
Electing a Leader in a Synchronous Ring

GREG N. FREDERICKSON

Purdue University. West Lafayette, Indiana

AND

NANCY A. LYNCH

Massachusetts Institute of Technology, Cambridge, Massachusetts

Abstract. The problem of electing a leader in a synchronous ring of n processors is considered. Both
positive and negative results are obtained. On the one hand, if processor IDS are chosen from some
countable set, then there is an algorithm that uses only O(n) messages in the worst case. On the other
hand, any algorithm that is restricted to use only comparisons of IDS requires Q(n log n) messages in
the worst case. Alternatively, if the number of rounds is required to be bounded by some t in the worst
case, and IDS are chosen from any set having at least J(n, t) elements, for a certain very fast-growing
function 1; then any algorithm requires a(n log n) messages in the worst case.

Categories and Subject Descriptors: C.2.5 [Computer-Communications Networks]: Local Networks-
rings; F. I. I [Computation by Abstract Devices]: Models of Computation-automata; unbounded-action
devices. F. I .2 [Computation by Abstract Devices]: Modes of Computation-synchronous computation;
F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems

General Terms: Theory, Validation

Additional Key Words and Phrases: Comparison algorithms, distributed algorithms, leader election,
lower bounds, Ramsey’s theorem, ring networks, synchronous computation

1. Introduction

Communication in a network can be performed in either a synchronous or an
asynchronous mode. How does the choice of communication mode affect the
computational resources required to solve a problem? We examine this question
by considering the problem of electing a leader in a ring-shaped network. In this
problem there are n processors, which are identical except that each has its own
unique identifier. At various points in time, one or more of the processors
independently initiate their participation in an election to decide on a leader. The
relevant resources for such a distributed computation are the total number of

The work of G. N. Frederickson was supported by the National Science Foundation under grants MCS
82-O 1083 and DCR 83-20124. The work of N. Lynch was supported by NSF grants MCS 79-24370 and
DCR 83-0239 I, U.S. Army Research Office contract DAAG29-84-K-0058, Office of Naval Research
contract NO00 14-85-K-O 168, and Advanced Research Projects Agency of the Department of Defense
contracts N00014-75-C-0661 and N00014-83-K-0125.
Authors’ addresses: G. N. Frederickson, Department of Computer Sciences, Purdue University, West
Lafayette, IN 47907; N. A. Lynch, Laboratory for Computer Science, MIT, Cambridge, MA 02 139.
Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1987 ACM 0004-541 l/87/0100-0098 $00.75

Journal of the Association for Computing Machinery, Vol. 34, No. I, January 1987, pp. 98-I 15.

Electing a Leader in a Synchronous Ring 99

messages used and the amount of time expended from the time that the first
processor wakes up.

The problem of electing a leader efficiently has been studied by a number of
researchers [1, 4-6, 8- 11, 131. The best previous deterministic algorithms have
used O(n log n) messages for either bidirectional rings [4, 8, 93 or unidirectional
rings [6, 131. These algorithms work for both the synchronous and asynchronous
models, and use comparisons of IDS only. In addition, Burns has established a
lower bound of Q(n log n) on the number of messages required if communication
is asynchronous [4]. However, the proof in [4] does not extend to the case of
synchronous communication. It is, therefore, quite natural to ask whether the Q(n
log n) lower bound can be achieved in the synchronous case as well as in the
asynchronous, or whether there are algorithms that somehow make use of the
synchrony to limit the number of messages transmitted.

We obtain both positive and negative answers to our question of whether
synchrony helps. On the one hand, we show that if processor IDS are chosen from
some countable set (such as the integers), then there is an algorithm that uses only
O(n) messages in the worst case. The processors may initiate the algorithm at
different rounds, and do not know the value of n. Our algorithm is thus an
improvement on a probabilistic algorithm of [lo] that uses O(n) messages on
average and assumes that the processors do know the value n. Unlike the earlier
algorithms, our algorithm uses not only comparisons on IDS, but also the numerical
value of the IDS to count rounds. However, the number of synchronous rounds
used by our algorithm can be very large in the worst case. An algorithm similar to
ours has been developed independently by Vitanyi [151.

On the other hand, we show that both the departure from the comparison model
and the possibility of using a large number of rounds are necessary in order to
obtain an algorithm of linear message complexity. More specifically, if the algo-
rithm is restricted to use only comparisons of IDS, then we obtain an Q(n log n)
lower bound for the number of messages required in the worst case. To achieve
this bound we generate an assignment of IDS to processors that exhibits a large
amount of “replication symmetry” around the ring. We give a relatively simple
assignment of values if n is a power of 2, and a somewhat more involved assign-
ment for general values of n. (More recently, a different assignment of IDS has
been given in [2].)

Alternatively, if the number of rounds is required to be bounded by some t in
the worst case, then there is a (very fast-growing) functionf(n, t), which has the
following very interesting property. If IDS are chosen from any set T having at least
f(n, t) elements, then any t-bounded algorithm requires Q(n log n) messages in the
worst case. In particular, if t is a function of n, say t(n), then any t(n)-bounded
algorithm for a set Twith at leastf(n, t(n)) elements exhibits the given lower bound
on messages. We achieve this result by giving a transformation from any algorithm
in what we call free form, over such a set T, to a comparison-based algorithm. The
ideas for this transformation are derived from earlier work of Snir [141. Both of
our lower bound results hold even in the case that the number of processors in the
ring is known to each processor, and all the processors are known to start at the
same round.

2. The Algorithm
In this section we present an algorithm for electing a leader in a synchronous ring.
The algorithm uses only O(n) messages but may require a very large number of

100 G. N. FREDERICKSON AND N. A. LYNCH

rounds. The elected processor, and only this processor, eventually enters one of a
set of distinguished “elected” states. The total number of messages used, including
any messages that might be sent after the winner is elected, is O(n). The algorithm
presented is for a unidirectional ring, with communication assumed to be counter-
clockwise. Of course, essentially the same algorithm will work on a bidirectional
ring. We assume that the unique ID of each processor is an integer. This assumption
is reasonable if communication is implemented by transmitting packets of bits. In
the description of the algorithm, we shall refer to the processor with ID i as
processor i.

The algorithm is initiated by individual processors deciding independently to
wake up. The processors need not wake up at the same time, but no processor is
allowed to wake after it has received a message from an awakened processor. When
it wakes up, a processor (henceforth called a participating processor) spawns a
message process, which moves around the ring, carrying the ID of the originating
processor. The message process is charged one message for each edge that it
traverses.

Our algorithm uses two ideas. The first is that message processes that originate
at different processors are transmitted at different rates: The message process
carrying processor ID i travels at the rate of one message transmission every 2’
rounds. (Specifically, each processor delays for 2’ - 1 rounds before transmitting
message process i.) Any slower message process that is overtaken by a faster message
process is killed. Also, a message process carrying ID i arriving at processor j is
killed if j < i and processor j has also spawned a message process. A message
process that returns to its originator causes the originator to become elected.

