
On the Correctness of Orphan Management Algorithms

MAURICE HERLIHY

Digital Equipment Co~oration, Cambridge, Massachusetts

NANCY LYNCH

Massachusetts Institute of Technology, Cambridge, Massachusetts

MICHAEL MERRITT

AT& T Bell Laboratones, Murray Hill, New Jersey

AND

WILLIAM WEIHL

Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract. In a distributed system, node failures, network delays, and other unpredictable occur-

rences can result in o~han computations—subcomputations that continue to run but whose

results are no longer needed. Several algorithms have been proposed to prevent such computa-
tions from seeing inconsistent states of the shared data. In this paper, two such orphan
management algorithms are analyzed. The first is an algorithm implemented in the Argus
distributed-computing system at MIT, and the second is an algorithm proposed at Carnegie-

Mellon. The algorithms are described formally, and complete proofs of their correctness are
given.

The proofs show that the fundamental concepts underlying the two algorithms are very similar
in that each ran be regarded as an implementation of the same high-level algorithm. By exploiting

M. Herlihy was sponsored by the Defense Advanced Research Projects Agency (DOD), ARPA
Order No. 4976 (Amendment 20), under Contracts F33615-84-K-1 520 and F33615-87-C-1499,

monitored by the Avionics Laboratory, Air Force Wright Aeronautical Laboratories, Wright-

Patterson AFB. N. Lynch was supported by the National Science Foundation under Gmnts DCR
83-02391 and CCR 86-11442, the Defense Advanced Research Projects Agency (DARPA) under
Contract NOO014-83-K-0125, the Office of Naval Research under Contract NOO014-85-K-0168,

and the Office of Army Research under Contract DAAG29-84-K-O058. W. Weihl was supported
by an IBM Faculty Development Award, the National Science Foundation under grants DCR
85-100014 and CCR 87-16884, and the Defense Advanced Research Projects Agency (DARPA)

under Contract NOO014-83-K-0125.

Authors’ addresses: M. Herlihy, Digital Equipment Corporation, Cambridge Research Labora-
tory, 1 Kendall Square, Cambridge, MA 02139; N. Lynch, Massachusetts Institute of Technology,
Laboratory for Computer Science, 545 Technology Square, Cambridge, MA 02139; M. Merritt,
AT& T Bell Laboratories, 600 Mountain Avenue, Murray Hill, NJ 07974; W. Weihl, Mas-
sachusetts Institute of Technology, Laboratory for Computer Science, 545 Technology Square,

Cambridge, MA 02139.

Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computmg Machinery. To copy otherwme, or to repubhsh, requires a fee and/or
specific permission.

@ 1992 ACM 0004-5411/92/1000-0881 $01.50

Journal of the Assocmtmn for Computmg Machinery, Vol 39, No 4, October 1992, pp 881 –930

882 M. HERLIHY ET AL.

properties of information flow within transaction management systems, the algorithms ensure that

orphans only see states of the shared data that they could also see if they were not orphans. When
the algorithms are used in combination with any correct concurrency control algorlthm, they
guarantee that all computations, orphan as well as nonorphan, see consistent states of the shared
data.

Categories and Subject Descriptors: D. 1.3 [Programming Techniques]: Concurrent Programming

—distributed progrrznzrnbzg; D.3.2 [Programming Languages]: Language Classifications—
concurrent, dzstnbuted, and parallel languages; D.4. 1 [Operating Systems]: Process Management—
concawerzcy: D.4.5 [operating Systems]: Reliabili~—@lt-@lerarzce: F.3. 1 [Logics and Meaning of
Programs]: Specifying and Verifying and Reasoning about Programs—assertions; i)zturimzts;

spec@catzon techizlques; H.2.3 [Database Management]: Languages—database (persistent) pro-

grarnrnizg languages; H.2.4 [Database Management]: Systems—concurrency: dwti”buted systems;

transaction processing

General Terms: Algorithms, Languages, Rehability, Theory, Verification

Additional Key Words and Phrases: Argus, avalon, atomic actions, camelot, input–output au-
tomata, recovery, serializability

1. Introduction

Nested transaction systems have been explored in a number of recent research

projects (e.g., see [1], [8], [9], [21], and [23]) as a means for organizing

computations in distributed systems. Nested transactions, like ordinary transac-

tions, provide a simple construct for masking the effects of concurrency and

failures. Nested transactions extend the usual notion of transactions [3] to

permit concurrency within a single transaction. They also provide a greater

degree of fault-tolerance by isolating a transaction from the failures of its

descendants.

In distributed systems, various factors, including node crashes and network

delays, can result in orphan computations—subcomputations that continue to

run even though their results are no longer needed. For example, in the Argus

system [9], a node making a remote request may give up because a network

partition or some other problem prevents it from communicating with the

other node. This may leave a process running at the called node; this process is

an orphan. The orphan runs as a descendant of the transaction that made the

call. Since the caller gives up by aborting the transaction that made the call,

the orphan will not have any permanent effects on the observed state of the

shared data.

As discussed in [10] and [17], even if a system is designed to prevent orphans

from permanently affecting shared data, orphans are still undesirable, for two

reasons. First, they waste resources: they use processor cycles, and may also

hold locks, causing other computations to be delayed. Second, they may see

inconsistent states of the shared data. For example, a transaction might read

data at two nodes, with some invariant relating the values of the different data

objects. If the transaction reads data at one of the nodes and then becomes an

orphan, another transaction could change the data at both nodes before the

orphan reads the data at the second node. This could happen, for example,

because the first node learns that the transaction has aborted and releases its

locks. Although the inconsistencies seen by an orphan should not have any

permanent effect on the shared data in the system, they can cause strange
behavior if the orphan interacts with the external world; this can make

programs difficult to design and debug.

Correctness of Orphan Management Algorithms 883

Several algorithms have been proposed to prevent orphans from seeing

inconsistent information. Early work in the area includes [19], which describes

algorithms for detecting and eliminating orphans that arise because of node

crashes. Nelson’s work did not assume an underlying transaction mechanism,

so it was difficult to assign simple semantics to abandoned computations.

Recent work [10, 17, 24] has studied orphans in the context of a nested

transaction system, in which an abandoned computation can be aborted,

preventing it from having any effect on the state of the system. The goal of the

algorithms in [10], [17], and [24] is to detect and eliminate orphans before they

can see inconsistent information.

1.1. NEW RESULTS. In this paper, we give formal descriptions and correct-

ness proofs for the two orphan management algorithms in [10] and [17]. The

algorithm in [10] is currently in use in the Argus system. 1 Our proofs are

completely rigorous, yet straightforward. In addition, both the presentations

and the proofs follow the intuitions that the designers have used in describing

the algorithms. Although the two algorithms appear to be quite different, our

proofs show that the fundamental concepts underlying them are very similar; in

fact, each can be regarded as an implementation of the same high-level

algorithm.

Our results relate the behavior of a system, S’, containing an orphan

management algorithm to that of a corresponding system, S, having no orphan

management; namely, S‘ must “simulate” S in the sense that each transaction

in S’ must see a view of the system that it could see in an execution of S in

which it is not an orphan. (A transaction’s “view” of the system is its sequence

of interactions with the system, including the results of operations and sub-

transactions invoked by the transaction.) When system S includes a concur-

rency control algorithm that ensures that nonorphans see consistent views, our

results imply that in S‘, all transactions, orphan as well as nonorphan, see

consistent views. These results provide formal justification for informal claims

sometimes made by the algorithms’ designers that the algorithms work in

combination with any concurrency control algorithm.

The formal model used in this paper is based on that in [4], [12], and [13]. In

[12] and [13], Lynch a~d Merritt develop a model for nested transaction

systems including aborts, and use the model to show that an exclusive locking

variation of Moss’s algorithm [18] ensures correctness for nonorphans. The

paper [4] contains improvements to the basic model in [12] and [13], plus proofs

that Moss’s read–write algorithm and a more general commutativity-based

locking algorithm also ensure correctness for nonorphans. In this paper, we use

the same model to describe the two orphan management algorithms mentioned

above, to state correctness properties, and to prove the algorithms correct.

1.2. RELATED WORK. Earlier work on verifying the Argus orphan manage-

ment algorithm appears in [6]. This work is based on an earlier model for

nested transaction systems that is described in [11]. The results in [6] are less
general than those presented here, since they apply only to the specific

1 Our analysis covers only orphans resulting from aborts of transactions that leave running
descendants; there is another component of the Argus algorithm that handles orphans that result
from node crashes in which the contents of volatile memory are destroyed.

884 M. HERLIHY ET AL.

concurrency control algorithm (nested locking) used by Argus. Moreover, the

presentation there is much more complex than the one in this paper. Much of

the complexity in [6] arises because the treatments of concurrency control and

orphan management are intermingled, whereas here we are able to separate

the two. The model in [4], [12], and [13] provides a convenient set of concepts

for describing this separation.

Other work using the model of [4], [12], and [13] includes [2], [5], and [20];

these papers prove correctness of algorithms for replica management, time-

stamp-based concurrency control, and distributed transaction commit,

respectively. The fact that it is possible to use the model to explain such a

variety of transaction-processing algorithms is strong evidence that it is a useful

tool for modeling and analyzing nested transaction systems.

In an earlier version of this paper [7], we presented similar results proving

the correctness of the two algorithms analyzed here. The results in that paper,

however, were restricted to a particular class of systems appropriate for

modeling locking algorithms, and did not apply directly to systems using

timestamps and other mechanisms. In this paper, we generalize the results of

the earlier paper to apply to a wide range of systems. The general results

described here are somewhat abstract; to make them more concrete, we give

two examples illustrating how they apply to specific kinds of systems.

1.3. ORGANIZATION OF THIS PAPER. The remainder of the paper is orga-

nized as follows: Section 2 contains some preliminary mathematical definitions

and a brief description of I/O automata, which serve as the formal foundation

for our work. This section may be skipped on first or cursory reading, and is

included in order to make the technical presentation of this paper entirely

self-contained. Section 3 contains a definition of basic systems, a general class

of transaction-processing systems to which our results apply. These are nested

transaction systems in which orphans may occur, and for which the problem of

managing orphans can be precisely and intuitively stated. A basic system

models the components of a nested transaction system as 1/0 automata. Each

user program is modeled as a transaction automaton, and the rest of the

system (which may include a division into objects, and may include concurrency
control and recovery algorithms) is modeled as a single basic database automa-

ton. A basic system is said to mange orphans correctly if it ensures a property

called sen”al correctness for all transactions, orphans, and nonorphans.

Section 4 contains some definitions and results about the dependencies

among different events in a basic system; these concepts underlie the results in

the rest of the paper.
Sections 5 through 8 contain the principal contributions of this paper, in

which we prove the correctness of the two orphan management algorithms

in [10] and [17]. Our proofs have an interesting structure. We first define a

simple abstract algorithm that uses global information about the history of the

system, and show that it ensures that orphans see consistent views. We then

formalize the Argus algorithm and the clocked algorithm from [17] in a way

that requires the use of local information only, and show that each simulates

the more abstract algorithm. The simulation proofs are quite simple, and do

not require reproving the properties already proved for the abstract algorithm.

The correctness of the Argus and clocked algorithms then follows directly from

the correctness of the abstract algorithm.

Correctness of Orphan Management Algorithms 885

Each orphan management algorithm is described as a system obtained by

transforming an arbitrary basic system without orphan management. Each of

these systems contains the same transactions as the given basic system, but

each manages orphans using a different basic database. The abstract algorithm

is modeled by the jiltered database, which maintains information about the

global history of the system, and uses tests based on this history information to

prevent orphans from learning that they are orphans. The Argus database

models the behavior of the Argus orphan management algorithm [10]; it

manages orphans using tests based on local information about direct depen-

dencies among system events. The strictly filtered database models another

abstract algorithm, introduced to simplify the proof of the correctness of the

algorithm in [17]; it also uses tests based on global history information, and is

even more restrictive than the filtered database. Finally, the clock database

models the orphan management algorithm from [17]; it manages orphans using

information about logical clocks. Each of these four databases is described as

the result of a transformation of the basic database.

We prove that the filtered system (the system consisting of the transactions

and the filtered database) simulates the basic system in the sense that all

transactions, including orphans, see a “view” that they could see in the basic

system in an execution in which they are not orphans. It follows that if the

basic system ensures serial correctness for nonorphan transactions, then the

filtered system ensures serial correctness for all transactions. We also prove

that the Argus system implements the filtered system, and so inherits the same

correctness property. Similarly, we prove that the clock system implements the

strictly jiltered system, which in turn implements the filtered system, thus

showing that the clock system has the same correctness property as the filtered

system.

Section 9 makes some of the preceding general concepts more concrete by

describing two particular types of basic systems, taken from other work using

this model. The first kind of basic system, a gerzeric system, is appropriate for

describing locking algorithms, while the second kind of basic system, a pseudo-

time system, is appropriate for describing timestamp-based algorithms. Both

kinds of systems specialize the notion of a basic system by splitting the basic

database automaton into two kinds of components: an object automaton for

each object in the system and a controller automaton that links the transac-

tions and objects together. The concurrency control and recove~ performed by

the system is encapsulated within the object automata. The two kinds of

systems differ in that they have slightly different interfaces between the objects

and the controller. Particular information flow dependencies are described for

both of these kinds of basic systems.

Section 10 contains a summary of our results and some suggestions for

further work.

2. Formal Preliminaries

An irrejlexiL’e partial order is a binary relation that is irreflexive, antisymmetric,

and transitive.
The formal subject matter of this paper is concerned with finite and infinite

sequences describing the executions of automata. Usually, we are discus-

sing sequences of elements from a universal set of actions. Formally, a se-

quence ~ of actions is a mapping from a prefix of the positive integers to the

886 M. HERLIHY ET AL.

set of actions. We describe the sequence by listing the images of successive

integers under the mapping, writing ~ = T1 Tz rr~ .”. .Z Since the same action

may occur several times in a sequence, it is convenient to distinguish the

different occurrences. Thus, we refer to a particular occurrence of an action in

a sequence as an euent. Formally, an event in a sequence P = Wlmz . . . of

actions is an ordered pair (i, m), where i is a positive integer and n- is

an action, such that w,, the ith action in ~, is T.

A set of sequences P is prefix-closed provided that whenever f3 e P and y

is a prefix of ~, it is also the case that -y c P. Similarly, a set of sequences P is

limit-closed provided that any sequence all of whose finite prefixes are in P

is also in P. We refer to any nonempty, prefix-closed, and limit-closed set of

sequences as a safe~ prope~.

2.1. THE INPUT/ OUTPUT AUTOMATON MODEL. In order to reason care-

fully about complex concurrent systems such as those that implement atomic

transactions, it is important to have a simple and clearly defined formal model

for concurrent computation. The model we use for our work is the input/out-

put automaton model [15, 16]. This model allows careful and readable descrip-

tions of concurrent algorithms and of the correctness conditions that they are

supposed to satis~. The model can serve as the basis for rigorous proofs that

particular algorithms satisfy particular correctness conditions.
This subsection contains an introduction to a special case of the model that

is sufficient for use in this paper. In particular, in this paper we consi-

der properties of finite executions only, and do not consider liveness or

fairness properties.

Each system component is modeled as an 1/0 automaton, which is a

mathematical object somewhat like a traditional finite-state automaton. How-

ever, an 1/0 automaton need not be finite-state, but can have an infinite-state

set. The actions of an 1/0 automaton are classified as either input, output, or

internal. This classification is a reflection of a distinction between events (such

as the receipt of a message) that are caused by the environment, events (such

as sending a message) that the component can perform when it chooses and

that affect the environment, and events (such as changing the value of a local

variable) that a component can perform when it chooses, but that are unde-

tectable by the environment except through their effects on later events. In the

model, an automaton generates output and internal actions autonomously, and

transmits output actions instantaneously to its environment. In contrast, the

automaton’s input is generated by the environment and transmitted instanta-

neously to the automaton. The distinction between input and other actions is

fundamental, based cm who determines when the action is performed: an

automaton can establish restrictions on when it will perform an output or

internal action, but it is unable to block the performance of an input action.

2.1.1. Action Signatures. The formal description of an automaton’s actions

and their classification into inputs, outputs, and internal actions is given by its

action signature. An action signature S is an ordered triple consisting of three

pairwise-disjoint sets of actions. We write in(S), out(S), and int(S) for the three

components of S, and refer to the actions in the three sets as the input actions,

2 We use the symbols /3, y,... for sequences of actions and the symbols m, ~, and + for
indiwdual actions.

Correctness of Orphan Management Algorithms 887

output actions, and internal actions of S, respectively. We let ext(S) = in(S) U

out(S) and refer to the actions in ext(S) as the external actions of S. AIso, we let

local(S) = int(S) u out(S), and refer to the actions in local(S) as the locally

controlled actions of S. Finally, we let acts(S) = in(S) u out(S) U int(S), and
refer to the actions in acts(S) as the actions of S.

