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1.1 BACKGROUND. The role of synchronism in distributed computing has 
recently received considerable attention [ 1, 4, lo]. One method of comparing two 
models with differing amounts or types of synchronism is to examine a specific 
problem in both models. Because of its fundamental role in distributed computing, 
the problem chosen is often that of reaching agreement. (See [8] for a survey; see 
also [6], [ 111, [ 121, and [ 181 for example.) One version of this problem considers a 
collection of N processors, pI, . . . , pN, which communicate by sending messages 
to one another. Initially each processor pi has a value Vi drawn from some domain 
Vof values, and the correct processors must all decide on the same value; moreover, 
if the initial values are all the same, say v, then v must be the common decision. 
In addition, the consensus protocol should operate correctly if some of the proces- 
sors are faulty, for example, if they crash (fail-stop faults), fail to send or receive 
messages when they should (omission faults), or send erroneous messages (Byzan- 
tine faults). 

Fix a particular type of fault. Given assumptions about the synchronism of the 
message system and the processors, one can characterize the model by its resiliency, 
the maximum number of faults that can be tolerated in any protocol in the given 
model. For example, it might be assumed that there is a fixed upper bound A on 
the time for messages to be delivered (communication is synchronous) and a fixed 
upper bound + on the rate at which one processor’s clock can run faster than 
another’s (processors are synchronous), and that these bounds are known a priori 
and can be “built into” the protocol. In this case N-resilient consensus protocols 
exist for Byzantine failures with authentication [3, 151 and, therefore, also for fail- 
stop and omission failures; in other words, any number of faults can be tolerated. 
For Byzantine faults without authentication, t-resilient consensus is possible iff 
Nr 3t + 1 [14, 151. 

Recent work has shown that the existence of both bounds A and @ is necessary 
to achieve any resiliency, even under the weakest type of faults. Dolev et al. [4], 
building on earlier work of Fischer et al. [lo], prove that if either a fixed upper 
bound A on message delivery time does not exist (communication is asynchronous) 
or a fixed upper bound 9 on relative processor speeds does not exist (processors 
are asynchronous), then there is no consensus protocol resilient to even one fail- 
stop fault. 

In this paper we define and study practically motivated models that lie between 
the completely synchronous and completely asynchronous cases. 

1.2 PARTIALLY SYNCHRONOUS COMMUNICATION. We lirstconsiderthe case in 
which processors are completely synchronous (i.e., + = 1) and communication lies 
“between” synchronous and asynchronous. There are at least two natural ways in 
which communication might be partially synchronous. 

One reasonable situation could be that an upper bound A on message delivery 
time exists, but we do not know what it is a priori. On the one hand, the 
impossibility results of [4] and [lo] do not apply since communication is, in fact, 
synchronous. On the other hand, participating processors in the known consensus 
protocols need to know A in order to know how long to wait during each round of 
message exchange. Of course, it is possible to pick some arbitrary A to use in 
designing the protocol, and say that, whenever a message takes longer than this A, 
then either the sender or the receiver is considered to be faulty. This is not an 
acceptable solution to the problem since, if we picked A too small, all the processors 
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could soon be considered faulty, and by definition the decisions of faulty processors 
do not have to be consistent with the decision of any other processor. What we 
would like is a protocol that does not have A “built in.” Such a protocol would 
operate correctly whenever it is executed in a system where some fixed upper 
bound A exists. It should also be mentioned that we do not assume any probability 
distribution on message transmission time that would allow A to be estimated by 
doing experiments. 

Another situation could be that we know A, but the message system is sometimes 
unreliable, delivering messages late or not at all. As noted above, we do not want 
to consider a late or lost message as a processor fault. However, without any further 
constraint on the message system, this “unreliable” message system is at least as 
bad as a completely asynchronous one, and the impossibility results of [4] apply. 
Therefore, we impose an additional constraint: For each execution there is a global 
stabilization time (GST), unknown to the processors, such that the message system 
respects the upper bound A from time GST onward. 

This constraint might at first seem too strong: In realistic situations, the upper 
bound cannot reasonably be expected to hold forever after GST, but perhaps only 
for a limited time. However, any good solution to the consensus problem in this 
model would have an upper bound L on the amount of time after GST required 
for consensus to be reached; in this case it is not really necessary that the bound A 
hold forever after time GST, but only up to time GST + L. We find it technically 
convenient to avoid explicit mention of the interval length L in the model, but will 
instead present the appropriate upper bounds on time for each of our algorithms. 

Instead of requiring that the consensus problem be solvable in the GST model, 
we might think of separating the correctness conditions into safety and termination 
properties. The safety conditions are that no two correct processors should ever 
reach disagreement, and that no correct processor should ever make a decision that 
is contrary to the specified validity conditions. The termination property is just 
that each correct processor should eventually make a decision. Then we might 
require an algorithm to satisfy the safety conditions no matter how asynchronously 
the message system behaves, that is, even if A does not hold eventually. On the 
other hand, we might only require termination in case A holds eventually. It is 
easy to see that these safety and termination conditions are equivalent to our GST 
condition: If an algorithm solves the consensus problem when A holds from time 
GST onward, then that algorithm cannot possibly violate a safety property even if 
the message system is completely asynchronous. This is because safety violations 
must occur at some finite point in time, and there would be some continuation of 
the violating execution in which A eventually holds. 

Thus, the condition that A holds from some time GST onward provides a second 
reasonable definition for partial communication synchrony. Once again, it is not 
clear how we could apply previously known consensus protocols to this model. For 
example, the same argument as for the case of the unknown bound shows that we 
cannot treat lost or delayed messages in the same way as processor faults. 

For succinctness, we say that communication is partially synchronous if one of 
these two situations holds: A exists but is not known, or A is known and has to 
hold from some unknown point on. 

Our results determine precisely, for four interesting fault models, the maxi- 
mum resiliency possible in cases where communication is partially synchronous. 
For fail-stop or omission faults we show that t-resilient consensus is possible iff 
N 2 2t + 1. For Byzantine faults with authentication, we show that t-resilient 
consensus is possible iff N 2 3t + 1. Also, for Byzantine faults without authenti- 
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TABLE I. SMALLEST NUMBER OF PROCESSORS Nmi. FOR WHICH A I-RimxiT 
CONSENSUS PROTOCOL EXISTS 

Partially syn- 
Partially syn- Partially syn- chronous pro- 

chronous com- chronous cessors and 
munication and communica- synchronous 

Syn- Asyn- synchronous tion and pro- communica- 
Failure type chronous chronous processors cessors tion 

Fail-stop t Ca 2t-k 1 2t+ 1 t 
Omission t m 2t+ 1 2t+ 1 [2t, 2t + l] 
Authenticated Byzantine t m 3t+ 1 3t+ 1 2t+ 1 
Byzantine 3t+1 m 3t+ 1 3t+ 1 3t+ 1 

cation, we show that t-resilient consensus is possible iff N 2 3t + 1. (The “only if” 
direction in this case follows immediately from the result for the completely 
synchronous case in [ 151.) For all four types of faults, the time required for all 
correct processors to reach consensus is (1) a polynomial in N and A, for the model 
in which A is unknown; and (2) GST plus a polynomial in N and A, for the GST 
model. All of our protocols that reach consensus within time polynomial in 
parameters such as iV, A, and GST also have the property that the total number of 
message bits sent is also bounded above by a polynomial in the same parameters. 

Table I shows the maximum resiliency in various cases and compares our results 
with previous work. The results where communication is partially synchronous 
and processors are synchronous are shown in column 3 of the table; the results in 
columns 4 and 5 will be explained shortly. In each case, the table gives Nmin, the 
smallest value of N (N L 2) for which there is a t-resilient protocol (t > 1). (Some 
of the lower bounds on Nmin in the last column of the table have slightly stronger 
constraints on t and N, which are given in the formal statements of the theorems.) 
Results in the synchronous column are due to [3], [5], and [ 151, and those in the 
asynchronous column are due to [4] and [lo]. The table entry that is the closed 
interval [2t, 2t + I] means that 2t 5 iVmin 5 2t + 1. 

It is interesting to note that, for fail-stop, omission, and Byzantine faults with 
authentication, the maximum resiliency for partially synchronous communication 
lies strictly between the maximum resiliency for the synchronous and asynchronous 
cases. It is also interesting to note that, for partially synchronous communication, 
authentication does not improve resiliency. 

Our protocols use variations on a common method: A processor p tries to get 
other processors to change to some value v that p has found to be “acceptable”; p 
decides v if it receives sufficiently many acknowledgments from others that they 
have changed their value to v, so that a value different from v will never be found 
acceptable at a later time. Similar methods have already appeared in the literature 
(e.g., see [2], [ 191). Reischuk [ 171 and Pinter [ 161 have also obtained consensus 
results that treat message and processor faults separately. 

1.3 PARTIALLY SYNCHRONOUS COMMUNICATION AND PROCESSORS. It is easy to 
extend the models described in Section 1.2 to allow processors, as well as com- 
munication, to be partially synchronous. That is, + (the upper bound on relative 
processor speed) can exist but be unknown, or 9 can be known but actually hold 
only from some time GST onward. We obtain results that completely characterize 
the resiliency in cases in which both communication and processors are par- 
tially synchronous, for all four classes of faults. In such cases we assume that 
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communication and processors possess the same type of partial synchrony; that is, 
either both @ and A are unknown, or both hold from some time GST on. 

Surprisingly, the bounds we obtain are exactly the same as for the case in which 
communication alone is partially synchronous; see column 4 of Table I. (The only 
difference is that in this case the polynomial bounds on time depend on N, A, and 
a.) In the earlier case the fact that @ was equal to 1 implied that each processor 
could maintain a local time that was guaranteed to be perfectly synchronized with 
the local times of other processors. In this case no such notion of time is available. 
We give two new protocols allowing processors to simulate distributed clocks. 
(These are fault-tolerant variations on the clock used by Lamport in [ 131.) One 
uses 2t + 1 processors and tolerates t fail-stop, omission, or authenticated Byzantine 
faults, while the other uses 3t + 1 processors and tolerates t unauthenticated 
Byzantine faults. When the appropriate clock is combined with each of our 
protocols for the case where only communication is partially synchronous, the 
result is a new protocol for the case in which both communication and processors 
are partially synchronous. 

1.4 PARTIALLY SYNCHRONOUS PROCESSORS. In analogy to our treatment of 
partial communication synchrony, it is easy to define models where processors are 
partially synchronous and communication is synchronous (A exists and is known 
a priori). The last column of Table I summarizes our results for this case. Once 
again, time is polynomial (this time in N, A and @). The basic strategy used in 
constructing the protocols for this case also involves combining a consensus 
protocol that assumes processor synchrony with a distributed clock protocol. For 
fail-stop faults and Byzantine faults with authentication, either the distributed clock 
or the consensus protocol can tolerate more failures than the corresponding clock 
or consensus protocol used for the case in which both communication and 
processors are partially synchronous, so we obtain better resiliencies. 

Technical Remarks 
(1) Our protocols assume that an atomic step of a processor is either to receive 

messages or to send a message to a single processor, but not both; there is neither 
an atomic receive/send operation nor an atomic broadcast operation. We adopt 
this rather weak definition of a processor’s atomic step in this paper because it is 
realistic in practice and seems consistent with assumptions made in much of the 
previous work on distributed agreement. However, our lower bound arguments 
are still valid if a processor can receive messages and broadcast a message to all 
processors in a single atomic step. 

(2) The strong unanimity condition requires that, if all initial values are the 
same, say v, then v must be the common decision. Weak unanimity requires this 
condition to hold only if no processor is faulty. Unless noted otherwise, our 
consensus protocols achieve strong unanimity, and our lower bounds hold even 
for weak unanimity. In the case, however, of Byzantine faults with authentication 
and partially synchronous processors, the upper bound 2t + 1 in the last column 
of Table I holds for strong unanimity only if the initial values are signed by a 
distinguished “sender.” This assumption is also used in the algorithm of [3] for the 
completely synchronous case. (For weak unanimity, the upper bound 2t + 1 in the 
last column holds even without signed initial values.) We discuss this further in 
Section 6, which is the first place where the issue of whether the initial values are 
signed has any effect on our results. 

(3) Our consensus protocols are designed for an arbitrary value domain V, 
whereas our lower bounds hold even for the case 1 Vl = 2. 
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The remainder of this paper is organized as follows: Section 2 contains delini- 
tions. Section 3 contains our basic protocols, presented in a basic round 
model, which has more power than the models in which we are really interested. 
Section 4 contains our results for the model in which processors are synchronous 
and communication is partially synchronous. In particular, the protocols of Sec- 
tion 3 are adapted to this model. The distributed clocks are defined in Section 5, 
where we also discuss how to combine the results of Section 3 with the clocks to 
produce protocols for the model in which both processors and communication are 
partially synchronous. Section 6 contains our results for the case in which processors 
are partially synchronous and communication is synchronous. 