Suppose that all participating processors were to wake up at the same round.
The above strategy would then guarantee that the total number of messages is O(n).
To see this, consider the following. Let i be the smallest ID of any participating
processor. Message process i traverses all edges, for a total cost of n. Consider any
other message process, j. During message process i’s circuit, either message process
i overtakes message process j, or else message process j reaches processor i. In either
case message process j is killed by the time i’s circuit is completed. Because of the
different rates of travel, message process j could travel at most distance n/(2’-‘)
during the time that message process i travels distance n. Summing over all message
processes, the total number of messages expended would be less than 2n.

However, this variable rate of transmission scheme is by itself not enough to
realize U(n) messages in the case in which not all participating processors wake up
at the same time. The processors with smaller IDS could wake up correspondingly
later and spawn message processes that would chase and ultimately overtake the
slower message processes, but not before 0(n) messages had been expended by each
of Q(n) message processes.

The second idea is to have a preliminary phase for each message process, before
the variable rate phase begins. In this phase, all message processes travel at the
same rate, one message transmission per round. When a processor decides it wants
to participate, it spawns its message process and sends it off to its neighbor. The
message process is transmitted around the ring until it encounters the next partici-
pating processor. At this point, the message process continues into the second
phase, moving at its variable rate and acting as previously described.

LEMMA 1. There is an algorithm that elects a leader in a synchronous ring of n
processors using fewer than 4n messages and O(n2’) time, where i is the ID of the
eventual winner.

Electing a Leader in a Synchronous Ring 101

PROOF. We divide the messages into three categories, and bound each category
separately. The categories are (1) the first-phase messages, (2) the second-phase
messages sent before the eventual winner enters its second phase, and (3) the
second-phase messages sent after the eventual winner enters its second phase.

First consider (1). Since exactly one message from the first phase will be
transmitted along each edge, the total number of first-phase messages is exactly n.
Next, consider (2). Every message process that is activated will enter its second
phase within n rounds of the time at which the first of the processors awakens.
Thus, at most n rounds need to be considered. Furthermore, message process i
sends no second phase messages during the rounds under consideration. Since the
smallest ID that a winner can have is 0, the smallest possible ID for a processor
that is not an eventual winner is 1. Thus the maximum number of second-phase
messages for message process j in these rounds is n/2’, for j > 0. Summing, the
total number of messages sent for all the message processes in these rounds is less
than n.

Finally, consider (3). The argument is similar to the one used for the case in
which all processors awaken at the same round. That is, message process i makes
a circuit for a total cost of n. Any other message process j can send at most n/2’-’
phase-two messages during the time i travels distance n. As before, the total number
of messages used in (3) is less than 2n. Thus the total number of messages for all
categories is less than 4n.

Because of the variable transmission rate, the number of rounds required is
O(n 2’), where i is the ID of the eventual winner. Cl

The bound of 4n messages for the algorithm above is reasonably tight. Consider
the following example, wheref(n) = log n - log log n. Let processor 1 be at distance
1 from processor 0, and let processor k, k = 2, . . . , f(n), be at distance k +
1(2/i-’ - 2)n/(2”-’ - 1)J from processor 0. Let processors 1 and 2 awaken at round
1, and each processor k, k = 3, . . . , f(n), awaken the round before it would be
visited by the first-phase message from processor k - 1. Similarly, let processor 0
awaken the round before it would be visited, which would be round n - f(n).
Message process k, k = 1, . . . , f(n), will start its second phase at round 2 +
42” - 2)n/(2” - 1)1. It will be killed when it reaches processor 0, or when it
is overtaken near processor 0, and thus will traverse at least n/(2k - 1) - f(n)
links before it is killed. There will be n first-phase messages, at least &=,,. ,J(~)
(Wk - 1) -f(n)) second-phase messages for message processes k = 1, . . . , f(n),
and n - 1 second-phase messages for message process 0. Of the second-phase
messages for message process k, note that [n/(2” - 1) -f(n) - 2]/2k of them will
fall under category (2), and the remainder under (3). For large n, the total is slightly
more than 3.6n messages in all.

It is possible to achieve a trade-off between the number of messages and the
number of rounds by using powers of c for any constant c > 1, rather than powers
of 2. As before, there will be exactly n messages in category (1). In category (2)
there will be fewer than Zj=I,. .-n/c’ = n/(c - 1) messages, while in category (3)
there will be fewer than Zj=o,, .,n/cj = nc/(c - 1) messages. Thus, we obtain an
algorithm that elects a leader in a synchronous ring of n processors using fewer
than 2cn/(c - 1) messages and at most O(nc’) rounds, where i is the ID of the
eventual winner. It is possible to retain the 2cn/(c - 1) message bound, while
reducing the time to O(nc’), where i is the minimum ID of all processors in the
ring. The basic idea is to allow each processor to awaken and begin its algorithm
(spawning its message process) as soon as it receives any message from its neighbor,

102 G. N. FREDERICKSON AND N. A. LYNCH

if it has not already awakened on its own. We thus obtain

THEOREM 2. Let c > 1. There is an algorithm that elects a leader in a
synchronous ring of n processors usingfewer than 2cn/(c - 1) messages and O(nc’)
time, where i is the smallest ID of the processors in the ring.

Note that the algorithm works correctly in the case in which communication is
purely asynchronous. It is only its complexity that depends on the synchrony. In
the general asynchronous case, the algorithm is essentially the same as that of [5],
and so exhibits a worst-case message behavior, which is O(n*).

3. Formal Model and Problem Statement
In this section we describe the formal model we use for our lower bounds. The
contents of this section are summarized from [7], and the reader is referred to this
paper for further details.

3.1 ALGORITHMS. We use the following model for ring algorithms. Each pro-
cessor is assumed to be identical to every other one, except for its own unique
identifier, chosen from an ID space X, a totally ordered set. The processors all
begin their identical election algorithms at the same time. Each processor behaves
like an automaton as follows. Initially the state of the processor consists of its ID.
At each round, the processor examines its state and decides whether to send a
message to each of its neighbors, and what message to send. Then each processor
receives any messages sent to it in that round. The processor uses its current state
and these new messages to update its state. Certain of the states are designated as
“elected” states.

It may be assumed, without loss of generality, that a ring algorithm is in a certain
normal form. In this normal form, the state of each processor records exactly its
initial ID and the history of messages received, and each message that is sent
contains the entire state of the sending processor. We represent such history
information by means of LISP S-expressions. The S-expressions that arise during
computation are of a special type, which we call well formed. A well-formed
Sexpression over X is either (1) an element of X, or (2) an expression of the form
(s, , sZ, sj), where sz is a well-formed S-expression over X, and each of sI and s3 is
either a well-formed S-expression over X or the atom NIL. Let 9(X) denote the
set of well-formed S-expressions over X.