An external action signature is an action signature consisting entirely of

external actions, that is, having no internal actions. If S is an action signature,

then the external action signature of S is the action signature extsig(S) =

(in(S), out(S), 0), that is, the action signature that is obtained from S by
removing the internal actions.

2.1.2. Input/Output Automata. An inpzlt/output automaton A (also called

an I/O automaton or simply an automaton) consists of four components: 3

—an action signature sig(A),

—a set states(A) of states,

—a nonempty set start(A) c states(A) of start states,

—a transition relation steps(A) c states(A) x acts(sig(A)) x states(A), with the

property that for every state s’ and input action rr there is a transition

(s’, m-,s) in steps(A).

Note that the set of states need not be finite. We refer to an element

(s’, m, S) of steps(A) as a step of A. The step (s’, T,s) is called an input step of
A if T is an input action, and output steps, internal steps, external steps, and

local~ controlled steps are defined analogously. If (s’, rr, s) is a step of A, then T

is said to be enabled in s’. Since every input action is enabled in every state,

automata are said to be input-enabled. The input-enabling property means that

an automaton is not able to block input actions. If A is an automaton, we

sometimes write acts(A) as shorthand for acts(sig(A)), and likewise for in(A),

out(A), etc. An 1/0 automaton A is said to be closed if all its actions are

locally controlled, that is, if in(A) = 0.

Note that an 1/0 automaton can be nondeterministic, by which we mean

two things: that more than one locally controlled action can be enabled in the

same state, and that the same action, applied in the same state, can lead to

different successor states. This nondeterminism is an important part of the

model’s descriptive power. Describing algorithms as nondeterministically as

possible tends to make results about the algorithms quite general, since many

results about nondeterministic algorithms apply a fortiori to all algorithms

obtained by restricting the nondeterministic choices. Moreover, the use of

nondeterminism helps to avoid cluttering algorithm descriptions and proofs

with inessential details. Finally, the uncertainties introduced by asynchrony

make nondeterminism an intrinsic property of real concurrent systems, and so

an important property to capture in our formal model of such systems.

2.1.3. Executions, Schedules, and Behaviors. When a system is modeled by

an 1/0 automaton, each possible run of the system is modeled by an “execu-

tion,” an alternating sequence of states and actions. The possible activity of the
system is captured by the set of all possible executions that can be generated by

the automaton. However, not all the information contained in an execution is

3 1/0 automata, as defined in [15], also include a fifth component, which is used for describing
fair executions. We omit it here as it is not needed for the results described in this paper.

888 M. HERLIHY ET AL.

important to a user of the system, nor to an environment in which the system is

placed. We believe that what is important about the activity of a system is the

externally visible events, and not the states or internal events. Thus, we focus

on the automaton’s “behaviors’’-the subsequences of its executions consisting

of external (i.e., input and output) actions. We regard a system as suitable for a

purpose if any possible sequence of externally visible events has appropriate

characteristics. Thus, in the model, we formulate correctness conditions for an

1/0 automaton in terms of properties of the automaton’s behaviors.

Formally, an execution fragment of A is a finite sequence SOT,s ~V2 --- Vns ~

or infinite sequence sOmlslm2 “”” mnsn -”” of alternating states and actions of

A such that (s,, ml+,, s,+ ~) is a step of A for every i for which s,+, exists. An

execution fragment beginning with a start state is called an execution. We

denote the set of executions of A by execs(A), and the set of finite executions

of A by firzexecs(A). A state is said to be reachable in A if it is the final state of

a finite execution of A.

The schedule of an execution fragment a of A is the subsequence of a

consisting of actions, and is denoted by sched(a). We say that P is a schedule

of A if ~ is the schedule of an execution of A. We denote the set of schedules

of A by scheds(A) and the set of finite schedules of A by &wcheds(A).

The behalior of a sequence ~ of actions in acts(A), denoted by beh(~), is

the subsequence of ~ consisting of actions in ext(A). The belzavior of an

execution fragment a of A, denoted by beh(a), is defined to be beh(sched(a)).

We say that f? is a behal)ior of A if ~ is the behavior of an execution of A. We

denote the set of behaviors of A by behs(A) and the set of finite behaviors of A

by &zbehs(A).

We say that a finite schedule ~ of A can leale A irz state s if there is some

finite execution a of A with final state s and with sched(a) = ~. Similarly,

a finite behavior ~ of A can leave A in state s if there is some finite execution

a of A with final state s and with beh(a) = ~. An extended step of an

automaton A is a triple of the form (s’, ~, s), where s’ and s are in states(A), ~

is a finite sequence of actions in acts(A), and there is an execution fragment of

A having s’ as its first state, s as its last state, and p as its schedule.

If /3 is any sequence of actions and @ is a set of actions, we write ~ 10 to

denote the subsequence of ~ containing all occurrences of actions in 0. If A is

an automaton, we write (31A for ~ lacts(A).

2.2. COMPOSITION. Often, a single system can also be viewed as a combina-

tion of several component systems interacting with one another. To reflect this

in our model, we define a “composition” operation by which several 1/0

automata can be combined to yield a single 1/0 automaton. Our composition

operator connects each output action of the component automata with the

identically named input actions of any number (usually one) of the other

component automata. In the resulting system, an output action is generated
autonomously by one component and is thought of as being instantaneously

transmitted to all components having the same action as an input. All such

components are passive recipients of the input, and take steps simultaneously

with the output step.

2.2.1. Composition of Action Signatures. We first define composition of

action signatures. Let I be an index set that is at most countable. A collection

Correctness of O~han Management Algorithms 889

{S,}, e ~ of action signatures is said to be strong~ compatible if the following
properties hold:

(1) OUt(S1) n O@J) = 0 for all i, j = I such that i + j,

(2) int(Sl) n acts(S,) = @ for all i, j = I such that i #j,

(3) m action is in acts(S,) for infinitely many i.

Thus, no action is an output of more than one signature in the collection, and

internal actions of any signature do not appear in any other signature in the

collection. Moreover, we do not permit actions involving infinitely many

component signatures.

The composition S = HZ. ~ S, of a collection of strongly compatible action

signatures {S1}, ~ ~ is defined to be the action signature with

‘in(s) = U, ~, in(s~) – U, ● 1 out($),

‘OUt(S) = u ~● ~ OUt(si),

—int(S) = U, ● ~ int(S,).

Thus, output actions are those that are outputs of any of the component

signatures, and similarly for internal actions. Input actions are any actions that

are inputs to any of the component signatures, but outputs of no component

signature.

2.2.2. Composition of Automata. A collection {A,},. ~ of automata is said to

be strong~ compatible if their action signatures are strongly compatible. The

composition A = H,. ~ A, of a strongly compatible collection of automata

{A,},., has the following components:s

—sig(A) = ~,. ~ sig(A,),

—states(A) = H, ● ~ states,

—start(A) = Hz ● ~start(A,),

—steps(A) is the set of triples (s’, n-,s) such that for all i c I, (a) if T G acts(Al),

then (s’[i], w, s[i]) = steps(A1), and (b) if m @ acts(Ai), then s’[i] == s[i].G

Since the automata Ai are input-enabled, so is their composition, and hence

their composition is an automaton. Each step of the composition automaton

involves all the automata that have a particular action in their action signature

performing that action concurrently, while the automata that do not have that

action in their signature do nothing. We often refer to an automaton formed by

composition as a “system” of automata.

If a! = SO’iTISl “.” is an execution of A, let a /Ai be the sequence obtained by

deleting w,s~ when ~, is not an action of A,, and replacing the remaining SJ by

SJ[i]. Recall that we have previously defined a projection operator for action

sequences. The two projection operators are related in the obvious way:

sched(a IA,) = sched(a)IAZ, and similarly beh(a IAl) = beh(a)Iil,.
In the course of our discussions, we often reason about automata without

specifying their internal actions. To avoid tedious arguments about compatibil-

4A weaker notion called “compatibility” is defined in [15], consisting of the first two of the three
given properties only. For the purposes of this paper, only the stronger notion will be required.

5 Note that the second and third components listed are just ordinary Cartesian products, while the
~t component uses the previous definition of composition of action signatures.

We use the notation s[i] to denote the ith component of the state vector s.

890 M. HERLIHY ET AL.

ity, henceforth, we assume that unspecified internal actions of any automaton

are unique to that automaton, and do not occur as internal or external actions

of any of the other automata we discuss.

All of the systems that we use for modeling transactions are closed systems,

that is, each action is an output of some component. Also, each output of a

component will be an input of at most one other component.

2.2.3. Propetiies of Systems of Automata. Here we give basic results relating

executions, schedules, and behaviors of a system of automata to those of the

automata being composed. The first result says that the projections of execu-

tions of a system onto the components are executions of the components, and

similarly for schedules, etc.

PROPOSITION 1. Let {A ,}1~ ~ be a strongly compatible collection of automata,

andlet A= fl, EI A,. If a = execs(A), then alA, = execs(A,) for all i = 1.

Moreoller, the same result holds for j7nexecs, scheds, f%scheds, behs, and jinbehs

in place of execs.

Converses can also be proved for all the parts of the preceding proposition.

The following are most useful. They say that schedules and behaviors of

component automata can be “patched together” to form schedules and behav-

iors of the composition.

PROPOSITION 2. Let {A,}, ~ ~ be a strongly compatible collection of automata,

and let A = TIlef A,.

(1) Let P be a sequence of actions in acts(A). If /31A, E scheds(A1) for all

i ~ 1, then P e scheds(A).

(2) Let ~ be a finite sequence of actions in acts(A). If ~ IA, = jlnscheds(A,) for

all i = I, then ~ ● @scheds(A).

(3) Let ~ be a sequence of actions in ext(A). If ~ IA, ● behs(A,) for all i =1,

then /3 = behs(A).

(4) Let ~ be a finite sequence of actions in ext(A). If/3 IA, = jinbehs(A1) for all
i = 1, then P ● finbehs(A).

The preceding proposition is useful in proving that a sequence of actions is a

behavior of a system A: It suffices to show that the sequence’s projections are

behaviors of the components of A and then to appeal to Proposition 2.

2.3. IMPLEMENTATION. We define a notion of “implementation” of one

automaton by another. Let A and B be automata with the same external action

signature, that is, with extsig(A) = extsig(B). Then A is said to implement B if
finbehs(A) G finbehs(B). One way in which this notion can be used is the

following: Suppose we can show that an automaton B is correct, in the sense

that its finite behaviors all satisfy some specified property. Then, if another

automaton A implements B, A is also correct. One can also show that, if A

implements B, then replacing B by A in any system yields a new system in

which all finite behaviors are behaviors of the original system.
The definition of an implementation of B by A does not require that A

exhibit every possible behavior of B. Rather, B is viewed as describing the

acceptable behaviors, and the behaviors of A are constrained to be acceptable.

This constraint is easy to satisfy: A could simply never produce any outputs.

(Notice that A still has behaviors, since all automata are required to be

Correctness of Orphan Management Algorithms 891

input-enabled.) In other words, there is no requirement that A actually do

something. Such requirements take the form of liveness, which we do not

address in this paper. They can be handled within the 1/0 automaton model

using the parts of the model that deal with liveness.

One useful technique for showing that one automaton implements another is

to give a correspondence between states of the two automata. Such a corre-

spondence can often be expressed in the form of a kind of abstraction mapping

that we call a possibilities mapping, defined as follows: Suppose A and B are

automata with the same external action signature, and suppose f is a mapping

from states(A) to the power set of states(B). That is, ifs is a state of A, f(s) is a

set of states of B. The mapping f is said to be a possibilities mapping from A to

B if the following conditions hold:

(1) ~= eV:O~ start state SO of A, there is a start state t ~ of B such that

(2) flet s’ be a reachable state of A, t’ = f(s’) a reachable state of B, and

(s’, m,s) a step of A. Then there is an extended step (t’, y, t) of B (possibly
having an empty schedule) such that the following conditions are satisfied:

(a) ylext(B) = m-lext(A),

(b) t G f(s).

The following proposition shows that giving a possibilities mapping from A to

B is sufficient to show that A implements B.

PROPOSITION 3. Suppose that A and B are automata with the same external

action signature and there is a possibilities mapping from A to B. Then A

implements B.

2.4. PRESERVING PROPERTIES. Although automata in our model are unable

to block input actions, it is often convenient to restrict attention to those

behaviors in which the environment provides inputs in a sensible way, that k,

where the environment obeys certain well-fomzedness restrictions. A useful way

of discussing such restrictions is in terms of the notion that an automaton

preserves a property of behaviors: As long as the environment does not violate

the property, neither does the automaton. Such a notion is primarily interesting

for safety properties. Let O be a set of actions and P a safety property

for sequences of actions in 0. Let Abe an automaton with O fl int(A) = @.

We say that A preserues P if ~w 10 G P whenever ~ I@ = P, m G out(A), and

&-lA G finbehs(A).

Thus, if an automaton preserves a property P, the automaton is not the first

to violate P: as long as the environment only provides inputs such that the

cumulative behavior satisfies P, the automaton will only perform outputs such

that the cumulative behavior satisfies P. In many cases of interest, we have

@ G ext(A); note that even in this case, the fact that an automaton A preserves

P does not imply that all of A’s behaviors, when restricted to 0, satisfy P. It is

possible for a behavior of A to fail to satis~ P if an input causes a violation of
P. However, the following proposition gives a way to deduce that all of a

system’s behaviors satisfy P. The proposition says that, under certain condi-

tions, if all components of a system preserve P, then all the behaviors of the

composition satisfy P.

892 M. HERLIHY ET AL.

PROPOSITION 4. Let {A,},. ~ be a strongly compatible collection of automata

and let A = 111. ~ A,. Let @ be a set of actions such that @ n int(A) = 0, and

let P be a safety property for actions in @. Suppose that for each i E I, A,

presenes P. Then A presen’es P. Furthermore, if @ n i~d A) = 0, then

behs(A)l@ c P. That is, f ~ ● behs(A), then PI@ G p.

PROOF. Let /3 be a sequence of actions such that ~ I@ G P, m ~ out(A),

and &r 1A = finbehs(A). Then m E out(A,) for some i c I, and pm IA, ●

finbehs(A,), by Proposition 2. Since Al preserves P, pm I@ ~ P.

Now suppose that @ n in(A) = 0, and let ~ ● behs(A). Since A preserves

P, by a simple induction, every finite prefix of ~ I@ is in P. Then, ~ I@ e P, by

the limit-closure of P. ❑

3. Basic Systems

In this section, we define basic systems, the class of transaction-processing

systems to which our results apply. Basic systems generalize both the gene-

ric systems of [4] and the pseudotime systems of [2]. We also define correctness

conditions for basic systems, in particular, the notion of correct management of

orphans.

3.1. OVERVIEW. Transaction-processing systems consist of user-provided

transaction code, plus transaction-processing algorithms designed to coordinate

the activities of different transactions. The transactions are written by applica-

tion programmers in a suitable programming language. Transactions are per-

mitted to invoke operations on data objects. In addition, if nesting is allowed,

transactions can invoke subtransactions and receive responses from the

subtransactions describing the results of their processing.

In a transaction-processing system, the transaction-processing algorithms

interact with the transactions, making decisions about when to schedule

subtransactions and operations on data objects. The transaction-processing

algorithms include concurrency control and recovery algorithms. In many

interesting cases (e.g., for locking algorithms), the transaction-processing algo-

rithms can be naturally divided into a controller and a collection of objects,

where each object includes concurrency control and recovery algorithms appro-

priate for that object and the controller manages communication among the

transactions and objects. We do not, however, require this division for our

general results.

The transaction-processing systems studied in this paper are called basic

~stems, In the organization we consider, the transaction-processing algorithms
are represented by a component called a basic database. Each component of a

basic system is modeled as an 1/0 automaton. That is, each transaction is an

automaton, and the basic database is another automaton.

The nested structure of transactions is modeled by describing each transac-

tion and subtransaction in the transaction nesting structure as a separate 1/0

automaton. If a parent transaction T wishes to invoke a child transaction T’, T

issues an output action that “requests that T’ be created. ” The basic database

receives this request, and at some later time might issue an action that is an

input to the child T’ and corresponds to the creation of T’. Thus, the different

transactions in the nesting structure comprise a forest of automata, communi-

cating with each other indirectly through the basic database. The highest-level

Correctness of Orphan Management Algorithms 893

transactions, that is, those that are not subtransactions of any other transac-

tions, are the roots in this forest.

It is actually more convenient to model the transaction nesting structure as a

tree rather than as a forest. Therefore, we add an extra root automaton as a

dummy transaction, located at the top of the transaction nesting structure. The

highest-level user-defined transactions are considered to be children of this

new root. The root can be thought of as modeling the outside world, from

which invocations of top-level transactions originate and to which reports

about the results of such transactions are sent.

h the rest of this section, we define basic systems and state the correctness

conditions that they are supposed to satisfy.