2. Definitions 

2.1 MODEL OF COMPUTATION. Our formal model of computation is based on 
the models of [4] and [lo]. Here we review the basic features of the model 
informally. The communication system is modeled as a collection of N sets of 
messages, called bu@s, one for each processor. The buffer ofpi represents messages 
that have been sent to pi, but not yet received. Each processor follows a deterministic 
protocol involving the receipt and sending of messages. Each processor pi can 
perform one of the following instructions in each step of its protocol: 

Send(m, pj): places message m in p:s buffer; 
Receive(pi): removes some (possibly empty) set S of messages from p;s buffer 

and delivers the messages to pi. 

In the Send(m, pi) instruction, pj can be any processor; that is, the communication 
network is completely connected. A processor’s protocol is specified by a state 
transition diagram; the number of states can be infinite. The instruction to be 
executed next depends on the current state, and the execution causes a state 
transition. For a Send instruction, the next state depends only on the current state, 
whereas, for a Receive instruction, the next state depends also on the set S of 
delivered messages. The initial state of a processor pi is determined by its initial 
value vi in V. At some point in its computation, a processor can irreversibly decide 
on a value in V. 

For subsequent definitions, it is useful to imagine that there is a real-time clock 
outside the system that measures time in discrete integer-numbered steps. At each 
tick of real time, some processors take one step of their protocols. A run of the 
system is described by specifying the initial states for all processors and by 
specifying, for each real-time step, 

(1) which processors take steps, 
(2) the instruction that each processor executes, and 
(3) for each Receive instruction, the set of messages delivered. 

Runs can be finite or infinite. Given an infinite run R, the message m is lost in run 
R if m is sent by some Send(m, pj), pj executes infinitely many Receive instructions 
in R, and m is never delivered by any Receive(pj). 

2.2 FAILURES. A processor executes correctly if it always performs instructions 
of its protocol (transition diagram) correctly. A processor is correct if it executes 
correctly and takes infinitely many steps in any infinite run. We consider four 
types of increasingly destructive faulty behavior of processor pi: 

Fail-stop: Processor pi executes correctly, but can stop at any time. Once stopped 
it cannot restart. 
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Omission: Faulty processor pi follows its protocol correctly, but Send(m, pj), 
when executed by pi, might not place m in pj’s buffer and Receive(pi) might cause 
only a subset of the delivered messages to be actually received by pi. In other 
words, an omission fault on reception occurs when some set S of messages is 
delivered to pi and all messages in S are removed from pi’s buffer, but pi follows a 
state transition as though some (possibly empty) subset S’ of S were delivered. 

Authenticated Byzantine: Arbitrary behavior, but messages can be signed with 
the name of the sending processor in such a way that this signature cannot be 
forged by any other processor. 

Byzantine: Arbitrary behavior and no mechanism for signatures, but we assume 
that the receiver of a message knows the identity of the sender. 

2.3 PARTIAL SYNCHRONY. Let I be an interval of real time and R be a run. We 
say that the communication bound A holds in Ifor run R provided that, if message 
m is placed in pj’s buffer by some Send(m, pj) at a time s1 in I, and if pj executes a 
Receive(pj) at a time s2 in I with s2 2 s1 + A, then m must be delivered to pj at 
time s2 or earlier. This says intuitively that A is an upper bound on message 
transmission time in the interval I. The processor bound @ holds in Ifor R provided 
that, in any contiguous subinterval of I containing @ real-time steps, every correct 
processor must take at least one step. This implies that no correct processor can 
run more than @ times slower than another in the interval I. 

The following conditions, which define varying degrees of communication 
synchrony, place constraints on the kinds of runs that are allowed. In these 
definitions, A denotes some particular positive integer: 

(1) A is known: The communication bound A holds in [ 1, 00) for every run R. 
Delta is known: A is known for some fixed A. This is the usual definition of 
synchronous communication. 

(2) Delta is unknown: For every run R, there is a A that holds in [ 1, m). 

(3) A holds eventually: For every run R, there is a time T such that A holds in 
[T, m). Such a time T is called the Global Stabilization Time (GST). 
Delta holds eventually: A holds eventually for some fixed A. 

If either (2) or (3) holds, we say that communication is partially synchronous. 
It is helpful to view each situation as a game between a protocol designer and an 

adversary. If delta is known, the adversary names an integer A, and the protocol 
designer must supply a consensus protocol that is correct if A always holds. If delta 
is unknown, the protocol designer supplies the consensus protocol first, then the 
adversary names a A, and the protocol must be correct if that A always holds. If 
delta holds eventually, the adversary picks A, the designer (knowing A) supplies a 
consensus protocol, and the adversary picks a time T when A must start holding. 

By replacing A by @ and “delta” by “phi” above, (1) defines synchronous 
processors, and (2) and (3) define two types of partially synchronous processors. 

2.4 CORRECTNESS OF A CONSENSUS PROTOCOL. Given assumptions A about 
processor and communication synchrony, a fault type F, and a number N of 
processors and an integer t with 0 5 t I N, correctness of a t-resilient consensus 
protocol is defined as follows: 

For any set C containing at least N - t processors and any run R satisfying A 
and in which the processors in C are correct and the behavior of the processors not 
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in C is allowed by the fault type F, the protocol achieves: 
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-Consistency. No two different processors in C decide differently. 
-Termination. If R is infinite, then every processor in C makes a decision. 
-Unanimity. There are two types: 

Strong unanimity: If all initial values are v and if any processor in 
C decides, then it decides v. 

Weak unanimity: If all initial values are v, if C contains all 
processors, and if any processor decides, then 
it decides v. 

In models where messages cannot be lost, such as the models where delta is 
unknown, our protocols can be easily modified so that all correct processors can 
halt soon after sufficiently many correct processors have decided. However, we do 
not require halting explicitly in the termination condition because, as can be easily 
shown, if messages can be lost before GST in the model where delta holds eventually 
and if the protocol is l-resilient to fail-stop faults, then there is some execution in 
which some correct processor does not halt. Further discussion of the issue of 
halting is given in Section 4.2, Remark 2, after the protocols have been described. 

3. The Basic Round Model 

In this section we define the basic round model and present preliminary versions 
of our algorithms in this model. In the following sections we show how each of our 
models can simulate the basic model. 

3.1 DEFINITION OF THE MODEL. In the basic round model, processing is divided 
into synchronous rounds of message exchange. Each round consists of a Send 
subround, a Receive subround, and a computation subround. In a Send subround, 
each processor sends messages to any subset of the processors. In a Receive 
subround, some subset of the messages sent to the processor during the correspond- 
ing Send subround is delivered. In a computation subround, each processor 
executes a state transition based on the set of messages just received. Not all 
messages that are sent need arrive; some can be lost. However, we assume that 
there is some round GST, such that all messages sent from correct processors to 
correct processors at round GST or afterward are delivered during the round at 
which they were sent. As explained in the Introduction, loss of a message before 
GST does not necessarily make the sender or the receiver faulty. Although all 
processors have a common numbering for the rounds, they do not know when 
round GST occurs. The various kinds of faults are defined for the basic model as 
for the earlier models. 

3.2 PROTOCOLS IN THE BASIC ROUND MODEL. In the remainder of this section, 
we show how the consensus problem can be solved for the basic model, for each 
of the fault types. To argue that our protocols achieve strong unanimity, we use 
the notion of a proper value defined as follows: If all processors start with the same 
value v, then v is the only proper value; if there are at least two different initial 
values, then all values in Vare proper. In all protocols, each processor will maintain 
a local variable PROPER, which contains a set of values that the processor knows 
to be proper. Processors will always piggyback their current PROPER sets on all 
messages. The way of updating the PROPER sets will vary from algorithm to 
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algorithm. If only weak unanimity is desired, the PROPER sets are not needed, 
and the protocols can be simplified somewhat; we leave these simplifications to the 
interested reader. 

3.2.1 Fail-Stop and Omission Faults. The first algorithm is used for either 
fail-stop or omission faults. It achieves strong unanimity for an arbitrary value 
domain V. 

Algorithm 1. N 2 2t + 1 
Initially, each processor’s set PROPER contains just its own initial value. Each 

processor attaches its current value of PROPER to every message that it sends. 
Whenever a processor p receives a PROPER set from another processor that 
contains a particular value v, then p puts v into its own PROPER set. It is easy to 
check that each PROPER set always contains only proper values. 

The rounds are organized into alternating trying and lock-release phases, where 
each trying phase consists of three rounds and each lock-release phase consists of 
one round. Each pair of corresponding phases is assigned an integer, starting with 
1. We say that phase h belongs to processor pi if h = i(mod N). 

At various times during the algorithm, a processor may lock a value v. A phase 
number is associated with every lock. If p locks v with associated phase number 
k = i mod N, it means that p thinks that processor pi might decide v at phase k. 
Processor p only releases a lock if it learns its supposition was false. A value v is 
acceptable to p if p does not have a lock on any value except possibly v. Initially, 
no value is locked. 

We now describe the processing during a particular trying phase k. Let s = 
4k - 3 be the number of the first round in phase k, and assume k = i mod N. At 
round s each processor (including pi) sends a list of all its acceptable values that 
are also in its proper set to processor pi (in the form of a (list, k) message). (If V is 
very large, it is more efficient to send a list of proper values and a list of unacceptable 
values. Given these lists, the proper acceptable values are easily deduced.) Just after 
round s, that is, during the computation subround between rounds s and s + 1, 
processor pi attempts to choose a value to propose. In order for processor pi to 
propose v, it must have heard that at least N - t processors (possibly including 
itself) find value v acceptable and proper at the beginning of phase k. There might 
be more than one possible value that processor pi might propose; in this case 
processor pi will choose one arbitrarily. Processor pi then broadcasts a message 
(lock v, k) at round s + 1. 

If any processor receives a (lock v, k) message at round s + 1, it locks v, 
associating the phase number k with the lock, and sends an acknowledgment to 
processor pi (in the form of an (ack, k) message), at round s + 2. In this case any 
earlier lock on v is released. (Any locks on other values are not released at this 
time.) 

If processor pi receives acknowledgments from at least t + 1 processors at round 
s + 2, then processor pi decides v. After deciding v, processor pi continues to 
participate in the algorithm. 

Lock-release phase k occurs at round s + 3 = 4k. At round s + 3, each processor 
p broadcasts the message (v, h) for all v and h such that p has a lock on v with 
associated phase h. If any processor has a lock on some value v with associated 
phase h, and receives a message (w, h ‘) with w # v and h ’ 2 h, then the processor 
releases its lock on v. 

LEMMA 3.1. It is impossible for two distinct values to acquire locks with the 
same associated phase. 
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PROOF. In order for two values v and w to acquire a lock at trying phase k, 
the processor to which phase k belongs must send conflicting (lock v, k) and 
(lock w, k) messages, which it will never do in this fault model. Cl 

LEMMA 3.2. Suppose that some processor decides v at phase k, and k is the 
smallest numbered phase at which a decision is made. Then at least t + 1 processors 
lock v at phase k. Moreover, each of the processors that locks v at phase k will, 
from that time onward, always have a lock on v with associated phase number at 
least k. 

PROOF. It is clear that at least t + 1 processors lock v at phase k. Assume that 
the second conclusion is false. Then let 1 be the first phase at which one of the 
locks on v set at phase k is released without immediately being replaced by another, 
higher numbered lock on v. In this case the lock is released during lock-release 
phase 1, when it is learned that some processor has a lock on some w # v with 
associated phase h, where k 5 h I 1. Lemma 3.1 implies that no processor has a 
lock on any w # v with associated phase k. Therefore, some processor has a lock 
on w with associated phase h, where k < h 5 1. Thus, it must be that w is found 
acceptable to at least N - t processors at the first round of some phase numbered 
h, k c h 5 1, which means that at least N - t processors do not have v locked at 
the beginning of that phase. Since t + 1 processors have v locked at least through 
the first round of 1, this is impossible. Cl 

LEMMA 3.3. Immediately after any lock-release phase that occurs at or after 
GST, the set of values locked by correct processors contains at most one value. 

PROOF. Straightforward from the lock-release rule. 0 

THEOREM 3.1. Assume the basic model with fail-stop or omission faults. Assume 
N 2 2t f 1. Then Algorithm 1 achieves consistency, strong unanimity, and 
termination for an arbitrary value domain. 

