A). We say that B is a behavior of A if B is the behavior of an execution
of A. We say that B is a fair behavior of A if B is the behavior of a fair
execution of 4. When an algorithm is modeled as an [/O automaton, it is the
set of fair behaviors of the automaton that reflect the activity of the algorithm
that is important to users.

We say that a finite behavior 8 of A can leave A in state s if there is a finite
execution « with B as its behavior, such that the final state in « is s.

A fundamental operation that we sometimes apply to sequence S of actions
(or other elements), such as a behavior, is to take the subsequence consisting
of those actions that are in a set & of actions. We call this the projection of B
on ®, and denote it by B{®. For brevity, we write 8|4 for Blacts(A).

2.3. CoMpoSITION. The most useful way of combining I /O automata is by
means of a composition operator, as defined in this subsection. This models the
way algorithms interact, as for example when the picces of a communication
protocol at different nodes and a lower-level protocol all work together to
provide a higher-level service.

A collection {4}, ., of automata is said to be srongly compatible if no action
is an output of more than one automaton in the collection, any internal action
of any automaton does not appear in the signature of another automaton in
the collection, and no action occurs in the signatures of an infinite number of
automata in the collection. Formally, we require that for all i,j € I, 1 # j. we
have

(1) out(A,) Nout(A) = &,
(2) int(A)) N acts(A)) = &, and
(3) no action is in acts(A,) for infinitely many i.

1098 A. FEKETE ET AL.

fully delivered. Notice, as a consequence of this definition, that if a sequence Q
is in transit after B. then so is any subsequence of Q.

LemMmA 4.2, If B is a finite UL""-consistent sequence of unreliable layer
actions, Q is a sequence of packets that is in transit after B, and Q' is a
subsequence of Q, then (' is in transit after 3

Another immediate consequence of the definition is the following lemma,
which says that as further packets are sent, they can be added to the sequence
in transit.

LEmMmA 4.3. If B is a finite UL""-consistent sequence of unreliable layer
actions, ¢,q, -+ q, Is in transit after B, and q\q5 -+ q; is a finite sequence of
packets, then the sequence

B’ = Bsendp" " (q')sendp™ " (g4) -~ sendp*-"(q})

is a UL""-consistent sequence and the sequence of packets q,q, *** q,.q} - q} is
in transit after B'.

The following lemma says that, any sequence of packets in transit can be
delivered without violating the specification of an unreliable layer.

LEMMA 4.4, If B is a finite UL""-consistent sequence of unreliable laver
actions, and Q = q,q, - q, is a sequence of packets that is in transit after B3,
then Breup™“(q,) -+ rcep'“(q,) is a UL consistent sequence.

Recall that a universal unreliable channel is an unreliable channel whose fair
behaviors are all the sequences allowed by the specification UL* ", rather than
merely a subset of these. For our later work, it will be important to know that a
universal unreliable channel exists. We give the construction here, and leave it
to the reader to check that this automaton has the required behaviors. Note
that no property of the automaton is used in this paper other than the fact that
it is universal.

The I/0 automaton C*° has the inputs and outputs of UL*‘, and no
internal actions. The state of C** consists of a sequence queue of packets, an
array count of integers indexed by packet values, and a array keep of infinite
sets of positive integers indexed by packet values. The initial states of the
automaton are those states in which ¢ is empty and each entry count p] is
zero. Thus, each initial state is determined by a value for the array keep.

The transition relation for the automaton C** consists of all triples (s', 7. s)
described by the following code.?
sendp® "(p)

Effect: count] pl « count[p] + 1
if count| p] € keepl p], then append p to queue

reep™ " (p)
Precondition: p is at head of queue
Effect: delete p from front of queue

The partition puts all the output actions of C*" in a single class.

* This style of describing 1/0 automata by giving preconditions (i.e., conditions on ') and effects
(e, imperatives to be executed sequentially to transform s’ to give s) is used m [10]. It 1s not
fundamental to the model, but is rather a notational convenience for describing sets of triples.