We refer to an algorithm in such a form as a free algorithm, and we restrict
attention in this paper to algorithms that are free. An initial state of a processor
will just be its ID. Each message will contain exactly the state of the sending
processor. When a processor in state s receives messages s1 and sz from its
counterclockwise and clockwise neighbors, respectively, its new state will be the
S-expression (s, , s, s2). If no message is received from a neighbor, the atom NIL is
used in place of sI or s2 as a placeholder. To complete the algorithm specification,
we define a function that determines when messages are to be sent in either
direction, and a designation of which states indicate that the processor has been
elected. Thus, an algorithm over X is a pair (E, p), where E C 9(X) is the set of
elected states and CL, a mapping from Y(X) x (clockwise, counterclockwise) to
(yes, no), is the message generation function. We assume that the set E of elected
states is “closed,” so that once a processor has been elected, it will remain elected.

3.2 EXECUTIONS. To facilitate discussion, we index the processors in the ring
clockwise, as 0, . . . , n - 1. (For convenience we are switching from the naming

Electing a Leader in a Synchronous Ring 103

convention which we used in Section 2. There, by “processor i” we meant “the
processor with ID i,” whereas for the rest of the paper we mean “the processor with
index i.” We count indices modulo n. A ring of size n over ID space X is an
n-tuple of elements of X, giving the initial IDS of the processors 0, . . . , n - 1 in
order. A configuration of size n is an n-tuple of S-expressions in Y(X), representing
the states for the n processors. A message vector of size n is an n-tuple of ordered
pairs of elements ofY(X) U (null). It represents the messages sent counterclockwise
and clockwise by each of the n processors.

An execution of an algorithm for ring R of size n is an infinite sequence of triples
(C, , M, C2), where C, and Cz are configurations and M is a message vector, all of
size n. We require executions to satisfy several properties. First, the initial conlig-
uration must be R. Second, the second configuration in each triple must be the
same as the first configuration in the next triple. Finally, each triple in an execution
must describe correct message generation, as given by P, and correct state changes,
as described earlier. An execution fragment is any finite prefix of an execution.

We now define our complexity measures. We measure the number of messages
sent and the number of rounds taken only up to the point where a processor
becomes elected. (This convention only serves to strengthen our lower bound.) For
any execution e, letfinishtime(e) denote the number of the first round after which
a processor has entered a state in E. Let messages(e) denote the number of messages
sent during e, up to and including round linishtime(e).

3.3 ELECTION OF A LEADER. Let X be an ID space with] X] L n. A ring
algorithm over X is said to elect a leader in rings of size n provided that in each
execution e of the algorithm, for a ring R of size n over X, exactly one processor
eventually enters a state in E.

3.4 COMPARISON ALGORITHMS. We next define algorithms whose only opera-
tion with respect to processor IDS is to compare them. We say that two S-
expressions, s and s’, over X are order-equivalent provided that they are structurally
equivalent as S-expressions, and, if two atoms from s satisfy one of the order
relations <, =, or >, then the corresponding atoms from s’ satisfy the same
relation. An algorithm is a comparison algorithm provided that, if s and s’ are
order-equivalent well-formed S-expressions over X, then processors with states s
and s’ transmit messages in the same direction or directions and have the same
election status. That is, ~(s, clockwise) = ~(s’, clockwise), & counterclockwise) =
p(s), counterclockwise), and s is in E exactly ifs’ is in E.

4. Chains

In this section we describe the general theory needed for our lower bound proof
for comparison algorithms. We introduce the concept of a chain, which describes
information flow during an execution of a ring algorithm. The notion of a chain
used in this paper is a substantial generalization of the notion of a chain used for
a similar purpose in [7]. For comparison algorithms, we show that nonexistence of
certain chains implies that certain processors in a ring remain indistinguishable.

4.1 BASIC DEFINITIONS. A k-segment of a ring is a length k sequence of
consecutive processors in the ring, in clockwise order. Let S and T be two k-
segments in a ring, with first processors p and q, respectively, and last processors
p’ and q’, respectively, and let e be an execution (or execution fragment) of an
algorithm in the ring. Then a clockwise chain in e for (S, T) is a length k

104 G. N. FREDERICKSON AND N. A. LYNCH

subsequence of the steps of e, ei,, ei2, . . . , ejk such that the following is true. In
each step e+ a message is sent either by processor p + j - 2 to processor p + j - 1
or by processor q + j - 2 to processor q + j - 1. Thus, a clockwise chain for a pair
of segments describes combined information flow clockwise in the two segments
from outside the two segments up to the last processors p’ and q’. A counterclock-
wise chain in e for (S, 7’) is defined analogously for information flow counterclock-
wise: in each step ei,, a message is sent either by processor p’ - j + 2 to processor
P/ -j+ 1 orbyprocessorq’-j+2toprocessorq’-j+ 1.

Two length k vectors of X-elements are said to be order-equivalent provided that
the elements in corresponding positions satisfy the same ordering relations in the
two vectors. That is, if the two vectors are a and b, then ai and Uj satisfy the same
relation, <, =, or >, as bi and bj. Two segments S and T are said to be order-
equivalent in a particular ring R provided that the sequences of initial IDS of the
processors in the two segments are order-equivalent.

Let e be an execution fragment. Then maxcw(e) is defined to be the maximum
k for which there are order-equivalent length k segments S and T (possibly with S
= T), such that e contains a clockwise chain for (S, T). The quantity maxccw(e)
is defined analogously. Let sum(e) = maxcw(e) + maxccw(e).

4.2 LIMITATIONS ON CHAINS. From the definitions of maxccw, maxcw, and
sum, it follows that a length 0 execution e has maxcw(e) = maxccw(e) = sum(e) =
0. We show that chains cannot grow unreasonably quickly. The length of a longest
chain can grow by at most 1 in any time step, and only if a message is sent in the
appropriate direction.

LEMMA 3. Let e and e’ be execution fragments for a ring R, such that e’
consists of all but the last step of e. Then (a) muxcw(e) 5 maxcw(e’) + 1, with
maxcw(e) = maxcw(e’) if no messages are sent clockwise at the last step of e, and
(b) maxccw(e) 5 maxccw(e’) + 1, with maxccw(e) = maxccw(e’) if no messuges
are sent counterclockwise at the last step of e.

PROOF. We argue part (a). Part (b) is analogous. The second half of the claim
is obvious. We argue the inequality maxcw(e) 5 maxcw(e’) + 1. We may assume
that maxcw(e) L 1, since otherwise the result is obvious.

Let S and T be order-equivalent segments of length maxcw(e) for which there is
a clockwise chain in e. Let S ’ and T’ be the segments of length maxcw(e) - 1
consisting of all but the last processor in S and T, respectively. Then S’ and T’
are order equivalent. Moreover, since only the last message in the chain could have
been sent at the last step of e, it must be that e’ contains a clockwise chain for
(S’, T’). Thus, maxcw(e’) r maxcw(e) - 1, as required. Cl

4.3 BISEGMENTS. We next introduce notation that allows us to describe at the
same time a counterclockwise chain and a clockwise chain leading to the same
processor. If k, and k2 are positive integers, a (k,, k&bisegment is defined to be a
pair of segments, the first of size k, and the second of size k2, which overlap in a
single processor. (The last processor of the first segment is the first of the second
segment.) The processor that appears in both segments is called the center of the
bisegment. The spanning segment of a bisegment is the segment obtained by
concatenating the two segments in the bisegment and removing the duplicated
center. Two bisegments are said to be order-equivalent in a particular ring provided
that their spanning segments are order-equivalent. Two processors p and q are
(k, , k2)-equivalent in a particular ring provided that their (kI , k$-bisegments (i.e.,
the (k, , kz)-bisegments centered at p and q) are order-equivalent.

