
Data Requirements for Implementation of N-Process

Mutual Exclusion Using a Single Shared Variable

JAMES E. BURNS~ P A U L J A C K S O N , A N D N A N C Y A. L Y N C H

Georgia Institute of Technology, Atlanta, Georgia

M I C H A E L J. F I S C H E R

Umverstty of Washington, Seattle, Washington

A N D

G A R Y L. P E T E R S O N

Umverslty of Rochester, Rochester, New York

ABSTRACT An analysis is made of the shared memory requirements for implementing mutual excluslon
of N asynchronous parallel processes m a model where the only primitive communication mechamsm is
a general test-and-set operation on a single shared variable. While two variable values suffice to tmplement
simple mutual exclusion without deadlock, it is shown that any solution whJch avoids possJble lockout of
processes requires at least 2 ~ + ½ values A technical restnctmn on the model increases this requtrement
to N/2 values, while achieving a fixed bound on wamng further increases the reqmrement to N + 1
values. These bounds are shown to be nearly optimal, for algorithms are exhibited for the last two cases
which use [N/2J + 9 and N + 3 values, respectively All of the lower bounds apply afortiori to the space
requirements for weaker primitives, such as P and V, using busy waiting

Categones and Subject Descnptors D 4 1 [Operating Systems]" Process Management--mutual exclusion;
D 4 2 [Operating Systems]' Storage Management F ! ! [Computation by Abstract Devices]: Models of
Computation, F !.2 [Computation by Abstract Devices]" Modes ofComputaUon--parallehsm, F 2 [Theory
of Computation] Analysis of Algorithms and Problem Complexity

General Terms Algonthms, Performance, Theory

Additional Key Words and Phrases" cnucal section, test and set, asynchronous processes, synchromzatton

1. Introduction

C o n c u r r e n t p rocess ing by severa l a s y n c h r o n o u s pa ra l l e l p rocesses d i f fe rs f r o m se-

q u e n t i a l p rocess ing in tha t t he o r d e r in w h i c h the e l e m e n t a r y s teps o f t he v a r i o u s

processes are e x e c u t e d is no t p r e d e t e r m i n e d bu t m a y d e p e n d o n d i f f i cu l t - t o -p red i c t

va r i ab les such as the re la t ive speeds o f the processes a n d e x t e r n a l even t s such as

in te r rup t s a n d o p e r a t o r i n t e rven t ion . T o p r e v e n t i n t e r f e r ence a m o n g the v a r i o u s

This material is based upon work supported by National Soence Foundatmn Grants MCS 77-02474,
MCS 77-15628, MCS 77-28305, MCS 79-24370, and MCS 80-03337. and by U S Army Research Office
Contract DAAG 29-79-C-0155

Authors' present addresses. J E. Burns, lndlana Umverstty, Bloommgton, IN 47401; P Jackson and N A
Lynch, School of Information and Computer Science, Georgia Institute of Technology, Atlanta, GA
30332, M. J Fischer, Department of Computer Science, FR-35, Umverslty of Washington, Seattle, WA
98195, G L Peterson, Department of Computer Science, Umverstty of Rochester, Rochester, NY 14627

Permission to copy without fee all or part of this material ~s granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice ~s given that copying ts by permission of the Assooatlon for Computing
Machinery To copy otherwise, or to repubhsh, requires a fee and/or specific permission

© 1982 ACM 0004-5411/82/0100-0183 $00 75

Journal of the Association for Computing Machinery, Vol 29, No 1, January 1982, pp 183-205

184 J.E. BURNS, M. J. FISCHER, P. JACKSON, N. A. LYNCH, AND G. L. PETERSON

processes, one often designates certain sensitive sections of code in the various
processes as "critical sections" which are never to be executed simultaneously by two
or more processes. Such mutual exclusion of access to critical sections is provided by
means of entry protocols and exit protocols, sections of code which a process executes
before entering and upon leaving a critical section, respectively. It is the job of the
protocols to ensure that only one process at a time is in a critical section and that any
other process trying to enter a critical section waits. In addition, the protocols play a
scheduling role in determining which of several contending processes is allowed to
proceed.

In order to provide mutual exclusion at all, there must be some primitive operations
for interprocess communication. Examples of communication mechanisms are shared
memory with elementary read and write operations [5, 7, 10], shared memory with
test-and-set operations [3], message channels [8], and P and V operations [6]. Given
a set of primitive operations, the "critical section problem" is to find entry and exit
protocols using those operations which ensure mutual exclusion and at the same time
have various desirable scheduling and other properties. Thus there is not a single
critical section problem but many, and an extensive literature has developed around
this class of problems (see [3-5, 7, 10, 11, 18, 19] and others).

Much work on the critical section problem has been concerned with finding
protocols for a particular model and proving that they possess certain desired
properties. More recently, there has been interest in finding out not only what can be
done with a particular set of primitives but also what cannot [3, 12, 14, 15]. To prove
a negative result of the sort "no protocol exists such that " it becomes necessary
to define carefully the model of computation so that it is clear what solutions are
allowed. In Section 2 we present a formal model based on a general test-and-set
communication primitive which borrows ideas from the models of [3, 15, 19].

Section 3 presents algorithms which define upper limits on the amount of shared
memory (measured by counting the number of distinct values which it can assume)
for three critical section problems. Deadlock-free mutual exclusion of N processes
can be achieved with only two shared memory values. Lockout-free mutual exclusion
requires at most I N / 2 / + 9 values. Finally, mutual exclusion with bounded waiting
is solvable with N + 3 values.

Lower bounds for the above problems are given in Section 4. Any algorithm
solving deadlock-free mutual exclusion must use at least two shared memory values.
Bounded waiting and lockout-free mutual exclusion must use at least N + 1 and
2 ~ + ½ values, respectively. If lockout-free mutual exclusion is further constrained
to be "memoryless" (i.e., each process always executes the same trying protocol
whenever it attempts to enter a critical section), then at least N/2 states are required.
(All of our upper bound algorithms are memoryless.)

Section 5 contains technical open questions and directions for further investigation.
This study is part of a larger effort to determine resource requirements for

implementation of different kinds of "distributed computation" behavior using
different process-variable configurations. The models studied consist generally of
several processes communicating by means of test-and-set operations on several
shared variables [13]. Behavior studied includes that of a simple arbiter system [13]
and fair and maximally utilized access to multiple copies of a resource [9], as well as
"failure-immune" mutual exclusion [9]. The problem of mutual exclusion using a
simple shared variable is thus the simplest of many related problems; in fact, it seems
to be closely related to the critical secuon which is inherent in the test-and-set
operation itself. However, our lower bound results imply that the special-purpose

Implementation of N-Process Mutual Exclusion 185

critical section inherent in the test-and-set operation does not automatically and
easily solve the general critical section problem.