Impossibility of Reliable Communication in Crashes 1099

crasht crash”

send rcy

RELIABLE LAYER

FiG. 3. A reliable layer implementation.

Thus, i € keepl p] means that the ith time packet value p is sent; it will
succeed in being delivered. The fact that each keepl p] is infinite ensures that
(ULS) is satisfied by fair behaviors of C*".

LEMMA 4.5. The automaton C*" is a universal unreliable channel.

5. Reliable Layer Implementation

In this section, we define a *“reliable communication protocol,” which is
intended to be used to implement the reliable layer using the services provided
by the unreliable layer. A reliable communication protocol consists of two
automata, one at the transmitting station and one at the receiving station.
These automata communicate with each other using two unreliable channels,
one in each direction. They also communicate with the outside world, through
the reliable layer actions we defined in Section 3.

Figure 3 shows how two protocol automata and two unreliable channels
should be connected, in a reliable layer implementation.

5.1. RELIABLE COMMUNICATION PrROTOCOLS. We define a reliable commu-
nication protocol syntactically, as two automata that have the correct action
names to be used in a system connected as in Figure 3.

A transmitting automaton is any 1/0 automaton having an action signature
as follows:

Input actions:

send(m), m € M

reup”'(p), p € P

crash’

Output actions:
sendp”'(p), p € P

In addition, there can be any number of internal actions. That is, a transmit-
ting automaton receives requests from the environment of the reliable layer to
send messages to the receiving station. It also receives packets over the
unreliable channel from the receiving station r, and notification of crashes at
the transmitting station. It sends packets over the unreliable channel to r.

1100 A. FEKETE ET AL.

Similarly, a receiving automaton is any 1/0 automaton having an action
signature as follows:

Input actions:
rCL'pI'r(p), p I P
crash’

Output actions:
sendp”'(p), p € P
rce(m). me M

Again, there can also be any number of internal actions. That is, a receiving
automaton receives packets over the unreliable channel from the transmitting
station ¢, and notification of crashes at the receiving station. It sends packets to
¢ over the unreliable channel to ¢, and it delivers messages to the environment
of the reliable layer.

A reliable conununication protocol is a pair (A', A”), where A’ is a transmit-
ting automaton and A" is a receiving automaton.

We close this subsection with a lemma describing a useful property of
reliable communication protocols interacting with an unreliable layer. It says
that from any point in an execution, the system can continue to run in some
way, with no further crashes nor requests for message transfer. so that no
packets sent before that point are delivered after it.

Recall that for any specification T and sequence B we write B|T for
the subsequence of B consisting of actions of 7. For brevity, we say that
B is UL-consistent provided BIUL"" is UL"’-consistent and B|UL"" is UL'-
consistent.

LEMMA 5.1. Let (A", A') be a reliable communication protocol. Let a be
a finite UL-consistent execution of A = A" o A". Then there exists a fair UL-
consistent execution af3 of A such that

(1) B contains no send or crash events, and
(2) B is UL-consistent

ProoF. (Sketch) The sequence B is constructed inductively, interleaving
transitions that involve actions from each equivalence class of the fairness
partition of 4. However, whenever a sendp(p) event is added to the execution,
it is immediately followed by a corresponding rcup(p) event. This is allowed by
A since rerp(p) is an input to the composition, and UL-consistency is obviously
maintained. The dovetail ensures that the execution «af constructed is a fair
execution of A. Since every sendp event is followed by its corresponding rcvp
event, it follows that the suffix B is UL-consistent. O

5.2. CORRECTNESS OF RELIABLE COMMUNICATION PROTOCOLS. Now we are
ready to define correctness of reliable communication protocols. Informally, we
say that a reliable communication protocol is “correct” provided that when it is
composed with any pair of unreliable channels (from ¢ to r and from r to ¢,
respectively), the resulting system yields correct reliable layer behavior. This
reflects the fundamental idea of layering, that the implementation of one layer
should not depend on the details of the implementation of other layers, so that
cach layer can be implemented and maintained independently. Formally, we
say that a reliable communication protocol (A, A"} is correct provided that the
following is true. For all C"" and C”' that are unreliable channels from ¢ to r

Impossibility of Reliable Communication in Crashes 1101

and from r to ¢, respectively, hide, (D) satisfies RL, where D is the composi-
tion of A, A", C"', and C"', and ® is the subset of acts(D) consisting of sendp
and rcup actions. We need to hide the actions between the protocol and the
unreliable channels in order that the composition should have the signature
required for the reliable layer.”