Electing a Leader in a Synchronous Ring 105

Let S = (S, , &) and T = (T, , Tz) be two (k, , k2)-bisegments, and let e be an
execution or execution fragment. Then a clockwise chain in e for (S, T) is a
clockwise chain in e for (S,, T,), and a counterclockwise chain for (S, T) is a
counterclockwise chain for (& Tz). A chain in e for (S, T) is either a clockwise
chain or a counterclockwise chain for (S, T).

4.4 INDISTINGUISHABILITY. In this subsection we show that, for comparison
algorithms, the absence of long enough chains implies that certain processors must
remain “indistinguishable.” The absence of these chains then also implies that a
correspondingly large number of messages will be sent in the next round.

Our notion of “indistinguishability” is defined as follows. If S and Tare two ID
sequences, each of length k, and s and t are two S-expressions, then s is congruent
to t with respect to (S, T) provided that s and t are structurally equivalent, and
corresponding positions in s and t contain elements from corresponding positions
of S and T, respectively. If S and T are two segments of a particular ring, then s
and t are congruent with respect to (S, T) provided that s and t are congruent with
respect to the corresponding sequences of IDS. Similarly, if S and T are two
bisegments of a ring, we say that s and t are congruent with respect to S and T
provided that they are congruent with respect to their spanning segments.

LEMMA 4. Let e be an execution fragment of a comparison algorithm for ring
R. Let k, and k2 be positive integers. Let p and q be any pair of (k, , k&equivalent
processors in R, and let S and T be their respective (k, , k&bisegments. If there are
no chains in e for (S, T), then at the end of e, the states of p and q are congruent
with respect to (S, T).

PROOF. The proof is by induction on the length of e.

Base. 1 e 1 = 0. Neither p nor q has received any messages in e, so they will
remain in states that are congruent with respect to (S, T).

Inductive Step. 1 e 1 > 0. Assume as the induction hypothesis that the result
holds for any execution fragment of length shorter than I e I and any values of kl
and k2. Let e’ denote e, except for its last step. Then by inductive hypothesis, p
and q remain in states that are congruent with respect to (S, T) up to the end of
e’. Consider what happens at the last step. Let p’ and q’ be the respective
counterclockwise neighbors of p and q, and p” and q” the respective clockwise
neighbors.

Case 1. Both of the following hold: (a) Either p’ and q’ are in states that are
congruent with respect to (S, T) just after e’, or else neither p’ nor q’ sends a
message clockwise at the last step of e. (b) Either p” and q” are in states that are
congruent with respect to (S, T) just after e’, or else neither p” nor q” sends a
message counterclockwise at the last step of e.

In this case, it is easy to see that p and q remains in states that are congruent
with respect to (S, T), after e. For ifp’ and q’ are in states that are congruent with
respect to (S, T) just after e’, then, since the algorithm is a comparison algorithm,
they both make the same decision about whether or not to send a message clockwise
at the last step of e. If they both send a message, then the messages they send are
just their respective states, which are congruent with respect to (S, T). A similar
argument applies to p” and q”. It follows that p and q remain in states that are
congruent with respect to (S, T) after the last step of e.

106 G. N. FREDERICKSON AND N. A. LYNCH

Case 2. Processors p’ and q’ are in states that are not congruent with respect
to (S, T) just after e’, and at least one of them sends a message clockwise at the
last step of e.

If k, = 1 (i.e., if p and q are at the counterclockwise ends of their respective
bisegments), then a clockwise chain for (S, T) is produced by the message sent at
the last step, a contradiction. So assume that /cl > 1. Since p and q are (kl, kz)-
equivalent, it follows that p’ and q’ are (k, - 1, k2 + l)-equivalent. Let S’ and T’
denote their respective (k, - 1, k2 + I)-bisegments. S ’ and T’ contain exactly the
same processors as S and T, respectively, but are centered at p’ and q’ rather than
at p and q. Since the states of p’ and q’ just after e’ are not congruent with respect
to (S, T), they are also not congruent with respect to (S ‘, T’). By the inductive
hypothesis, there must be a chain in e’ for (S’, T’). If there is a counterclockwise
chain in e’ for (S’, T’), then it is also a counterclockwise chain for (S, T), so there
is a counterclockwise chain in e for (S, T). On the other hand, if there is a clockwise
chain in e’ for (S’, T’), then since at least one of p’ and q’ sends a message
clockwise at the last step of e, we obtain a clockwise chain in e for (S, T). Either
case is a contradiction.

Case 3. Processors p” and q” are in states that are not congruent with respect
to (S, T) just after e’, and at least one of them sends a message counterclockwise
at the last step of e.

The argument is analogous to’the one for Case 2. El

Thus, we have shown that absence of certain chains implies that certain proces-
sors must remain in congruent states. This lemma is actually stronger than we
need for this paper, but this extra strength will probably be of use in handling other
problems. In our subsequent analysis we use as an upper bound on maxcw(e)
simply the number of distinct rounds in which messages are sent clockwise, and
similarly for maxccw(e). Thus, instead of the existence of a chain for (S, T), we
could have substituted the condition that either there are kl rounds in which
messages are sent clockwise or there are k2 rounds in which messages are sent
counterclockwise. Reorganized in this way, our proof would be substantially the
same as it is now (in fact, marginally simpler), but the revised lemma would give
less information about the communication that must occur for congruence to be
broken.

Two corollaries, which will be used in our lower bound proofs, follow from this
lemma. The first one says that, when chains are short and there are lots of equivalent
processors, any message that gets sent has many corresponding messages sent at
the same time by other processors.

COROLLARY 5. Let k be a positive integer. Assume ring R is such that every k-
segment has at least i order-equivalent k-segments. Let e be any execution fragment
of a comparison algorithm in R, e’ be another fragment consisting of all but the
last step of e, and assume that sum(e’) c k. If some processor p sends a message
clockwise (or counterclockwise) at the last step of e, then there are at least i
processors that do the same.

PROOF. Consider the case in which p sends a message clockwise. The other case
is analogous. Let k, = maxcw(e’) + 1 and k2 = maxccw(e’) + 1. The (k,, k2)-
bisegment for p has at most k elements, so that p has at least i (k, , k&equivalent
processors. Let q be any one of these processors, and let S and T be the (k,, k2)-
bisegments centered at p and q, respectively. Then there cannot be a chain in e’

Electing a Leader in a Synchronous Ring 107

for (S, T), by the definitions of maxcw and maxccw. But then Lemma 4 implies
that p and q remain congruent with respect to (S, 7’) at the end of e’; since the
algorithm is a comparison algorithm, q also sends a message clockwise at the last
step of e. Cl

Lemma 4 also has the following consequence for comparison algorithms to elect
a leader. This corollary says that long chains must be generated in order to elect a
leader, if certain equivalent processors exist.