PROOF. First, we show consistency. Suppose that some correct processor pi 
decides v at phase k, and this is the smallest numbered phase at which a decision 
is made. Then Lemma 3.2 implies that, at all times after phase k, at least t + 1 
processors have v locked. Consequently, at no later phase can any value other than 
v ever be acceptable to N - t processors, so no processor will ever decide any value 
other than v. 

Next, we argue strong unanimity. If all the initial values are v, then v is the only 
value that is ever in the PROPER set of any processor. Thus, v is the only possible 
decision value. 

Finally, we argue termination. Consider any trying phase k belonging to a correct 
processor pi that is executed after a lock-release phase, both occurring at or after 
round GST. We claim that processor pi will reach a decision at trying phase k (if it 
has not done so already). By Lemma 3.3, there is at most one value locked by 
correct processors at the start of trying phase k. If there is such a locked value, v, 
then sufficient communication has occurred by the beginning of trying phase k 
so that v is in the PROPER set of each correct processor. Moreover, any initial 
value of a correct processor is in the PROPER set of each correct processor at the 
beginning of trying phase k. Since there are at least N - t 2 t + 1 correct processors, 
it follows that a proper, acceptable value will be found for processor pi to propose, 
and that the proposed value will be decided on by processor pi at trying 
phase k. Cl 
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It is easy to see that all correct processors make decisions by round 
GST + 4(N + 1). 

3.2.2 Byzantine Faults with Authentication. The second algorithm achieves 
strong unanimity for an arbitrary value set I’, in the case of Byzantine faults with 
authentication. 

Algorithm 2. N 2 3t + 1 
Initially, each processor’s PROPER set contains just its own initial value. Each 

processor attaches its PROPER set and its initial value to every message it sends. 
If a processor p ever receives 2t + 1 initial values from different processors, among 
which there are not t + 1 with the same value, then p puts all of V (the total value 
domain) into its PROPER set. (Of course, p would actually just set a bit indicating 
that PROPER contains all of V.) When a processor p receives claims from at least 
t + 1 other processors that a particular value v is in their PROPER sets, then p 
puts v into its own PROPER set. It is not difficult to check that each PROPER set 
for a correct processor always contains only proper values. 

Processing is again divided into alternating trying and lock-release phases, with 
phases numbered as before and of the same length as before. At various times 
during the algorithm, processors may lock values. In Algorithm 2, not only is a 
phase number associated with every lock, but also a proof of acceptability of the 
locked value, in the form of a set of signed messages, sent by N - t processors, 
saying that the locked value is acceptable and in their PROPER sets at the beginning 
of the given phase. A value v is acceptable to p if p does not have a lock on any 
value except possibly v. 

We now describe the processing during a particular trying phase k. Let s = 
4k - 3 be the first round of phase k, and assume k = i mod N. At round s, each 
processor pj (including pi) sends a list of all its acceptable values that are also in its 
PROPER set to processor pi, in the form Ej(list, k), where Ej is an authentication 
function. Just after round S, processor pi attempts to choose a value to propose. In 
order for processor pi to propose v, it must have heard that at least N - t processors 
find value v acceptable and proper at phase k. Again, if there is more than one 
possible value that processor pi might propose, then it will choose one arbitrarily. 
Processor pi then broadcasts a message Ei(lock v, k, proof), where the proof consists 
of the set of signed messages Ej(list, k) received from the N - t processors that 
found v acceptable and proper. 

If any processor receives an Ei(lock v, k, proof) message at round s + 1, it 
decodes the proof to check that N - t processors find v acceptable and proper at 
phase k. If the proof is valid, it locks v, associating the phase number k and the 
message Ej(lock v, k, proof) with the lock, and sends an acknowledgment to 
processor pi. In this case any earlier lock on v is released. (Any locks on other 
values are not released at this time.) If the processor should receive such messages 
for more than one value v, it handles each one similarly. The entire message 
Ei(lOck v, k, proof) is said to be a valid lock on v at phase k. 

If processor pi receives acknowledgments from at least 2t + 1 processors, then 
processor pi decides v. After deciding v, processor pi continues to participate in the 
algorithm. 

Lock-release phase k occurs at round s + 3 = 4k. Processors broadcast messages 
of the form Ei(lock v, h, proof), indicating that the sender has a lock on v with 
associated phase h and the given associated proof, and that processor pi sent the 
message at phase h, which caused the lock to be placed. If any processor has a lock 
on some value v with associated phase h and receives a properly signed message 
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E’(lock w, h ‘, proof’) with w # v and h ’ 2 h, then the processor releases its lock 
on v. 

LEMMA 3.4. It is impossible for two distinct values to acquire valid locks at the 
same trying phase if that phase belongs to a correct processor. 

PROOF. In order for different values v and w to acquire valid locks at 
trying phase k, the processor pi to which phase k belongs must send conflicting 
Ei(lOck v, k, proof) and Ei(lock w, k, proof’) messages, which correct processors 
can never do. 0 

LEMMA 3.5. Suppose that some correct processor decides v at phase k, and k is 
the smallest numbered phase at which a decision is made by a correct processor. 
Then at least t + 1 correct processors lock v at phase k. Moreover, each of the 
correct processors that locks v at phase k will, from that time onward, always have 
a lock on v with associated phase number at least k. 

PROOF. Since at least 2t + 1 processors send an acknowledgment that they 
locked v at phase k, it is clear that at least t + 1 correct processors lock v at phase 
k. Assuming that the second conclusion is false, the remaining proof by contradic- 
tion is identical to the proof of Lemma 3.2. Cl 

LEMMA 3.6. Immediately after any lock-release phase that occurs at or after 
GST, the set of values locked by correct processors contains at most one value. 

PROOF. Straightforward from the lock-release rule. Cl 

THEOREM 3.2. Assume the basic model with Byzantine faults and authentica- 
tion. Assume N r 3t + 1. Then Algorithm 2 achieves consistency, strong unanimity, 
and termination for an arbitrary value domain. 

PROOF. The proofs of consistency and strong unanimity are as in the proof of 
Theorem 3.1. To argue termination, consider any trying phase k belonging to a 
correct processor pi that is executed after a lock-release phase, both occurring at or 
after GST. We claim that processor pi will reach a decision at trying phase k (if it 
has not done so already). By Lemma 3.6, there is at most one value locked by 
correct processors at the start of trying phase k. If there is such a locked value v, 
then v was found to be proper to at least N - t processors, of which N - 2t L 
t + 1 must be correct. Therefore, by the beginning of trying phase k, these t + 1 
correct processors have communicated to all correct processors that v is proper, so 
by the way the set PROPER is augmented every correct processor will have v in its 
PROPER set by the beginning of trying phase k. Next, consider the case in which 
no value is locked at the beginning of trying phase k (so all values are acceptable). 
If there are at least t + 1 correct processors with the same initial value v, then v is 
in the PROPER set of each correct processor at the beginning of trying phase k. 
On the other hand, if this is not the case, then all values in the value set are in the 
PROPER set of all correct processors at the beginning of trying phase k. It follows 
that a proper, acceptable value will be found for processor pi to propose, and that 
the proposed value will be decided on by processor pi at trying phase k. 0 

As in the previous case, GST + 4(N + 1) is an upper bound on the number of 
rounds required for all the correct processors to reach decisions. 

3.2.3 Byzantine Faults without Authentication. In this section we modify Al- 
gorithm 2 to handle Byzantine faults without authentication, while maintaining 
the same requirement, N 2 3 t + 1, on the number of processors and maintaining 
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polynomial time complexity and polynomial message lengths. The modification is 
done by using a minor variation of a broadcast primitive, introduced by Srikanth 
and Toueg [20], which simulates the crucial properties of authentication. We first 
state these properties, then give the broadcast primitive, and finally describe the 
new agreement protocol. 

The broadcast primitive (and hence the agreement algorithm that uses the 
broadcast primitive) is defined in terms of superrounds, where each superround 
consists of two normal Send-Receive rounds. Superround GST occurs at the 
earliest super-round, when both of its Send-Receive rounds occur at or after round 
GST. The primitive gives an algorithm for a processor p to BROADCAST a 
message m at superround k and also gives conditions under which a processor will 
accept a message m from p (which is not to be confused with our definition of an 
“acceptable value”). The crucial properties of broadcasting that are used in the 
(authenticated) Algorithm 2 are as follows: 

(1) Correctness. If a correct processor p BROADCASTS m in superround 
k L GST, then every correct processor accepts m from p in superround k. 

(2) Unforgeubility. If a correct processor p does not BROADCAST m, then no 
correct processor ever accepts m from p. 

(3) Relay. If a correct processor accepts m from p in superround r, then every 
other correct processor accepts m from p in superround max(r + 1, GST) or 
earlier. 

The description of the BROADCAST primitive is given in Figure 1. The proof 
that the primitive has the Correctness and Unforgeability properties is identical to 
the proof of Srikanth and Toueg [20]. We give the proof of the Relay property 
since it is slightly different than in [20]. 

Say the correct processor q accepts m from p in superround Y. Therefore, q must 
have received (echo, p, m, k) from at least N - t processors by the end of the 
second round of superround r, so at least N - 2t correct processors sent (echo, p, 
m, k). By definition of BROADCAST, if a correct processor sends (echo, p, m, k) 
at some round h, it continues to send (echo, p, m, k) at all rounds after h. Therefore, 
every correct processor will receive (echo, p, m, k) from at least N - 2t processors 
by the end of the first round of superround max(r + 1, GST). Hence, every correct 
processor will send (echo, p, m, k) at the second round of max(r + 1, GST). So 
every correct processor will receive N - t (echo, p, m, k) messages by superround 
max(r + 1, GST) or earlier, and will accept m from p. 

The only difference between the protocol of Figure 1 and that of Srikanth and 
Toueg [20] is in the relaying of an (echo, p, m, k) message after N - 2t (echo, 
p, m, k) messages have been received. In our case, the echo message continues to 
be sent at every round after the N - 2t echoes are received, whereas in [20] the 
echo is sent only once. Since messages can be lost before GST in our model, the 
resending seems to be needed to get the Relay property. Although resending the 
echoes makes message length grow proportionally to the round number (since a 
new invocation of BROADCAST could be started at each round), message length 
is still polynomial in N and GST. In models where messages cannot be lost, such 
as the unknown delta model, each (echo, p, m, k) need be sent only once by each 
correct processor, resulting in shorter messages. 

Next follows the new algorithm for the unauthenticated Byzantine case in the 
basic model. It is patterned after the authenticated algorithm. In particular, hand- 
ling of PROPER sets is done exactly as in Algorithm 2. 
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BROADCAST of m by p at superround k: N 2 3t + 1 

Superround k: 

First round: p sends (init, p, M, k) to all; 

Second round: Each processor executes the following for any message m: 

if received (init, p, m, k) from p in the first round and received only one init 
message from p in the first round, then send (echo, p, m, k) to a& 

if received (echo, p, m, k) from at least N - t distinct processors in this 
round, then accept m from p; 

All subsequent rounds: 
Each processor executes the following for any message m: 

if received (echo, p, m, k) from at least N - 2t distinct processors in previous 
rounds, then send (echo, p, m, k) to all; 

if received (echo, p, m, k) from at least N - t distinct processors in this or 
previous rounds, then accept m from p. 

FIG. 1. The BROADCAST primitive. 

Algorithm 3. N L 3t + 1 
Processing is again divided into trying and lock-release phases, with phases 

numbered as before. Each trying phase takes three superrounds, that is, six ordinary 
rounds. Lock-release phase k is done during the third superround of trying phase 
k. As before, a value v is acceptable to p if p does not have a lock on any value 
except possibly v. 

We now describe the processing during a particular trying phase k. Let s = 
3k - 2 be the first superround of phase k, and assume k = i mod N. At superround 
s, each processor pj (including pi) BROADCASTS a list of all its acceptable values 
that are also in its PROPER set in the form (list, k). Just after superround s, 
processor pi attempts to choose a value to propose. In order for processor pi to 
propose v, it must have accepted messages from at least N - t processors stating 
that they find value v acceptable and proper at phase k. Again, if there is more 
than one possible value that processor pi might propose, then it will choose one 
arbitrarily. Processor pi then BROADCASTS a message (lock v, k) during super- 
rounds+ 1. 

If any processor q has by superround s + 1 accepted a message (lock v, k) from 
pi and also accepted messages (list, k) from N - t processors stating that they find 
v acceptable and proper at the first superround of phase k, then q locks v, associating 
the phase number k with the lock, and sends an acknowledgment (ack, k) to 
processor pi. In this case any earlier lock on v is released. (Any locks on other 
values are not released at this time.) If the processor should receive such messages 
for more than one value v, it handles each one similarly. We say that q accepts a 
valid lock on v with phase k if it has accepted a message (lock v, k) from pi and 
accepted N - t messages (list, k) as just described. These messages do not all have 
to be accepted at the same round. 