3.2. SYSTEM TYPES. We begin by defining a type structure that will be used

to name the transactions and objects in a basic system.

A system type consists of the following:

—a set T of transaction names,

—a distinguished transaction name TO E T,

—a subset accesses of T not containing To,

—a mapping parent: T – {TO} + T, which configures the set of transaction

names into a tree, with To as the root and the accesses as the leaves,

—a set X of object names,

—a mapping object: accesses -+ X,

—a set V of return ualues.

Each element of the set accesses is called an access transaction name, or

simply an access. Also, if object(T) = X, we say that T is an access to X.

In referring to the transaction tree, we use standard tree terminology, such

as leaf node, internal node, child, ancestor, and descendant. As a special case,

we consider any node to be its own ancestor and its own descendant, that is,

the ancestor and descendant relations are reflexive. We also use the notion of

a least common ancestor of two nodes.

The transaction tree describes the nesting structure for transaction names,

with TO as the name of the dummy root transaction. Each child node in this

tree represents the name of a subtransaction of the transaction named by its

parent. The children of TO represent names of the top-level user-defined

transactions. The accesses represent names for the lowest-level transactions in

the transaction nesting structure; we use these lowest-level transaction names

to model operations on data objects. Thus, the only transactions that actually

access data are the leaves of the transaction tree, and these do nothing else.

The internal nodes model transactions whose function is to create and manage

subtransactions including accesses, but they do not access data directly.

The tree structure should be thought of as a predefine naming scheme for

all possible transactions that might ever be invoked. In any particular execu-

tion, however, only some of these transactions will actually take steps. We

imagine that the tree structure is known in advance by all components of a

system. The tree will, in general, be an infinite structure with infinite branch-
ing.

The set X is the set of names for the objects used in the system. Each access

transaction name is assumed to be an access to some particular object, as

designated by the object mapping. The set V of return values is the set of

894 M. HERLIHY ET AL.

Basic
\

Database

/ \
/ \

FiG. 1. Basic system.

possible values that might be returned by successfully completed transactions

to their parent transactions.

For the rest of this paper, we fix a particular system type.

3.3. GENERAL STRUCTURE OF BASIC SYSTEMS. A basic system for a given

system type is a closed system consisting of a transaction autonzato?z AT for

each nonaccess transaction name T and a single basic database automaton B.

Later in this section, we give conditions to be satisfied by the transaction and

basic database automata. Here, we just describe the signatures of these

automata, in order to explain how the automata are interconnected.

Figure 1 depicts the structure of a basic system.

The transaction nesting structure is indicated in part by dotted lines between

transaction automata corresponding to parent and child. Access transactions

do not have associated automata, so the diagram does not indicate the parents

of accesses. The direct connections between automata (via shared actions) are

indicated by solid lines. Thus, the transaction automata interact directly with

the basic database, but not directly with each other.

Figure 2 shows the interface of a transaction automaton in more detail. The

automaton for transaction name T has an input action CREATE(T), which is

generated by the basic database in order to initiate Ts processing. We do not

include explicit arguments to a transaction in our model; rather we suppose

that there is a different transaction for each possible set of arguments, so any

input to the transaction is encoded in the name of the transaction. T has

REQUEST_ CREATE(T’) output actions for each child T’ of T in the transac-

tion nesting structure; these are requests for creation of child transactions, and

are communicated directly to the basic database. At some later time, the basic

database might respond to a REQUEST_ CREATE(T’) action by issuing a

CREATE(T’) action; in case T’ is not an access, this action is an input to the

automaton for transaction T’. T also has REPORT_ COIvlMIT(T’, v) and
REPORT_ABORT(T’) input actions, by which the basic database informs T

about the fate (commit or abort) of its previously requested child T’. In the

case of a commit, the report includes a return value v that provides information

about the activity of T’; in the case of an abort, no information is returned.

Finally, T has a REQUEST_ COMMIT(T, v) output action, by which it an-

nounces to the basic database that it has completed its activity successfully,

with a particular result that is described by return value v.

Figure 3 shows the basic database interface. The basic database in any

particular basic system receives the previously mentioned REQUEST_

CREATE and REQUEST_ COMMIT actions as inputs from the transaction

Correctness of Orphan Management Algorithms 895

CREATE(T) REQUEST_COMMIT(T,v)

T

REQUEST_CREATE(T) REPORT.COMMIT(T,V)

REPORT_ABORT(T’)

FIG. 2. Transaction interface.

REQUEST_CREATE CREATE

REQ1.JEST_COMMIT

‘o ‘

REQUEST.COMMIT (accesses)
Basic

Database
COMMIT

ABORT

REPORT.COMMIT

REPORT_ABORT

FIG. 3. Basic database interface.

automata. It produces CREATE actions as outputs, thereby awakening trans-

action automata or invoking operations on objects. The basic database also

produces REQUEST_ COMMIT(T, v) output actions for accesses T; these

represent responses to the invocations of operations on objects. The value v in

a REQUEST_ COMMIT(T, v) action is a return value returned by the opera-

tion as part of its response. The basic database also produces COMMIT(T) and

ABORT(T) actions for arbitrary transaction names T + TO, representing deci-

sions about whether the designated transaction commits or aborts. For techni-

cal convenience, we classi~ the COMMIT and ABORT actions and the

REQUEST–COMMIT and CREATE actions for access transactions as output

actions of the basic database, even when they are not inputs to any other

system component.7 The basic database also has REPORT_ COMMIT and

REPORT–ABORT actions as outputs, by which it communicates the fates of

transactions to their parents.

Different basic databases may include additional output actions. The final

section of this paper describes generic databases, which have additional out-

7Classifying actions as outputs even though they are not inputs to any other system component is
permissible in the 1/0 automaton model. In this case, h would also be possible to classify these
actions as internal actions of the basic database, but then the statements and proofs of the
ensuing results would be more complicated.

896 M. HERLIHY ET AL.

puts by which the fates of transactions are communicated to the objects, so that

locks may be released. Pseudotime databases are a second example, which

contain additional outputs involving the management of timestamp data.

As is always the case for 1/0 automata, the components of a system are

determined statically. Even though we referred earlier to the action of “creat-

ing” a child transaction, the model treats the child transaction as if it had been

there all along. The CREATE action is treated formally as an input action to

the child transaction; the child transaction will be constrained not to perform

any output actions until such a CREATE action occurs. A consequence of this

method of modeling dynamic creation of transactions is that the system must

include automata for all possible transactions that might ever be created in any

execution. In most interesting cases, this means that the system will include

infinitely many transaction automata.

In our work, it is convenient to use two separate actions, REQUEST_

CREATE and CREATE, to describe what happens when a subtransaction is

activated. This separation occurs in actual distributed systems such as Argus,

and is important in our results and proofs. Similar remarks hold for the

distinction among REQUEST-COMMIT, COMMIT, and REPORT-

COMMIT actions.

3.4. SERIAL ACTIONS. The external actions of a basic system of a given

system type include the serial actions for that type. The serial actions for a

given system type are defined to be the actions listed in the preceding

subsection: CREATE(T) and REQUEST–COMMIT(T, v), where T is any

transaction name and v is a return value, and REQUEST-CREATE(T),

COMMIT(T), ABORT(T), REPORT_ COMMIT(T, v), and REPORT.

ABORT(T), where T # To is a transaction name and v is a return value.x If ~

is a sequence of actions, define sen”al(~) to be the subsequence of ~ contain-

ing all the serial actions in ~.

In this subsection, we define some simple concepts involving serial actions.

All the definitions in this subsection are based on the set of actions only, and

not on the specific automata in any particular system. For this reason, we

present these definitions here, before going on (in the next subsection) to give

more information about the basic system components.

We first present some fundamental definitions, and then we define notions

of well-formedness for sequences of actions.

3.4.1. Terminology. The COMMIT(T) and ABORT(T) actions are called

completion actions for T, while the REPORT_ COMMIT(T, v) and REPORT_
ABORT(T) actions are called report actions for T.

We associate transaction names with some of the serial actions, as follows.

Let T be a transaction name. If n is either a CREATE(T) or a REQUEST_

COMMIT(T, v) action, or is a REQUEST. CREATE(T’), REPORT_

COMMIT(T’, v’) or REPORT–ABORT(T’), where T’ is a child of T, then we

define transactiorz(m) to be T. If w is a completion action, then transaction (w)

is undefined. In some contexts, we also need to associate a transaction with

8 These actions are called serial actzons because they are exactly the external actions of a serial

gstem of the given type. More will be said about serial systems later in the paper.

Correctness of Orphan Management Algorithms 897

completion actions; since a completion action for T can be thought of as

occurring in between T and parent(T), some of the time we want to associate T

with the action, and at other times we want to associate parent(T) with it. Thus,

we extend the transaction(w) definition in two different ways. If rr is any serial

action, then we define hightransaction(m) to be transaction(n-) if m is not a

completion action, and to be parent(T), if m is a completion action for T. Also,

if n is any serial action, we define lowtransaction(m) to be transaction(m) if m-

is not a completion action, and to be T, if T is a completion action for T. In

particular, hightransaction(n) = lowtransaction(n) = transaction(~) for all se-

rial actions T for which transaction(m) is defined.

We also require notation for the object associated with any serial action

whose transaction is an access. If n- is a serial action of the form CREATE(T)

or REQUEST_ COMMIT(T, v), where T is an access to X, then we define

object(m) to be X.

We extend the preceding notation to events as well as actions. For example,

if T is an event, then we write transactiorz(n) to denote the transaction of the

action of which T is an occurrence. We extend the definitions of hightransac-

tion, lowtransaction, and object similarly. We extend other notation in this

paper in the same way, without further explanation.

Now we require terminology to describe the status of a transaction during

execution. Let /3 be a sequence of actions. A transaction name T is said to be

actiue in ~ provided that ~ contains a CREATE(T) event but no

REQUEST_ COMMIT event for T. Similarly, T is said to be live in /3 provided

that ~ contains a CREATE(T) event but no completion event for T. (However,

note that /3 may contain a REQUEST–COMMIT for T.) Also, T is said to be

an orphan in ~ if there is an ABORT(U) action in ~ for some ancestor U of

T.

We have already used projection operators to restrict action sequences to

particular sets of actions, and to actions of particular automata. We now

introduce another projection operator, this time to sets of transaction names.

Namely, if ~ is a sequence of actions and U is a set of transaction names, then

p IU is defined to be the sequence ~ I{T: transaction(m) G u}. If T is a
transaction name, we sometimes write /3 IT as shorthand for ~ I{T}. Similarly, if

~ is a sequence of actions and X is an object name, we sometimes write /3 IX to

denote ~ I{n: object(n) = X}.

3.4.2. Well-Forrnedness. We place very few constraints on the transaction

automata and basic database automaton in our definition of a basic system.

However, we want to assume that certain simple properties are guaranteed; for

example, a transaction should not take steps until it has been created, and the

basic database should not create a transaction that has not been requested.

Such requirements are captured by well-formedness conditions, which are

fundamental safety properties of sequences of external actions of the transac-

tion and basic database automata. We define those conditions here.

First, we define transaction well-formedness. Let T be any transaction name.

A sequence B of serial actions m with transaction(n) = T is defined to be
transaction well- foimed for T provided the following conditions hold:

(1) The first event in ~, if any, is a CREATE(T) event, and there are no other

CREATE events,

898 M. HERLIHY ET AL.

(2) There is at most one REQU13ST_CREATE(T’) event in p for each child
T’ of T,

(3) Any report event for a child T’ of T is preceded by REQUEST_

CREATE?(T’) in ~,

(4) There is at most one report event in ~ for each child T’ of T,

(5) If a REQUEST-COMMIT event for T occurs in ~, then it is preceded
by a report event for each child T’ of T for which there is a REQUEST_

CREATE(T’) in /3,

(6) If a REQUEST-COMMIT event for T occurs in ~, then it is the last event
in ~.

In particular, if T is an access, then the only sequences that are transaction

well-formed for T are the prefixes of the two-event sequences of the form

CREATE(T)REQUEST_ COMMIT(T, v). For any T, it is easy to see that the

set of transaction well-formed sequences for T is a safety property, that is, that

it is prefix-closed and limit-closed.

Next, we define basic database well-formedness. A sequence /3 of serial

actions is defined to be basic database well-foimed provided the following

conditions hold:

(1) The sequence ~ IT is transaction well-formed, for all transaction names T,
(2) If a CREATE(T) event occurs in ~, fG~ T + TO, then there is a preceding

REQUEST_ CREATE(T) in ~,

(3) If there is a COMMIT(T) event in ~, then there is a preceding RE-

Q1-JEsT-COMMIT(T, v) event in p, for some v,

(4) If there is an ABORT(T) event in ~, then there is a preceding RE-

QuEiST.C~EATE(T) event in ~,

(5) There is at most one completion event in ~ for each transaction name T,
(6) If there is a REPORT_ COMMIT(T, v) event in f3, then there is a preced-

ing REQUEST_ COMMIT(T, v) event in ~ and a preceding COMMIT(T)

event in /3,

(7) If there is a REPORT-ABORT(T) event in ~, then there is a preceding

ABORT(T) event in ~,

(8) There is at most one report event in ~ for each transaction name T.

3.5. BASIC SYSTEMS. We are now ready to define basic systems. Basic

systems are composed of transaction automata, one for each nonaccess trans-

action name, and a single basic database automaton. We describe the two kinds

of components in turn.

3.5.1. Transaction Automata. A transaction automaton AT for a nonaccess
transaction name T (of the given system type) is an 1/0 automaton with the

following external action signature:

Input:

CREATE(T)

REPORT–COMMIT(T’, v), for every child T’ of T, and return value v

REPORT_ABORT(T’), for every child T’ of T

output:

REQUEST_ CREATE(T’), for every child T’ of T

REQUEST_ COMMIT(T, v), for every return value v

Correctness of O~han Management Algorithms 899

In addition, AT may have an arbitrary set of internal actions. We require AT

to preserve transaction well-formedness for T, as defined in the preceding

subsection. As discussed earlier, this does not mean that all behaviors of AT

are transaction well-formed, but it does mean that as long as the environment

of AT does not violate transaction well-formedness, AT will not do so. Except

for that requirement, transaction automata can be chosen arbitrarily. Note that

if ~ is a sequence of actions, then ~ IT = P lext(AT).

Transaction automata are intended to be general enough to model the

transactions defined in any reasonable programming language. Particular pro-

gramming languages may impose additional restrictions on transaction behav-

ior. (For example, Argus suspends activity in transactions until subtransactions

complete.) However, our results do not require such restrictions.

3.5.2. Basic Database Automata. A basic database automaton is also mod-

eled as an 1/0 automaton. A basic database passes requests for the creation of

subtransactions to the appropriate recipient, initiates REQUEST_ COMMIT

actions for accesses, makes decisions about the commit or abort of transac-

tions, and passes reports about the completion of children back to their

parents. It may also car~ out other activity.

A basic database has the following actions in its external action signature:

Input:

REQUEST_ CREATE(T), T + TO

REQUEST–COMMIT(T, v), T a nonaccess transaction name

output:

CREATE(T)

REQUEST_ COMMIT(T, v), T an access transaction name

COMMIT(T), T + TO

ABORT(T), T # T(]

REPORT. COMMIT(T, V), T # TO

REPORT_ABORT(T), T # TO

In addition, it may have other arbitrary output actions, as well as arbitrary

internal actions. Depending upon the design of the particular basic database

automaton, some of the additional output actions may be associated with

particular objects. Hence, each basic database is assumed to come equipped

with an extension of the object partial mapping on actions, which may associate

some of these additional, nonserial output actions with particular object names.

That is, each nonserial output action n may (but need not) have object(n)

defined.

The REQUEST. CREATE and REQUEST. COMMIT inputs are intended

to be identified with the corresponding outputs of transaction automata, and

conversely, all the CREATE and report outputs (except those CREATE(T)

actions for which T is an access) are identified with the corresponding inputs of

transaction automata. A basic database is required to preserve basic database

well-formedness.
There are many examples of basic databases in the literature. For example,

the composition of the generic controller and generic objects of [4] preserves

basic database well-formedness, and so is an example of a basic database. The

same is true for the composition of the pseudotime controller and pseudotime

900 M. HERLIHY ET AL.

objects of [2]. We present these examples in more detail later in this paper. In

fact, we claim that almost all interesting transaction-processing algorithms can

be modeled as basic databases. (See [14] for additional examples.)

Our notion of basic database identifies the aspects of transaction-processing

algorithms that are relevant to our analysis of orphan management algorithms.

It turns out that the details of how synchronization and recove~ are imple-

mented by a basic database are largely irrelevant. Indeed, this is one of the

important contributions of this paper: we are able to state correctness condi-

tions for and verify orphan management algorithms in a way that is indepen-

dent of the concurrency control and recove~ methods used within the basic

database.