COROLLARY 6. Let k be a positive integer. Let R be a ring in which every
k-segment S has another order-equivalent k-segment T. Let e be any execution
fragment of a comparison algorithm that elects a leader in R, such that a leader
gets elected in e. Then sum(e) L k.

PROOF. Assume the opposite, that sum(e) = maxcw(e) + maxccw(e) < k. Let
k, = maxcw(e) + 1 and k2 = maxccw(e) + 1. The (k,, k&bisegment for the
processor p that gets elected leader has at most k elements, so that p has a (k, , k2)-
equivalent processor q # p; let S and T be the (kl , k&bisegments centered at p and
q, respectively. Then there cannot be a chain in e for (S, T), by the definition of
maxcw and maxccw. But then Lemma 4 implies that p and q remain congruent
with respect to (S, T); since the algorithm is a comparison algorithm, p and q
cannot be distinguished as to leadership. This is a contradiction. 0

5. Lower Boundfor Comparison Algorithms When n Is a Power of 2
In this section we restrict attention to algorithms that use comparisons only, and
to rings in which the number of processors is a power of 2. We present a lower
bound of n/2 (log II + 1) for the number of messages required for a comparison
algorithm to elect a leader in this case. We handle the case of powers of 2 first
because the assignment of IDS to processors that realizes the lower bound is simpler
than for general values of n, and also because the constant of proportionality in
the lower bound is larger than we have been able to achieve for general n.

5.1 REPLICATION SYMMETRY. We first generate a labeling of the processors
in a ring that has a large amount of replication symmetry. Let (n) denote
(0, * * - 9 n - 1). We assume that n is a power of 2, and let X* be the ID space
consisting of the set (n), with the usual ordering.

For j E (n), let reverse(j) denote the integer whose binary representation is the
reverse of the binary representation ofj. We assign processor IDS so that processor
j has ID reverse(j), for j E (n). We call this pattern of IDS Qn. We note that if a
segment of Qn is of length at most 2’, then all ordering information about the IDS
of processors in the segment is determined solely by the i high-order bits.

LEMMA 7. Let S by any segment of Qn of length at most 2’, where i < log n.
Then there are at least n/2’ segments of Q,, that are order-equivalent to S, including
S itself:

PROOF. For each i < log n, the processor IDS repeatedly cycle through the 2’
possible arrangements of i high-order bits. Thus in a segment of length at most 2’,
each ID differs from any other in its i high-order bits. Any segment that is order-
equivalent to Swill have its first processor at a distance that is any integral multiple
of 2’ from the first processor in S. There are n/2’ such segments, including S
itself. 0

108 G. N. FREDERICKSON AND N. A. LYNCH

5.2 LOWER BOUND. We can now prove the lower bound for comparison
algorithms when n is a power of 2. We make use of the following observation about
comparison algorithms. Suppose X and X’ are arbitrary ID spaces, and n is any
integer. If & is a comparison algorithm over X that elects a leader in a ring of size
n and uses at most s messages, then there exists a comparison algorithm &’ ’ over
X’ that elects a leader in a ring of size n and uses at most s messages. Thus a lower
bound result over ID space X* translates directly into a lower bound result for any
arbitrary ID space X.

THEOREM 8. Assume n is a power of 2. Let M’ be a comparison algorithm over
an arbitrary ID space X, which elects a leader in a synchronous ring of size n. Then
there is an execution e of dfor which messages(e) L (n/2)(log n + 1).

PROOF. It suffices to consider X = X*. Let e be the execution fragment on Qn,
which terminates just when the elected processor enters an “elected” state. By
Lemma 7, every segment of length n/2 has at least one other order-equivalent
segment in Qn. Thus by Corollary 6, execution e must progress from having a sum
of 0 to having a sum of at least n/2.

Consider any step of e at which the sum first stops being at most k, for any
k < 2’. By Lemma 3, the sum increases by at most 2 at this step. Moreover, if no
messages are sent clockwise (respectively, counterclockwise) at this step, then the
sum increases by at most 1.

Let e’ be the prefix of e preceding this step. Then sum(e’) < 2’. Lemma 7
implies that any segment of length 2’ has at least n/2’ order-equivalent segments
in Q,,. Thus by Corollary 5, if any messages are sent clockwise at this step, then at
least n/2’ messages are sent clockwise, and similarly for messages sent counterclock-
wise. Thus, if the sum increases by 1 at this step, at least n/2’ messages are sent,
whereas if the sum increases by 2 at this step, then at least twice that number of
messages are sent. It follows that the cost of increasing the sum from 0 to at least
n/2 can be apportioned as a cost of at least n/2 i for each increase from k to k + 1,
where k < 2’.

We now total up the number of messages sent in e. Grouping increases by powers
of 2, we see that the number of messages sent must be at least

n+
lf 0 1.. . ,log(n/2)

s (2’ - 2i-1) = n + x
I . . . JogW2)

t

=

0

t (logn+ 1). cl

6. Lower Bound for Comparison Algorithms for General n

In the last section we generated an assignment of IDS to processors in the case in
which n was a power of 2. The assignment possessed a large amount of replication
symmetry, which allowed us to achieve the fi(n log n) lower bound. It does not
appear possible to take our pattern Qn and then try to extend it in some way to
accommodate extra processors. Such a strategy would introduce special treatment
for the extra processors, which might change the behavior of the algorithm entirely,
perhaps allowing some processor to become elected easily. Instead, we generate a
pattern P, for any general value of n, such that a ring assigned IDS from P,, possesses
a large amount of replication symmetry. We then show that this replication
symmetry causes the ring to require a large number of messages for election of a
leader.

Electing a Leader in a Synchronous Ring 109

6.1 HIERARCHICAL ORGANIZATION OF PROCESSORS. Fix a particular ring size
n 2 1. We generate a pattern P,, of IDS, the elements of which are then assigned to
processors 0 througn n - 1, respectively. To achieve considerable replication
symmetry, the construction of P,, uses a hierarchical grouping of processors. The
idea is that on any level of the hierarchy, two groups of processors should receive
order-equivalent sequences of IDS. To have the construction work for general n,
one type of group is not enough, so that at every level there will be two types of
groups. We describe the grouping using a derivation tree of a context-free grammar.
Later, we use the structure of the derivation tree to assign IDS to the n leaves of
the tree and thereby produce pattern P,,.