If processor pi receives acknowledgments from at least 2t + 1 processors, then 
processor pi decides v. After deciding v, processor pi continues to participate in the 
algorithm. 

Lock-release phase k occurs at the end of the third superround of phase k. In 
this algorithm the lock-release phase does not send any messages. If a processor q 
has a lock on some value v with associated phase h and q has accepted, at this 
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round or earlier, a valid lock on w with associated phase h ‘, and if w # v and 
h ’ 2 h, then q releases its lock on v. 

LEMMA 3.7. It is impossible for correct processors to accept valid locks on two 
distinct values with associated phase k tfphase k belongs to a correct processor. 

PROOF. Suppose that the lemma is false. By the Unforgeability property, the 
processor pi to which phase k belongs must BROADCAST conflicting (lock v, k) 
and (lock w, k) messages, which correct processors can never do. Cl 

LEMMA 3.8. Suppose that some correct processor decides v at phase k, and k is 
the smallest numbered phase at which a decision is made by a correct processor. 
Then at least t + 1 correct processors lock v at phase k. Moreover, each of the 
correct processors that locks v at phase k will, from that time onward, always have 
a lock on v with associated phase number at least k. 

PROOF. Since at least 2t + 1 processors send an acknowledgment that they 
locked v at phase k, it is clear that at least t + 1 correct processors lock v at phase 
k. The rest of the proof is similar to the proofs of Lemmas 3.2 and 3.5, using the 
Unforgeability property to argue that, if a correct processor q accepts a valid lock 
on value w # v with associated phase h, then w is found acceptable to all but at 
most t of the correct processors at the first round of phase h. 0 

LEMMA 3.9. Immediately after any lock-release phase that occurs at or after 
GST, the set of values locked by correct processors contains at most one value. 

PROOF. Straightforward from the lock-release rule and the Relay property. Cl 

THEOREM 3.3. Assume the basic model with Byzantine faults without authen- 
tication. Assume N 2 3t + 1. Then Algorithm 3 achieves consistency, strong 
unanimity, and termination for an arbitrary value domain. 

PROOF. The proof is virtually identical to the proof of Theorem 3.2, using the 
Correctness and Relay properties after GST to argue termination. 0 

An upper bound on the number of rounds required is GST + 6(N + 1). 

Remark 1. Algorithms l-3 have the property that all correct processors make 
a decision within O(N) rounds after GST. The time to reach agreement after GST 
can be improved to O(t) rounds by some simple modifications. The bound O(t) is 
optimal to within a constant factor, since t + 1 rounds are necessary even if 
communication and processors are both synchronous and failures are fail-stop 
[7, 91. A modification to all the algorithms is to have a processor repeatedly 
broadcast the message “Decide v” after it decides v. For Algorithm 1 (fail-stop and 
omission faults), a processor can decide v when it receives any “Decide v” message. 
For Algorithms 2 and 3 (Byzantine faults), a processor can decide v when it receives 
t + 1 “Decide v” messages from different sources. Easy arguments show that the 
modified algorithms are still correct and that all correct processors make a decision 
within O(t) rounds after GST; these arguments are left to the reader. 

4. Partially Synchronous Communication and Synchronous Processors 
In this section we assume that processors are completely synchronous (a = 1) and 
communication is partially synchronous. We show how to use these models to 
simulate the basic model of Section 3.1 and thus to solve the same consensus 
problem. 



Consensus in the Presence of Partial Synchrony 303 

Since processors operate in lock-step synchrony, it is useful to imagine that each 
(correct) processor has a clock that is perfectly synchronized with the clocks of 
other correct processors. Initially, the clock is 0, and a processor increments its 
clock by 1 every time it takes a step. The assumption @ = 1 implies that the clocks 
of all correct processors are exactly the same at any real-time step. 

As presented in Section 2, there are two different definitions of partially syn- 
chronous communication: (1) delta is unknown, and (2) delta holds eventually. 
We consider these two cases separately. Section 4.1 describes the upper bound 
results for the model in which delta holds eventually. Section 4.2 describes the 
upper bound results for delta unknown. Finally, Section 4.3 contains the lower 
bound results. 

4.1 UPPER BOUNDS WHEN DELTA HOLDS EVENTUALLY. We first consider the 
model in which delta holds eventually. Fix any of the four possible fault models. 
We show that, if there is a t-resilient consensus protocol in the basic model, then 
there is one in the model in which delta holds eventually. To see the implication, 
fix A and assume algorithm A works for the basic model. From A we define an 
algorithm A ’ for the model in which A holds eventually. 

Let R = N + A. Each processor divides its steps into groups of R, and uses each 
group to simulate its own actions in a single round of algorithm A. More specifically, 
the processor uses the first N steps of group r to send its round r messages to the N 
processors, sending to one processor at a time, and uses the last A steps to perform 
Receive operations. The state transition for round r is simulated at the last step of 
group r. (The number R is large enough to allow all processors to exchange 
messages within a single group of steps, once GST has been reached.) Each processor 
always attaches a round identifier (number) to messages, and any message sent 
during a round r that arrives late during some round r’ > r is ignored. Thus, 
communication during each round is independent of communication during any 
other round. 

For any run e’ of A ‘, it is easy to show that there exists a corresponding run e 
of A with the following properties: 

(1) All processors that are correct in e’ are also correct in e. 
(2) The types of faults exhibited by the faulty processors are the same in e’ as 

in e. 
(3) Every state transition of a correct processor in e is simulated by the correspon- 

ding correct processor in e’. 

Since algorithm A is assumed to be a t-resilient consensus protocol for the basic 
round model, consensus is eventually reached in e, and so in e’, as needed. 

By applying the transformation just described to Algorithms 1-3, we obtain 
Algorithms 1 l-3’, respectively. We immediately obtain the following result: 

THEOREM 4.1. Assume that processors are completely synchronous (@ = 1) and 
communication is partially synchronous (A holds eventually). 

(a) For the fail-stop or omission fault model, if N > 2t + 1, then Algorithm 1’ 
achieves consistency, strong unanimity, and termination for an arbitrary value 
domain. 

(6) For the authenticated Byzantine fault model, ifN z 3t + 1, then Algorithm 2’ 
achieves consistency, strong unanimity, and termination for an arbitrary value 
domain. 
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(c) For the unauthenticated Byzantine fault model, if N 2 3t + 1, then Algo- 
rithm 3’ achieves consistency, strong unanimity, and termination for an 
arbitrary value domain. 

It is easy to see that Algorithms 1’ and 2’ guarantee that decisions are reached 
by all correct processors within time 4(N + l)(N + A) after GST. The corresponding 
bound for Algorithm 3’ is 6(N + l)(N + A). Thus, the time for Algorithms l’-3’ 
is bounded above by GST plus a polynomial in N and A. Remark 1 at the end of 
Section 3 shows how these time bounds can be improved. As mentioned in the 
Introduction, these bounds also give the time after GST when A can stop holding 
again. 

4.2 UPPER BOUNDS FOR DELTA UNKNOWN. Now we consider the model in 
which delta is unknown. Fix any of the four possible fault models. We show that, 
if there is a t-resilient protocol in the basic model, then there is one in the model 
in which delta is unknown. Let algorithm A work for the basic model. As before, 
we define A ’ from A so that every execution of A ’ is a simulation of an execution 
ofA. 

Let R, = N + r. Each processor in A’ divides its steps into groups so that its rth 
group contains exactly R, steps. As before, the processor uses each group to simulate 
its own actions in a single round of algorithm A. Thus, the processor uses the first 
N steps of group r to send its round r messages to the N processors, one processor 
at a time, and uses the last r steps to perform Receive operations. The round r state 
transition is simulated at the last step of group r. Again, each processor always 
attaches a round identifier (number) to messages, and any message sent during a 
round r that arrives late during some round r’ > r is ignored. 

Now consider any run e’ of A ‘, and assume that the communication bound A 
holds in e’. As before, it is easy to define a corresponding run e of A. The number 
of steps in e’ that are allotted for the simulation of any round r 2 A is sufficient 
to allow all messages that are sent during round r to get received. Thus, e is an 
allowable run of A (with A as its GST round). Since A is assumed to be a t-resilient 
consensus protocol for the basic model, consensus is eventually reached in e, and 
so in e’, as needed. 

By applying this transformation to Algorithms l-3, we obtain Algorithms 12-32, 
respectively, and immediately obtain the following result: 

THEOREM 4.2. In the model in which processors are completely synchronous 
(a = 1) and communication is partially synchronous (delta is unknown), 
claims (a)-(c) of Theorem 4.1 hold for Algorithms 1 2-32, respectively. 

We now bound the time required by Algorithms 12-32. Consider Algorithm 12, 
for example, and fix any execution e with corresponding message bound A. Then 
round A is the GST for the execution of Algorithm 1 simulated by e. It requires at 
most time A(N + A) for processors to complete their simulations of the first A 
rounds of Algorithm 1 (A rounds, with N + A as the maximum time to simulate a 
single round). Then an additional 4(N + 1) rounds, at most, must be simulated. 
These additional rounds require at most time 4(N + l)(N + A + 4(N + l)), where 
the term (N + A + 4(N + 1)) represents the maximum time to simulate one 
of these rounds (the last and largest one). Thus the total time is bounded by 
A(N + A) + 4(N + l)(N + A + 4(N + I)), or O(N2 + A’). The same bound 
holds for Algorithm 22. The corresponding bound for Algorithm 32 is A(N + A) + 
6(N + l)(N + A + 6(N + 1)). Thus the time for Algorithms 12-32 is bounded above 
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by a polynomial in N and A. Again, these bounds can be improved using the ideas 
in Remark 1 at the end of Section 3. 

Remark 2. If we strengthen the model where delta holds eventually to require 
that no messages are ever lost, but that messages sent before GST can arrive late, 
then we can modify Algorithms l ’-3’ to allow processors to terminate. Specifically, 
we use the ideas described in Remark 1 at the end of Section 3. In the present case, 
however, each processor need only broadcast a single “Decide v” message, at the 
time when it decides v. This message is not tagged with a round number, and other 
processors should accept a “Decide v” message at any time. For fail-stop or omission 
faults, a processor can stop participating in the algorithm immediately after it 
broadcasts its “Decide v” message. Further, it can decide v immediately after 
receiving a “Decide v” message. For Byzantine faults, a processor can decide v after 
receiving t + 1 “Decide v” messages, but it cannot stop participating in the algorithm 
until after it has broadcast its “Decide v” message and received “Decide v” messages 
from a total of 2t + 1 processors. If messages can be lost before GST, it is not hard 
to argue that, in any consensus protocol resilient to one fail-stop fault, there is 
some execution in which at least one correct processor must continue sending 
messages forever. The argument is similar to those for Theorems 4.3 and 4.4 in 
the next subsection. All that is needed to ensure halting in practice, however, is 
that each correct processor be able to reliably deliver a “Decide v” message to every 
other correct processor; in the absence of network partition, this could be done by 
repeated sending. 

Remark 3. All the results of this section have assumed 9 = 1. If processors are 
synchronous with + > 1 and communication is partially synchronous, we would 
hope to obtain the same results. We show that this extension holds by proving a 
more general set of results: In Section 5 we show that the resiliency achieved by 
the protocols of this section can also be achieved if both processors and commu- 
nication are partially synchronous. These stronger results imply that the same 
resiliency is achievable if communication is partially synchronous and processors 
are synchronous with @ > 1. 

4.3 LOWER BOUNDS. In this section we give our lower bound results for 
partially synchronous communication and completely synchronous processors. 
The first lower bound shows that the resiliency of Theorems 4.1 and 4.2, part (a), 
cannot be improved, even for weak unanimity and a binary value domain. 

THEOREM 4.3. Assume the model with fail-stop or omission faults, where the 
processors are synchronous and communication is partially synchronous (either 
delta holds eventually or delta is unknown). Assume 2 5 N I 2t. Then there is no 
t-resilient consensus protocol that achieves weak unanimity for binary values. 

PROOF. The proof is the same for both definitions of partially synchronous 
communication. Assume the contrary, that there is an algorithm immune to fail- 
stop faults satisfying the required properties. We shall derive a contradiction. 

Divide the processors into two groups, P and Q, each with at least 1 and at most 
t processors. First consider the following Scenario A: All initial values are 0, the 
processors in Q are initially dead, and all messages sent from processors in P to 
processors in P are delivered in exactly time 1. By t-resiliency, the processors in P 
must reach a decision; say that this occurs within time TA. The decision must 
be 0. For if it were 1, we could modify the scenario to one in which the processors 
in Q are alive but all messages sent from Q to P take more than time TA to be 
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delivered. In the modified scenario, the processors in P still decide 1, contradicting 
weak unanimity. 