2. A Formal Model for Exclusion Problems

Our model is a hybrid of the models of [3] and [15]. It may also be regarded as a
special case (with slight modification) of the general model of [13], tailored to the
problems o f this paper.

2.1 SYSTEMS OF PROCESSES. We consider a set of asynchronous parallel proc-
esses with a single shared communication variable. Processes access the variable
using a general test-and-set instruction which, in one indivisible step, fetches the
contents of the variable and stores a new value which depends on the value fetched.
Intuitively, a process consists of a program, a program counter, and an internal
memory, which together define the action of the process. In considering lower
bounds, the internal details of the process are unimportant, so in our model a process
is simply a set of states with a transition function. For presenting the upper bounds,
we specify the transition function using an ALGOL-like notation.

The desired exclusion behavior of a set of processes is specified in terms of sets of
states comprising "regions." The critical region of a process is a set of states which
that process can only occupy while no other process is in its own critical region. The
remainder region encompasses the rest of the process states. In order to solve
synchronization problems, however, it appears necessary that new states other than
those in the critical and remainder regions be introduced into each process. Thus we
include two other sets of states in the basic definition as follows.

Aproce,s is a triple P = (I1, X, 8), where V i sa set of values; Xis a (not necessarily
finite) set e f states partitioned into disjoint subsets R, T, C and E, where R is
nonempty; and the transition function 6 is a total function, 6: V x X with the following
properties:

(a) x ~ R, v ~ V imply ~(v, x) E V x (T U C);
(b) x E T, v E V imply 6(v, x) E V x (T U C);
(c) x E C, v ~ V imply 8(v, x) E V x (E U R);
(d) x E E, v E V imply ~(v, x) E V x (E U R).

The set V is referred to as the message variable, and X is the set of local states of
process P. R, T, C, and E are the remainder region, trying region, critical region, and
exit region of P, respectively. A transition from (v, x) to 3(v, x) is a step of process P.
Transitions described in (a) and (b) are called trying transitions, while those described
in (c) and (d) are called exit transitions.

'The trying region describes a set of states wherein a process is seeking admission
to its critical region, as in [3, 15]. The exit region describes a set of states wherein a
process has just left its critical region but for purposes of synchronization must
execute a protocol before being permitted to return to its own computing task.
Although the exit protocols in many algorithms are very simple (such as a single
" V " operation), we do not wish to exclude more sophisticated protocols from our
model, for we wish our lower bounds to be as generally applicable as possible. To
our knowledge, we are the first to include exit regions in a formal model, and our
upper bound algorithms illustrate some ways in which exit regions can be used.
Conditions (a) and (c) above indicate that the actual computing steps of the original
process being modeled are suppressed. All steps of interest in the present paper
involve attempts to enter the critical region or return to the remainder region.

186 J.E. BURNS, M. J. FISCHER, P. JACKSON, N. A. LYNCH, AND G. L. PETERSON

Condition (b) indicates that the process, having once decided to attempt entry into
its critical region, is thereafter committed to continue trying until it succeeds.
Condition (d) indicates that the process, once in its exit region, must remain in its
exit region until it reaches its remainder region.

For N any natural number, let [N] denote { 1 N}. For N any natural number,
a system of Nprocesses is a (2N + 1)-tuple S = (V, X1 AN, 61 &v), where for
each i C [N], P~ = (V, X, &) is a process. The remainder region, trying region, critical
region, and exit region of process P, are denoted by R,, T,, C,, and E,, respectively.

An instantaneous description (i.d.) of S is an (N + 1)-tuple q = (v, xl xs),
where v ~ V and x, ~ X, for all i E [N]; in this case we define V(q) = v. The
functions & of the individual processes have natural extensions to the set of i.d.'s of
S, defined by &(v, xl xs) m (t , X l X , - 1 , x', x,+l , xN), where &(v, x,) =
(v', x'). We also use (ambiguously) the notation R,, T,, C,, and E, for the natural
extensions of the denoted sets of states to corresponding sets of i.d.'s. For example,
(v, xl x2v) E R, if and only if x, ~ R,.

If S is a system of N processes, then any finite or infinite sequence of elements of
[iV] is called a schedule for S. In a natural way, each schedule defines a "computation"
of system S when applied to any i.d. q of S; namely, if h = ha hk is a finite
schedule for S, then

r(q , h) = ~hk(*h~_l(- • • ~ h l (q) ' " "))

is the result o f applying schedule h to i.d.q. We say i.d. q' is reachable from i.d. q in
S if for some schedule h, r(q, h) = q'. Process i E [N] halts in schedule h for S if 1
appears only finitely often in h. If i halts in h and q is an i.d., we define final(i, q, h)
to be the internal state of process i when it halts. Formally, final(i, q, h) = y if there
exist an i.d. q' = (v, ya yN) and schedules ha, h2, with hi finite, and h = hah2 such
t h a n h2 contains no occurrence of i, r(q, ha) -- q', and y~ = y.

The correctness of our algorithms depends on certain assumptions about the
scheduling of processes, namely, the assumption that no process halts anywhere
except possibly in its remainder region. Schedules with this property are called
admissible and are defined below.

Let S be a system of process and q an i.d. A schedule h is admissible from q if for
all i E [N], if i halts in h, then final (i, q, h) E R,.

2.2 SYNCHRONIZATION PROBLEMS. We are now ready to provide careful defini-
tions for synchronization problems. We list formal conditions that may be combined
to make precise some of the informal synchronization problems found in the
literature. In the remainder of this section, S denotes a system of N processes and q
an i.d.

C 1: Mutual Exclusion. q "violates mutual exclusion" if q ~ C, N Cj for some i # j,
t,j ~ [N]. S satisfies mutual exclusion starting at q if no i.d. reachable from q in
S violates mutual exclusion.

The next three properties refer to a process' progress through its protocols. P, is
stuck for q and h if for all (finite) prefixes hi and h2 of h, r(q, ha) and r(q, h2) a re in
the same region of P,.

C2: Deadlock-free. S is deadlock free starting from q if for all reachable i.d.'s q'
NN1R, and all schedules h admissible from q', there is some P, which is not
stuck for q' and h.

This property ensures that the introduction of synchronization protocols does not
cause the entire system to stop computing. In particular, the processes cannot all loop
indefinitely in their trying or exit regions.

Implementation of N-Process Mutual Excluszon 187

In Section 3.1 there is presented a description of a system which satisfies mutual
exclusion and no deadlock, having two values for its message variable. It is also
shown, in Section 4.1, that two values are required for any system satisfying deadlock-
free mutual exclusion. Both the algorithm and the lower bound are proved using the
model as presented so far, and the reader may wish at this point to read those
sections.