The definition of correctness just given is somewhat difficult to work with,
because it involves universal quantification over all possible unreliable chan-
nels. We actually work with an alternative characterization, using only behav-
iors of the composition of A’ and A"

THEOREM 5.2. Let (A", A") be a reliable communication protocol. Then the
following are equivalent.

(1) (A', A") is correct.
(2) For every fair behavior B of A = A'o A, if B is UL-consistent, then B is
RL-consistent.

PROOF. Let @ be the set of all sendp and rcup actions. For one direction of
1mphcat10r1 assume that (A’, A") is correct. Let B8 be a fair behavior of A4 that
is UL-consistent. Let C*’ and C™' be the unreliable channels defined in
Section 4; Lemma 4.5 implies that these are universal unreliable channels.

Since B is UL'’-consistent, and "’ is a universal unreliable channel, it must
be that BIUL"" is a fair behavior of C"". Likewise, B|UL"" is a fair behavior of
C"'. Then Lemma 2.2 gives that 8 is a fair behavior of D = A" o C,
Therefore BIRL is a fair behavior of hzdeq,(D) since the actions of RL are
exactly the external actions of D that are not in &. Since (A', 4”) is correct
and C*" and C"' are unreliable channels from ¢ to r and r to ¢, respectively,
any fair behavior of hidey,(D) is RL-consistent. Thus, B|RL is RL-consistent,
which implies that 8 is RL-consistent, as required.

Conversely, suppose that for every fair behavior g of A, if B is UL-
consistent, then B is RL-consistent. Let C"" and C”' be arbitrary unreliable
channels from ¢ to r and from r to ¢, respectively, and let D = 4 C" o C"".
We must show that hide,(D) satisfies RL.

Let B’ be an arbitrary fair behavior of hide,(D). Then there is a fair
behavior 8 of D such that 8’ = B|RL. By Lemma 2.1, B|C"" is a fair behavior
of C*’, and since C*" is an unreliable channel, B|C"" is UL"’-consistent. That
is, BIUL"" is UL""-consistent. Likewise, B|UL"' is UL™-'-consistent. Thus, 8 is
UL-consistent. By hypothesis, B is RL-consistent, and so 8’ is RL-consistent.
Thus, B’ € behs(RL), as required. O

5.3. CRASHING ProTOCOLS. In this subsection, we define a constraint for
reliable communication protocols: a “crashing” property, which says that a
crash at either the transmitting or receiving station causes the corresponding
protocol automaton to revert back to its start state (thereby losing all informa-
tion in its memory). This property models the absence of nonvolatile storage.

We say that a transmitting automaton A’ is crashing, provided that there is a
unique start state g,, that (g, crash’, q,) is a step of A’, for every g € states(A*),
and that these arc the only crash’ steps. Similarly, we say that a receiving
automaton A’ is crashing, provided that there is a unique start state g, that

* Recall that in the 1/0 automaton model, actions between components of a system are outputs
of the system as a whole.

1102 A. FEKETE ET AlL.

(g, crash’', q,) is a step of A’, for every g € states(A”), and that these are the
only crash’ steps. A reliable communication protocol (A’, 4') is said to be
crashing, provided that A" and A" are both crashing.

6. The Impossibility Proof

A useful property for a reliable communication protocol would be the ability to
tolerate crashes of the machines on which it runs. We consider the case in
which a crash causes all the memory at the site to be lost; we model this by
having a crash cause the automaton at that site to revert to its initial state. In
this section, we present our impossibility result, that no correct reliable
communication protocol can tolerate arbitrary crashes (without access to some
nonvolatile memory).