Define the context-free grammar G as follows. The nonterminals, representing
groups of processors, are Ai and &, 1 5 i 5 d, plus Bo. There is just one terminal
symbol p, representing a processor. The start symbol is &. The productions are

Bi * B,+IA;+lA;+lB;+lBi+lAi+lAi+lBi+lBi+l, for Olisd- 1,
Ai + Ai+lBi+lBi+lAi+lAi+lBi+lB;+lAi+lAi+r, for 1 =isd- 1,
Bd ---, p”‘~‘, and Ad + p(Q).

The depth d of the hierarchy is defined as d = L(loggn)/2J. Note that in the last
two productions, B,, generates a string consisting of bd p symbols, and analogously
for A,,. The quantities ad and bd will be defined later, in such a way as to guarantee
that the length of the unique sentence generated by G is n.

For each i, 0 5 i 5 d, define the level i sentential form of G to be the unique
string over (A,, BiJ derivable in G. There are exactly 9’ nonterminal symbols in the
level i sentential form. Moreover, for each i, the number of symbols Ai is exactly
one less than the number of symbols B;.

LEMMA 9. In the level i sententialform of G, 0 5 i I d, the number of symbols
A; is L9’/2J, and the number of symbols Bi is r9’/21.

PROOF. By induction on i. El

All Ai nodes derive a terminal string of the same length; we call this length ai.
Similarly, all B, nodes derive a terminal string of the same length, which we call bi.
Let ci = min(ai, bi), for all i, 1 I i I d.

We next describe how to select the values ad and bd. They are chosen in such a
way that the total length of the unique sentence derived in G is exactly n, and so
that 1 bd - ad 1 is small. We use the following:

LEMMA 10. Let m, n 2 0 be integers. Then there are integers a and b such that
n=am+b(m+ l)andlb-al sm.

PROOF. Let c = Ln/mJ, f = n - cm, and e = L(c - 2f + m)/(2m + l)J. We take
a=c-f-e(m+ l)andb=f+em.Thenam+b(m+ l)=(c-f-e(m+ 1))m
+ (f + em)(m + 1) = (c - f)m + f(m + 1) = cm + f = n. Also, a - b + m =
c-f-e(m+ 1)-(f+em)+m=c-2f+m-(2m+ l)e=c-2f+m-
(2m + l)L(c - 2f + m)/(2m + l)J, which is between 0 and 2m. Thus a - b is
between -m and +m, that is, 1 a - b I 5 m. Cl.

Let m = Lgd/2J. It is easy to see that m is 8(n’/*) and, in particular, that
m 5 n/*/2. Using Lemma 10, choose ad and bd to be integers such that n =
adrn + bd(m + 1) and 1 bd - ad 1 5 m. We must show that ad and bd are nonnegative:
if either of ad and bd is negative, then max(ad, bd) I m - 1, so n = adm +
bd(m + 1) I 2(m*) 5 n/2, a contradiction.

110 G. N. FREDERICKSON AND N. A. LYNCH

LEMMA 11. The length of the unique sentence generated by G is n.

PROOF. By Lemma 9, there are exactly L9d/2J = m symbols Ad and exactly
f9d/21 = m + 1 symbols Bd in the level d sentential form of G. Since n = adm +
b,,(m + I), the result holds. 0

We have already noted that m is @(n’12). Since ad is nonnegative, we have that
n I b,,(m + 1). Using the lower bound on m, we see that bd is G(n’/‘).

The final lemma of this subsection gives the exact value of the difference
Ci - Ci+l, which we use in the analysis of the lower bound.

LEMMA 12. The difirence ci - ci+l = 4 . 9d-(i+‘)(n - bJ/m,fir 0 I i d d - 1.

PROOF. Note that ci = min(ai, bi) = min(Q+l + 4bi+l, 4ai+l + 5bi+l) = 4ai+l +
4bi+, - min(a,+I, b;+,) = 4(ai+l + bi+,) - c;+]. Thus Ci - ci+l = 4(ai+, + b/+1).

From the choice of ad and bd, we have ad + bd = (n - bd)/m. It follows that
ai+l + bi+l = 9d-(i+‘)(n - bd)/m. Substituting into the expression for ci - C/+1 gives
the desired result. 0

6.2 LABELING OF PROCESSORS. Let X be the ID space consisting of all strings
of length d + 1 whose elements are nonnegative integers, with the strings ordered
lexicographically. X is the ID space from which the pattern P,, will be constructed.

We define P,, by describing an assignment of IDS to n processors, corresponding
to the leaves of the derivation tree of G. In order to do this, we associate labels
with the nodes of the derivation tree. The label of the root of the tree is the null
string. If a node with a corresponding nonterminal Ai or Bi, 0 I i I d - 1, is
labeled by the string w, then the labels of its nine children are, respectively, ~0,
wl, w2, w3, w8, w7, w6, w5, w4. If a node with a corresponding nonterminal Ad is
labeled by the string w, then the labels of its ad children are, respectively, w0, wl,
. . .) w(ad - 1). If a node with a corresponding nonterminal Bd is labeled by the
string w, then the labels of its bd children are, respectively, w0, wl, . . . , w(bd - 1).
Processor IDS are generated by interpreting the labels of the leaves as elements of
X, that is, as length d + 1 strings of nonnegative integers, ordered lexicographically.

In the level i sentential form of G, define an ordered pair of nonterminal symbols
to be “of type A > A” provided that it consists of the two symbols AiAi, and the
label of the node of the first nonterminal is lexicographically greater than that of
the second. We use analogous definitions for types A < A, A > B, A < B, B > A,
B < A, B > B, and B < B. We now show that the level i sentential form has equal
numbers of consecutive pairs of nonterminals of the eight possible types.

LEMMA 13. In the level i sentential form of G, 0 5 i zs d, the number of
occurrences of consecutive pairs of each of the eight types A > A, A -C A, A > B,
A < B, B > A, B <A, B > B, and B < B is exactly L9’/81.

PROOF. It suffices to show that the numbers of occurrences of the eight types
of pairs are equal, since the total number of pairs is exactly 9’ - 1 = 8LSi/8J. We
proceed by induction on i. For the basis, i = 0, the result is vacuously true. Assume
that the result is true for i, and consider the level i + 1 sentential form. There are
two kinds of pairs of level i + 1 nonterminals: those in which both elements are
derived from the same level i nonterminal node and those in which the two
elements are derived from two different level i nonterminal nodes. Each level i
nonterminal node generates a length 9 sequence of level i + 1 nonterminals in
which each of the eight types of pairs has exactly one occurrence. Therefore, there
are equal numbers of the eight possible types among the pairs that are derived from

Electing a Leader in a Synchronous Ring 111
\

the same level i nonterminal node. Also, each pair that is derived from two different
level i nonterminal nodes is of the same type as the corresponding pair of parent
nodes; the inductive hypothesis implies that there are equal numbers of the eight
possible types among these pairs, as well. The result follows. Cl

In any level i sentential form, note that the pair consisting of the last nonterminal
node followed by the first nonterminal node, is of type B > B.

Having assigned the IDS in pattern P, to the processors of the ring, we state a
lemma that describes the replication symmetry of the ring. This lemma is used in
the next subsection to yield our lower bound for the number of messages required
by a comparison algorithm to elect a leader.