3.5.3. Basic Systems. A basic system B is the composition of a strongly

compatible set of automata indexed by the union of the set of nonaccess

transaction names and the singleton set {BD} (for “basic database”). Associ-

ated with each nonaccess transaction name T is a transaction automaton A ~

for T. Associated with the name BD is a basic database automaton for the

system type.

When the particular basic system B is understood from the context, we call

its external actions the basic actions, and its executions, schedules, and behav-

iors the basic executions, basic schedules, and basic behazliors, respectively. The

following proposition says that basic behaviors have the appropriate well-

formedness properties:

P~OPOSITION 5. If p is a basic behauior, then the following conditions hold.

(1) For elw?y transaction name T, BIT is transaction well- fon-ned for T.

(2) The sequence serial(~) is basic database well-formed.

PROOF. Note first that the basic database preserves basic database well-

formedness, and this immediately implies that it preserves transaction well-

formedness for every transaction name. Next, note that each transaction

automaton preserves transaction well-formedness for the appropriate transac-

tion name. Furthermore, it has in its signature no actions of other transactions,

and so preserves transaction well -formedness for all transaction names. The

first part of the proposition foljows by Proposition 4.

A simple induction shows that each transaction automaton also preserves

basic database well-formedness, and the second conclusion follows also from

Proposition 4. ❑

3.6. SERIAL CORRECTNESS. In this subsection, we give appropriate notions

of correctness for basic systems. These include notions appropriate for systems

that manage orphans, as well as notions for systems that do not manage

orphans but do carry out concurrency control and recovery. These notions are

taken from [4], [12], and [13]. The spirit of our definitions is similar to that of

the usual definition of serializability in the database literature. However, the

usual notion does not take nesting or aborts into account.

We define correctness conditions for basic systems of a given type by relating

their behaviors to those of a particular basic system of that type, the serial

system. The executions, schedules, and behaviors of a serial system are called

serial executions, serial schedules, and serial behaviors, respectively. Serial

systems are composed of transaction automata and a serial database, which

Correctness of O~han Management Algorithrm 901

itself is the composition of a serial scheduler and objects. The transaction

automata are identical to those in basic systems. The serial scheduler controls

the order in which the transactions take steps and in which accesses to objects

occur. It permits only one child of a transaction to run at a time. Thus, sibling

transactions execute sequentially at every parent node in the transaction tree,

so that transactions are run in a depth-first traversal of the tree. Also, the

serial scheduler aborts a transaction only if it has not been created, and creates

a transaction only if it has not been aborted. Thus, in a serial execution, sibling

transactions execute sequentially and aborted transaction take no steps.

Objects in a serial system are quite simple. Since the serial scheduler

guarantees that siblings execute sequentially, and that aborted transactions

never take any steps, serial objects do not have to deal with concurrency or

with failures. The serial objects serve as a specification of how objects should

behave in the absence of concurrency and failures. (The serial objects serve the

same purpose as the serial specifications [25] and [26].) A detailed description of

serial systems may be found in the references [41 and [12– 14].

NOW we give a definition that says that a sequence of actions “looks like” a

serial behavior to a particular transaction. Namely, if ~ is a sequence of

actions and T is a transaction name, we say that f? is serially correct for T if

there exists a serial behavior y such that y IT = ~ IT. In other words, T sees the

same thing in P that it could see in some serial behavior.

Now we can define two notions of correctness for basic systems. First, we say

that a basic system is serially correct if each of its finiteg behaviors is serially

correct for all transaction names. 1“ The requirement that every transaction see

a serial view is very strong. Without orphan management, in fact, systems may

not meet this requirement. (This is true of all published concurrency control

algorithms for nested transactions of which we are aware.) Instead, they

provide a slightly weaker notion of correctness, namely that nonorphan trans-

actions see serial views. More precisely, we say that a basic system is serially

comect for nonophans if each of its finite behaviors ~ is serially correct for all

transaction names that are not orphans in ~. Orphans, however, can see

arbitrary views.

The papers [2], [4], [12], and [13] contain examples of basic systems that are

serially correct for nonorphans. The basic system in [12] and [13] uses exclusive

locking for concurrency control and recovery,ll while the systems in [4] use a

more general commutativity-based locking strategy. The systems in [2] use

timestamps for concurrency control and recovery.

The orphan management algorithms of this paper ensure that the systems

that use them are serially correct. To ensure this, the orphan management

algorithms rely on the basic database to ensure serial correctness for nonor-

phans; in fact, the algorithms work with any basic database that ensures serial

correctness for nonorphans. In this sense, the orphan management algorithms

‘] Serial correctness is stated in terms of finite behaviors because the corresponding property for
infinite behaviors is not satisfied by locking algorithms, in the absence of extra assumptions [22].
1“As discussed in [12], this definition of correctness allows different transactions in ~ to “see”
different serial behaviors. However, correctness applies to the root transaction T(, as WCI1.so the
root must see the same results from the top-level transactions that it could see in some serial
~~havior.

There are some minor differences; for example, the completion and report actions are
combined into single actions rather than treated as two separate actions.

902 M. HERLIHY ET AL.

and the concurrency control algorithms are independent. We prove a result of

the following sort for each orphan management algorithm: If ~ is a behavior

of the system with orphan management and T is a transaction name, then

there exists a behavior y of the underlying basic system such that y IT = ~ IT

and T is not an orphan in y. In other words, the orphan management

algorithms prevent transactions from “knowing” that they are orphans—every-

thing a transaction sees is consistent with what it could see in the underlying

basic system in some execution in which it is not an orphan. These results

imply that if the basic system is serially correct for nonorphans, then the

corresponding system with orphan management is serially correct.

4. Information Flow

In this section, we define families of irreflexive partial orders, each of which

models the information flow between events in behaviors of a basic system. We

call these partial orders affects relations; if an event + does not affect an event

n in an execution, then n- cannot “know” that @ occurred, in the sense that

there is a “possible world” in which m occurs but + does not. The algorithms

described later in this paper ensure that no event of a transaction is affected by

the abort of an ancestor; thus, no event of a transaction ever knows that the

transaction is an orphan. To make our definitions as general as possible, we

define affects relations by describing the constraints they must satisfy. Later in

the paper, we give examples of affects relations for particular kinds of systems.

4.1. FAMILIES OF AFFECTS RELATIONS. If ~ is a sequence of basic actions,

R is a binary relation on events in ~, and y is a subsequence of ~, then we

say that y is R-closed in ~ if, whenever y contains an event T in ~, it also

contains any event ~ in ~ such that (+, n-) E R.

Let B be a basic system, and let R = {RB} be a family of relations, one for

each sequence ~ of external actions of B. Then R is said to be a family of

affects relations for B provided that the following conditions hold.

(1) Each RP is an irreflexive partial order on the events in ~ such that if

(+, ~) ● Rp then @ precedes m in ~,

(2) If -y is a prefix of ~, and + and rr are in y, then (+, T) E RP if and only if

(&n) = RY,

(3) If p is a behavior of B and Y is an Rfi-closed subsequence of p, then y is
a behavior of B,

(4) Suppose that (3 is a behavior of B and (~, T) G RD, where + is an
ABORT(T’) event, and m is a CREATE, a COMMIT, an ABORT, a

REPORT–COMMIT, a REPORT–ABORT(T) for T # T’, an output of

a nonaccess transaction, or a REQUEST–COMMIT for an access. Then

there is an event + between + and v in /3 such that (q5, +) E Rp, where

is related to m as follows:

(a) If m = CREATE(T), then 4 = REQUEST. CREATE(T),

(b) If n = COMMIT(T), then * = REQUEST. COMMIT(T, v),

(c) If ~ = REPORT-COMMIT(T, v), then * = COMMIT(T),

(d) If m = REPORT-ABORT(T), then $ = ABORT(T),

(e) If T = ABORT(T), then + = REQUEST-CREATE(T),

(f) If w is an output of nonaccess transaction T, then * is an event of
transaction T,

Correctness of O@an Management Algorithms 903

(g) If r = REQUEST-COMMIT(T, v) where T is an access to object X,

then object(~) = X.lz

The first two conditions are quite simple; the first says that each relation R6

describes a partial ordering consistent with the order in which events appear in

/3, and the second says that whether or not one event affects another is
determined at the time the second event occurs. The third condition describes

a sense in which the relation Rp captures all the dependency i elationships

between events. The condition implies that if m is not affected by C$ in some

behavior /3, then n cannot “know” that @ occurred, since ~ cou!.~ also have

occurred in a different behavior in which + did not occur. The fourth condition

is a technical condition that describes certain limitations on the pattern of

information flow. It will be needed for our later proofs, and can be demon-

strated for the examples in Section 9.

When the particular family R = {Rp} of affects relations is understood, we
often refer to each RB as an ajfects relation, and we often say “0 affects n in

~“ to mean that (+, T) ● RD.

4.2. FAMILIES OF DIRECTLY-AFFECTS RELATIONS. In many cases of interest,

a family of affects relations can be conveniently described by a generating

family of smaller relations. Thus, let B be a basic system and R’ = {R~} be a

family of relations, one for each sequence ~ of external actions of B. Then R’

is said to be a family of directly-affects relations for B, provided that there is a

family R = {RP} of affects relations for B such that for each P, RB is the

transitive closure of R~. In this case, we say that R’ generates R. Note that

there is no requirement that the relations in R’ be minimal.

When the particular family R’ = {R~} of directly-affects relations is under-

stood, we often refer to each R~ as a directly -aflects relation; also, we often say

that “+ directly affects n in ~” to mean that (4, m) ● R~.

4.3. USING FAMILIES OF AFFECTS RELATIONS TO DESCRIBE ORPHAN MAN-

AGEMENT ALGORITHMS. The intuitive idea behind the orphan management

algorithms is that they ensure that an event of a transaction T is never affected

by the abort of an ancestor. Then we can show that every transaction gets a

view it could get in a behavior in which it is not an orphan; we simply take the

subsequence of the original behavior containing all events of T and all events

that affect them in that behavior. The resulting sequence is a basic behavior, by

the definition of a family of affects relations, and does not contain an abort for

an ancestor of T, by construction.

The following example illustrates how an orphan can see an inconsistent

state in a system without orphan management. Suppose that T is a transaction
with children TI and T2, both of which are accesses to an object X. Consider

the following scenario: T first accesses X through its child T1. T then requests

the creation of Tz, which will access X again. Furthermore, assume that T2 is

requested only if TI completes successfully, and that TI modifies X. Now

suppose that T aborts before Tz starts running at X, and X learns of the abort.

If T1’s modification of X is undone when X learns that T aborted, then T, will
not see the value for X that it expects, since T2 only runs if T1 has modified X

successfully. This scenario is captured more precisely by the following fragment

12Note that $ can be either a serial or a nonserial event.

904 M. HERLIHY ET AL.

of a schedule of a generic system (generic systems are described in more detail

in Section 9.1):

CREATE(T)

REQUEST. CREATE(T1)

CREATE(TL)

REQUEST. COMMIT(T1 , VI)

COMMIT(T1)

REPORT. COMMIT(T1, V,)

REQUEST. CREATE(TZ)

ABORT(T)
INFORM.ABORT_AT(X) OF(T)

CREATE(TZ)

REQUEST_ COMMIT(Tz , V2)

(The INFORM-ABORT event lets X know that T has aborted.) The family of
affects relations for generic systems described in Section 9.1 ensures that the

ABORT(T) event affects the INFORM_ABORT–AT(X) OF(T) event, and that

an event at an object is affected by all prior events at the object. Thus, by

preventing Tz from running when its events would be affected by the abort of

an ancestor, we can prevent it from knowing that it is an orphan.

5. Filtered Systems

The two orphan management algorithms analyzed in this paper use quite

different techniques. However, each can be proved correct by showing that it

implements the same abstract algorithm, described in this section.

For Sections 5 through 8 of this paper, we fix a particular but arbitrary basic

system B, together with a family R of affects relations for B and a family R’ of

directly-affects relations for B, where R’ generates R. We describe several

algorithms that exploit the properties of the affects relations to manage

orphans. In Section 9, we illustrate this general development by describing two

specific basic systems and their affects relations.

One way of ensuring that actions of a transaction T are never affected by the

abort of an ancestor of T is to add preconditions to all the actions of the basic

database to permit actions of T to occur only if they would not be affected in

this way. It turns out, however, that this approach checks for orphans much

more frequently than necessary. In this section, we define another kind of

system, called a filtered system, that checks for orphans only when
REQUEST–COMMIT actions occur for access transactions. We then show

that this is sufficient to ensure that transactions are never affected by the

aborts of ancestors.

We construct a filtered system based on the given basic system B and the

given family R of affects relations. The filtered system consists of the given

transaction automata from B and a filtered database automaton. The filtered

database automaton is obtained by slightly modifying the basic database

automaton; it “filters” REQUEST_ COMMIT actions of access transactions so

that any transaction, orphan or not, sees a view it could see as a nonorphan in

the basic system.

Correctness of (lphan Management Algorithms 905

5.1. THE FILTERED DATABASE. The filtered database is obtained via a

simple transformation from the basic database. The only difference between

the behaviors of the two databases is that the new database only allows a

R13QUEST_COMMIT of an access to occur if it is not affected by the abort of

an ancestor.

The filtered database has the same signature as the basic database. The

state of the filtered database has two components, basic_ state and history,

where basic_ state is a state of the basic database and history is a sequence of

basic actions. Initial states of the filtered database are those with basic–state

equal to an initial state of the basic database and history equal to the empty

sequence.

A triple (s’, m,s) is a step of the filtered database if and only if the following

conditions hold:

(1) (s’.basic-state, n-, s.basic-state) is a step of the basic database,

(2) s.history = s’.historym if n- is a basic action,l~

(3) s.history = s’.histo~ if m- is not a basic action,

(4) If n = REQUEST-COMMIT(T, v) where T is an access to object X, and if

T’ is an ancestor of T, then no ABORTIT’) event affects an event @ with
object(~) = X in s’ history.

Thus, at the point where the REQUEST_ COMMIT of an access is about to

occur, an explicit test is performed to verify that no preceding event at the

same object is affected by the abort of any ancestor of the access.

LEMMA 6. Let ~ be a jinite schedule of the filtered database that can Ieaue the

jiltered database in states. Then s.histoly = beh(/3).

5.2. THE FILTERED SYSTEM. The filtered system is the composition of the

transaction automata and the filtered database automaton. We call its execu-

tions, schedules, and behaviors the filtered executions, filtered schedules, and

jlltered behaliors, respectively.

LEMMA 7. The filtered system implements the basic system.

PROOF. The mapping f that assigns to each state s of the filtered system the

singleton set f(s) consisting of s.basic_state is easily seen to be a possibilities

mapping. Proposition 3 implies the result. ❑

As described above, the filtered database performs an explicit test to ensure

that the REQUEST_ COMMIT of an access is not affected by the abort of any

ancestor. The following key lemma shows that this test actually guarantees

more: that a similar property holds for all events.

LEMMA 8. Let P be a jiltered behavior and let T be any transaction name. Let

p be an elent in B such that transaction p) = T. Then there is no ABORT(T’)

ellent $ such that (~, p) = RP, for any ancestor T‘ of T.

PROOF. First note that Lemma 7 and Proposition 5 imply that serial(~) is

basic database well-formed. The proof of the lemma is by induction on the

length of ~. If ~ is empty, the result clearly holds. Suppose /3 = ~ ‘m, and that

the lemma holds for P‘. From the restrictions on affects relations, RF c Rp ~ U

13Recall that internal actions of the basic database are not classified as basic actions.

906 M. HERLIHY ET AL.

{(0, m)l 4 is an action in P ‘}. Thus, by induction, it suffices to show that the
lemma holds when p = m.

Suppose that the lemma does not hold, that is, that ~ = ABORT(T’) affects

w in ~, where transaction(n-) = T and T’ is an ancestor of T. We derive a

contradiction. We consider cases.

(1) T is a nonaccess and v is an output action of T. Then, by the fourth

property of affects relations, there is an event * of T between + and

n- such that ~ affects ~ in /3’. This contradicts the inductive hypothesis.

(2) T is an access to object X and w is a REQUEST_ COi14MITfor T. Then,

by the fourth property of affects relations, there is an event Y of object X

between ~ and m in ~‘ such that ~ affects ~ in ~‘. Then, the precondi-

tion for m in the filtered database is violated, a contradiction.

(3) m is CREATE(T). Then, by the fourth property of affects relations, there
is a REQUEST–CREATE(T) event + between # and m such that +

affects * in ~‘. Since REQUEST_ CREATE(T) is an action of parent(T),

the inductive hypothesis implies that T’ is not an ancestor of parent(T).

The only possibility is that T’ = T, which implies that ABORT(T) precedes

REQUEST_ CREATE(T) in P. But this implies that serial(/?) is not

basic database well-formed, a contradiction.