Other properties of interest involve fairness of the system from the point of view
of each individual process. We consider two such properties.

C3: Lockout-free. P, can be "locked out" starting from q if there exist q' f~ R,
reachable from q and a schedule h admissible from q' such that P, is stuck
for q' and h. S is lockout-free starting from q if no P~ can be locked out starting
from q.

C4: Bounded Waiting. Pj "goes from remainder to critical at least k times" for q
and h = h l ' " h a if there are indices 0 _</1 < J1 < i2 < . . . < Jk -< m such that
r(q, hlh2. . .h,~) E Rj and r(q, hlh2. . .h~,) E Cj, 1 <_ ! <_ k. P, "k-waits" starting
from q if there exists q' ~ R, reachable from q and a schedule h such that P, is
stuck for q ' and h and for some j E [N] , j # i, Pj goes from remainder to critical
at least k times for q' and h. S satisfies k-bounded waiting starting from q If no
P, (k + 1)-waits starting from q. S satisfies bounded waiting starting from q i f S
satisfies k-bounded waiting starting from q for some value of k.

In other words, in a system which satisfies bounded waiting, if a given process is
not in its remainder region, there is a bound on the number of times any other
process is able to enter its critical region before the given process changes regions.

Note that the schedule h is not required to be admissible. Given any schedule h
which causes a violation of k-bounded waiting, we can find a new schedule h ' which
is admissible and also causes a violation of k-bounded waiting. This follows because
a violation of k-bounded waiting (unlike a violation of lockout) occurs after a finite
amount of time.

Note also that if S and q satisfy C2 and C4, then they satisfy C3 as well. Also, C3
implies C2.

Finally, the following property does not represent a requirement one would
necessarily care to impose on a system of processes but is nevertheless a property
shared by practically all known exclusion algorithms. Intuitively, a process does not
use its past computation history to alter its synchronization protocols.

C5: No Memory. S satisfies no memory if for all i ~ [N], [R~ [= 1.

3. Upper Bounds

This section presents the upper bound results on the number of states of the shared
variable required to solve the problems of deadlock-free, bounded waiting,
and lockout-free mutual exclusion. The correctness of the algorithms is argued
informally.

3.1 DEADLOCK-FREE MUTUAL EXCLUSION. In order to illustrate the model, we
give a detailed description of a very simple system satisfying CI, C2, and C5 and
having two values for its message variable. (Here and in the corresponding lower
bound In Section 4.1 we are merely formalizing well-known results.)

188 J .E. BURNS, M. J. FISCHER, P. JACKSON, N. A. LYNCH, AND G. L. PETERSON

Algorithm
s = (v, x , x, x ,8 , 8, v " 9 '

N N
where X- - R t3 T t9 C U E as above. Here, R = {Ro}, T = {To}, C = {Co}, E = 0 , and V = (0, 1}. q, the
initml i.d., ts

(0, e,o, v~, v,0).

N
Transitions are

8(0, Ro) -- (l, Co), 80, g0) = (l, To),
8(0, To) ~, (l, C0), 80, To) " (l, To),
8(0, Co) = (0, Co), 80, Co) -- (0, R0)

Verification by induction is straightforward. Note that S and q do not satisfy C3,
since the schedule (121) ~ locks the second process out.

Thus, we have proved

THEOREM 3.1. For each N >_ 1 there is a system S o f N processes and an i.d. q such
that S, q satisfy mutual exclusion (C1), are deadlock-free (C2), and use no memory
(C5), and l VI = 2.

3.2 HIGHER-LEVEL NOTATION FOR BOUNDED-WAITING AND LOCKOUT-FREE MU-
TUAL EXCLUSION ALGORITHMS. The remaining upper bounds will be shown by
giving algorithms in an ALGOL-like notation, for understandability. States can be
thought of as having components corresponding to internal variables and program
instruction counters. Some state transformations are expressible implicitly by the
usual flow of control of ALGOL programs; others (branching and alteration of
values of internal variables) must be expressed explicitly.

Access to the shared variable V is allowed only with the test-and-set primitive,
which has the following syntax.

(test-and-set) ::-- test (variable) until (set) (; (set) } endtest[
test (variable) while (set) {; (set)) endtest

(set) ::-- (value1) setto (value2) [: (statement)]

The intended semantics of the first statement is to compare the (variable) to the
(value1) values, all of which must be distinct. If a match is found, the (variable) is
set to the corresponding (value2) value, the corresponding statement (which repre-
sents a state change) is executed, and control passes to the next test-and-set. If no
match is found, the test-and-set is reexecuted from the beginning (busy-waiting).
Similarly, the semantics of the second statement is to compare the (variable) to the
(disjoint) (value1) values. I f a match is found, the (variable) is set to the correspond-
ing (value2) value, the corresponding statement is executed, and control passes back
to the beginning of the same test-and-set. If no match is found, control passes to the
next test-and-set.

There are other features in the algorithm that are not present in standard ALGOL,
but these should be transparent to the reader. For example, the symbols "[]" are
used for the floor function. The "exit" statement is used to escape from the closest
enclosing "while" loop.

It should now be straightforward to translate the next two algorithms into the basic
model. Statements and tests not involving V will be absorbed into internal state
changes in the basic test-and-sets in the translated algorithm.

3.3 MUTUAL EXCLUSION WITH BOUNDED WAITING. In this section we prove the
following theorem by exhibiting Algorithm B. We first present Algorithm A which
is somewhat simpler but uses a few more states.

Implementation of N-Process Mutual Exclusion

REMAINDER

CRITICAL
RECEIVE
COUNTS one

at a
time

SELECT NEW
CONTROLLER

m m
SEND

COUNTS

BUFFER]
~ all at once

I MAINAREA]

189

FIGURE 1

THEOREM 3.2. For each N >_ 1 there is a system S of N processes and an i.d. q such
that S, q sausfy mutual excluston (CI), are deadlock-free (C2), have bounded waiting
(C4), and no memory (C5), and I vI = N + 3. Moreover, k = 1 in the bound of C4.

Algorithm A below satisfies the conditions of the theorem except that there are
N + 6 values of the shared variable. We later indicate how to reduce this to N + 3.

The basic structure of the algorithm is the same as that in [4]. A process desiring
to enter its critical region goes in immediately if there are no other active processes;
otherwise it waits in the "buffer." Eventually, all processes waiting in the buffer are
moved into the "main area." Processes are chosen one at a time from the main area
to go to their critical regions (see Figure 1). Since no process may enter the main area
until the main area is emptied, this procedure gives l-bounded waiting.