Consider Scenario B: All initial values are 1, the processors in P are initially 
dead, and messages sent from Q to Q are delivered in exactly time 1. By a similar 
argument, the processors in Q decide 1 within TB steps for some finite TB. 

Consider Scenario C (for Contradiction): Processors in P have initial values 0, 
processors in Q have initial values 1, all processors are alive, messages sent from P 
to P or from Q to Q are delivered in exactly time 1, and messages sent from P to 
Q or from Q to P take more than max( TA, TB) steps to be delivered. The processors 
in group P (respectively, group Q) act exactly as they do in Scenario A (respectively, 
Scenario B). This yields a contradiction. Cl 

The following lower bound result again applies in the case of weak unanimity 
and a binary value domain. It shows that the resiliency of Theorems 4.1 and 4.2, 
part (b), cannot be improved, even for the case of weak unanimity and a binary 
value domain. 

THEOREM 4.4. Assume the model with Byzantine faults and authentication, in 
which the processors are synchronous and communication is partially synchronous 
(either delta holds eventually or delta is unknown). Assume 2 5 NI 3t. Then there 
is no t-resilient consensus protocol that achieves weak unanimity for binary values. 

PROOF. Again, the proof is the same for both definitions of partially synchron- 
ous communication. Assume the contrary. We shall derive a contradiction. 

If N = 2, then the theorem follows from the previous lower bound, Theo- 
rem 4.3. Assume then that N L 3. Divide the processors into three groups, P, Q, 
and R, each with at least 1 and at most t processors. First consider the following 
Scenario A: All initial values are 0, the processors in R are initially dead, and all 
messages sent from processors in P U Q to processors in P U Q are delivered in 
exactly time 1. By t-resiliency, the processors in P U Q must reach a decision; say 
that this occurs within time TA. As in the previous lower bound proof, the decision 
must be 0. 

Consider Scenario B: All initial values are I, the processors in P are initially 
dead, and messages sent from Q U R to Q U R are delivered in exactly time 1. By 
a similar argument, the processors in Q U R decide 1 within TB steps for some 
finite TB. 

Consider Scenario C: Processors in P have initial values 0, processors in R have 
initial values 1, and processors in Q are faulty. The processors in Q behave with 
respect to those in P exactly as they do in Scenario A, and with respect to those in 
R exactly as they do in Scenario B. The messages sent from P to P U Q and 
from R to R U Q are delivered in exactly time 1, but all messages from P to R 
or from R to P take more than max(TA, TB) steps to be delivered. The processors 
in group P (respectively, group R) act exactly as they do in Scenario A (respectively, 
Scenario B). This yields a contradiction. Cl 

The preceding lower bound is tight for the case of unauthenticated Byzantine 
faults (Theorems 4.1 and 4.2, part (c)). 

5. Partially Synchronous Communication and Processors 
In this section we consider the case in which both communication and processors 
are partially synchronous. We show the existence of protocols with the same 
resiliencies as in the previous section, where only communication was partially 
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synchronous. Moreover, the algorithms for corresponding cases still require 
amounts of time (specifically, polynomial) similar to the earlier case. Again, we 
proceed by showing how to use the models of this section to simulate the basic 
model of Section 3. 

In the previous section, the processors had a common notion of time that allowed 
time to be divided into rounds. In this case, where phi does not always hold or is 
unknown, no such common notion of time is available. Therefore, our first task is 
to describe protocols that give the processors some approximately common notion 
of time. We call such protocols distributed clocks. 

Our distributed clocks do not use explicit knowledge of A or a. They are designed 
to be used in either kind of partially synchronous model, delta and phi holding 
eventually or delta and phi unknown. However, the properties that the clocks 
exhibit do depend on the particular bounds A and 9 that hold (eventually) during 
the particular run. 

Each processor maintains a private (software) clock. The private clocks grow at 
a rate that is within some constant factor of real time and remain within a constant 
of each other. For the model with delta and phi unknown, these conditions hold 
at all times. For the GST model, however, these conditions are only guaranteed to 
hold after some constant amount of time after GST. The three “constants” here 
depend polynomially on N, +, and A. We have made no effort to optimize these 
constants, as this would obfuscate an already difficult and technical argument. In 
addition, the number of message bits sent by correct processors is polynomially 
bounded in N, A, a, and GST. 

Once we have defined the distributed clocks, the protocols of Section 3 are 
simulated by letting each processor use its private clock to determine which round 
it is in. Several “ticks” of each private clock are used for the simulation of each 
round in the basic model. In order to use a distributed clock in such simulations, 
we need to interleave the steps of the distributed-clock algorithm with steps 
belonging to the underlying algorithm being simulated. Moreover, the distributed- 
clock algorithm itself is conveniently described as interleaving Receive steps, which 
increase the recipient’s knowledge of other processors’ local clocks, with Send steps, 
which allow the sender to inform others about its local clock. To be specific, we 
assume that processors alternately execute a Receive operation for the clock, a 
Send operation for the clock, and a step of the algorithm being simulated. 

In this section we describe what happens during the clock maintenance steps for 
two different distributed clocks. The first, presented in Section 5.1, handles 
Byzantine faults without authentication and requires N 2 3t + 1. The second, 
presented in Section 5.2, handles Byzantine faults with authentication and requires 
N 2 2t + 1. This clock obviously handles fail-stop and omission faults as well. In 
Section 5.3 the upper bounds for the model in which delta and phi hold eventually 
are given. In Section 5.4 we present the upper bound results for the model in which 
delta and phi are unknown. We do not prove lower bounds in this section, since 
the lower bounds obtained in Section 4 apply to the current models. 

5.1 A DISTRIBUTED CLOCK FOR BYZANTINE FAULTS WITHOUT AUTHENTICA- 
TION. Throughout this section we assume that N I 3t + 1. We again assume that 
real times are numbered 0, 1,2, . . . . Processors participate in our distributed clock 
protocols by sending ticks to one another. As an expositional convenience, we 
define a master clock whose value at any time s depends on the past global behavior 
of the system and is a function of the ticks that have been sent before s. Even 
approximating the value of the master clock requires global information about 
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what ticks have been sent to which processors. We therefore introduce a second 
type of message, called a claim, in which processors make assertions about the ticks 
they have sent. 

An i-tick is the message i. An i+-tick is a j-tick for any j 2 i. We say p has 
broadcast an i-tick if it has sent an i+-tick to all N processors. 

An i-claim is the message “I have broadcast an i-tick.” An P-claim is a j-claim 
for any j 2 i. We say p has broadcast an i-claim if it has sent an i’-claim to all N 
processors. 

We adopt the convention that all processors have exchanged ticks and claims of 
size 0 before time 0. These messages are not actually sent, but they are considered 
to have been sent and received. When we say that a certain event, such as the 
receipt of a certain message, has occurred “by time s,” we mean that the event has 
occurred at some real-time step 5s. 

The master clock, C: N + N, is defined at any real time s by 

C(s) = maximum j such that t + 1 correct processors have broadcast 
a j-tick by time s. 

Since all processors are assumed by convention to have broadcast a O-tick before 
time 0, C(0) = 0. Note that C(s) is a nondecreasing function of s. 

For each processor pi, the private clock, Ci: N + N, is defined by 

ci(S) = maximum j such that, by time s, pi has received either 
( 1) messages from 2 t + 1 processors, where each message is a j+-claim, 

or 
(2) messages from t + 1 processors, where each message is either a 

(j + l)+-tick or a (j + I)+-claim. 

Since pi is assumed to have received O-claims from all N processors before time 0, 
Ci(0) = 0 for all correct pi. Note that ci(S) is nondecreasing for all correct pi. 

Let pi be a correct processor. In sending ticks, pi’s goal is to increment the master 
clock, so ideally we would like pi to send a (C(s) + l)-tick at time s. However, 
knowing C(s) requires global information. Instead, pi uses ci, its view of C, to 
compute its next tick, sending a (Ci(S) + l)-tick at time s. We show in Lemma 5.1 
that Ci(S) 5 C(s), so pi will never force the master clock to skip a value. We also 
show that, “soon” after GST for the GST model, the value of the master clock 
exceeds those of the private clocks by at most a constant amount, so that pi will 
not be pushing the master clock far ahead of the private clocks of the other 
processors. 

Each processor pi repeatedly cycles through all N processors, broadcasting, in 
different cycles, either ticks or claims. The private clock of pi is stored in a local 
variable Ci. Processor pi updates its private clock every time it executes a Receive 
operation in the clock protocol by considering all the ticks and claims it has 
received and updating its private clock according to the definition of the private 
clock given above (thus the private clock is updated every second clock step, i.e., 
every third step, that pi takes). The following two programs describe how ticks and 
claims are sent during the sending steps of the clock protocol. A processor begins 
the distributed clock protocol by setting Ci to 0 and calling TICK(O), where TICK(b) 
is the protocol shown in Figure 2. Note that the value of Ci may change during an 
execution of TICK(b), but only a (b + I)-claim (rather than a (ci + I)-claim) is 
sent during execution of CLAIM(b). This is consistent with our definition of what 
it means to have broadcast a (b + I)-tick. 
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TICK(b): 
forj=l,...,Ndo 

send (Q + l)-tick to pj; 
CLAIM(b). 

CLAIM(b): 
forj= l,...,Ndo 

send (b + I)-claim to pi; 
if c, > b then TICK(G) else CLAIM(b). 

FIG. 2. The TICK and CLAIM procedures. 

The following lemmas describe limitations on the rates of the master clock and 
the local clocks. The first three lemmas do not involve A and +‘, and so apply to 
either partially synchronous model (delta and phi holding eventually or delta and 
phi unknown). 

LEMMA 5.1. For all s L 0 andfor all i such that pi is correct, Ci(S) s C(s). 

PROOF. The proof is by induction on s. The basis s = 0 is obvious since Ci(0) = 
C(0) = 0 by definition. 

Fix some s and some correct pi, and assume that the statement of the lemma is 
true for all s’ < s and all correct pk. Let j = Ci(S). By the definition of the private 
clock, there are two possibilities: 

(1) pi has received j+-claims from 2t + 1 different processors. Since at least 
t + 1 of these j’-claims are from correct processors, C(s) 2 j by definition of the 
master clock. 

(2) pi has received messages from t + 1 different processors, each of which is 
either (j + I)+-tick or a (j + I)+-claim. Consider the earliest real time, s’, when 
some correct processor, say pk, sends a (j + I)+-tick. Note that s’ < s, so ck(s’) 5 
C(s’) by the inductive hypothesis. By definition of the protocol, c&‘) 2 j. 
Therefore, 

j 5 f&(d) 5 c(s’) 5 c(s). 0 

LEMMA 5.2. For all s 2 0, the largest tick sent by a correct processor at real 
time s has size at most C(s) + 1. 

PROOF. This proof is immediate from the protocol and Lemma 5.1. Cl 

LEMMA 5.3. For all s, x 2 0, C(s + x) I C(s) + x. 

PROOF. The proof is by induction on x. For the basis, let x = 1. By Lemma 5.2 
the largest tick sent by a correct processor by time s has size at most C(s) + 1, so 
the maximum tick that can be broadcast by t + 1 processors by time s + 1 is a 
(C(s) + I)-tick. Thus, C(s + 1) 5 C(s) + 1. Assume the lemma holds for some x. 
Then 

C(s + (x + 1)) = C((s + 1) + x) I C(s + 1) + x 
(by the induction hypothesis) 

sC(s)+(x+ 1) (by the basis). 0 

The preceding lemmas are independent of both communication and processor 
synchrony. Now we give several lemmas that assume such synchrony. We would 
like to state the lemmas in a way that applies to both kinds of partially synchronous 
models (delta and phi holding eventually and delta and phi unknown). So fix A 
and + (for either case). Also fix GST for the model in which A and cf, hold 
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eventually. For the model in which delta and phi are unknown, define GST = 0, 
for uniformity. 

The next few lemmas discuss the behavior of the clocks a short time after GST. 
Lemma 5.4 says that the private clocks increase at most a constant factor more 
slowly than real time. Lemmas 5.5 and 5.6 are technical lemmas used to prove the 
following lemma. Lemma 5.7 has two parts: The first says that, at any particular 
real time, the master clock exceeds the value of the private clocks by at most an 
additive constant. The second part of Lemma 5.7 says that the master clock runs 
at a rate at most a constant factor slower than real time. 

Let D = A + 3+. Note that, if a message is sent to a correct processor p at time 
s 2 GST, then p will receive the message by time s + D: The message will be 
delivered by time s + A, and within an additional time 3@, p will execute a Receive 
operation in the clock protocol. 