The main idea of our proof is to assume the existence of a reliable
communication protocol that is both correct and crashing, and to find two
finite executions, « and &, that leave both the transmitting and receiving
automata in the same states, although in « every message has been delivered
and in & there is an undelivered message. The protocol must eventually deliver
the missing message in any fair extension of & in which no more crashes occur,
even if no further messages are submitted by the environment. Then a
corresponding extension of o« will cause some message to be delivered,
although every message sent had already been delivered. This contradicts the
claimed correctness of the protocol.

In our proof, « contains the sending and delivery of a single message, while
& contains many crash events and ends with the sending of a message that is
not delivered. The construction of & from « is given in Lemma 6.3, using the
following observation: It is possible to find a behavior that can leave the end
stations in the same states that they have after step k of the execution «, but
where a particular sequence of packets (which are received by one station in
the first & steps of «) are in transit. This is shown carefully in Lemma 6.2 by
induction. The induction step (which is Lemma 6.1) uses the fact that the
inputs, up to step k of «, of a given station depend on outputs of the other
station up to step k — 1.

We now begin the rigorous proof, following the sketch above. We first
establish some notation. For x € {r,r}, we define ¥ so that ¥ € {¢,r} and
x #X, that is, f = r and 7 = ¢. For a finite execution a = s,m,s, -+ m,s, of
Ao A', x € {t,r}, and an integer k, 0 < k < n, we define the following:
—in(a, x,k) is the sequence of packets received by A* during 7 7, --- 7,

the first k& steps of «,

—out(a, x, k) is the sequence of packets sent by A" during the first k steps of

a?

—state(a, x, k) is the state of A" in s,,
—ext(a, x, k) is the sequence of external actions of A~ during the first k steps

of a.

Note that if « is UL-consistent, then in(«e,x.k) is a subsequence of
out{a, x, k — 1).

The first lemma is used for the inductive step in the inductive proof of
Lemma 6.2. Speaking informally, we use it to “pump up” the sequence of
packets waiting in the channels, as illustrated in Figure 4. If a behavior can
leave the system so that in transit from x to x, there is a sequence of packets

Impossibility of Reliable Communication in Crashes 1103

FiG. 4. Illustration for Lemma 6.1.

l
out(a z, k)
0 XX '

state(a z, k)

that is the same as the sequence of packets delivered across that channel in a
reference execution, then we can extend the behavior by crashing the destina-
tion station A* and replaying that station’s part of the reference execution, and
this can leave the system so that a sequence of packets is in transit in the other
direction, equal to the packets sent by A" in the reference execution.

LEmMMA 6.1. Let (A’, A") be a crashing reliable communication protocol. Let
a = §s,ms; - m,s, be a finite UL-consistent execution of A = A" o A" such that
no crash events occur in , -+ m,. Suppose x € {t,r}, k is an integer with
0<k=<nand B is a finite UL-consistent behavior of A with the following
properties:

(1) B can leave A in a state where the state of A* is s, and
(2) the sequence in(a, x, k) of packets is in transit from X to x after B.

Let vy = crash*ext(«, x, k), a sequence of actions of A*. Then we have the
following properties of By:

(1) By is a finite UL-consistent behavior of A,

(2) By can leave A in the state where the state of A* is s, and the state of A* is
state «, x, k), and

(3) the sequence out(a, x, k) of packets is in transit from x to x after By.

PROOF. As notation, let q,, g, etc. denote the packets such that in(a, x, k)
= q,q, "+ q,- We consider the sequence By.

Now BylA* is just (Bl A%)crash*(ext(a, x, k)). Since B|A* is a behavior of
A*, crash* is an input of A* that takes A4* to its initial state, and ext(a, x, k) is
the behavior of an execution fragment of A" that starts in the initial state of
A* and ends in state(o, x, k), we deduce that By|A* is a finite behavior of 4*
that can leave A”* in state state(a, x, k).