(4) T is a nonaccess and n- is REPORT-COMMIT(F3 v), where T“ is a child of

T. Then T’ is an ancestor of T. By the fourth property of affects
relations, there is a REQUEST_ COMMIT(T”, v) event @ between ~ and

rr such that ~ affects ~ in /3’. Since transaction (~) = T“, this contradicts

the inductive hypothesis.

(5) T is a n.onaccess and ri is REPORT-ABORT(T”), where T is a child of T.
By the fourth property of affects relations, there is a REQI_JEsT_

CllEATE(T, v) event + between ~ and w such that ~ affects @ in ~‘.

Since transaction ~) = T, this contradicts the inductive hypothesis.

(6) rr is a nonserial basic action. Then, transaction(m) is undefined, a contra-

diction. ❑

5.3. SIMULATION OF THE BASIC SYSTEM BY THE FILTERED SYSTEM. The

following theorem is the key result of this paper. It shows that the filtered

system ensures that every transaction gets a view it could get in the basic

system when it is not an orphan. (Formally, a transaction T’s “view” in a

behavior ~ is its local behavior, ~ IT). In other words, an orphan cannot

discover that h is an orphan, since the view it sees is consistent with it not

being an orphan. This is the basic correctness property for the orphan manage-

ment algorithms.

THEOREM 9. Let ~ be a jiltered behavior and let T be a transaction name.

Then there exists a basic behalior y SLLCh that T is not an oiphun in y and

ylT= PIT.

PROOF. Let y be the subsequence of ~ containing all actions n such that

transaction(w) = T, and all other actions @ that affect, in ~, some action

whose transaction is T. Since RD is a transitive relation, y is RP-closed in ~.

By the definition of a family of affects relations, y is a basic behavior. It

suffices to show that there is no ancestor T’ of T for which ABORT(T’) occurs

in y. Suppose not; that is, there exists an ancestor T’ of T for which

Correctness of Oiphan Management Algorithms 907

ABORT(T’) occurs in y. Then by the construction of -y, ~ contains an event rr

of T such that an ABORT(T’) event ~ affects T in P. By Lemma 8, this is

impossible. ❑

We obtain an important corollary of Theorem 9.

COROLLARY 10. If the basic system is serial~ correct for nonorphans, then the

filtered system is serially correct.~4

PROOF. Let ~ be a filtered behavior and let T be any transaction name.

Theorem 9 yields a behavior 6 of the basic system such that T is not an orphan

in 8 and ~ IT = /3 IT. Since the basic system is serially correct for nonorphans,

there is a serial behavior y with -y IT = 8 IT; this is equal to ~ IT, as

needed. ❑

At first, it might seem somewhat surprising that it is enough to prevent the

REQUEST–COMMIT events of orphan accesses to ensure serial correctness

for all orphans. The reason it is not necessary to filter other actions is because

of the assumptions about affects relations. Essentially, these assumptions

indicate that an event, say CREATE(T), cannot “know” about an ABORT(T’)

event unless some earlier event, in this case REQUEST_ CREATE(T), already

“knows” about the ABORT(T’). (The assumption about affects relations that

an affects-closed subsequence of a behavior is itself a behavior implies that if n

is not affected by ~, n cannot know that @ has occurred, since there is a

behavior of the system in which m occurs and @ does not.) If we assume

inductively that REQUEST_ CREATE(T) does not know about the abort of an

ancestor of T, then the properties assumed for affects relations guarantee that

CREATE(T) will not know about it either.

The assumptions about affects relations derive from the restricted communi-

cation patterns in typical systems: A nonaccess transaction receives informa-

tion from its parent when it is created, and from its children when they report,

but not from any other source. Access transactions may receive information

from other accesses (e.g., accesses to the same object share state), but can only

affect nonaccesses through a REPORT_ COMMIT event, which must be

preceded by a REQUEST–COMMIT. As long as T does not receive reports

from any accesses that “know” that its ancestor has aborted, T cannot observe

a state that depends on the abort. In effect, by preventing REQUEST_

COMMIT actions for orphan accesses, we isolate orphan transactions from the

objects, ensuring that an orphan transaction never sees that it is an orphan.

Sometimes we want to be explicit about the dependency of the filtered

system on the particular basic system and family of affects relations from which

it is derived. Thus, we restate the corollary above in a form that exhibits this

dependency. If B is a basic system and R is a family of affects relations for B

then let Filtered(B, R) be the corresponding filtered system; it is composed of

the same transaction automata and the filtered database that corresponds to
the given basic database.

14It should be easy to see that the filtered system is also a basic system, and so the notion of
serial correctness has been defined for filtered systems. Similar comments hold for the rest of the
systems described in this paper.

908 M. HERLIHY ET AL.

COROLLARY 11. Let B be a basic system and R a famih of affects relations for

B. If B is serially comect for nonorphans, then Filtered(B, R] is serially con-ect.

6. Argus $stems

In this section, we analyze the orphan management algorithm used in the

Argus system [9, 10]. We describe the algorithm by defining an Argus database

that describes in formal terms the algorithm discussed in [10]. As with the

filterecl database, the Argus database is obtained from the basic database via a

simple construction. We then define the Argus system, which is composed of

transactions and an Argus database, and show that the Argus system imple-

ments the filtered system. Thus. if the filtered system is serially correct, so is

the corresponding Argus system.

6.1. THE ARGUS IIATABASE. The filtered database uses global knowledge of

the entire history of actions to filter the IIEQUEST_COMMIT actions of

access transactions. This kind of global knowledge is not practical in a dis-

tributed system. Thus, the Argus algorithm makes use of local knowledge about

the aborts that have occurred. To ensure that the REQUEST–COMMIT of an

access is not affected by the abort of an ancestor, the Argus algorithm keeps

track of the aborts “known” by each event that occurs, and propagates this

knowledge from an event to any later events that h affects.

In the actual Argus system, knowledge about aborts is propagated in mes-

sages sent over the network; we model this formally by propagating knowledge

from an event to every event that it directly ajj$ects. A poor choice of a

directly-affects relation could make the algorithm we describe here hard to

implement. However, if one event @ directly affects another event w only if

the two events occur at the same site, or if a message is sent from ~’s site to

n-’s after ~ occurs and before n occurs, then it is straightforward to implement

the algorithm using information available locally at each site, by transmitting

the information about aborted transactions on messages sent between sites.

The construction of the Argus database makes use of the given family R’ of

directly-affects relations for B. The Argus database has the same signature as

the basic database. The state of the Argus database has three components:

basic_ state, histo~, and known–aborts, where basic_ state is a state of the basic

database, history is a sequence of basic actions, and known–aborts is a partial

mapping from basic events to sets of transactions. This mapping records the

transactions whose aborts affect each event that has occurred. The set

known_ aborts(w) may actually include more transactions than those whose
aborts affect ~. By adding more aborted transactions to this set, an implemen-

tation would restrict the behavior of orphans further than is strictly necessary

to ensure the correctness conditions. In Argus, for example, each event occurs

at some physical node of the network, and each node manages a sipgle set of

aborted transactions for the entire set of events that occur at that node. In this

case, known_ aborts(~) includes at least the transactions whose aborts affect

T, as well as those transactions whose aborts affect any other event that has

occurred at the same physical node as n.

Initial states of the Argus database are those with basic–state equal to an

initial state of the basic database, history equal to the empty sequence, and

known_ aborts everywhere undefined. A triple (s’, T,s) is a step of the Argus

Correctness of O@zan Management Algorithms 909

database if and only if the following conditions hold:

(1) (s’.basic-state, m-, s.basic_state) is a step of the basic database,

(2) s.history = s’.historym, if T is a basic action,

(3) s.history = s’.history if T is not a basic action,

(4) If m is a basic action and (+, m) = R~,~,,,o,Y then s’ .known-aborts(d) c

s.known_aborts(m),

(5) If + # n, then s.known_aborts(~) = s’.known-aborts(~),

(6) If rr is a basic action and + is an ABORT(T) event in s’.history such that

(+ T) c Rim,.,,, then T = s.known–aborts(m),

(7) If m is a REQUEST_ COMMIT(T, v) action for an access T to object X,

then there is no ancestor of T in s’ .known–aborts(+), for any event 4 of

object X in s‘ history.

There are two significant differences between the Argus database and the

basic database. First, the effects for each action n in the Argus database

require s.known_aborts(~) to include s’ .known_aborts(+) for each ~ that

directly affects r. In addition, an event m that is directly affected by ABORT(T)

requires T to be in known–aborts(~). As Lemma 16 below shows, these

constraints are enough to ensure that s.known_aborts(m-) contains T whenever

ABORT(T) affects n.

Second, the precondition for the R13QUEiST_COMIVIIT of an access to X

permits the event to occur only if the access does not “know about” the abort

of an ancestor, that is, no ancestor is in s’ .known_aborts(~) for any event ~ of

object X in s’ history. As Lemma 17 below shows, this is enough to ensure that

every Argus behavior is a filtered behavior.

The known_ aborts mapping models the distributed information maintained

by the Argus algorithm to keep track of actions that abort. However, rather

than modeling nodes directly and keeping the information on a per-node basis

as is done in the actual algorithm, we maintain the information for each event,

propagating it whenever one event directly affects another.

The known_ aborts component is managed so as to ensure that at least the

minimum amount of necessary information is propagated at each step. An

implementation is permitted to propagate more than the minimum; for in-

stance. an implementation might keep track of the known_ aborts mapping at a

coarser granularity. 03y maintaining the known–aborts mapping on a per-node

basis, the implementation of the Argus algorithm in the current Argus proto-

type follows this strategy.) In describing the algorithm, we have tried to focus

on the behavior necessary for correctness, and to avoid constraining an

implementation any more than necessary.

Notice also that the Argus database does not put any upper limit on what

goes into the known–aborts mapping. For example, it is permissible for

known_ aborts(~) to contain a transaction that has not aborted. This might

cause nonorphans to block, but will otherwise not result in incorrect behavior.

It would be easy (and intuitively appealing) to add a requirement that known_
aborts(w) only includes aborted transactions, but this is not necessa~ for

proving that the algorithm prevents all orphans from seeing inconsistent views.
To prove other properties, such as that the algorithm only detects real orphans,

we would need to add additional requirements such as the one just mentioned.

We do not attempt to state or prove such properties in this paper; the property

910 M. HERLIHY ET AL.

just described is a special case of more general liveness properties, which are

an appropriate subject of further research.

Finally, while the Argus database is distinguished from the filtered database

by maintaining information about ABORT actions on a more local basis, we

have kept the state component s.history, which maintains global knowledge of

the past behavior of the system. A practical implementation of this algorithm

would maintain less voluminous history information in a distributed fashion.

Examination of the additional preconditions imposed by the Argus database on

any action n reveals that s.history is used to determine the events ~ that

directly affect T, and when n- is a REQUEST–COMMIT(T, v) action for an

access T to object X, to determine the events that precede n at X. The details

of efficient maintenance of sufficient history information are dependent on the

particular basic database and distribution scheme, and are not addressed

further in this paper.

6.2. THE ARGUS SYSTEM. The Argus system is the composition of transac-

tions and the Argus database. Executions, schedules, and behaviors of the

Argus system are called Argus executions, Argus schedules, and AGUS behauiors,

respectively.

LEMMA 12. The Argt{s system implements the basic system.

PROOF. The proof is similar to that of Lemma 7. ❑

LEMMA 13. Let ~ be a finite Argus behavior that can leave the Argus database

in state s. Then s.krlowtl_aborts(w) is defitled if and only if v is an elent in ~.

The following lemma says that each known–aborts set is defined at most

once during an Argus execution.

LEMMA 14. Let ~‘ p be a finite Argus schedule, where ~‘ can leave the Ajgus

database in state s‘ and (s’, ~,s) is an extended step of the Argus database. If

s‘ .known_abotts{ v) is dejined. then s‘ .knowtz–aborts(rr) = s.known-aborts(v).

The next lemma says that the known_ aborts set for an event T includes all

events that directly affect m-, and that the known_ aborts set for w includes T if

m is directly affected by an ABORT(T) event.

LEMMA 15. Let ~ be a finite Argus behalior that can leave the Argus database

in state s.

(1) If 4 and r are events in P such that $ directly affects w in ~, then
s.known–aborfs(c+) G s.krzown_abo?fs(m).

(2) If w is directly affected by an ABORT(T) elent in ~, then T G s.known_

aborts(w).

PROOF. Immediate by the definition of the Argus database steps and

Lemmas 13 and 14. ❑

The next lemma is the key to the proof of correctness for the Argus system:

It says that the known–aborts set for an event m includes all transactions T

such that an ABORT(T) event affects T. In other words, the Argus database

propagates enough information about aborts so that every event w “knows

about” (stores in s.known_aborts(m-)) every abort that affects it.

Correctness of O~han Management Algorithms 911

LEMMA 16. Let p be a finite Argus behavior that can leave the Argus database

in state s. If ~ and T are euents in ~ such that ~ affects T in /3 and ~ is an

ABORT(T) euent, then T c s.known_abotis(~).

PROOF. The proof proceeds by induction on the length of the chain in the

directly-affects relation by which ~ affects m in ~. If the length of the chain is

1, then @ directly affects m in ~. Then, Lemma 15 implies that T E s.known_

aborts(v).

Now suppose that the length of the chain is k + 1, where k >1. Then there

is an event ~ in ~ such that @ affects ~ in ~ by a chain of length at most k

and Y directly affects T in /3. By inductive hypothesis, T ~ s.known-aborts(+).

Lemma 15 implies that s.known–aborts(~) c s.known–aborts(n), so that T ~

s.known_aborts(n). ❑

6.3. SIMULATION OF THE BASIC SYSTEM BY THE ARGUS SYSTEM. The follow-

ing lemma shows that the information in known_ aborts, combined with the

precondition on REQI_JEST_COMMIT actions for accesses, is enough to

ensure that the Argus system implements the filtered system.

LEMMA 17. The Argus system implements the filtered system,

PROOF. We define a mapping f that assigns to each state s of the Argus

system the singleton set f(s) consisting of the state of the filtered system that is

the same except for the omission of the s.known_aborts component of the

Argus database state. We must show that f is a possibilities mapping. Condition

1 is easy to check. For condition 2, suppose that s’ is a reachable state of the

Argus system, t‘ G f(s’) is a reachable state of the filtered system, and (s’, m,s)

is a step of the Argus system. The only interesting case to check is when

m- = REQUIX+lT_~OMMIT(T, v), where T is an access to an object X. In this

case, we claim that (t’, m, t) is a step of the filtered system, where t is the single

element of f(s).

To show that (t’, r, t) is a step of the filtered system, we must show the four

conditions defining these steps. The first three are immediate from the defini-

tion of the steps of the Argus database. To see the fourth, suppose that T’ is an

ancestor of T. We must show that no ABORT(T’) event affects an event of

object X in t‘ history. Suppose the contrary, that an ABORT(T’) event ~ affects

an event * of object X in t‘ history. Then, + also affects @ in s’.history. By
Lemma 16, T’ = s.known_aborts(~). But this violates the precondition for n

in the Argus database. Therefore, m is enabled in t‘. ID

The following theorem shows that Argus systems, like filtered systems,

ensure that every nonaccess transaction gets a view it could get in an execution

in which it is not an orphan.

THEOREM 18. Let ~ be an Argus behavior and let T be a transaction name.

Then there exists a basic behavior y such that T is not an orphan in y and

ylT=~lT,

PROOF. Immediate by Lemma 17 and Theorem 9. ❑

As for the filtered system, we obtain an important corollary about serial

correctness.

912 M. HERLIHY ET AL.

COROLLARY 19. If the basic system is serial~ correct for nonoiphans, then the

Argus system is serially correct.

Again, we give a version of the preceding corollary in which the dependency

of the Argus system on the basic system is made explicit. If B is a basic system

and R’ is a family of directly-affects relations for B, then let Argus(B, R’) be

the corresponding Argus system; it is composed of the same transaction

automata and the Argus database that is constructed from the given basic

database, using the given family of relations R’.

COROLLARY 20. Suppose B is a basic system and R‘ is a family of directly-

affects relations for B. If B is serially correct for nonorphans, then Argus(B, R‘) is

serially correct.

7. Strictly Filtered Systems

The orphan management algorithm described in [17] actually ensures a stronger

property than does the Argus algorithm. It ensures that REQUEST–COMMIT

can never occur for an orphan access, whereas the Argus algorithm merely

ensures that no such REQUEST_ COMMIT can occur if the access can

“observe” that it is an orphan. In this section, we define the strictly filtered

database, which allows a REQUEST_ COMMIT to occur for an access only if

no ancestor has aborted. (Compare this to the filtered database, which allows

an access to REQUEST_ COMMIT if an ancestor has aborted as long as the

access is not affected by the abort.) We then define the strictly filtered system,

which is composed of transactions and the strictly filtered controller, and show

that the strictly filtered system implements the filtered system. In the next

section, we describe formally the algorithm from [17] and show that it imple-

ments the strictly filtered system.