LEMMA 14. Consider a ring labeled with P,. Let 1 I i I d. Let S be any
segment of length at most ci + 1. Then there are at least L9’/8J segments that are
order-equivalent to S, including S itself:

PROOF. S is contained in the subtrees of at most two nonterminal nodes at level
i. These two are either two consecutive nonterminal nodes or the last and first
nonterminals in the sentential form. Let t be the type of this ordered pair of
nonterminal nodes.

By Lemma 13, there are at least 19’/8J instances of type t consecutive pairs of
nonterminal nodes in the level i sentential form. Each of these instances of a pair
of type t contains a segment that is order-equivalent to S. Cl

The following corollary is an immediate consequence of Lemma 14. It describes
the replication symmetry that we obtain in our construction in a slightly different
way. This new form is not used in this paper but may be of independent interest.

COROLLARY 15. There exists a constant c such that, for all positive integers n,
there is a ring R,, of n processors having the following property. Let S be any
segment of R,, of length k, where k 2 A. Then there are at least Ln/kcJ segments
in R,, that are order-equivalent to S, including S itself:

6.3 LOWER BOUND. In this section we state and prove our lower bound for the
number of messages required by a comparison algoiithm to elect a leader. We use
the pattern P,, constructed in the previous subsection and the two corollaries from
Section 4.

THEOREM 16. Let AZ be a comparison algorithm over an arbitrary ID space X
that elects a leader in a synchronous ring of size n. Then there is an execution e of
Mfor which messages(e) 2 Q(n log n).

PROOF. Assume n is fixed, and at least g4. This ensures that the depth
d = L(loggn)/2J is at least 2. It suffices to consider the ID space X consisting of
length d + 1 strings of nonnegative integers, ordered lexicographically. Assume the
pattern P,, is used to label the ring. Let e be the execution fragment for the ring
that terminates just when the elected processor enters an “elected” state. By Lemma
14, every segment of length c2 + 1 has at least one other order-equivalent segment
in the ring. (The lemma actually implies that there are at least nine others, but we
do not require this fact here.) Thus, by Corollary 6, execution e must progress from
having a sum of 0 to having a sum of at least Q + 1.

Consider any step of e at which the sum first stops being at most k, for any
k I ci. By Lemma 3, the sum increases by at most 2 at this step. Moreover, if no
messages are sent clockwise (respectively, counterclockwise) at this step, then the
sum increases by at most 1.

112 G. N. FREDERICKSON AND N. A. LYNCH

Let e’ be the prefix of e preceding this step. Then sum(e’) < c, + 1. Lemma 14
implies that any segment of length ci + 1 has at least 19’/81 order-equivalent
segments in the ring. Thus, by Corollary 5, if any messages are sent clockwise at
this step, then at least 19’/8.l messages are sent clockwise, and similarly for messages
sent counterclockwise. Thus, if the sum increases by 1 at this step, at least 19’/8J
messages are sent, whereas if the sum increases by 2 at this step, then at least twice
that number of messages are sent. It follows that the cost of increasing the sum
from 0 to at least c2 + 1 can be apportioned as a cost of at least L9’/8J for each
increase from k to k + 1, where k I c;.

We now total up the number of messages sent in e. Grouping increases according
to level, we see that the number of messages sent must be at least

z LJ i=2.....d-I

T (Cj - Ci+*).

By Lemma 12, this quantity is equal to

The first summation evaluates to (d - 2) 9”‘/8, whereas the second is bounded
above by 9’/-‘/8. Thus, the message bound is at least

(d - 2) gd-’ 9“-2 --
8 8 1 ’

Since m = Lgd/2J 5 9d/2, this is at least

n - bd
8-
()[

(d - 2) gd-’
9d 8

-~]=(n-bd)[~---!-]=(n-bd)[;-O(I)].

Since bd is O(n’/*), the message bound is at least

(n -

n log2n
18 log29

- O(n). cl

1. Lower Bound for Time-Bounded Algorithms
In this section we prove our lower bound for time-bounded algorithms. We use
the lower bound for comparison algorithms to do this. First, we show how to map
from time-bounded algorithms to comparison algorithms. This result, presented in

Electing a Leader in a Synchronous Ring 113

the paracomputer model, is due to Snir [14], (Snir (personal communication)
credits Yao [161 with inspiration for this result.) For completeness, we present a
careful proof in our setting, even though a similar proof appears in [141. We then
infer the lower bound for time-bounded algorithms.

7.1 DEFINITIONS. In order to map from time-bounded to comparison algo-
rithms, we require definitions describing the behavior of an algorithm within a
bounded amount of time. We say that a free algorithm is a t-comparison algorithm
provided that both of the following conditions hold:

(1) If s and s’ are order-equivalent S-expressions of parenthesis depth at most
t - 1, then ~‘(s, clockwise) = ~‘(s’, clockwise) and ~‘(s, counterclockwise) =
~‘(s’, counterclockwise).

(2) If s and s’ are order-equivalent Sexpressions of depth at most t, and a E A,
then s is in E exactly ifs’ is in E.

During execution of a free algorithm, the S-expressions, which appear as states
at the end of any round t, have depth exactly t. Thus, this definition says that the
algorithm behaves as a comparison algorithm up to the end of the first t rounds.
We also add the qualifier “on inputs from U” to this definition, provided that the
appropriate conditions hold for the Sexpressions that use atoms chosen from the
set u.

7.2 MAPPING A TIME-BOUNDED ALGORITHM TO A COMPARISON ALGORITHM. In
this subsection, we show how to convert a time-bounded algorithm to a comparison
algorithm. The first step is to show that any free algorithm behaves as a comparison
algorithm on a subset of its inputs. For the first lemma, we use a particular fast-
growing functionf(n, t). The precise definition offdepends on Ramsey’s Theorem
and is implicit in the proof of the lemma.

LEMMA 17. Fix n, t. Let -@’ be any free algorithm over ID space X, where X
has at least f(n, t) elements. Then there exists a subset U of X, of size at least n,
such that ~2 is a t-comparison algorithm, on inputs from U.

PROOF. Let Y and 2 be two n-subsets of X, and let Y = (yl, ~2, . . . , y,,) and
z= (z,, z2,. . .) z,) be their representations in increasing order. Define Y and Z
to be decision-equivalent if, for every &expression of depth at most t over Y,
the corresponding S-expression over Z (generated by substituting z; for yi, i =
1 - * 7 n), gives rise to the same combination of choices: whether a message is sent
counterclockwise, whether a message is sent clockwise, and whether or not the
expression is in E. Decision-equivalence partitions the n-subsets of X into finitely
many equivalence classes. By Ramsey’s theorem [3] there is a functionf(n, t) such
that, if X is of cardinality at least f(n, t), then there is a subset C of X of cardinality
2n - 1 such that all n-subsets of C belong to the same equivalence class. Then take
U to be the set of the n smallest elements of C.