Also, BylA™ is just B| A" which is a finite behavior of A* that can leave A*
in state s. By Lemma 2.2, By is a finite behavior of A that can leave A in the
state where the state of A4* is s and the state of A* is state(«, x, k).

1104 A. FEKETE ET AL.

Now y|UL™* is rcup™'(q,) - rctp™*(g,) by construction. Since Q is in
transit from X to x after B, we see by Lemma 4.4 that By|UL™' is UL"*-
consistent. Also, y|UL** consists of the sequence of sendp“® actions in
mm, -+ . By Lemma 4.3, By|UL** is UL"*-consistent; thus, By is UL-con-
sistent. Lemmas 4.3. and 4.2 together imply that the sequence out(«, x, k) of
packets is in transit from x to ¥ after By. O

The next lemma says that we can find a behavior that can leave the protocol
in the same state as in any suitable execution «, and with the same sequence
of packets as those sent in « in transit in one of the channels.

LemMma 6.2 Let (A, A’) be a crashing reliable communication protocol. Let
a = symys; 0 m,s, be a finite UL-consistent execution of A = A" o A" such that
no crash events occur in m, -+ ,. Suppose x < {t,r} and k is an integer, with
0 <k <n, such that either k =0 or w, € acts(A*). Then there is a finite
sequence 3 with the following properties:

) B is a UL-consistent behavior of A,
(2) B can leave A in the state where the state of A* is state(«, x, k), and the state
of A* is state(&, X, k), and
(3) the sequence out(«, x, k) of packets is in transit from x to X after B.

PrOOF. We use induction on k.

The base case, when & = 0, is trivial, as state(«, x,0) is the initial state of
A*, state(er, X,0) is the initial state of A%, and out(a, ¥,0) is the empty
sequence. Thus, we may take S to be the empty sequence of actions.

Now we suppose that k > 0. and we assume inductively that the lemma is
true for all smaller values of k.

If all the actions w,,---, 7, are in acts(A*), then out(a, ¥, k) must be the
empty sequence, and therefore we deduce that in(a, x, k) is also empty. Also,
state(., %, k) must be equal to state(a, %, 0). Thus, the empty sequence S, is a
finite UL-consistent behavior of A4, B, can leave A° in state state(a, X, k), and
in(a, x, k) is in transit from X to x after B,. We can therefore apply Lemma
6.1 to obtain 8 as an extension of ;.

Otherwise, let j be the greatest integer such that 1 <j <k and ™ e
acts(A*). Notice that in fact j < k, since 7, € acts(A*). Then in(e, x, k) is a
subsequence of out(a, X,), and state(a, X, k) must equal state(a, X, j). By
using the inductive hypothesm we get a finite UL-consistent behavior 8, of A4,
where B, can leave A" in state state(a, X, j), and the sequence out(a, %, j) is
in transit from % to x after 8,. By Lemma 4.2, the subsequence in(«, x. k) is
also in transit from X to x after 8;. We can therefore apply Lemma 6.1 to
obtain B as an extension of B,. 0O

We can now use Lemma 6.2 to find a behavior of a crashing reliable
communication protocol that can lead to states identical to those at the end of
a given execution, but in which a message has been sent but not received.

LEmMmA 6.3. Let (A, A”) be a crashing reliable communication protocol. Let
a = soms, - m,s, be a finite UL-consistent execution of A = A' o A" such that

beh(a)|RL = send(m)rcv(m).

Impossibility of Reliable Communication in Crashes 1105

Then there is a finite UlL-consistent execution, &, of A with the following
properties:

(1) &|RL ends in send(m).
(2) & ends in a state in which the state of A" is state(«, t, n) and the state of A is
state(a, r, n).