LEMMA 5.4. Assume s 1 GST, and let s’ = s + 12N+ + D. Let j be such that 
Ci(S) 2 j for all correct pi. Then Ci(S’) 2 j + 1 for all correct pi. 

PROOF. At time s, pi could be executing TICK(b) for some b < j. However, 
within time 6N9 after s, pi will call TICK(b’) or CLAIM(b’) for some b’ % j, and 
within an additional 6N@ steps, pi will broadcast a (j + l)-claim. Therefore, every 
correct processor will broadcast a (j + I)-claim by time s + 12N@. By time s’, 
each correct pi will receive at least 2t + l(j + l)+-claims, so Ci(S’) I j + 1. Cl 

LEMMA 5.5. Assume s L GST, and let s’ = s + 39N@ + 40. Then C(s’) 2 
C(s) + 2. 

PROOF. Let j = C(s). By definition of the master clock, t + 1 correct processors 
have broadcast a j-tick by time s. These t + 1 processors send a tick or claim of 
size at least j to every processor within the first 3N@ steps after time s. Since these 
messages are sent after GST, they are received within D steps, so ci(S + 3N+ + D) 
z j - 1 for all correct pi. By three applications of Lemma 5.4, Ci(S’) 2 j + 2. So 
C(s’)rj+2byLemma5.1. Cl 

LEMMA 5.6. Let so be the minimum time such that C(so) r C(GST) + 2. 
(Time so exists by Lemma 5.5.) Let s 2 so + D. Then ci(s) 1 C(s - D) - 1 for all 
correct pi. 

PROOF. Let j = C(s - D). Then t + 1 correct processors broadcast a j-tick by 
s - D. By Lemma 5.2, the largest tick sent by a correct processor by GST is a 
(C(GST) + 1 )-tick. Since j 2 C(GST) + 2, the j-ticks from correct processors are 
broadcast entirely after GST, so they are received by time s. Thus, for all correct 
pi, Ci(S) 2 j - 1. Cl 

LEMMA 5.7. Let so be the minimum time such that C(so) I C(GST) + 2. 

(a) For all s L so + D andfor all correct processors pi, ci(s) > C(s) - D - 1. 
(b) For all s L so andfor s’ = s + 24N@ + 30, C(s’) 2 C(s) + 1. 

PROOF 

(a) Lemma 5.6 implies ci(s) > C(s - D) - 1. By Lemma 5.3, C(s) 5 C(s - D) + 
D I Ci(s) + 1 + D. Thus, Ci(S) 2 C(S) - D - 1. 

(b) Let x = s + D. Lemma 5.6 implies Ci(X) 2 C(S) - 1 for all correct pi. By 
two applications of Lemma 5.4, Ci(S’) L C(s) + 1. So C(s’) I C(s) + 1 by 
Lemma 5.1. 0 
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5.2 A DISTRIBUTED CLOCK FOR BYZANTINE FAULTS WITH AUTHENTICA- 
TION. The new clock is very similar to the one just described. We only explain 
the differences. Here we assume N 2 2t + 1. 

An i-claim is a signed message “I have broadcast an i-tick.” An i+-claim is a 
j-claim for any j 2 i. For i 2 1, an i-tick is the message “(i, i-proof),” where a 
l-proof is the empty string and where an i-proof (i > 1) is a list of t + 1 (i - I)+- 
claims each signed by a different processor. An i’-tick is a j-tick for any j 2 i. The 
definitions of broadcast an i-tick and broadcast an i-claim are the same as before. 

The master clock C: N + N is defined by 

C(s) = maximum j such that some correct processor has broadcast 
a j-tick by time s. 

The private clock ci: N + N is defined by 

ci(S) = maximum j such that pi has received t + 1 j’-claims (from different 
sources), either directly, or indirectly as part of a tick, by time s. 

The definition of the clock protocol is the same as before with the addition that, 
whenever a processor sends a (b + I)-claim in the procedure CLAIM(b), it attaches 
the largest size tick that it can construct (this will always be a (b + l)+-tick). A 
correct processor will ignore any received j-claim if it does not come with an 
attached j+-tick. The reason for this modification is so that correct processors will 
not accept claims that are much too large from faulty processors and incorporate 
these large claims into proofs. 

LEMMA 5.8. Lemmas 5.1-5.7 holdfor the authenticated Byzantine clock. 

PROOF. The proofs are virtually identical to the proofs for the unauthenticated 
Byzantine clock, and most details are omitted. The major differences are the 
following: 

The proof of Lemma 5.1 is easier since there is only one case. Lettingj = ci(s), 
processor pi has received t + 1 j+-claims from different processors, at least one of 
which must be correct. Since a correct processor sends a j+-claim only after it has 
broadcast a j-tick, we have C(s) L j by definition of the master clock. 

The proofs of Lemmas 5.2 and 5.3 are unchanged. 
In the proof of Lemma 5.4, change “2t + 1” to ‘2 + 1.” 
In the proof of Lemma 5.5, letting j = C(s), we can only say that at least 

one correct processor has broadcast a j-tick by time s. However, this j-tick 
contains a j-proof consisting of t + 1 (j - I)+-claims, so we can conclude that 
ci(S + 3N@ + D) 2 j - 1 for all correct pi as before. The proof of Lemma 5.6 is 
changed similarly. 

The proof of Lemma 5.7 follows from previous lemmas by calculations and is 
unchanged. 0 

We need one more lemma to support our claim that the number of message bits 
sent by correct processors is bounded above by a polynomial in GST, N, A, and a. 

LEMMA 5.9. For all s z 0, the largest tick sent by any processor (correct or 
faulty) at real time s has size at most C(s) + 2. 

PROOF. A j-tick sent at time s contains t + 1 (j - I)+-claims, at least one 
of which was sent by a correct processor. The conclusion now follows from 
Lemma 5.2. Cl 
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From this lemma and the definition of the protocol, it follows easily that any 
tick or claim sent by a correct processor at time s can be encoded in O(t log C(s)) 
bits. 

Remark 4. The clocks of Sections 5.1 and 5.2 are similar to the one discovered 
independently by Attiya et al. [I]. 

5.3 UPPER BOUNDS WHEN DELTA AND PHI HOLD EVENTUALLY. We now 
present our upper bound results for partially synchronous communication and 
processors, for the model where delta and phi hold eventually. Fix any of the four 
possible fault models. We show that, if there is a t-resilient protocol in the basic 
model, then there is one in the model where delta and phi hold eventually. To see 
the implication, fix A and a’, and assume algorithm A works for the basic model. 
We define A ’ from A as follows, so that A ’ works for the model where A and + 
hold after GST. 

As described above, two out of every three steps of each processor are used to 
maintain a distributed clock, and the other step is used to simulate algorithm A. 
For fail-stop or omission faults, we use the authenticated Byzantine clock, simplified 
appropriately because the signatures are not needed and because we cannot assume 
the authentication capability. Note that the consensus protocol and distributed 
clock protocol have the same constraint on the number of processors, N > 2t + 1. 
For unauthenticated Byzantine faults, we use the unauthenticated Byzantine clock. 
For authenticated Byzantine faults, either clock could be used. 

The Receive steps of algorithm A ’ are designated as belonging to either the clock 
simulation or the algorithm simulation. However, each time a Receive step of A ’ 
occurs, it is possible that messages for either or both simulations will be received. 
We assume that each processor maintains a pair of message buffers, one for each 
of the two simulations it is carrying out. When the processor does a Receive step 
that belongs to the clock simulation, it saves any messages for the algorithm 
simulation in the algorithm message buffer, and vice versa. Also, each time the 
processor does a Receive step that belongs to the clock simulation, it collects not 
only the new incoming messages, but all those in the clock message buffer, to use 
in its clock simulation step; analogous assumptions are made for the algorithm 
simulation. 

Fix R = 3N@ + 20 + 2, where, as before, D = A + 3@. Each processor uses its 
private clock to determine the round of algorithm A currently being simulated. 
Namely, if (r - l)R I Cl(S) < rR, then processor pi determines at real time s that 
the current round is Y. Processors label messages with round numbers. As long as 
a processor determines that the current round is r, it uses its protocol simulation 
steps to simulate steps of round Y in the basic model. The first Nprotocol simulation 
steps are used for sending the round Y messages to all the processors, and the 
remaining steps are spent executing Receive operations. Unlike the simulations in 
Section 4, it is possible that there will be insufficient time for a processor to actually 
send all its round r messages. 

Processor pi simulates its state transition for round r at its first algorithm 
simulation step at which it decides the current round is strictly greater than r. More 
specifically, assume that processor pi has reached an algorithm simulation step s, 
at which the current round is k, and assume that the round at processor p;s last 
algorithm simulation step was h < k. Then processor pi simulates its state transitions 
forroundsh,h+ I,..., k - 1, all at the beginning of step s. In simulating these 
state transitions, processor pi simulates all of its sending steps for these rounds; that 
is, it makes the appropriate state transitions, but does not actually send any 



Consensus in the Presence of Partial Synchrony 313 

messages, and it simulates the receipt of all the messages that are in the algorithm 
message buffer. 

For any run e’ of A ‘, it is easy to define a corresponding run e of A. We see that 
all processors that are correct in e’are also correct in e, and that the types of faults 
exhibited by the faulty processors are the same in both cases. We argue that, within 
a short time after GST, the number of ticks in e’ that are allotted for the simulation 
of any round r is sufficient to allow all round r messages to be sent and received. 
More precisely, the “short time after GST” is chosen so that parts (a) and (b) of 
Lemma 5.7 hold. 

We must first show that there is sufficient time for each correct processor pi to 
send all its round r messages and then to do at least one Receive operation. Assume 
that s is the first real time at which processor p;s private clock reaches or exceeds 
(r - l)R. Then processorpi would finish sending all its round r messages and doing 
one Receive operation by real time s + 3(N + l)+. We must show that processor 
pi’s clock up to real time s + 3(N + I)+ remains less than rR, that is, that 

Ci(S + 3(N + I)+) < rR. (5.1) 

We must also show that there is sufficient time for all round r messages sent by 
processor pi to be received. Fix a correct processor pi. We show that processor pj 
has sufficient time to receive a round r message from processor pi before going on 
to simulate round r + 1. Again, letting s be the first real time for which ci(S) 2 
(r - l)R, pi will send the message to pj by real time s + 3N@, and pj will receive 
the message by real time s + 3N+ + D. Therefore, we must show that 

Cj(S + 3N@ + D) < rR. (5.2) 

Since D 2 3@ and since clocks are nondecreasing, we can prove both (5.1) and 
(5.2) by showing that, for any correct processor pk, 

ck(s + 3N9 + D) < rR. 

This follows because 

ck(s + 3N+ + D) 5 c(S + 3N9 + D) (by Lemma 5.1) 

5 C(s - 1) + 3N+ + D + 1 (by Lemma 5.3) 

I Ci(S - 1) + 3N@ + 20 + 2 (by Lemma 5.7(a)) 

< (r - 1)R + 3N9 + 20 + 2 (by assumption) 

= rR. 

Since A is assumed to be a t-resilient consensus protocol for the basic model, 
consensus is eventually reached in e, and so in e’, as needed. 

By applying the transformation just described to Algorithms 1-3, we obtain 
Algorithms 13-33, respectively. We immediately obtain the following result: 

THEOREM 5.1. Assume that communication and processors are partially syn- 
chronous (delta and phi hold eventually). 

(a) For the fail-step or omission fault model, if N 2 2t + 1, then Algorithm l3 
achieves consistency, strong unanimity, and termination for an arbitrary value 
domain. 

(b) For the authenticated Byzantine fault model, ifN 2 3t + 1, then Algorithm 23 
achieves consistency, strong unanimity, and termination for an arbitrary value 
domain. 
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(c) For the unauthenticated Byzantine fault model, ifN I 3t + 1, then Algorithm 
33 achieves consistency, strong unanimity, and termination for an arbitrary 
value domain. 

As before, we claim that Algorithms 13-33 reach agreement within a polynomial 
(in N, A, and a) amount of time after GST. Our claims of polynomial-time 
performance follow from the fact that the master clock, a short time after GST, 
runs at a rate no slower than 1/(24NQ + 3(A + 39)) times real time (see Lemma 
5.7(b)). Finally, the total number of message bits sent by correct processors is 
polynomially bounded in N, A, a’, and GST, since the number of bits in each 
message sent by a correct processor is polynomially bounded in these quantities. 