The above procedure requires a mechanism for controlling the movement of
processes through the buffer and main area. As each process leaves its critical region
(i.e., whde it is in its exit region), it is temporarily designated the "controller." The
controller has the responsibility of keeping track of the number of processes in the
buffer and main area, sending messages to cause processes to move, and passing on
the necessary control information to the next designated controller. All this is done
through the single shared variable V which takes on the values {SO, S1
SN - 1, FREE, ENTER, ELECT, COUNT, ACK, BYE}. The last five values are
called "messages."

A process desiring to enter its critical region examines V. If V-- FREE (indicating
that the system is empty), then the process sets V to SO and enters its critical region.
If V = Sj, the process sets V to Sj + 1. The S-values of V are thus used by the
controller to keep track of the count of the number of processes in the buffer. (This
count is kept in the controller's local variable, BUFF.)

190 J.E. BURNS, M. J. FISCHER, P. JACKSON, N. A. LYNCH, AND G. L. PETERSON

The controller loads the main area, when empty, by sending one ENTER message
through V for each process in the buffer. If additional processes come into the buffer
during this time, they too are moved into the main area. The controller selects the
process to become the next controller by sending a single ELECT message, which
will be picked up by some process in the main area. The controller then sends the
current counts of the number of processes in the buffer and main area to the
controller-to-be before signing off with the BYE message. (Note: In the special case
in which there are no processes in the buffer or mare area and the process leaving its
critical region sees V = SO, the process simply sets V to FREE and leaves; the system
has been returned to the empty state.)

An apparent problem with the above scheme is possible interference between
processes entering their trying regions and processes attempting to communicate
using messages. A process entering its trying region should alter V; otherwise, since
the other processes would be unaware of it, they could execute any number of critical
regions before the first process could get in. Thus, processes entering their trying
regions might hinder communication between the controller and the other processes.
In [4], about 2N values of V are used to allow message communication to go on
concurrently with the counting function. We solve the problem in the following way.
Every message requires a response (usually ACK). While awaiting the response, the
controller "normalizes" V. That is, it continually examines V, resetting it to SO
whenever Sj is detected (and keeping track of the number of new processes in the
buffer by setting BUFF to BUFF + j). If an entering process sees a message in V, it
holds this value and sets V to S1, thus announcing its presence to the controller. It
then waits until V takes on the value SO, at which point it resets V to the held
message. V will eventually "settle down" at SO since the controller continues to
normalize V to this value, and the value can only be changed a finite number of
times by entering processes.

The key to the correctness of the algorithm is the ability to communicate infor-
mation among the processes reliably. All communication (except sending the buffer
count) is initiated by a message sent by the controller, which then waits for an ACK
response. Only a process of the appropriate type will respond, and the controller
knows of the existence of such a process by the controller's local state. The existence
of a normalizing process (a process which continues to normalize V) ensures that
messages always get through. Note that the controller itself is always a normalizing
process unless it is in its last test-and-set loop. But at this point, a process has already
been elected and moved to RECEIVECOUNTS, where it becomes a normalizing
process.

For simplicity, the counts of the number of processes in the buffer and main area
are sent to the new controller in unary. The main area count is sent with the COUNT
message, while the buffer count is sent by incrementing the SO value of V. It should
be clear that more "time efficient" methods could be used for passing this information.
We are primarily interested in presenting a clear algorithm which is compatible with
the more complex algorithm given in Section 3.4.

A lgorithm A

Shared varzable msgvar V mmal FREE,

A lgorzthm for each process

begin integer MAIN, BUFF mmal 0;
msgvar M mmal SO;

I m p l e m e n t a t i o n o f N - P r o c e s s M u t u a l E x c l u s i o n

R E M A I N D E R v r ema inde r region t

t ry ing protocol follows v

test V unt i l

Free setto SO goto C R I T I C A L ,
Sj s e t t o S j + 1 g o t o B U F F E R , ~ j < N - 1;
other setto SI M = other

endtest ,

H O L D I N G
test V unt i l SO setto M M '= SO endtest ,

B U F F E R '
test V unt i l E N T E R setto A C K endtest ,

M A I N A R E A
test V unt i l E L E C T setto A C K endtest ,

R E C E I V E C O U N T S

whi le true do

test V un t i l
Sj setto SO B U F F = B U F F + j ;

C O U N T setto A C K M A I N = M A I N + 1,
BYE setto SO exit

endtest ,

C R I T I C A L ; cri t ical region v

v exit protocol follows !

i f (M A I N = 0 and B U F F = 0) then

test V un td
SO setto F R E E goto R E M A I N D E R ,
Sj setto SO B U F F = B U F F + j t l ~ j <_ N - 1!

endtest ,

S E L E C T N E W C O N T R O L L E R
if M A I N = 0 then ! move processes f rom buffer to m a i n area v

whi le B U F F > 0 do begin
test V unt i l

Sj setto E N T E R ' (B U F F = B U F F + j - 1, M A I N = M A I N + 1)

endtest ,
whi le true do

test V unt i l
Sj setto SO. B U F F = B U F F +j,
A C K setto SO exit

endtest

end,
test V unt i l

Sj setto E L E C T (B U F F = B U F F + j , M A I N = M A I N - 1)

endtest ,
whi le true do

test V un td
Sj setto SO" B U F F = B U F F + j ,
A C K setto SO exit

endtest ,

S E N D C O U N T S
whi le M A I N > 0 do begin

test V unt i l SO setto C O U N T M A I N = M A I N - I endtest ,
test V unt i l A C K setto SO endtest

end,
whi le B U F F > 0 do

test V u n t d SO setto SI B U F F = B U F F - I endtest ,
test V unt i l SO setto BYE endtest ,
go to R E M A I N D E R

end

191

192 J. E. BURNS, M. J. FISCHER, P. JACKSON, N. A. LYNCH, AND G. L. PETERSON

We now sketch how to modify Algorithm A to use only N + 3 shared values. One
value is saved by equating FREE with S N - 1. These two values can never be
confused, since S N - 1 can only occur with no process in its remainder region, while
FREE can only occur when all processes are in their remainder regions. The values
COUNT and BYE can be eliminated by modifying the sections of code labeled
"RECEIVECOUNTS" and "SENDCOUNTS," as shown below. Both counts are
sent as a single coded Integer by using the S-values. Note that the first waiting loop
in the section "RECEIVECOUNTS" is required in Algorithm B to be certain that
the ACK response to the ELECT message has been seen by the controller. Otherwise
the receiving process might mistake this ACK for the final ACK sent by the
controller.