7.1. THE STRICTLY FILTERED DATABASE. The strictly filtered database is

similar to the filtered database; it has the same actions, and the same states. A

triple (s’, rr, s) is a step of the strictly filtered database if and only if the

following conditions hold.

(1) (s’.basic–state, m-, s.basic_state) is a step of the basic database,

(2) s.history = s’.historyn if n- is a basic action,

(3) s.history = s’ history if n is not a basic action,

(4) If m- = REQUEST–COMMIT(T, v) where T is an access, and T’ is an
ancestor of T, then no ABORT(T’) event occurs in s’ history.

Thus, at the point where the REQUEST_ COMMIT of an access is about to

occur, an explicit test is performed to verify that there is no preceding abort of

any ancestor of the access.

7.~. THE STRICTLY FILTERED SYsTE~. The strictly jlltered system is the

composition of transactions and the strictly filtered database. Executions,

schedules, and behaviors of the strictly filtered system are strictly filtered

executions, schedules, and b~haliors, respectively.

LEMMA 21. The strictly filtered system implements the basic ~stem.

PROOF. The proof is similar to that of Lemma 7. ❑

Correctness of Orphan Management Algorithms 913

7.3. SIMULATION OF THE BASIC SYSTEM BY THE STRICTLY FILTERED SYSTEM

LEMMA 22. The strictly filtered system implements the filtered system.

PROOF. We define a mapping f that assigns to each state s of the strictly

filtered system the singleton set f(s) that consists of the same state. We must

show that f is a possibilities mapping. Condition 1 is easy to check. For

condition 2, suppose that s‘ is a reachable state of the strictly filtered system,

t’ G f(s’) is a reachable state of the filtered system, and (s’, n-,s) is a step of the

strictly filtered system. As before, the only interesting case to check is when

m = REQUEST–COMMIT(T, v), where T is an access to an object X. In this

case, we claim that (t’, m, t) is a step of the filtered system, where t is the

unique element of f(s).

To show that (t’, m, t) is a step of the filtered system, we must show the four

conditions defining these steps. The first three are immediate from the defini-

tion of the steps of the strictly filtered database. To see the fourth, suppose

that T’ is an ancestor of T. We must show that no ABORT(T’) event affects an

event of object X in t‘ history. But t‘ history = s’ history, and by the precondi-

tions for m in the strictly filtered database, no ABORT(T’) event occurs in

s‘ .histo~. Therefore, no ABORT(T’) event affects an event of object X in

t ‘history. Thus, ~ is enabled in t‘. ❑

Strictly filtered systems, like filtered systems and Argus systems, prevent

orphans from discovering that they are orphans.

THEOREM 23. Let ~ be a strictly filtered behavior and let T be a transaction

name. Then there exists a basic behal)ior y such that T is not an orphan in y and

ylT= ~lT.

PROOF. Immediate by Lemma 22 and Theorem 9. ❑

COROLLARY 24. If the basic system is serially correct for nonophans, then the

strictly filtered system is serially correct.

If B is a basic system, let Strictly-Filtered(B) be the corresponding strictly

filtered system; it is composed of the same transaction automata and the

strictly filtered database that corresponds to the given basic database.

COROLLARY 25. Suppose that B is a basic system. If B is serially correct for

nonorphans then Strictly-Filtered(B) is serially correct.

8. Clocked Systems

In this section, we describe formally the orphan management algorithm from

[17]. We do this by defining the clocked database, which uses a global clock to

ensure that transactions do not abort until all their descendant accesses have

stopped running. We then define the clocked system, which is composed of

transactions and the clocked database. Finally, we show that the clocked system

implements the strictly filtered system, and thus simulates the basic system in

the same way as the previously mentioned systems do.

8.1. THE CLOCRED DATABASE. The clocked database maintains a quiesce

time for each access transaction and a release time for every transaction. An

access transaction is allowed to REQUEST_ COMMIT only if its quiesce time

has not passed. Release times are chosen so that once a transaction’s release

914 M. HERLIHY ET AL.

time is reached, all its descendant accesses have quiesced. A transaction is

allowed to abort only if its release time has passed. This ensures that, after a

transaction aborts, none of its descendant accesses will request to commit.

If quiesce and release times are fixed in advance, some transactions may be

forced to abort unnecessarily as their quiesce times expire, and aborts may

need to be delayed until release times are reached. It is possible to obtain extra

flexibility by providing actions in the clocked database for adjusting quiesce

and release times.

The action signature of the clocked database is the same as that of the basic

database, except that the clocked database has three additional kinds of

internal actions. The new actions are:

Internal Actions:

TICK

ADJUST. QUIESCE(T), T an access

ADJUST_ RELEASE(T), T any transaction

The TICK action advances the clock, while the two ADJUST actions adjust

quiesce and release times. By adjusting the quiesce time for a transaction to be

later than its current value, we cad extend the time during which a transaction

is allowed to run. Similarly, by adjusting the release time for a transaction to be

earlier than its current value, we can allow a transaction to abort without

waiting as long as would otherwise be necessary.

The state of the clocked database consists of components basic–state, aborted,

clock, quiesce, and release. Here, basic_ state is a state of the basic database,

initialized at an initial state of the basic database. The component aborted is a

set of transactions, initially empty. The component clock is a real number,

initialized arbitrarily. The component quiesce is a total mapping from access

transaction names to real numbers, and the component release is a total

mapping from all transaction names to real numbers. The initial values of

quiesce and release are arbitrary, subject to the following condition: for all

transaction names T and T’, where T is an access and T’ is an ancestor of T,

quiesce(T) < release.

A triple (s’, n,s) is a step of the clocked database if and only if the following

conditions hold:

(1) If m is an action of the basic system, then (s’. basic_ state, n-, s.basic_state)
is a step of the basic database,

(2) If m is a TICK, ADJUST_ QUIESCE, or ADJUST_ RELEASE action,

then s.basic–state = s’ .basic_state,

(3) If n = ABORNT), then

(a) s.aborted = s’.aborted u {T},
(b) s’:release(T) s s’.clock,

(4) If m 1s not an abort action, then s.aborted = s’.aborted,

(5) If T = REQUEST-COMMIT(T, v) where T is an access, then s’.clock <
s’.quiesce(T),

(6) If m = TICK, then s’.clock < s.clock,

(7) If w is not a TICK action, then s.clock = s’.clock,

(8) If n- = ADJUST-RELEASE(T), then
(a) if T e s’.aborted, then s.release(T) < s’.clock,
(b) s’.quiesce(T’) s s.release(T) for all T’ = descendants(T) n accesses,

(c) s.release(T’) = s’.release(T’) for all T’ + T,

Correctness of Ophan Management Algorithms 915

(9) If T is not an ADJUST--RELEASE action, then s.release = s’.release,
(10) If m = ADJUST-QUIESCE(T), then

(a) s.quiesce(T) s s’.release(T’) for all T’ G ancestors(T),

(b) s.quiesce(T’) = s’.quiesce(T’) for all T’ + T,

(11) If m is not an ADJUST-QUIESCE action, then s.quiesce = s’.quiesce.

LEMMA 26. Let ~ be a jinite schedule of the clocked database that can leaue

the clocked database in state s.

(1) If T E s.aborted, then s.release(T) s s.clock,

(2) For all accesses T and all ancestors T’ of T, s.quiesce(T) s s.release(T’).

PROOF. Straightforward by induction. ❑

8.2. THE CLOCKED SYSTEM. The clocked system is the composition of trans-

actions and the clocked database. External actions of the clocked system are

called clocked actions. Executions, schedules, and behaviors of a clocked system

are called clocked executions, schedules, and behaviors, respectively.

LEMMA 27. The clocked ~stem implements the basic system.

PROOF. The proof is similar to that of Lemma 7. ❑

8.3. SIMULATION OF THE BASIC SYSTEM BY THE CLOCKED SYSTEM

LEMMA 28. The clocked system implements the strictly jiltered system.

PROOF. We define a mapping f that assigns to each state s of the clocked

system the set f(s) of states t of the strictly filtered system such that t.basic_

state = s.basic_state and t.history is a sequence of basic actions in which the

set of transaction names T for which ABORT(T) occurs in t.history is exactly

s.aborted. We must show that f is a possibilities mapping. Condition 1 is easy to

check. For condition 2, suppose that s’ is a reachable state of the clocked

system, t’ G f(s’) is a reachable state of the strictly filtered system, and (s’, n-,s)

is a step of the clocked system.

There are two interesting cases to check: where m = ABORT(T) and where

m = REQUEST–COMMIT(T, v) for an access T. In either case, we claim that

(t’, r, t) is a step of the strictly filtered system, where t is the state of the
strictly filtered system in which t .basic_state = s.basic–state and t.history =

t‘ .historjmr, and we also claim that t G f(s).

If T = A130RmT), it is easy to see that (t’, m, t) is a step of the strictly

filtered system. To show t G f(s), note that since t‘ G f(s’), the set of transac-

tion names U for which ABORTIU) occurs in t‘ history is exactly s’ aborted.

Then, the set of transaction names with aborts in t.history is exactly s’.aborted

U {T}, which is equal to s.aborted. Thus, t G f(s).

If n = I?EQUEST_COMMIT(T, v), where T is an access, then it is easy to

see the first three conditions of the definition of strictly filtered database steps.

For the fourth condition, we must show that if T’ is an ancestor of T, then no

ABORT(T’) event occurs in t‘ history. So suppose the contrary, that T’ is an
ancestor of T and ABORT(T’) occurs in t‘ history. Since t‘ c f(s’), we have

T’ G s’.aborted. Since n- is enabled in s’, s’.clock < s’.quiesce(T). Lemma 26

implies that s‘ .release(T’) s s‘ clock and also that s‘ .quiesce(T) <

s’ .release(T’). Thus, s‘ .quiesce(T) s s‘ clock, a contradiction. It follows that

(t’, m, t) is a step of the strictly filtered system.

916 M. HERLIHY ET AL.

Since t‘ ● f(s’), the set of transaction names U for which ABORT(U) occurs

in t‘ history is exactly s’ aborted. Then, the set of transaction names with aborts

in t.history is exactly s‘ aborted = s.aborted. Thus, t E f(s). ❑

THEORFM 29. Let ~ be a clocked behalior and let T be a transaction name.

Then there exists a basic bellalior y such that T is not an orphan in y and

ylT= ~lT.

PROOF. By Lemma 28 and Theorem 23. ❑

CO~OLLARY 30. If the basic system is serially correct for nonorphans, then the

clocked Tstem is serially conect.

If B is a basic system, then let Clocked(B) be the corresponding clocked

system; it is composed of the same transaction automata and the clocked

database of the appropriate type.

COROLLARY 31. Suppose B is a basic system. If B is serially correct for

non orphans, then Clocked(B) is serially correct.

The algorithm described here uses a single physical clock to detect and

eliminate orphans. The algorithm can be adapted to work with distributed,

loosely synchronized physical clocks, or with logical clocks (e.g., see [17]). The

adapted algorithms can be described and analyzed in a manner similar to that

used for the Argus algorithm.

9. Examples

In this section, we describe two important kinds of basic systems, together with

a family of affects relations (and a generating family of directly-affects rela-

tions) for each of them. The first kind of system is a generic system. It is

suitable for modeling locking algorithms and has been studied in [4]. The

second is a pseudotime ~stem. It is suitable for modeling timestamp algorithms

and has been studied in [2].

9.1. GENERIC SYSTEMS. A generic system consists of a collection of trans-

action automata, one for each nonaccess transaction name, a collection of

generic object automata, one for each object name, and a single generic con-

troller aatomaton. The interactions between the components are as follows:

The transaction interface is exactly as before. The generic object automaton

for X has CREATE(T) input actions and REQUEST_ COMMIT(T, v) output

actions for each access T to X and each return value v. It also has INFORM_

COMMIT.AT(X)OF(T) and INFORM.ABORT–AT(X) OF(T) input actions

for each transaction T; these actions inform the object X of the fates (commit
m abort) of completed transactions. The object uses this information in

carrying out concurrency control and recove~; for example, an INFORM_

ABORT of T might cause the object to release locks held by T.

The external actions of the generic controller are similar to those required of

all basic databases: It has the inputs and outputs required of a basic database,

except that REQUEST–COMMIT actions for access transactions are inputs to

the generic controller; in addition, it has INFORM_ COMMIT and

INFORM–ABORT actions as outputs.

We model the generic controller as a specific automaton, particular to the

system type. The object automata, however, like the transaction automata, are

only partially specified. Their signature is as described above, and they are

Correctness of Orphan Management Algorithms 917

constrained to preserve an appropriately defined well-formedness property.

Otherwise, they are unconstrained. In particular, the semantics of their opera-

tions is immaterial to our discussion. In this paper, we are concerned only with

whether the entire generic database is serially correct for nonorphans, in which

case the various algorithms presented earlier guarantee the transformed sys-

tem is serially correct for all transaction names. The problem of ensuring that

specific generic systems are serially correct for nonorphans is addressed else-

where [4].

9.1.1. Generic Actions and Well-Form edness. For a generic system, we ex-

tend the object mapping as follows. Define object(m) = X if m is an IN-

FOllM-COMMIT-AT(X)OF(T) or INFORM_ABORT_AT(X) OF(T) action.

We define the generic actions to be the serial actions, plus the INFORM_

~OMMIT and INFORM_ABORT actions.

Now we define generic object well- formedness. Let X be any object name. A

sequence ~ of generic actions m with object(m) = X is defined to be genen”c

object well-formed for X provided that the following conditions hold.

(1) There is at most one CREATE.(T) event in ~ for any transaction T.

(2) There is at most one REQUEST–COMMIT event in ~ for any transaction
T.

(3) If there is a REQUEST-COMMIT event for access transaction T in ~,

then there is a preceding CREATE(T) event in p.

(4) There is no transaction T for which both an INFORM-COMMIT-

AT(X) OF(T) event and an INFORM–ABORT-AT(X) OF(T) event occur.

(5) If an INFORM-COMMIT-AT(X)OF(T) event occurs in p and T is an
access to X, then there is a preceding REQUEST–COMMIT event for T.

The following simple lemma shows a connection between transaction well-

formedness for accesses and generic object well-formedness.

LEMMA 32. Suppose ~ is a sequence of generic actions rr with object(m) =X.

If ~ is generic object well-formed for X and T is an access to X, then PIT is

transaction well-formed for T.

Notice that generic object well-formedness allows multiple (repeated)

INFORM events for a transaction. Also, generic object well-formedness does

not constrain INFORM events to follow the corresponding completion events

(COMMIT or ABORT); this constraint involves the entire system, not just

individual objects, and is captured by the generic controller as described below.

9.1.2. Generic Object Automata. A generic object automaton G for an object

name X is an 1/0 automaton with the following external action signature.

Input:

CREATE(T), for T an access to X

INFORM–COMMIT–AT(X) OF(T), for T any transaction name

INFORM–ABORT_AT(X)OF(T), for T any transaction name

output:
REQUEST–COMMIT(T, v), for T an access to X and v a value

In addition, G may have an arbitrary set of internal actions. G is required to

preserve generic object well-formedness. Except for this well-formedness

requirement, generic object automata can be chosen arbitrarily.

918 M. HERLIHY ET AL.

Generic objects are similar to the abstract objects (instances of abstract data

types) of Argus and other object-oriented systems. A generic object provides a

set of accesses through which other transactions can observe and change the

object’s state. (These accesses can be thought of as instances of the operations

usually assumed for objects in object-oriented systems.) Accesses can be

invoked by concurrent transactions, and transactions can abort; thus, in generic

transaction-processing systems that guarantee serial correctness, generic ob-

jects must provide synchronization and recovery. The objects studied in [12]

and [13], which use an exclusive locking variation of Moss’s algorithm [18] for

synchronization combined with version stacks for recovery, are examples of

generic objects that provide synchronization and recove~ sufficient to ensure

serial correctness for nonorphans. Similarly, the more general objects studied

in [4], which use a commutativity-based locking algorithm that permits concur-

rent updates, are also generic objects that ensure serial correctness for nonor-

phans.

9.1.3. Generic Controller. The third kind of component in a generic system

is the generic controller. The generic controller is also modeled as an 1/0

automaton. The transactions and generic objects have been specified to be any

automata whose actions and behavior satisfy certain simple syntactic restric-

tions. A generic controller, however, is a fully specified automaton, particular

to each system type. (Recall that we have assumed that the system type is fixed;

we describe the generic controller for the fixed system type.)

The generic controller passes requests for the creation of subtransactions to

the appropriate recipients, makes decisions about the commit or abort of

transactions, passes reports about the completion of children back to their

parents, and informs objects of the fate of transactions. It allows concurrency

and aborts, and leaves the task of coping with them to the generic objects.