That U is the desired subset of X is shown as follows. Consider two m-subsets
Y’ and Z’ of U, where m < n. The sets Y’ and Z’ can be extended to sets Y and
Z, each of size n, by including the n - m largest elements of C. Thus an
S-expression over Y’ (and thus over Y) will be decision-equivalent to the corre-
sponding S-expression over Z’ (and thus over Z). q

The next lemma gives the mapping from free time-bounded algorithms to
comparison algorithms.

114 G. N. FREDERICKSON AND N. A. LYNCH

LEMMA 18. Fix n and t. Let _82 be a free algorithm over ID space X and
alphabet A, where X has at least f(n, t) elements.

If SS? elects a leader in t rounds, using at most s messages in the worst case, then
there exists a comparison algorithm & ‘, which elects a leader in t rounds, using
at most s messages in the worst case.

PROOF. By Lemma 17, there is a subset U of X of size at least n such that & is
a t-comparison algorithm on inputs of U. Consider any S-expression L, of depth
less than t, with atoms in X. Define the value of the message decision function of
&’ ’ on this expression to be that of the message decision function of GZ’ on any
S-expression L’, with atoms from U, that is order-equivalent to L. Similarly, for
any S-expression of depth at most t, with atoms in X, define membership in E for
U’ ’ according to membership in E for JZ’ of any order-equivalent S-expression
with atoms in U. We define the message generation and decision functions so that
%’ ’ sends no messages after round t - 1 and does not change any election status
after round t.

Clearly algorithm JZ’ ’ is a comparison algorithm. Since it simulates Q?’ on a
sufficiently large subset of X, it can be seen to elect a leader in the same number
of rounds, and with at most the same number of messages. Cl

This lemma appears to be of much wider applicability than just to this work and
Snir’s. This result, or variants, should be very useful for the study of other order-
invariant problems on many different kinds of computation models. For example,
see [121.

7.3 LOWER BOUND. Finally, we present our lower bound for time-bounded
algorithms.

THEOREM 19. Fix n and t. Let X be an arbitrary ID space with at least f(n, t)
elements. Let JZ’ be any algorithm over X that elects a leader in a synchronous ring
of size n, using at most time t. Then there is an execution, e, of&for which
messages(e) is f2(n log n).

PROOF. From Theorem 16, we know that there are constants a and b such that
a comparison algorithm will have messages(e) z an log n + bn for some exe-
cution e. Assume that there exists an algorithm JZ’ over X that elects a leader
in a synchronous ring of size n, using no more than time t and fewer than
an log n + bn messages in the worst case. Then Lemma 18 implies that there exists
a comparison algorithm that elects a leader in t rounds and uses fewer than
an log n + bn messages in the worst case. This is a contradiction. Cl

8. Remaining Questions
The general S2(n log n) bound that we have proved has a very small constant,
l/(18 log,9). In contrast, the best constant known for an upper bound is around
1.4 [6, 81. It remains to close this gap. For certain values of n, powers of 2, we do
have a narrower gap. It is possible that there are certain properties of the number
n, for example, properties of its prime factorization, that affect the size of the
constant. It would be interesting to understand these relationships.

ACKNOWLEDGMENTS. The authors thank Cynthia Dwork for pointing out the
results of Snir, Maria Klawe for her encouragement in our attempts to obtain rings
with replication symmetry, and Mark Tuttle for his comments on early versions of

Electing a Leader in a Synchronous Ring 115

the manuscript. Thanks also go to Mike Fischer and the referees for several
suggestions on improving the presentation.

REFERENCES

I. ANGLUIN, D. Local and global properties in networks of processors. In Proceedings offhe 12th
Annunl ACM Symposium on Theory of Computing (Los Angeles, Calif., Apr. 28-30). ACM, New
York. 1980. pp. 82-93.

2. AT~IYA, C., SNIR, M., AND WARMUTH, M. Computing on an anonymous ring. In Proceedings of
Ihe 4th Annual ACM Symposium on Principles ofDistributed Compuling (Minaki, Ontario, Canada,
Aug. 5-7). ACM, New York, 1985, pp. 196-203.

3. BERGE, C. Graphs and Hypergraphs. North-Holland, Amsterdam, 1973.
4. BURNS. J. E. A formal model for message passing systems. Tech. Rep. TR-91. Indiana Univ.,

Bloomington, Ind., Sept. 1980.
5. CHANG. E., AND ROBERTS, R. An improved algorithm for decentralized extrema-finding in circular

configurations of processes, Commun. ACM 22, 5 (May 1979), 281-283.
6. DOLEV, D., KLAWE, M., AND RODEH, M. An O(n log n) unidirectional distributed algorithm for

extrema finding in a circle. J. Algorifhms 3, 3 (Sept. 1982), 245-260.
7. FREDERICKSON, G. N., AND LYNCH, N. The impact of synchronous communication on the

problem of electing a leader in a ring. In Proceedings of the 16th Annual ACM Symposium on
Theory c$Computing (Washington, D.C., Apr. 30-May 2). ACM, New York, 1984, pp. 493-503.

8. GALLAGER. R. G., HUMBLET, P. A., AND SPIRA, P. M. A distributed algorithm for minimum-
weight spanning trees. ACM Trans. Program. Lung. Sysf. 5, 1 (Jan. 1983), 66-77.

9. HIRSCHBERG, D. S., AND SINCLAIR, J. B. Decentralized extrema-finding in circular configurations
of processors. Commun. ACM 23 1 I (Nov. I980), 627-628.

IO. ITAI, A., AND RODEH, M. Symmetry breaking in distributive networks. In Proceedings of 22nd
S.~posium on Formdulions qf Computer Science (Nashville, Tenn., Oct.), IEEE, New York, 198 I,
pp. 150-158.

I I. LELANN. G. Distributed systems-Toward a formal approach. Informntion Processing, vol. 77.
North Holland, Amsterdam, 1977. pp. 155-160.

12. MORAN, S.. SNIR, M., AND MANBER, U. Applications of Ramsey’s theorem to decision tree
complexity. J. ACM 32, 4 (Oct. 1985), 938-949.

13. PETERSON, G. L. An O(n log n) unidirectional algorithm for the circular extrema problem. ACM
Truns. Progrum. Lung. Syst. 4, 4 (1982) 758-762.

14. SNIR, M. On parallel searching. Department of Computer Science, RR 83-21. Hebrew Univ. of
Jerusalem, Jerusalem, Israel, June 1983.

15. VITANYI, P. Distributed elections in an Archimedean Ring of Processors. In Proceedings of fhe
16th Annrrul ACM Symposium on Theory of Computing (Washington, D.C., Apr. 30-May 2). ACM,
New York, 1984, pp. 542-547.

16. YAO, A. Should tables be sorted? J. ACM 28, 3 (July 1981) 615-628.

RECEIVED OCTOBER 1984: REVISED DECEMBER 1985; ACCEPTED JANUARY 1986

Journal of the Association for Computing Machinery, Vol. 34. No. I, January 1987