Algorithm B

Replace the indicated secuons o f Algorsthm A by the following code Note that C O U N T and B Y E are no
longer used so that the number o f shared values is reduced to N + 3 (FREE Is equated wtth S N - 1)

RECEIVECOUNTS

whde BUFF < N do

test V untd Sj setto SO. BUFF .= BUFF + j endtest,
whde true do

test V until

Sj setto SO BUFF = BUFF + j,
ACK setto SO exit

endtest,

MAIN '-- tBUFF/lV] - l,
BUFF = BUFF - (MAIN + 1)*N,

SENDCOUNTS
BUFF = BUFF + (MAIN + 1)*N,

whde BUFF > 0 do
test Vuntfl SO setto SI BUFF = BUFF - 1 endtest;

MAIN := 0;
test V untd SO setto ACK endtest;

goto R E M A I N D E R

3.4 LOCKOUT-FREE MUTUAL EXCLUSION. If we drop the requirement of
bounded waiting and ask only for a lockout-free solution, the number of states
needed to achieve mutual exclusion can be cut roughly in half, as shown by Algorithm
C. We thus obtain

THEOREM 3.3. For each N >_ 1 there is a system S o f N processes and an i.d. q such
that S, q satisfy mutual exclusion (C1), are lockout-free (C3), and have no memory
(C5), and[V[= IN/2] + 9.

In Algorithm C the shared variable V takes on the LN/2J + 9 values SO, S1
Sk, FREE, ENTER, ELECT, COUNT, ACK, BYE, STOP, GO, where k = LN/2J.
Since there are fewer values of V than processes (for sufficiently large N), the count
of entering processes cannot be kept unambiguously in V. In particular, more than
k processes entering their trying regions closely together will cause the transition of
V from Sk to SO. We call this transition "wraparound." The process causing this
transition is called the "executive." Since only the executive knows that wraparound
has occurred, it has the responsibility to see that those processes which were not able
to announce their presence unambiguously will eventually get to their critical regions.

Note that the occurrence of wraparound is what causes the loss of the l-bounded
waiting property. For example, suppose one process goes critical from an i.d. at

Implementation of N-Process Mutual Exclusion 193

which all processes are in remainder, setting V to SO. Next, exactly k other processes
take one step each, entering their trying regions and returning the value of V to SO.
Now the first process may leave the critical region and, since It cannot detect that
any process is waiting, cycle from remainder to critical any number of times. Thus
the algorithm can violate bounded waiting for any bound.

The executive knows that there are k processes in the buffer which are unknown
to the controller. These processes (and possibly some others which are incidentally
detected by the executive) are suspended by sending STOP signals to each. If the
executive sees a controller message during this process, it merely holds the message
value until the stopping procedure is complete and then restores the held value. The
executive then announces its presence to the controller in the normal way (incre-
menting the Si value) and enters the buffer. (If there is no controller, the executwe
goes directly to its critical region.)

Note that the sending of STOP signals by the executive does not interfere with the
operation of the controller, since the controller ignores these signals. The only
possible interference occurs when the executive "picks up" a controller message.
However, by holding onto this message the executive effectively suspends the
operation of the controller until the executive fimshes its task. The executive thus
never needs to hold more than one controller message.

Once at least k processes have been suspended by the executive, Algorithm C
behaves identically to Algorithm A. Thus the executive eventually reaches its critical
region. When leaving its critical region, the former executive (now a controller) sends
a GO message to each process which was suspended, causing it to go to the main
area. Assuming that no additional wraparounds (and hence no additional executives)
can have occurred at this time, all the processes in the main area must get to their
critical regions before any other processes can enter the main area. This guarantees
that lockout is prevented.

Difficulties could arise if two executives were present at the same time, because
their messages would be indistinguishable, which could lead to lockout for one of the
executives. This problem cannot arise in our algorithm because there are insufficient
processes to cause another wraparound until the current executive finishes its task,
goes critical, and reawakens the idling processes with GO messages.

There is an apparent danger of lockout for processes which are already in
MAINAREA when the executive begins moving idling processes to MAINAREA.
However, since a new executive must go through BUFFER, and since all the
processes in the MAINAREA must reach their critical regions before any process
moves from BUFFER to MAINAREA, no process can be stuck in MAINAREA.

Algortthm C

Replace the first sections of Algortthm A, (up to MAINAREA) wzth the following code.
begin integer M A I N , BUFF, I D L E R S ini t ia l 0,

msgvar M m m a l SO,

R E M A I N D E R v r ema inde r region t

v t ry ing protocol follows T

test V un td
F R E E settoS0 goto C R I T I C A L ,

Sj setto Sj + 1 goto B U F F E R , v 0 <_j < [N/2J v
Sk setto SO " goto E X E C U T I V E , ~ k = I N / 2 J P
STOP setto S I goto IDLE,
o ther setto SI (M = other, goto H O L D I N G)

endtest ,

194 J .E. BURNS, M. J. FISCHER, P. JACKSON, N. A. LYNCH, AND G. L. PETERSON

EXECUTIVE"
BUFF := [N/2];
while BUFF > 0 do

test V until
Sj setto STOP. (BUFF := BUFF + j - !; IDLERS := IDLERS + 1);
STOP setto STOP,
FREE setto SO: goto CRITICAL;
other setto SO M .= other

endtest,
test V while STOP setto STOP endtest,
If M # SO then

test V untd SO setto M" M = SO endtest,
test V unttl

FREE setto SO goto CRITICAL,
Sj setto Sj + 1 goto BUFFER,
other setto S! . M := other

endtest,

HOLDING'
test V until

SO setto M (M "= SO, goto BUFFER),
STOP setto M (M = SO, goto IDLE)

endtest,
BUFFER

test V until
ENTER setto ACK' goto MAINAREA,
STOP setto SO goto IDLE

endtest,

IDLE"
test V untd GO setto ACK goto MAINAREA endtest,

Insert the following code after ,,v exit protocol follows v,,

whde IDLERS > 0 do begin
test V untd Sj setto GO: BUFF .= BUFF + j endtest;
IDLERS = IDLERS - 1,
MAIN .= MAIN + !,
whde true do

test V until
Sj setto SO BUFF .= BUFF + j ,
ACK setto SO' exit

endtest
end;

4. Lower Bounds

We present five lower bound theorems, using a series of lemmas along the way.
Dependence on properties C 1-C5 is described explicitly for each result. Proofs are
usually by contradiction; assuming there are too few values of V, a schedule is
constructed which violates one of the needed condiuons.

4.1 DEADLOCK-FREE MUTUAL EXCLUSION. We give three lemmas leading to a
lower bound which complements Theorem 3.1. First we show that it is always
possible, from any i.d., to "drive" all processes into their remainder regions.

LEMMA 4.1. Let S be a system of N processes, N >_ 1, and q any i.d. Assume that
S, q are deadlock-free (C2). Let L = {i ~ [N]:q ~ R,}. Then there emsts a schedule
h ~ L* such that r(q, h) ~ N~=I R,.