The generic controller is a very nondeterministic automaton. It may delay

passing requests or reports or making decisions for arbitrary lengths of time,

and may decide at any time to abort a transaction whose creation has been

requested (but that has not yet completed). The generic controller can be

implemented in many different ways by controllers that make specific choices

from among the many nondeterministic possibilities. For instance, Moss [18]

describes a distributed implementation of the generic controller that copes

with node and communication failures yet still commits a subtransaction

whenever possible. Our results apply a fortiori to all implementations of the

generic controller obtained by restricting the nondeterminism.

The generic controller has the following action signature.

Input:

REQUEST. CREATE(T), T + TO

REQUEST-COMMIT(T, V)

output:

CREATE(T)

COMMIT(T), T # TO

ABORT(T), T # TO

REPORT_ COMMIT(T, V), T + TO

REPORT-ABORT(T), T # Tc)

INFORM_ COMMIT-AT(X) OF(T), T + TO

INFORM_ABORT-AT(X) OF(T), T # T~,

Correctness of Orphan Management Algorithms 919

The REQUEST–CREATE and REQUEST–COMMIT inputs are intended

to be identified with the corresponding outputs of transaction and generic

object automata, and correspondingly for the output actions.

Each state s of the generic controller consists of six sets: s.create–requested,

s.created, s.commit–requested, s.committed, s.aborted, and s.reported. The set

s.commit–requested is a set of (transaction, value) pairs, and the others are sets

of transaction names. All are empty in the start state except for create_

requested, which is {TO}. Define s.completed = s.committed U s.aborted.

The transition relation of the generic controller consists of exactly those

triples (s’, m,s) satisfying the preconditions and yielding the effects described

below, where T is the indicated action. We include in the effects only those

conditions on the state s that may change with the action. If a component of s

is not mentioned in the effects, it is implicit that the set is the same in s‘ and s.

REQUEST_ CREATE(T), T # TO

Effect:

s.create–requested = s’ .create_requested U {T}

REQUEST_ COMMIT(T, V)

Effect:

s.commit_requested = s’ commit-requested U {(T, v))

CREATE(T)

Precondition:

T G s’.create–requested – s’ created

Effect:

s.created = s’ created U {T}

COMMIT(T), T # TO

Precondition:

(T, V) ● s’.commit–requested for some v
T ~ s’.completed

Effect:

s.committed = s’ committed u {T}

ABORT(T), T + TO

Precondition:

T G s’.create–requested – s’.completed

Effect:

s.aborted = s’ aborted u {T}

REPORT–COMMIT(T, V), T # TO

Precondition:

T G s’ committed

(T, v) = s’.commit-requested
T G s’.reported

Effect:

s.reported = s’ reported u {T}

REPORT–ABORT(T), T + To

Precondition:

T G s’.aborted

T G s’.reported

920 M. HERLIHY ET AL.

Effect:

s.reported = s’ reported u {T}

INFORM. COMMIT_AT(X)OF(T), T # To

Precondition:

T c s’ committed

INFORM.ABORT_AT(X) OF(T), T # TO

Precondition:

T ● s’ aborted

The generic controller assumes that its input actions, REQUEST_ CR13ATE

and REQUEST_ COMMIT, can occur at any time, and simply records them in

the appropriate components of the state. Once the creation of a transaction

has been requested, the controller can create it by producing a CREATE

action. The precondition of the CREATE action indicates that a given transac-

tion will be created at most once; the effect of the CREATE is to record that

the creation has occurred. Similarly, the effect of a COMMIT or ABORT

action is to record that the action has occurred. REPORT_ COMMIT, RE-

PORT.ABORT, INFORM. COMMIT, and INFORM–ABORT actions can

be generated at any time after the corresponding COMMIT and ABORT

actions have occurred. The precondition for a COMMIT action ensures that a

transaction only commits if it has requested to do so, and it has not already

completed (committed or aborted). The precondition for an ABORT action

ensures that a transaction will be aborted only if a REQUEST_ CREATE has

occurred for it and it has not already completed. There are no other con-

straints on when a transaction can be aborted, however. For example, a

transaction can be aborted while some of its descendants are still running.

The following lemma follows easily by induction, using simple invariants

maintained by the generic controller. (See [4].)

LEMMA 33

(1) Let T be any transaction name. Then the generic controller preserves transac-
tion well- forrnedness for T.

(2) Let X be any object name. Then the generic controller presences generic object
well- fonnedness for X.

(3) The generic controller preserves basic database well fonnedness.

9.1.4. Generic Database. A generic database is the composition of a strongly

compatible set of automata indexed by the union of the set of object names

and the singleton set {GC} (for “generic controller”). Associated with each

object name X is a generic object automaton Gx for X, and associated with the

name GC is the generic controller automaton for the system type.

LEMMA 34. If ~ is a behal’ior of a generic database, then for ellery object

name X, ~ IX is generic object well-formed.

PROOF. Let X be an object name. Of the components of the gene-

ric database, only Gx and the generic controller have external actions m for

which object(m) = X. The other components thus trivially presene gene-

ric object well-formedness for X. By explicit assumption, Gx preserves

generic object well-formedness for X, and by Lemma 33, the generic controller

Correctness of Oqvhan Management Algorithms 921

preserves generic object well-formedness for X. The result follows from Propo-

sition 4. ❑

LEMMA 35. Let B be a generic database. Then B presemes basic database

well- formedness.

PROOF. A simple case analysis. The only subtle case is when pm is a

behavior of El, with ~ basic database well-formed and m a REQUEST-

COMMIT(T, v) event for an access T to X. The argument that @r IT is

transaction well-formed for T depends upon the fact that ~m IX is generic

object well-formed for X, as shown in Lemma 34. ❑

It follows that the generic database is an example of a basic database.

9.1.5. Generic Systems. A generic system is the composition of a strongly

compatible set of automata indexed by the union of the set of nonaccess

transaction names, the set of object names, and the singleton set {GC}.

Associated with each nonaccess transaction name T is a transaction automa-

ton AT for T. Associated with each object name X is a generic object

automaton Gx for X. Finally, associated with the name GC is the generic

controller automaton for the system type.

When the particular generic system is clear from context, we call its execu-

tions, schedules, and behaviors the generic executions, generic schedules, and

generic behaviors, respectively.

9.1.6. A Family of Affects Relations. Now we define a family R = {Rp} of

affects relations for any particular generic system B. We do this by first

defining a family R’ = {R~} of directly-affects relations for B, and then taking

transitive closures. For a sequence ~ of generic actions, define the relation R~

to be the relation containing the pairs (~, n) of events such that @ occurs

before w in ~, and at least one of the following holds:

—transaction(~) = transaction(m) and T is an output event of the transac-

tion,

—object(~) = object(n) and n- is a REQUEST_ COMMIT(T, v) event,

—~ is a REQUEST_ CREATE(T) and n a CREATE(T) event,

—+ is a REQUEST-COMMIT(T, v) and n- a COMMIT(T) event,

—~ is a REQUEST-CREATE(T) and T an ABORT(T) event,

—$ is a COMMIT(T) and n- a REPORT_ COMMIT(T, v) event,

—+ is an ABORT(T) and m a REPORT-ABORT(T) event,

—~ is a COMMIT(T) and T an INFORM-COMMIT_AT(X)OF(T) event,

—~ is an ABORT(T) and m an INFORM.ABORT-AT(X)OF(T) event.

Now define the relation Rp to be the transitive closure of R~. It is easy to

see that RP is an irreflexive partial order.

The idea is that @ directly affects m if they both occur at the same

transaction or object (and T is an output of the transaction, or a REQUEST_

COMMIT of the object), or if they involve different transactions or objects but

the generic system requires @ to occur before m can occur. This notion of one

event affecting another is “safe, “ in the sense that ~ affects m if there is any

way that the precondition for rr could require @ to have occurred. If the events

involve different transactions or objects, the preconditions for w in the generic

controller require @ to occur if ~ directly affects m. If the events occur at the

same transaction or object, however, it might be that @ happens to occur

922 M. HERLIHY ET AL.

before w, yet that the particular transaction or object does not require ~ to

occur before m-. In the absence of more information about the particular

transactions or objects used in a system, however, it is difficult to say more

about the ways in which one event can affect another. Thus, we make the
“safe” choice of assuming an effect whenever one could occur. Fortunately, the

orphan management algorithms described earlier in this paper are essentially

independent of the particular transactions and objects used in a system, and do

not rely on more information about them.

The next few lemmas show that the family {Rp) defined above is a family of

affects relations for B.

LEMMA 36. If P is a finite behavior of generic systenl B and Y is a~l Rfl-closed

subsequence of ~, then y is a behacior of B.

PROOF. For each nonaccess transaction name T, let AT be the transaction

automaton for T in B, and for each object name X, let Gx be the generic

object automaton for X in B. By Proposition 2, it suffices to show that y IT is a

behavior of AT for all nonaccess transaction names T, that y IX is a behavior

of Gx for all object names X, and that y is a behavior of the generic

controller. We show these in turn.

First, suppose that T is a nonaccess transaction name. If y IT contains no

output events of AT, then the input-enabling property implies that y IT is a

behavior of AT. So assume that there is at least one output event of AT in Y IT,

and let t-r be the last such event. Let y‘ be the pref~ of y ending with m. Since

y is closed in P, it follows from the clefinhion of Rp that Y contains all events

of T that precede T in ~. Thus, y‘ IT is a prefix of ~ IT and so is a behavior of

AT. Since y IT differs from y‘ IT only by the possible inclusion of some final

input events of AT, the input-enabling property implies that y IT is a behavior

of AT.

A similar argument shows that if X is an object name, then y IX is a behavior

of Gx.

NJow we show that y is a behavior of the generic controller. Note that the

generic controller is deterministic in the sense that for a given state s’ and

action m, there is at most one state s such that (s’, n,s) is a step of the generic

controller. We proceed by induction on the lengths of prefixes 8 of y. The

basis, where the length of 8 is O, is obvious. So suppose that 8 = 8 ‘T, where n

is a single event. Let ~ ‘n be the prefix of ~ ending with 7. Let s’ be the state

of the generic controller after 8‘. We consider cases, showing in each case that

n is enabled in s’.

(1) T = CREATE(T)

Then, Lemma 35 and Proposition 5 imply that REQUEST-CREATE(T)

occurs in P‘, and no CREATE(T) occurs in B‘. since Y is Rp-closed in B,

REQUEST_ CREATE(T) also occurs in 8‘. Similarly, no CREATE(T)

occurs in 8‘. It follows that n is enabled in s’.

(~) ~ = COMMIT(T)

Then, Lemma 35 and Proposition 5 imply that ~‘ contains REQUEST_
COMMIT(T, V) and contains no completion events for T. Since y iS

Rp-closed in ~, 8‘ contains REQUEST–COMMIT(T, v), and does not

contain a completion event for T. It follows that n is enabled in s’.

Correctness of Orphan Management Algorithms 923

(3) m = ABORT(T)

Then ~‘ contains REQUEST_ CREATE(T) and contains no comple-

tion events for T, so 8‘ contains REQUEST_ CREATE(T) and no com-

pletion events for T. Thus, n- is enabled in s’.

(4) m = REPORT.COMMIT(T, V)

Then ~‘ contains COMMIT(T) and REQUEST_ COMMIT(T, v) and con-

tains no report events for T. Therefore, the same is true of 8‘, so m is

enabled in s’.

(5) n-= REPORT-ABORT(T)

Similar to the preceding arguments.

(6) n-= INFORM_COMMIT-AT(X)OF(T)

Similar to the preceding arguments.

(7) n = INFORM-ABORT-AT(X)OF(T)

Similar to the preceding arguments. ❑

LEMMA 37. The family {Ro} is a family of affects relations for B.

PROOF. The first two properties of families of affects relations are immedi-

ate from the definition of {RB }. The third property is proved in the lemma

above.

The fourth property requires that whenever an ABORT(T) event @ affects

an event m of certain types, there is a specific type of intervening event ~ that

is also affected by ~. To see that this property is satisfied, note that Rp is

defined as the transitive closure of the directly-affects relation R~. Each type

of event m of interest is only directly affected by earlier events that satisfy the

restrictions on +. Thus, if m is affected by ~, it must be so affected by the

transitive closure over a chain of directly-affects relations in which an event @

of the appropriate type occurs. ❑

9.1.7. Applying Orphan Management Algorithms to Generic Systems. Since

we have shown that generic systems are instances of basic systems, and that the

directly-affects relation we defined above generates a family of affects rela-

tions, we may apply our general results for orphan management algorithms to

generic systems. Before we state these results, we illustrate one orphan

management transformation by describing explicitly the steps of the system

obtained by applying the Argus algorithm to a generic system.

If B is a generic system and R~ is the family of directly-affects relations

given above, then the steps of Argus(B, R~) are defined as follows:

—(s’.basic-state, m-, s.basic_state) is a step of the generic database,

—s.histo~ = s’.historym if n- is a basic action,

—s.history = s’ history if n is not a basic action,
—If ~ # m, then s.known-aborts(~) = s’.known-aborts(0),

—If m is a REQUEST–CREATE(T) action, then s’.known–aborts(4) G

s.known_aborts(n) for all @ in s’.history such that transaction ~) =

parent(T),

—If w is a REQUEST–COMMIT(T, v) action, where T is a nonaccess

924 M. HERLIHY ET AL.

transaction name, then s’.known–aborts(+) c s.known–aborts(~) for all 4

in s’ history such that transaction 0) = T,

—If rr is a REQUEST–COMMIT(T, v) action, where T is an access transac-

tion name, then s’ .known_aborts(~) c s.known–aborts(m) for all ~ in

s’ history such that object(4) = object(T),

—If m is a CREATE(T) action, then s’ .known_aborts(~) c s.known-aborts(v)

for all REQUEST–CREATE(T) events + in s’.history,

—If n is a COMMIT(T) action, then s‘ .known–aborts(o) G s.known–

aborts(m) for all REQUEST–COMMIT(T, V) events @ in S’history,

—If m is an ABORT(T) action, then s’.known_aborts(~) c s.known-aborts(m)

for all REQUEST-CREATE(T) events ~ in s’ history,

—If n is a REPORT–COMMIT(T, v) action, then s’ .known–aborts(0) C

s.known_aborts(T) for all COMMIT(T) events + in s‘ history,

—If rr is a REPORT–ABORT(T) action, then s’ .known_aborts(+) c

s.known–aborts(n) for all ABORT(T) events ~ in s‘ history, and T E

s.known–aborts(n),
—If m is an INFORM–COMMIT_AT(X) OF(T) action, then s’ known_

aborts(@) c s.known–aborts(n) for all COMMIT(T) events ~ in s‘ history,

—If T is an INFORM–ABORT_AT(X)OF(T) action. then s’ known_

aborts(+) g s.known–aborts(n) for all ABORT(T) events ~ in s’ history,

and T = s.known–aborts(m),

—If w is a REQUEST_ COMMIT(T, v) action for an access T to object X,

then there is no ancestor of T in s’ .known–aborts(~), for any event ~ of

object X in s’.history.

The filtered database uses global information about the histo~ to prevent

the REQUEST–COMMIT of an access from occurring if it would be affected

by an ABORT of an ancestor. The Argus database uses more local informa-

tion, which is obtained by propagating the known_ aborts sets from each event

to any later events that it directly affects. For example, consider the application

above of the Argus algorithm to a generic database. The lmown_aborts set for

a REQUEST_ CREATE(T) action is obtained from the known–aborts sets for

all preceding events at parent(T). Since REQUEST–CREATE(T) is generated

by parent(T), the known_ aborts set for it can easily be computed with informa-

tion available locally at parent(T) when the REQUEST–CREATE(T) action

occurs. A similar situation arises with REQUEST–COMMIT actions, which

are outputs of transactions and objects. The other actions, which are outputs of

the generic controller, are directly affected by exactly one preceding event.

Thus, the known_ aborts set for one of these actions can easily be computed
from the known_ aborts set for the single event that precedes it. For instance,

the known–aborts set for a CREATE(T) event can be obtained directly from

the known–aborts set for the preceding REQUEST–CREATE(T) event. If the

two events occur at the same site in a network, this information would be

available locally; if they occur at different sites, it could be sent in the message

used to transmit the REQUEST–CREATE event to the site that performs the

CREATE event.

The following corollary shows that the Argus algorithm and the clocked

algorithm from [17] can both be used for a generic system:

COROLLARY 38. Let B be a generic systenl, and R and R‘ the fanlily of affects

Comectness of Orphan Managenlent Algorithms 925

and directly-affects relations defined abol~e. Ij’ B is serialij correct jor nonorphans,

then the following are true:

—Filtered(B, R) is serially correct,

—Argt{s(B, R‘) is serially correct,

—Strictly-Filtered(B) is serially correct,

—Clocked(B) is serially con-ect.