5.4 UPPERBOUNDSWHEN DELTA ANDPHIAREUNKNOWN. Next,wepresent 
our upper bound results for partially synchronous communication and processors, 
for the model where delta and phi are unknown. The ideas are a simple combination 
of ideas from Sections 4.2 and 5.3. The transformation of a consensus protocol 
for the basic model to one for the model where delta and phi are unknown is 
identical to the transformation described in Section 5.3 except that the bound 
R, = 3Nr + 8r + 2 is used to describe the number of ticks to be used for the 
simulation of round r. (This bound is obtained from the previous bound by 
replacing both A and Q, by r.) The proof of correctness is the same as before, since 
GST is reached when r exceeds the (unknown) A and @ that hold in the run. By 
applying this transformation to Algorithms l-3, we obtain Algorithms 14-34, 
respectively. 

THEOREM 5.2. Assume that communication and processors are partially syn- 
chronous (delta and phi are unknown). Then claims (a)-(c) of Theorem 5.1 hold 
for Algorithms 1 4-3 4, respectively. 

As before, it is easy to see that Algorithms 14-34 reach agreement within a 
polynomial (in N, A, and a) amount of time. 

Remark 5. In the simulation of the basic model described in Sections 5.3 and 
5.4, if the round number of processor p;s last algorithm simulation step was h and 
processor pi updates its clock and finds that it is now simulating some round 
k > h, then all state transitions in rounds h through k - 1 are simulated 
(except that no messages are sent). For a general simulation of the basic model, 
these transitions must all be simulated, since they may involve state transitions 
that processor pi must make in order that the simulation of the algorithm in the 
basic model be correct. However, it is not hard to see that, for the particular 
Algorithms l-3 designed for the basic model in Section 3.2, processor pi can just 
simulate the state transition for round h and continue the simulation at round k, 
without simulating the “missed” transitions in rounds h + 1 through k - 1. This 
can be done since the state information in Algorithms l-3 (not including the 
current round number) consists of the PROPER sets, the values which are locked, 
and other information associated with each lock. Changes in this state information 
are caused only by the receipt of certain messages. Since we have shown consistency 
for Algorithms l-3 even if messages are lost before GST, it follows that the 
algorithms remain consistent if processors, including correct ones, skip state 
transitions before GST. 

6. Partially Synchronous Processors and Synchronous Communication 
In this section we consider models where processors are partially synchronous and 
communication is synchronous; that is, there is a fixed upper bound A on message 
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transmission time that always holds (in particular, no messages are lost). Of course, 
the protocols of the previous section with their associated resiliencies work for such 
models, but by using the fact that communication is now synchronous, we can 
achieve higher resiliencies in some cases. 

It is convenient to base our consensus algorithms on another basic model, which 
we call the basic model with signals. In Section 6.1 we define this new basic model 
and give consensus algorithms that are designed to work in the basic model with 
signals. We then show how to use the eventual phi and unknown phi models to 
simulate the basic model with signals. As in Section 5, we use distributed clocks to 
give the processors some approximately common notion of time. The clocks are 
discussed in Section 6.2. Section 6.3 contains algorithms for the case in which 
phi holds eventually, and Section 6.4 contains algorithms for phi unknown. 
Section 6.5 contains lower bounds. 

6.1 A BASIC MODEL WITH SIGNALS. The basic model with signals is just like 
the basic model, except that the Receive subround also includes the possible receipt 
of a signal by each processor. In any round r, the receipt of a signal by processor 
pi implies that all correct processors receive the round r messages sent to them by 
processor pi. The nonreceipt of a signal does not imply anything. At round GST 
and afterward, we assume that all correct processors receive signals at each round. 
The next two subsections, 6.1.1 and 6.1.2, give consensus protocols for the basic 
model with signals that are resilient to two types of faults. 

6.1.1 Fail-Stop Faults. The next algorithm achieves strong unanimity for an 
arbitrary value domain V. 

Algorithm 4. N L t 
Each processor has a local variable VALUE, initialized at its initial value. We 

say that each round k = i mod N belongs to processor pi. Processing in an arbitrary 
round k is as follows: 

Processing for pi, where round k belongs to pi: 
Broadcast VALUE; 
If a signal is received, then decide on VALUE. 

Processing for pi, where round k does not belong to pj: 
If a message is received with contents v, then set VALUE := v. 

LEMMA 6.1. Assume that processor pi decides v at round k, and that this is the 
smallest numbered round at which a decision is made. Then no message containing 
value w # v is ever sent at any round 2 k. 

PROOF. Assume for the sake of contradiction that the lemma is false, and let h 
be the smallest numbered round L k when a message containing value w # v is 
sent. It is clear that h # k, since faults are fail-stop. Let pj be the processor that 
owns round h. 

Since processor pi receives a signal at round k, it must be the case that processor 
pj receives value v from processor pi at round k and therefore sets its VALUE to v. 
By assumption, no message with value different from v is sent at rounds after k 
and before h. Therefore, processor pi’s VALUE remains equal to v until the 
beginning of round h. This contradicts the assumption that processor pj sends w at 
round h. 0 
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THEOREM 6.1. Assume the basic model with signals, with fail-stop faults. 
Assume N L t. Then Algorithm 4 achieves consistency, strong unanimity, and 
termination for an arbitrary value domain. 

PROOF. First, we show consistency. Suppose that some correct processor pi 
decides v at round k, and this is the smallest numbered round at which a decision 
is made. Then Lemma 6.1 implies that no message containing value w # v is ever 
sent at any round 2 k. But a processor can decide on a value w only if it first sends 
out messages containing w. Therefore, no processor ever decides on a value w # v. 

Strong unanimity is obvious, since a message with contents v is only sent if v 
was the initial value of some processor. 

Since a signal is received by each correct processor at every round on or after 
GST, by definition of the basic model with signals, it is obvious that each round 
on or after GST results in a decision for its owner if that owner has not already 
decided. 0 

6.1.2 Authenticated Byzantine Faults. The next algorithm, Algorithm 5, 
achieves weak unanimity for an arbitrary value domain. 

Algorithm 5. N 2 2t + 1 
The protocol is similar to Algorithm 2 of Section 3.2.2, with a few changes as 

indicated below. Because we are only dealing with weak unanimity, the PROPER 
sets are not used. This time, the rounds are divided into trying phases of 
two rounds each and lock-release phases of one round each. A trying phase of 
Algorithm 5 is the same as the first two rounds of the corresponding trying phase 
of Algorithm 2, except that, if a processor, during one of its trying phases, is 
choosing a value to propose and if several values are acceptable, the processor 
chooses its own initial value if that value is acceptable or chooses arbitrarily 
otherwise. The third round is omitted; processor pi does not wait for messages from 
others claiming that they have responded to a message Ei(lock v, k, proof) by 
locking v. Instead, it checks that a signal has been received at the second round of 
the trying phase. If a signal is received, then processor pi decides v. 

In Algorithm 2, processor pi needed at least 2t + 1 acknowledgment messages to 
conclude that at least t + 1 correct processors actually locked v at phase k. Now 
we can argue that, if a signal is received, then all correct processors will have 
actually locked v at phase k, and since N 2 2t + 1, there are at least t + 1 correct 
processors. 

The proof of the following theorem is very similar to that of Theorem 3.2 (the 
result about Algorithm 2), and details are left to the reader. 

THEOREM 6.2. Assume the basic model with signals, with authenticated Byzan- 
tine faults. Assume N 2 2t + 1. Then Algorithm 5 achieves consistency, weak 
unanimity, and termination for an arbitrary value domain. 

One version of the consensus problem studied in the literature supposes that a 
distinguished processor, called the “general,” gives the initial values vi to all 
processors. In the case of Byzantine faults with authentication, it is usually assumed 
that the general signs these initial values with its own unforgeable signature. Thus, 
if the general is correct, there is a single value v such that the general gives a signed 
v to every processor; in this case, strong unanimity requires that v is the value 
decided by all correct processors. If the general is faulty, the general can give out 
different values and can even give two different values, both signed, to the same 
processor; in this case, strong unanimity does not require any particular value to 
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be the decision value. This issue was not raised earlier because it is irrelevant to 
the results of Sections 3-5; that is, our protocols for the authenticated Byzantine 
case are designed to work even if the general does not sign the initial values, and 
our lower bound Theorem 4.4 is still valid if the general does sign the initial values. 
(If the general does sign the initial values, updating to the PROPER sets in 
Algorithm 2 can be simplified.) This distinction is important in the completely 
synchronous case: N-resilient strong unanimity is possible in the authenticated 
Byzantine case (column 1, row 3 of Table I) only if the general signs the initial 
values. 

This distinction also matters in this section of the paper. Consider the basic 
model with signals, with authenticated Byzantine faults, where the general signs 
the initial values and where N L 2t + 1. Then a slight variant of Algorithm 5 
achieves consistency, strong unanimity, and termination for an arbitrary value 
domain. 

Algorithm 6. N L 2t + 1 
The algorithm is identical to Algorithm 5, except that PROPER sets are used. 

Initially, the PROPER set of processor pi contains its initial value vi, which is 
signed by the general. Each processor piggybacks its initial value, signed by the 
general, on all messages. If pi ever receives a value different from vi that is also 
signed by the general, then pi puts all of V in its PROPER set. It is clear that a 
correct processor’s PROPER set always contains proper values. 

6.2 DISTRIBUTED CLOCKS. Recall that in this section there is some known 
communication bound A that always holds. Because the previous clocks have 
limited resiliency, we first describe a distributed clock that is resilient to any 
number of fail-stop faults. The general form of the clock is similar to the clocks of 
Sections 5.1 and 5.2. 

As in Section 5.1, an i-tick is the message i, and an i-claim is the message 
“I have broadcast an i-tick.” The definitions of F-tick, i+-claim, broadcast an 
i-tick, and broadcast an i-claim are also the same as in Section 5.1. The clock 
protocol is given by TICK(b) and CLAIM(b), as in Figure 2. 

The master clock is 

C(s) = maximum j such that some processor has broadcast a j-tick by time s. 

The private clock ci is 

ci(S) = maximum j such that pi has received either a j’-claim 
or a (j + 1 )+-tick by time s. 

We claim that the new fail-stop clock and the authenticated Byzantine clock of 
Section 5.2, when used in the model of this section, have the following properties: 

(Al) For all s and all correct pi, ci(S) 5 C(S). 

(A2) For all s, x 2 0, C(s + x) i C(s) + x. 

(A3) Consider a run in which the processor bound + holds after time GST (in the 
unknown phi model, GST = 0 for uniformity as explained before), and 
let D = 3@ + A. There are constants al and a2 depending polynomially 
on N, A, and 9 such that 

(A3.1) for all correct pi and all s 2 GST + al, Cu 2 C(s) - D - 1; 
(A3.2) for all s 2 GST + al, C(s + a2) 2 C(s) + 1. 
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(A4) For all s at which the correct processor pi executes a Receive operation in the 
clock protocol, 

C(S) - (A + 1) I Ci(S). 

To be technically precise, in the fail-stop case in Section 6 we consider a processor 
to be “correct” up until the time it fails (assuming that it does fail). In particular, 
the four properties above hold for all processors up until the time they fail. 

For the authenticated Byzantine clock, we have already proved (Al), (A2), and 
(A3) in Lemmas 5.1, 5.3, and 5.7, respectively, with modifications as described in 
the proof of Lemma 5.8. To prove that these properties hold for the fail-stop clock, 
we first note that Lemmas 5.1-5.4 hold for the fail-stop clock; the proofs are very 
similar to the proofs given in Section 5.1 and are left to the reader. Lemma 5.5 is 
not needed. Since A always holds, we can prove a stronger version of Lemma 5.6 
for the fail-stop clock. 

LEMMA 5.6’. For all s > GST + D and all correct pi, Ci(S) 2 C(S - D) - 1. 

PROOF. Letj = C(s - D). By definition of the master clock, some processor 
has broadcast a j-tick by time s - D, so every correct processor will receive a 
j+-tick by time s. Therefore, ci(s) 2 j - 1, by definition of the private clock. 0 

Now Lemma 5.7 follows from Lemma 5.6’ and previous lemmas as before. 
(However, we only need s 2 GST + D for part (a) and s 2 GST for part (b)). 

The proof of (A4) is similar for both clocks. Let j = C(s - A). A j-tick has been 
broadcast by time s - A, so processor pi, by time s, will receive a j+-tick. For the 
authenticated Byzantine clock, this j’-tick contains t + 1 (j - I)+-claims. For 
either clock, by definition of the private clock and by property (A2), 

ci(s)Zj-l=C(s-A)-lZC(s)-A-1. 

6.3 UPPER BOUNDS WHEN PHI HOLDS EVENTUALLY. The only improvements 
over the case in which both phi and delta hold eventually are for fail-stop faults 
and authenticated Byzantine faults (the latter either for weak unanimity or for 
strong unanimity, with a general signing the initial values). Fix one of these fault 
models. We show that, if there is a t-resilient protocol in the basic model with 
signals, then there is one in the model where phi holds eventually. Fix A and a’, 
and assume algorithm A works for the basic model with signals. Define A ’ as 
follows. 