PROOF. By induction on ILl. If ILl -- 0, there is nothing to prove. If ILl =
k + 1, let ll lk+l be some enumeration of L. hi = (ll . . . lk÷~) ~ is admissible from

Implementation of N-Process Mutual Exclusion 195

q, so by C2 there is some prefix h2 of h~ with q' = r(q, hz) ~ Rt for some l ~ L. Then
let M = L - {1}. By the inductive hypothesis there exists schedule hz ~ M* such that
r(q', h3) ~ NN-1 R,. Then h = h2h3 suffices. []

Next, we show that if all processes are in their remainder regions and a single
process acts alone, then that process will eventually reach its critical region.

LEMMA 4.2. Let S be a system of N processes, N >__ 1, q ~ N~,_1 R,. Assume that S,
q are deadlock-free (C2). Let i E [N]. Then for some k >_ 1, r(q, i k) E C,.

PROOF. q' = r(q, i) ~ T, tO C,. If q' ~ C,, we are done. Otherwise, i ~ is admissible
from q'. The conclusion follows by C2. []

The next lemma says that if a process can, on its own, enter both its remainder and
its critical region, then it must indicate the distinction to the other processes by means
of distincfvalues of V. We say that i.d. q looks like i.d. q' to process i if and only if
V(q) = V(q') and the state of process i is identical in q and q'.

LEMMA 4.3. Let S be a system of N processes, N >_ 2, and q any i.d. Assume that
S, q satisfy mutual exclusion (C 1) and are deadlock-free (C2). Let i E [N]. Assume
q' -- r(q, i s) E R~ and q" = r(q, i t) ~ C, for some k, l >_ O. Then V(q') ~ V(q").

PROOF. Assume that V(q') = V(q"). h = (1 2 . . . (i - 1)(i + 1) . . . N) = is
admissible from q', so by C2 there is some prefix h~ o f h with r(q', h 0 E Cj for some
j # i. But q" looks like q' to processes in [N] - {i}, so r(q", ha) ~ Cj also. But then
r(q", h 0 ~ C, f) Cj, contradicting CI. []

We combine the preceding lemmas to obtain the lower bound result corresponding
to Theorem 3.1.

THEOREM 4.4. Let S be a system of N processes, N >_ 2, and q any i.d. Assume that
S, q satisfy mutual exclusion (CI) and are deadlock-free (C2). Then I V I >- 2.

PROOF. Obtain q' = r(q, h) ~ NN=I R,. Obtain k with q" = r(q', 1 s) ~ Ca. Then
V(q") ~ V(q') (by Lemma 4.3 applied to S, q'). []

Later we will require explicit names for the schedules whose existence is asserted
in Lemmas 4.1 and 4.2. In the apphcations the system S will generally be considered
fixed. Thus we define the following. Let S be a system of N processes, N >_ 1. Let q
be any i.d. such that S, q are deadlock-free. Let L = {i E [N] : q ~ R,}. Then exit(q)
denotes a schedule h E L* such that r(q, h) E f-)N=I R,. Also, if S is a system
of N processes, N _ 1, q ~ NN=a R, with S, q deadlock-free, and if i E [N], then
enter(q, i) denotes a schedule i s, k _> 1, such that r(q, i k) ~ C,.

4.2 MUTUAL EXCLUSION WITH BOUNDED WAITING. Next we turn to the proof
of a lower bound to complement Theorem 3.2. Although our best lower bound is
N + 1 values (Theorem 4.9), we first give a much simpler proof for a lower bound of
N values. The small strengthening to N + 1 is then carried out, partly because the
remaining gap between upper and lower bounds is extremely small, but principally
because the proofs use interesting ideas which recur in proofs of later results in
Section 4.3.

THEOREM 4.5. Let S be a system of N processes, N >_ 1, and q any i.d. Assume that
S, q satisfy mutual excluston (CI), are deadlock-free (C2), and satisfy bounded waiting
(C4). Then I V[>- N.

196 J.E. BURNS, M. J. FISCHER, P. JACKSON, N. A. LYNCH, AND G. L. PETERSON

PROOF. Construct (q,}~-0 a sequence of i.d.'s as follows. Let qo = r(q, exit(q)).
(That is, let all processes exit.) Let q~ = r(qo, enter(qo, 1)). (That is, run P1 until it
enters its critical region.) For each i, 2 _ i _< N, let q, = r(q,-~, i) E I',. (That is, let
each process/'2 PN in turn enter its trying region.) We show that V(q,) # V(qj)
for all O < i < j <_ N.

Assume the contrary, so 0 < i < j _< N and V(q,) = V(qj). Then qj looks like q, to
processes P1 P,. Since there is an admissible schedule h from q, which involves
P~ P, only and which causes some process to enter its critical region an infinite
number of times, it follows that h (although not admissible from qj) causes the same
effect when applied from qj. But this violates C4, since P7 remains in its trying region
during the application of h from qj. []

Next we develop the new ideas needed to raise the lower bound to N + 1 values.
We require a nontrivial lemma giving a lower bound of 3 on the number of values
needed for synchronization of two processes. The needed lemma is a slight strengthen-
ing of a similar result in [3] and is proved by a very similar case analysis argument.
We break the lemma into two parts. The first part says that a bound of 2 on the
number of values taken on by V when some process is not in its remainder region
imposes some strong restrictions on the behavior of the two processes. Namely, if
one process is unable, on its own, to reach its remainder region and is unable to
signal reliably to the other process, then the other process is similarly unable, on its
own, to reach its remainder region.

We say that a process P, is blocked for q if for all k _> 0, r(q, i k) ~ R,. That is, a
blocked process cannot reach its remainder region on its own.

LEMMA 4.6 (CREMERS AND HIBBARD). Let S be a system of two processes and q
any i.d. Assume that S, q satisfy mutual exclusion (CI) and no lockout ((73). Assume
there exist •1, 1~2 ~ V such that V(q') ~ {vl, v2} for all q' ~ R1 fl R2 reachable from q.
Assume P1 is blocked for q and for infinitely many k it is the case that V(r(q, lk)) =
V(q). Then P2 is blocked for q.

PROOF. Assume the contrary, that q ' = r(q, 2 k) E R2 for some fixed k _> 0. Then
V(q') ~ (vl, v2} since q' ¢~ R~. Assume without loss of generality that V(q) = Vl.

Case 1. V(q') = Vl. Since F ° is admissible from q', C2 implies that r(q', 1 z) E R~
for some l _> 0. But then since q' looks like q to P1, it follows that r(q, 1 z) ~ R1, a
contradiction.

Case 2. V(q') = v2.