PROOF. Let k denote the greatest integer less than or equal to » such that
m, € acts(A’). That is, k is the index of the last event in « that occurs at the
receiving station (since rco(m) is an action of A", there is some & satisfying this
description). Lemma 6.2 yields a finite UL-consistent behavior 8 of A4 with
the following properties: B’ can leave A in a state where the state of A" is
state(a, r, k), and the sequence out(a, r, k) of packets is in transit from r to ¢
after B'.

Since the sequence in(a,t, n) is a subsequence of out(«a,r, k), Lemma 4.2
implies that in(«, t, n) is in transit from r to ¢ after B’.

We now apply Lemma 6.1 to see that, for y = crash’ext(a, t,n), B'y is a
finite UL-consistent behavior of A, B'y can leave A4 in the state where the
state of A" is state(a,r. k), and the state of A’ is state(a,r, n). We set
B = By.

We now note, using the definition of &, that state(«,r, k) = state(a, r, n).
Since vy is crash'ext(a, t,n) and ext(a,t, n)|RL = (beh(a)|A)IRL = send(m),
we have that B|RL ends in crash'send(m). Let & be any finite execution of A
with beh(&) = B, that ends in the state where the state of A" is state(a,r, k)
and the state of A’ is state(«, t, n). We know that such & must exist, because
B can leave A in the indicated state. O

Finally, we can use the results above to prove our impossibility theorem.

THEOREM 6.4. There is no crashing reliable communication protocol that is
correct.

PROOF. Assume that (A, 47) is such a protocol and let 4 = A4"> A4".

First, we claim that there is a finite UL-consistent execution a = sym s, -
s, of A such that beh(a)|RL = send(m)rcv(m). The existence of such an «
is proved by starting with an execution of A containing the single action
send(m) (which exists since A4 is input-enabled), and then using Lemma 5.1 to
get a fair UL-consistent execution of 4 whose behavior contains send(m) and
no other send or crash events. By Theorem 5.2, the execution’s behavior must
be RL-consistent. Since the action send(m) occurs in the behavior and is
followed by no crash events, property (RL4) implies that an rcv action appears,
and (RL2) shows that the action must be rcv(m). By (RL1), it must follow the
send(m) action, and (RL3) implies that no other rcv event can appear. We
obtain the finite execution « by truncating this fair execution after the state
following the rcv(m) event. It follows that beA(a)IRL is send(m)rcv(m).

Next we appeal to Lemma 6.3 to obtain a finite UL-consistent execution
& = 8,78, -~ 4,8, of A with the following properties: bei(&) ends in
send(m), and state(&. x, k) = state(a, x, n) for x € {¢, r}.

By Lemma 5.1, there is a fair UL-consistent execution of A that extends &
and contains no additional send or crash events. The projection of this
extension on the reliable layer actions must satisfy (RL4). Since the final
send(m) of & occurs in the extension in an unbounded crash interval, by (RL4)

1106 A. FEKETE ET AL.

and (RL1) the suffix of the extension after & contains a rcv event. Let a, be
the subsequence of this extension, starting at the action following the end of &
and ending at the state after the first following rco event. We see that
a,|RL = rco(m') for some ni’ (since the extension contains no send or crash
events), and that «, is UL-consistent. Also, the sequence consisting of the final
state of & following by «, is an execution fragment of A.

Since « and & end in the same state both in the transmitter and the
receiver, the sequence «; = aw, is a finite execution of A. It is UL-consis-
tent since each of a and «, are (using Lemma 4.1). Now beha(a)IRL =
send(m)rce(m)rcv(m').

Now we use Lemma 5.1 to get a fair UL-consistent extension of «; with no
additional send or crash events. The behavior of this extension contains exactly
one send event and at least two rcr events. Clearly no function cause can be
found for this behavior that satisfies (RIL3), so this behavior is not RL-con-
sistent. By Lemma 5.2, this contradicts the assumption that A4 is a correct
crashing reliable communication protocol. O

ACKNOWLEDGMENTS. We thank Baruch Awerbuch and Robert Gallager for
many useful discussions. We also thank Jennifer Welch and Boaz Patt-Shamir
for their comments on several versions of the paper. Michael Fischer and
Lenore Zuck gave us many helpful ideas for the modeling of communication
service specifications.