Two out of every three steps of each processor are used to maintain a distributed 
clock, and the other step is used to simulate algorithm A. For fail-stop faults, we 
use the new fail-stop clock of Section 6.2, while for authenticated Byzantine faults 
we use the authenticated Byzantine clock. Message buffers are maintained as in 
Section 5.3. 

Fix R = 3N@ + (20 + 2) + (A + I), where, as before D = A + 3@. Each processor 
determines the current round being simulated and conducts the rest of the simu- 
lation exactly as in Section 5.3. We must describe how signals are simulated. If a 
processor pi has sent all its messages for a particular round r, performed a Receive 
operation in the clock protocol, and updated its private clock, and if the clock then 
satisfies 

Ci < rR - (2A + I), 

then pi acts in A ’ as pi would act in A if it had received a signal for round r. 
For any run e’ of A ‘, we define a corresponding run e of A. Again, faults are 

preserved. Since the R in this section is larger than the R used in Section 5.3, it 
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follows as in Section 5.3 that, within a short time after GST, the number of ticks 
in e’ that are allotted for the simulation of any round r is sufficient to allow all 
round r messages to be sent and received. It remains to show that signals behave 
correctly: 

(a) Whenever a correct processor pi receives a signal at any round r, it means that 
all of the messages sent by processor pi at round r to correct processors actually 
get received. 

(b) Within a short time after GST, all correct processors receive signals at all 
rounds. 

We first show (a). Assume that correct processor pi receives a signal at round r, 
that pi sends a message to correct processor pj at round r, and that s is the real time 
when the message is sent. Then the message arrives at processor pj by real 
time s + A. Processor pj might not actually receive the message at this time, 
since it is not executing a Receive operation at this time. However, the key fact for 
the simulation is that the message will be received the next time that pj executes a 
Receive operation, and that, when this Receive occurs, pj has not yet started any 
round greater than r. That is, we must show that 

Cj(S + A) < rR. 

To show this, first note that, since processor pi receives a signal for round r, there 
must be a real time s ’ with s ’ > s such that pi executes a Receive operation in the 
clock protocol at time s’ and 

Ci(S’) < rR - (2A + 1). 

Now, 

Cj(S + A) = C(S + A) (by (Al)) 
sC(s’+A) (since s’ > s) 
s C(s’) + A (by 042)) 
s Ci(S’) + 2A + 1 (by (A4)) 
< rR (by the condition defining simulation of signaling). 

Next, we show (b). Fix some round r after GST, and let s be the earliest time at 
which p;s private clock reaches or exceeds (r - 1)R. Processor pi can broadcast a 
message to all processors and execute a Receive operation in the clock protocol 
within 3(N + I)@ steps after s. Therefore, we must show that 

Ci(S + 3(N + l)@) C rR - (2A + 1). 

This is true because 

Ci(S + 3(N + I)@) 5 C(S + 3(N + l)@) (by (Al)) 
5 C(s - 1) + 3(N + l)@ + 1 (by b42N 
5 Ci(S - 1) + 3(N + l)@ + D + 2 (by (A3.1)) 
< (r - 1)R + 3(N + l)@ + D + 2 (by assumption) 
5rR-(2A+ 1) (by calculation). 

By applying this transformation to Algorithms 4, 5, and 6, we obtain Algo- 
rithms 4’, 5’, and 6’, respectively. 

THEOREM 6.3. Assume that communication is synchronous and processors are 
partially synchronous (phi holds eventually). 
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(a) For the fail-stop model, ifN 2 t, then Algorithm 4l achieves Consistency, strong 
unanimity, and termination for an arbitrary value domain. 

(b) For Byzantine faults with authentication, if N I 2t + 1, then Algorithm 5’ 
achieves consistency, weak unanimity, and termination for an arbitrary value 
domain. 

(c) For Byzantine faults with authentication, ifN 2 2t + 1 and ifthe general signs 
the initial values, then Algorithm 6’ achieves consistency, strong unanimity, 
and termination for an arbitrary value domain. 

6.4 UPPER BOUNDS FOR PHI UNKNOWN. The strategy is the same as in 
Sections 4.2 and 5.4. Namely, we use the algorithm of Section 6.3 where R, = 
3Nr + 6r + 3A + 3 steps are allowed for the simulation of round r, where R, is 
obtained from the R of Section 6.3 by replacing @ by r. It is important to note 
that the verification of (a) in Section 6.3 (viz., that if a signal is received by pi at 
round r, then all messages sent by pi during round r to correct processors arrive 
before the other processor starts any round greater than r) did not depend in 
any way on a. Therefore, (a) holds even for rounds r, where r is smaller than the 
actual (unknown) 9 that holds in the run. Applying this transformation to 
Algorithms 4, 5, and 6, we obtain Algorithms 42, 52, and 62, respectively. 

THEOREM 6.4. Assume that communication is synchronous and processors 
are partially synchronous (phi is unknown). Then claims (a), (b), and (c) of 
Theorem 6.3 holdfor Algorithms 42, 52, and 62, respectively. 

Our claim of a. polynomial time bound (after GST) for the algorithms of 
Sections 6.3 and 6.4 follows from clock property (A3.2), which states that the 
master clock runs fast enough afier GST. 

We should also mention that Remark 5 at the end of Section 5 does not apply 
to the simulations of Sections 6.3 and 6.4. Here, if a processor’s clock makes a big 
jump so that rounds are missed, all steps of the consensus protocol during the 
missed round(s) must be simulated. If the correct pi sends a message to a correct pj 
and receives a signal during round r, then pj must receive the message and make 
the appropriate state transition caused by this reception, even if pi’s clock makes a 
large jump that causes it to miss round r. 

6.5 LOWER BOUNDS. The following lower bound shows that the resiliency of 
Theorems 6.3 and 6.4, parts (b) and (c), cannot be improved. The method used to 
prove this lower bound was suggested by Dolev (personal communication). 

THEOREM 6.5. Assume the model with Byzantine faults with authentication, 
synchronous communication, and partially synchronous processors. Assume 
4 I N 5 2t. Then there is no t-resilient consensus protocol that achieves weak 
unanimity for binary values, even tf the general signs the initial values. 

PROOF. Assume, to the contrary, that a consensus algorithm exists. The proof 
is identical for both variations of partially synchronous processors. In the following 
we assume, without loss of generality, that all messages are delivered in one real- 
time step. Divide the processors into four groups P, Q, (b ), and (r J, where groups 
P and Q each contain at least 1 and at most t - 1 processors and where b and r 
are single processors. We say that a processor wakes up at real time s if it takes the 
first step of its protocol at real time s. We say that a processor runs fast in the real- 
time interval [s,, s2J if it takes a step of its protocol at each real-time step in the 
interval. 
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Consider Scenario CP, where the processors in P U (b) have initial values 0, 
wake up at time 1, and run fast in the interval [ 1, m), and where the other processors 
are initially dead. By t-resiliency, the processors in P make some decision within 
some finite time Tp. We claim the decision must be 0. For if it were 1, we could 
modify the scenario to one in which all initial values are 0, and the processors in 
Q U (r-1 are correct but do not wake up until after time Tp. The processors in P 
still decide 1 in the modified scenario, which contradicts weak unanimity. 

Consider the analogous Scenario CQ where the processors in P U (r) are initially 
dead, and the processors in Q U lb] wake up at time 1 with initial values 1 and 
run fast in the interval [ 1, m). Therefore, the processors in Q decide 1 after some 
finite time TQ. 

Consider the following Scenario BP: Processors in P U (6) are Byzantine. The 
processors in P have value 0, and b has both 0 and 1 (so the general is Byzantine). 
They wake up at time 1, with b acting as if its value is 0, and they run fast in the 
interval [ 1, Tp]. They send the same messages to r as are sent in Scenario CP, but 
no messages are sent to Q. After time Tp, the processors in P die. The processors 
in Q are correct. They wake up at time Tp + 1 and run fast thereafter. Starting at 
time Tp + 1, the Byzantine processor b starts behaving toward Q and r excactly as 
it does in Scenario CQ, as if its value were 1, except that a message sent at real 
time s in Scenario CQ is sent at time Tp + s in Scenario BP. Since Q has received 
no messages from P, the processors in Q decide 1 at time Tp + TQ, and they all 
behave exactly as in Scenario CQ, except that everything happens Tp real- 
time steps later. At time Tp + TQ + 1, the correct processor r wakes up and 
runs fast thereafter. The initial value of r is irrelevant. Note that at most t 
processors are faulty in this run. In the model where phi is unknown, the processor 
bound + = Tp + TQ + 1 holds in this run; in the model where phi holds eventually, 
the processor bound @J = 1 holds after GST = Tp + TQ + 1. Since the correct 
processors in Q have already decided 1 before r wakes up, r must decide 1 at some 
real time T,. 

Consider now Scenario BQ: The processors in P are correct and begin with 
value 0. They run fast in the interval [ 1, Tp] but take no more steps until after 
time T,. In the time interval [ 1, Tp], the Byzantine processor b behaves toward P 
and r exactly as it does in Scenario CP, acting as if it had initial value 0. Therefore, 
at time Tp the processors in P decide 0. The processors in Q are Byzantine. They 
wake up at time Tp + 1 with value 1 and behave with respect to r exactly as they 
do in Scenario BP; that is, the messages that have been sent from P to Q during 
the interval [ 1, Tp] are ignored by Q. At time Tp + 1, b starts acting toward r 
exactly as it does in Scenario BP, as if it had initial value 1. The correct processor 
r wakes up at time Tp + TQ + 1 and runs fast thereafter. It is easy to see that the 
messages received by r between time Tp + TQ + 1 and time T, are exactly the same 
in Scenario BQ as in Scenario BP. Therefore, r decides 1 at time T,, which is a 
contradiction because the correct processors in P decided 0. Cl 

In the preceding proof, note that the processors in P and Q exhibit only omission 
faults: P fails to send messages to Q in Scenario BP, and Q fails to receive messages 
from Pin Scenario BQ. Processor b is the only one that exhibits Byzantine behavior 
stronger than omission faults. Therefore, it can be checked that the same proof can 
be carried out for omission faults with three groups of processors, P, Q, and (r-1, 
where P and Q each contain at least 1 and at most t - 1 processors. This proves 
the following, which shows that the resiliency of Theorems 5.1 and 5.2, part (a), 
when applied to the case of omission faults and partially synchronous processors, 
cannot be improved by more than 1. 
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THEOREM 6.6. Assume the model with omission faults, synchronous commu- 
nication, and partialIy synchronous processors. Assume 3 I N s 2t - I. Then there 
is no t-resilient consensus algorithm that achieves weak unanimity for binary values. 

For the case of strong unanimity and Byzantine faults with authentication, but 
where the initial values are not signed by a general, Theorems 5.1 and 5.2, part (b), 
give consensus algorithms if N L 3t + 1. The following shows that this resiliency 
is the best possible for this case. 

THEOREM 6.7. Assume the model with Byzantine faults with authentication, 
synchronous communication, and partially synchronous processors. Assume 
3 5 N 5 3t. If the general does not sign the initial values, there is no t-resilient 
consensus protocol that achieves strong unanimity for binary values. 

PROOF. Assume N I 3t. Divide the processors into three groups, P, Q, and R, 
each containing at least 1 and at most t processors. 

Consider the following Scenario A: Processors in P have initial values 0, proces- 
sors in Q have initial values 1, processors in P U Q wake up at time 1 and run fast 
thereafter, and processors in R are initially dead. Therefore, the processors in 
P U Q must make some decision after some finite time. By symmetry we can 
assume, without loss of generality, that they decide 1 within time TA. 

Consider Scenario B: All processors have initial values 0, processors in R are 
correct but do not wake up until after time TA, and processors in Q are Byzantine 
and behave with respect to P exactly as they do in Scenario A. The processors in 
group P act exactly as they do in Scenario A, so they decide 1. This contradicts 
strong unanimity. Cl 

7. Open questions 
(1) We have noted in Remark 1 at the end of Section 3 that the basic consensus 

Algorithms l-3, with minor modifications, have the property that the number of 
rounds required to reach agreement after round GST is optimal to within constant 
factors (at most 12). We have not tried to reduce these constants. Some reduction 
is probably possible, say by overlapping trying phases with lock-release phases, 
although it would be surprising if the number of rounds could be made to match 
the known lower bound of t + 1 rounds. On the other hand, partial synchrony 
might provide a model for which the lower bound t + 1 could be strengthened to 
something larger. 

(2) A general direction for future research is to study other distributed computing 
problems in partially synchronous models. 
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