Case 2.1. There are infinitely many I for which V(r(q', 2•)) ---- Vl. Then an
admissible schedule from q' can be constructed by alternating groups of steps of P1
and P2 which leave V at vl; this schedule locks out P1, contradicting C3.

Case 2.2. V(r(q', 2~)) = v2 for all but finitely many l. Choose l* so that P2 is
blocked for q" = r(q', 2 l) and V(r(q", 2~)) = v2 for all l _> 0. (/'2 must become
blocked at some point, by Lemma 4.3, once the value of V stops changing.) Since q"
looks like q ' to P~, it is the case that V(r(q", lm)) = V(r(q', lm)) for all m > 0 and
thus V(r(q', Ira)) ~ (v~, v2} for all m _> 0. Since P1 can cycle through its critical
section infinitely many times on its own from q' (by C2), there must be infinitely
many m such that V(r(q', lm)) = V2, by Lemma 4.3. But then we can construct an
admissible schedule from q" composed of alternating groups of steps of P~ and P2
which leave V at v2 and locks out P2, thus contradicting C3. []

Implementation of N-Process Mutual Excluszon 197

In two cases in the preceding proof (2.1 and 2.2) a technique of "piecing together"
infinite schedules of several processes was introduced. This technique will be useful
in later proofs (in Section 4.3) as well for construction of admissible schedules
exhibiting lockout.

Using the preceding lemma repeatedly, we show the needed lower bound on the
number of values needed for synchronization of two processes.

LEMMA 4.7 (CREMERS AND HIBBARD). Let S be a system of two processes and q
any i.d. Assume that S, q satisfy mutual exclusion (C1) and are lockout-free (C3). Then
there do not exist va, v2 with V(q') ~ {v~, v2} for all q' f~ R1 n R2 reachable f rom q.

PROOF. Assume the contrary. Obtain q ' E Cz with r(q', I k) ~ T1 for all k >_ 0 and
with V(r(q', lk)) = V(q') for infinitely many k. By Lemma 4.6, it is the case that Pz
is blocked for q'. Fix k _> 1 with q" = r(q', 2 k) satisfying V(r(q", 2z)) -- V(q") for
infinitely many 1. (That is, move/ '2 at least one step, until it sets V to a value which
Pz can reproduce infmitely often.) Then by Lemma 4.6 (applied with Px and Pz
interchanged), it is the case that Px is blocked for q". Alternately applying Lemma
4.6 to the two processes in th~s way, we construct an admissible schedule which
contradicts C2. []

COROLLARY 4.8 (CREMERS AND HIBBARD). Let S be a system of two processes
and q any i.d. Assume that S, q sattsfy C1 and C3. Then t V I >- 3.

PROOF. Immediate. []

We can now prove the lower bound of N + 1.

THEOREM 4.9. Let S be a system of N processes, N >_ 2, and q any i.d. Assume that
S, q satisfy mutual excluszon (CI), are deadlock-free (C2), and satisfy bounded wattmg
(C4). Then I V] >- N + 1.

PROOF. Since C2 and C4 together imply C3, Corollary 4.8 gives the result for
N = 2. Assume N _> 3. Construct {q,} N=0 as in the proof of Theorem 4.5. Assuming
I V I -< N, one of the following cases must hold.

Case 1. V(q,) = V(qj) for some 0 < 1 < j _< N. Then the proof of Theorem 4.5
provides the needed contradiction.

Case 2. V(qo) = V(q,) for some 0 < i < N. Since r(qo, N m) ~ C2v for some
m _> 1 (by C2), it follows that r(q,, N m) ~ CN. But r(q,, N m) ~ C1, violating C1.

Case 3. V(qo) = V(qs) and cases 1 and 2 do not hold. By Lemma 4.7 there is
some schedule h involving P1 and P2 only with q' = r(qo, h) ~ R1 A R2 and V(q') ~i
{ V(ql), V(q2)}. There are two possibilities.

Case 3.1. V(q') = V(qo). Then q' looks like q0 to P3. Since the schedule 3 ~
causes Pa to enter its critical region infinitely often when applied from qo (by C2), it
does the same when applied from q'. This violates C4, since one of (P1,/2) remains
meanwhile in some region other than its remainder region.

Case 3.2. V(q') = V(q,) for some i, 3 _< ~ _< N. Then q' looks like q, to processes
P,+I Pn. Let q" = r(q', (t + 1)(i + 2) . . . (N)). (That is, allow each of P,+l
PN m turn to enter its trying region.) Then q" looks like q0 to/'3, since V(q") = V(qN)
= V(qo). Thus the schedule 3 ° causes /'3 to enter its critical region infinitely often
when applied from q' , violating C4 since q" q~ Rt N R2. []

198 J.E. BURNS, M. J. FISCHER, P. JACKSON, N. A. LYNCH, AND G. L. PETERSON

Note that although this section of the paper was aimed at a lower bound for
mutual exclusion with bounded waiting, the two main lemmas, 4.6 and 4.7, make
statements involving mutual exclusion with no lockout.

4.3 LOCKOUT-FREE MUTUAL EXCLUSION. We have two lower bound results
corresponding to Theorem 3.3. The first does not depend on any extra assumptions
but leaves a gap open. The second depends on the introduction of the technical
assumption C5 but essentially closes the gap.

THEOREM 4.10. Let S be a system o f N processes, N >_ 2, and q any i.d.
Assume that S, q satisfy mutual exclusion (CI) and are lockout-free (C3). Then I VI >-

+ ½.

PROOF. We show by induction on k that for k _> 3, if S is any system of
(k 2 - k) / 2 - 1 or more processes and q any i.d. such that S, q satisfy C I and C3,
then [V[_> k. The theorem then follows immediately.

For k -- 3, Corollary 4.8 gives the result. For the induction step, let

(k + 1) 2 - (k + 1)
N>_ - l ,

2

let S be a system of N processes, and let q be an i.d. such that S, q satisfy C 1 and C3,
and assume contrary to the induction hypothesis for k + 1 that [V[< k + I. We
proceed to derive a contradiction.

Construct (qz)~0 as follows. Let q0 ffi r(q, exit(q)). Let ql = r(qo, enter(q0, l)).
(These are as for Theorem 4.5.) For each i, 2 _< i_< N, let q, = r(q~-~,i t') ~ T,, l, >_ l,
and assume (without loss of generality) that each q, is such that there are infinitely
many m with V(r(q,, ira)) = V(q,). (That is, let each process P2 PN in turn enter
its trying region to a point where it could, on its own, cause the current value of V to
recur infinitely many times. This is possible since V is finite and C 1 holds.)