REFERENCES

1. AFEK, Y., ATTivA, H., FEKETE, A., FISCHER, M., LANCH, N.. MANSOUR. Y ., WANG. D.. AND
Zuck. L. Reliable communication over unrehable channels. Tech Rep. YALE /DCS /TR-
853. Yale Univ., New Haven. Conn Also. J. ACM. to appear.

2 AHO. A.. ULLMAN, J., WYNER. A., AND YANNAKAKIS, M. Bounds on the size and transmission
rate of communication protocols. Comput. Math Appl. 8 (1982), 205-214.

3. BARATZ, A., AND SEGALL, A Reliable link mitialization procedures. IEEE Trans. Commun.
COM-36 (Feb. 1988), 144-152

4. BARTLETT, K., SCANTLEBURY, R., AND WILKINSON, P. A note on reliable full-duplex trans-
mission over half-duplex links. Commun ACM 12. 5 (May 1969), 260-261

5 BELSNES, D. Single-message communication. IEEE Trans. Commun. COM-24 (Feb 1976).
190-193

6. CYPER, R. J. Communications Architecture for Distributed Systems. Addison-Wesley, Reading,
Mass , 1978.

7. Le Lann, G . AND Le GorFr, H. Verification and evaluation of communication protocols.
Comput. Netw. 2 (Feb. 1978), 50-69.

8. Lyncr, No A, A hundred impossibility proofs for distributed computing In Proceedings of
8th Annual ACM Symposwm on Prnciples of Dustributed Computing (Edmonton. Alberta,
Canada, Aug. 14-16). ACM. New York, 1989, pp. 1-28.

9. LyNcH, N. A, AND TUITLE, M. R Hierarchical correctness proofs for distributed algorithms.
In Proceedings of the 6th Annual ACM Symposwm on Principles of Distributed Computing
(Vancouver, B.C.. Canada. Aug. 10-12). ACM. New York, 1987, pp. 137-151.

10. LxncH, N. A, anp TuTTLE, M. R, An introduction to input /output automata. CWI Q. 2, 3
(Sept. 1989), 219-246

11. MANSOUR. Y., AND ScCHILBER, B. The ntractability of bounded protocols for non-FIFQ
channels J .4CM 39, 4 (Oct. 1992), 783-799,

12. McQUILLAN, J. M., AND WALDEN, D C. The ARPA network design decisions. Comput.
Nemw. 1 (Aug 1977), 243-289.

13. SunsHINE, C., AND DALAL. Y. Connection management m transport protocols. Comput
Netw. 2 (Dec. 1978), 454-473,

14, TANENBAUM, A, Computer Networks. 2nd cd. Prentice-Hall, Englewood Cliffs, N.J , 1988

Impossibility of Reliable Communication in Crashes 1107

I5. TemPERO, E., AND LADNER, R. Tight bounds for weakly bounded protocols. In Proccedings
of the 9th Annual ACM Symposwim on Principles of Distributed Computing (Quebec City, Que.,
Canada, Aug. 22-24). ACM, New York, 1990, pp. 205-218.

16. WaNG, D., AND Zuck, L. Tight bounds for the sequence transmission problem. In Proceed-
ings of the 8th Annual ACM Symposium on Principles of Distributed Computing (Edmonton,
Alberta, Canada, Aug. 14-16). ACM, New York, 1989, pp. 73—84.

17. WECKER, S. DNA: The Digital Network Architecture. IEEE Trans. Commun. COM-28 (Apr.
1980), 510-526.

18. ZimMERMANN, H. OSI reference model-The ISO model of architecture for open systems
interconnection. IEEE Trans. Commun. COM-28 (Apr. 1980), 425-432.

RECEIVED SEPTEMBER 1990: REVISED APRIL 1992; ACCEPTED APRIL 1992

Journal of the Association tor Computing Machinery, Vol 40, No 5, November 1993