9.2. PSEUDOTIME SYSTEMS. The essential feature of systems using time-

stamps is the explicit construction of a sibling order representing the intended

serialization of an execution. This order is represented in terms of intervals of

pSWdOtiF?W, an arbitrarily chosen totally ordered set. Formally, we let P be the

set of pseudotimes, ordered by < . We represent pseudotime intervals as

half-open intervals [p, q) in P, and refer to them using capital letters. If

P = [p, q), then we write P~,, for p and P~~X for q. If P and Q are intervals of

pseudotime, we write P < Q if P~dX s Q~,.. Clearly, if P < Q, then P and Q

are disjoint.

A pseudotime system consists of a collection of transaction automata, one

for each nonaccess transaction name, a collection of pseudotime object auto-

mata, one for each object name, and a single pseudotime controller automa-

ton. The interactions between the components are as follows. The transaction

interface is exactly as before. A pseudotime object automaton for X has the

same actions as a generic object automaton, with the addition of INFO17M_

TIME–AT(X)OF(T, p) input actions to inform the object that pseudotime p

has been assigned to an access transaction T. The pseudotime controller has

the same actions as the generic controller, with the addition of INFORM_

TIM13-AT(X)OF(T, p) output actions (for access transactions T) and AS-

SIGN–PSEUDOTIME(T, P) output actions (for all transactions T) by which

the controller assigns the pseudotime range P to transaction T.

9.2.1. Pseudotime Actions and Well-Fonnedness. The object mapping for a

pseudotime system is the same as that for a generic system, with the addition

that we define object(n) = X if n is an INFORM_TIME_AT(X)OF(T, p)

action. We define the pseudotime actions to be the generic actions, plus the

INFORM_ THvIE and ASSIGN. PSEUDOTIME actions.

Now we define “pseudotime object well-formedness.” Let X be any object

name. A sequence of pseudotime actions n with object(n) = X is defined to

be pseudotime object well- fowned for X provided that the following conditions

hold:

(1) There is at most one CREATE(T) event in ~ for any transaction T,
(’2) There is at most one REQuEsT_coMM~T event in /3 for any transaction

T,

(3) If there is a REQUEST-COMMIT event for T in ~, then there is a

preceding CREATE(T) event and also a preceding INFORM-TIME-

AT(X)OF(T, p) in ~,

(4) There is no transaction T for which there are two different pseudotimes, p

and p’, such that INFORM_ TIME–AT(X)OF(T, p) and INFORM_
TIME_AT(X)OF(T, p’) both occur in ~,

(5) There is no pseudotime p for which there are two different transactions, T

and T’, such that INFORM. TIME_ AT(X) OF(T, p) and INFORM_

TIME–AT(X)OF(T’, p) both occur in ~,

926 M. HERLIHY ET AL.

(6) There is no transaction T for which both an INFORM-COMMIT_

AT(X) OF(T) event and an INFORM.ABORT-AT(X) OF(T) event occur,

(7) If an INFORM_ COMMIT_AT(X)OF(T) event occurs in /3 and T is an

access to X, then there is a preceding REQUEST_ COMMIT event for T.

9.2.2. Pseudotime Object Automata. A pseudotime object autonlaton P for

an object name X is an 1/0 automaton with the following external action

signature.

Input:

CREATE(T), T an access to X

INFORM_ COMMIT_AT(X)OF(T)

INFORM_ABORT.AT(X) OF(T)

INFORM_TIME_AT(X) OF(T, p), T an access to X, p = P

output :

REQUEST_ COMMIT(T, v), T an access to X

In addition, P may have an arbitrary set of internal actions. P is required to

preserve pseudotime object well-formedness.

9.2.3. Pseudotirne Controller. The pseudotime controller guarantees that sib-

lings are assigned disjoint intervals of pseudotime, and that each transaction’s

interval is a subset of that of its parent. The pseudotime controller has the

actions of the generic controller together with an extra class of output actions

ASSIGN_ PSEUDOTIME(T, P) for T + TO and P a pseudotime interval. The

purpose of the ASSIGN_ PSEUDOTIME actions is to construct, at run-time, a

sibling order that specifies the apparent serial ordering of transactions. Also,

there is an extra class of actions INFO RM_TIME_AT(X)OF(T, p) for access

transactions T. A state s of the pseudotime controller has the same compo-

nents as a state of the generic controller together with an additional compo-

nent s.interval, which is a partial function from T to the set of pseudotime

intervals. In the initial state s~ of the pseudotime controller s~interval =

{(TO, po)} for some pseudotime interval P., and all other components are as in
the initial state of the generic controller.

The transaction relation for generic actions is the same as that for the

generic controller, except that the actions CREATE(T) and ABORT(T) have

an additional precondition: T = domain(s’ interval). The additional actions are

determined as follows:

ASSIGN-PSEUDOTIME(T, P)

Precondition:
T G s’ .create-requested

T @ domain(s’.interval)

P g s’.interval(parent(T))

P > s’.interval(T’) for every T’ in siblings(T) n domain(s’ interval)

Effect:
s.interval = s’.interval u {(T, P)}

INFORM_ TIME_AT(X)OF(T, p), T an access to X

Precondition:

(T, P) E s’.interval

P = ‘m,.

Correctness of O~han Management Algorithms 927

The following lemma is straightforward.

LEMMA 39

(1) Let T be any transaction name. Then the pseudotime controller presemes

transaction well- formedness for T,

(2) Let ~ be any object name. Then the pseudo~ime controller presezes pseudo-
time object well- formedness for X,

(3) The pseudotime controller preserves basic database well- fonnedness.

9.2.4. Pseudotime Database. A pseudotime database is the composition of a

strongly compatible set of automata indexed by the union of the set of object

names and the singleton set {PC} (for “pseudotime controller”). Associated

with each object name X is a pseudotime object automaton Px for X. Finally,

associated with the name PC is the pseudotime controller automaton for the

system type.

LEMMA 40. If ~ is a behavior of a pseudotirne database, then for every object

name X, /3 IX is pseudotime object well-formed.

LEMMA 41. Let B be a pseudotime database. Then B preserves basic database

well- formedness.

It follows that the pseudotime database is an example of a basic database.

9.2.5. Pseudotime Systems. A pseudotirne system is the composition of a

strongly compatible set of automata indexed by the union of the set of

nonaccess transaction names, the set of object names, and the singleton set

{PC}. Associated with each nonaccess transaction name T is a transaction

automaton AT for T. Associated with each object name X is a pseudotime

object automaton Px for X. Finally, associated with the name PC is the

pseudotime controller automaton for the system type.

When the particular pseudotime system is clear from context, we call its exec

utions, schedules, and behaviors the pseudotime executions, pseudotime sched-

ules, and pseudotime behaviors, respectively.

9.2.6. A Fami~ of Affects Relations. Now we define a family R = {RD} of

affects relations for any particular pseudotime system B. We do this by first

defining a family R’ = {R~} of directly-affects relations for B, and then taking

transitive closures. For a sequence ~ of pseudotime actions, define the relation

R~ to be the relation containing the pairs (~, m-) of events such that $ occurs

before n- in ~, and at least one of the following holds:

—transaction(+) = transaction(m) and n is an output event of the transac-

tion,

—object(@) = object(m) and T is a REQUEST–COMMIT(T, v) event,

–~ is a REQUEST.CREATE(T) and T an ASSIGN-PSEUDOTIME(T, P)

event,

—~ is an ASSIGN. PSEUDOTIME(T, P) and T a CREATE(T) event,

—~ is a REQUEST-COMMIT(T, v) and m a COMMIT(T) event,
—+ is a REQUEST. CREATE(T) and m an ABORT(T) event,

—~ is an ASSIGN-PSEUDOTIME(T, P) and w an ABORT(T) event,

—+ is a COMMIT(T) and m a REPORT_ COMMIT(T, v) event,

—+ is an ABORT(T) and ~ a REPORT-ABORT(T) event,

928 M. HERLIHY ET AL.

—+ is a COMMIT(T) and rr an INFORM-COMMIT.AT(X)OF(T) event,

—~ is an ABORT(T) and n an INFORM-ABORT-AT(X) OF(T) event, or

—~ is an ASSIGN. PSEUDOTIME(T, P) event and n an INFORM_

TIME–AT(X)OF(T, p) event.

once again, define the relation RP to be the transitive closure of R~. It is

easy to see that R6 is an irreflexive partial order. We claim that the family

{RP} defined above is a family of affects relations for G.

LEMMA 42. If p is a behavior of pseudotime system B and y is an R@-closed

subsequence of ~, then y is a behalior of B.

PROOF. Analogous to the proof of Lemma 36. ❑

LEMMA 43. The family {RP} is a family of affects relations for B.

9.2.7. Applying Orphan Management Algorithms to Pseudotirne Systems. The

following easy corollary shows that the Argus algorithm and the clocked

algorithm from [17] can both be used for a pseudotime system:

COROLLARY 44. Let B be a pseudotime system, and R and R‘ the family of

affects and directly-affects relations defined aboue. If B is serially cowect for

nono~hans, then the following are true:

—Filtered(B, R) is seriallj correct,

—Argus(B, R‘) is serially correct,

—Strictly-Filtered(B) is serially correct,

—Clocked(B) is serially correct.

10. Conclusions

We have defined correctness properties for orphan management algorithms,

and have presented precise descriptions and proofs for two algorithms from

[10] and [17]. Our proofs are quite simple, and show that the systems exhibit a

substantial degree of modularity: the orphan management algorithms can be

used in combination with any concurrency control protocol (in basic system

form) that is serially correct for nonorphans. The simplicity of our proofs is a

direct result of this modularity, and is in sharp contrast to earlier work [6], in

which the orphan management algorithm and the concurrency control protocol

were not cleanly separated.

Our proofs have an interesting structure. We first define a simple abstract

algorithm that uses global information about the history of the system, and

show that it ensures that orphans see consistent views. We then formalize the
Argus algorithm and the clocked algorithm in a way that requires the use of

only local information, and show that each simulates the more abstract

algorithm. The simulation proofs are quite simple, and do not require reprov-

ing the properties already proved for the abstract algorithm. The correctness of

the Argus and clocked algorithms then follows directly from the correctness of

the abstract algorithm.
In this paper, we have analyzed only orphans that result from aborts of

transactions. Interesting algorithms have also been developed for detecting and

eliminating orphans arising from crashes [10, 17]. These algorithms seem more

complicated than the algorithms for handling aborts. An open question is

whether the known algorithms for handling crash orphans can be analyzed

Correctness of O~han Management Algorithms 929

using techniques similar to those in this paper. In particular, it would be nice to

find a similar separation of concerns for those algorithms, so that the crash-

orphan algorithms can be understood independently of concurrency control

protocols and abort-orphan algorithms. Whether this will be possible is still

unknown.

ACKNOWLEDGMENT. We thank Alan Fekete, Ken Goldman, and Sharon Perl

for their comments on earlier versions of this work.

R13FERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

ALLCHIN, J. E. An architecture for reliable decentralized systems. Tech. Rep. GIT-ICS-

83/23. Georgia Institute of Technology, Atlanta, Ga., Sept. 1983.
ASPNES, J., FEKETE, A., LYNCH, N., MERRIIT, M., AND WEIHL, W. A theory of timestamp-

based concurrency control for nested transactions. In Proceedings of the 14th International

Conference on Very Large Data Bases (Aug.), Morgan-Kaufmann, San Mateo, Calif., 1988, pp.
431-444.

BERNSTEIN, P., HADZILACOS, V., AND GOODMAN, N. Concurrency Control and Reco[ery in

Database Systems. Addison-Wesley, Reading, Mass., 1987.

FEKETE, A., LYNCH, N., MERRITT, M., AND WEIHL, W. Commutatk@-based locking for

nested transactions. J. Comput. Syst. Sci. 41, 1 (Aug. 1990), 65–156.

GOLDMAN. K., AND LYNCH, N. Quorum consensus in nested transaction systems. In Proceed-

ings of 6th An?u~al ACM Symposium on Principles of Distributed Cornpzdation (Vancouver, B. C.,
Canada, Aug. 10– 12). ACM, New York, 1987, pp. 27–41. (Expanded version available as
Tech. Rep. MIT\ LCS/TM-390. Laborato~ for Computer Science. Massachusetts Institute of
Technology, Cambridge, Mass., May 1987.)

GOREE, J. A. Internal consistency of a distributed transaction system with orphan detection.

Tech. Rep. MIT/LCS\TR-286. Massachusetts Institute of Technology, Cambridge, Mass.,
January 1983.

HERLIHY, M., LYNCH, N., MERRITT, M., AND WEIHL, W. On the correctness of orphan

elimination algorithms. In Proceedings of the 17th International ,$ymposiam on Fault-Tolerant

Computing (Pittsburgh, Pa., July). IEEE, New York, 1987, pp. 8–13. (Extended version
available as MIT/LCS/TM-329, Laboratory for Computer Science. Massachusetts Institute

of Technology, Cambridge, Mass., May 1987.)
DETLEFS, Il. L., HERLIHY, M. P., AND WING, J. M. Inheritance of synchronization and
recovery properties in avalon/C + +. IEEE Cornput. 21, 12 (Dec. 1988) 57–69.
LISKOV, B., AND SCHEIFLER, R. Guardians and actions: Linguistic support for robust,
distributed programs. ACM Trans. Prog. Lang. Syst. 5, 3 (July, 1983), 381-404.
LISKOV, B., SCHEIFLER, R., WALKER. E. F., AND WEIHL, W. Orphan detection. In Proceedings

of the 17th International Symposium on Fault-Tolerant Computing (July). IEEE, New York,

1987, pp. 2–7.

LYNCH, N. A. Concurrency control for resilient nested transactions. AdL. Comput. Res. 3

(1986), 335-373.

LYNCH, N. A., AND MERRITT, M. Introduction to the theory of nested transactions. Theoret.

Comput Sci. 62 (1988), 123-185.

LYNCH, N., AND MERRHT, M. Introduction to the theory of nested transactions. In Proceed-

ings of the International Conference on Database Theory (Rome, Italy, Sept.). 1986, pp. 278–305.

LYNCH, N., MERRITT’, M., WEIHL, W., AND FEKETE, A. Atomic Transactions. Morgan-
Kaufmann, San Mateo, Calif. To appear, Fall 1992.
LYNCH, N., AND TUTTLE, M. Hierarchical correctness proofs for distributed algorithms. In

Proceedings of the 6th ACM Symposium on Principles of Distributed Computing (Vancouver,
B. C., Canada, Aug. 10–12). ACM, New York, 1987, pp. 137–151. (Expanded version available

as Tech. Rep. MIT\ LCS/TR-387. Laboratory for Computer Science. Massachusetts Institute
of TechnoloM, Cambridge, Mass., April 198’7.)
LYNCH, N., AND TUTTLE, M. An introduction to input/output automata. CW7 Quarter@ 2, 3

(1989), 219-246.

MCKENDRY, M., AND HERLIHY, M. Timestamp-based orphan elimination. IEEE Trans.

Softw. Eng. 15, 7 (July, 1989).

930 M. HERLIHY ET AL.

18. MOSS, J. E. B. Nested Transactions: An Approach to Rehable Distributed Computmg. MIT

Press, Cambridge, Mass., 1985.

19. NELSON, B. J. Remote procedure call. Tech. Rep. CMU-CS-81-119. Dept. Computer Sci-
ence. Carnegie-Mellon Univ., Pittsburgh, Pa., May 1981.

20. PERL, S. Distributed commit protocols for nested atomic actions. Tech. Rep.
MIT/LCS/TR-431. Massachusetts Institute of Technology, Cambridge, Mass., Sept. 1987.

21. Pu, C. AND NOE, J. D. Nested transactions for general objects: The Eden implementation.
Tech. Rep. TR-S5-12-03. Dept. of Computer Science, Univ. of Washington, Seattle, wash.,

December 1985.
ZZ. ROSENKRANTZ, D. J., STEARNS, R. E., AND LEWIS, P. M. System level concurrency cOntrol for

distributed database systems. ACM Tram. Datab. Syst. 3, 2 (June 1978), 178-198.

23. SPECTOR,A., ANDSWEDLOW,K. Galde to the Camelot Distnbated Transaction Facd@: Release

1. Carnegie-Mellon Univ., Pittsburgh, Pa., Oct. 1987.

24. WALKER, E. F. Orphan detection in the argus system. Tech. Rep. MIT/LCS/TR-326.
Massachusetts Institute of Technology, Cambridge, Mass., May 1984.

25. WEIHL, W. E. Specification and implementation of atomic data types. Tech. Rep.
MIT/LCS\TR-314. Massachusetts Institute of Technology, Cambridge, Mass., 1984.

26. WEIHL, W. E. Local atomicity properties: Modular concurrency control for abstract data
types. ACM Trans. Prog. Lang. Syst. 11, 2 (Apr. 1989), 249–283.

RECEIVED JUNE 1987; REVISED MARCH 1991 ; ACCEPTED APRIL 1991

JOurnd of the AssocIdmII for Cmnputlng hidchl~~m, Vd 39, No 4, oct~bc~ 1992