Since [V[_< k, there exist i, j with N - k _ i < j _< N and V(q,) = V(q~). The
processes P~ P,, starting at q,, comprise a system of at least N - k >_ (k 2 - k) / 2
- 1 processes satisfying C I and C3, so by the inductive hypothesis, I VI -> k. Hence
IV[= k. It follows that for every v ~ V and every q ' reachable from q~ using only
processes P~ P,, there is a q" reachable from q' using only processes P~, . . . , P,
with V(q") = v. (If not, then P~ P, starting from q' would be a system of
processes satisfying C1 and C3 and using only values in V - (v}, contradicting the
induction hypothesis.) In other words, P~ P, can be run in an admissible fashion,
starting from q , so that V assumes every possible value infinitely often. Since
V(q,) = V(qj), the same is true starting from q~.

We now construct a schedule admissible from qj which locks out P,+t Pj. We
do this by running P1 P, to set Vperiodically to each V(qm), i + 1 <_ m < j . Each
time the value is set to some V(q,~), Pm is run enough steps to return the value to
V(qm). (Recall that by the choice of lm this can be done infinitely often.) Repeating
this process forever yields an infinite schedule admissible from qj in which none of
P,÷1, . . . , Pj ever leaves its trying region. This violates C3, a contradiction. We
conclude that l V[>_ k + 1. []

In the preceding proof, processes P1 PN were made to enter the system in a
fixed order, and a counting argument was used to show repetition of values of V. We
can do much better if we allow ourselves the freedom to select the order in which the
processes initially enter. In order to obtain this improvement, we seem to be forced
to mtroduce the technical assumption of "no memory" (C5), a property which Is

Implementation of N-Process Mutual Exclusion 199

possessed by all mutual exclusion algorithms we know of except for the 3-value 2-
process algorithm of [4]; C5 allows guaranteed reproducibility of process entrance
behavior.

Since the proof is more comphcated than the others in this paper, it is helpful to
decompose it by defining a digraph with vertices representing certain values of V,
and with edges labeled by processes which cause the indicated changes in V when
they make certain transitions upon entering the system. A purely graph-theoretic
lemma can be used to show the existence of certain types of loops in such a labeled
digraph, provided that the number of vertices is small. When this lemma is applied
to the labeled digraph representing values and transitions, the resulting loops
(representing sequences of transitions which begin and end with the same value of
V) can be used to construct admissible lockout sequences.

We first present the needed graph-theoretic definitions and lemma. I f L is a finite
set, an L-graph is an edge-labeled finite digraph with labels in L. vert(G) denotes the
set of vertices of G. If e is an edge, label(e) denotes the label of e, and orig(e) and
term(e) denote the vertices at which e originates and terminates, respectively. (We
permit multiple edges with the same originating and terminating vertices, provided
they are distinctly labeled.) An L-graph is ful l provided for each x E vert(G) and
each l ~ L, there is at least one edge e with orig(e) = x and label(e) = 1.

A path m an L-graph G is a sequence ~r = (Xo, el, xl ek, x~) where k >_ 0, the
x, are vertices, and the e, edges of G, with orig(e,) = x,-1 and term(e,) -- x, for all i,
1 _< i _< k. If k = 0, ~r is null. vert(~r) denotes {x, :0 <_ i <_ k}, labels(~r) denotes
(label(e,): 1 <_ i <_ k}, orig(cr) = Xo, and term(~r) = xk. ~r is a loop if Xo -- xk. ~r is a
htghway provided no two of its edges have the same label. If ~rl = (x0, el, Xl ek,
xk) and ~r2 = (Xk, ek+a, x,+~, . . . , et, xz) are paths, then ~rl. ~rz denotes the path (Xo, el,

xl, . . . , ek, Xk, ek+l, Xk+l, • • • , e l , x l) .

If x E vert(G) and ~r~, ~r2 are highways, then the pair (~rl, ~r2) is a loop trail f rom x
provided (a)-(c) hold:

(a) ~r2 is a nonnull loop.
(b) orig(~rl) = x.
(c) vert(~'2) ___ vert(rrl).

An L-graph G is loop), provided L can be partitioned into two sets, L~ and L2, and
for every x ~ vert(G), there are two highways ~rl(x) and ~r2(x) such that (d) and (e)
hold:

(d) (~rl(X), ~z2(x)) is a loop trail from x.
(e) labels(~rx(x)) ___ L~ and labels(~r2(x)) _C_ L2.

LEMMA 4.11. Let G be a fu l l L-graph,] L I >- O. Assume] vert(G)] <_ [L]/2. Then
G is loop),.

PROOf. See the appendix. []

Now we obtain the lower bound.

THEOREM 4.12. Let S be a system of N processes, N >_ 1, and q any i.d. Assume
that S, q sattsfy mutual exclusion (C1), are lockout-free (C3), and have no memory
(C5). Then I VI -> [(V(q ') :q ' E Ct is reachable f rom q}l -> N/2 .

PROOF. Assume the contrary, so A = (V(q'): q" E C~ is reachable from q} satisfies
IA I --< (N - 1)/2. Define an L-graph G, L = {2 N}, with vert(G) = A, in order

2 0 0 J .E . BURNS, M. J. FISCHER, P. JACKSON, N. A. LYNCH, AND G. L. PETERSON

to apply Lemma 4.11. The loops thereby obtained will be used to help construct a
schedule locking out some processes.

Let r, denote the (unique) remainder state of process i, 1 _< i _< N. There will be
two types of edges in G, called normal edges and dummy edges.

Normal Edges. For i E L, v, w E A, an edge e with orig(e) = v, term(e) = w and
label(e) ffi i is included as a normal edge if and only if 6,k(v, r,) E w × X, for infinitely
many values of k. (That is, if process i enters the system and sees value v, it can, on
its own, cause value w to recur infinitely often. Note that a given v, i may give rise to
more than one normal edge.) In this case, let (reset(e, j))7xl denote a sequence of

6 2~-~ reset(ej)d" numbers, each _>1, such that , ~v, r,) ~ w x X, for all l > 1. Also, if a ffi
(x0, el, Xl era, Xm) is any highway in G all of whose edges are normal, then define
sched(a) = (label(el)) ~sette~'l) . . . (label(e,,)) reset~e~''l). (That is, sched(a) is a schedule
which causes the variable changes described by highway a.)

Dummy Edges. For i E L, v E A having no normal edges e with ong(e) = v and
label(e) = i, an edge e with orig(e) = term(e) ffi v and label(e) = i is included as a
dummy edge.

(Note that there might be no normal edge with label i from vertex v, because v
might never occur when process i is in its remainderstate r,. Then the application of
6, to v and r, might not represent an event that could occur during the course of an
actual computation from q. Thus all values w which are reached infimtely often by
such application might fail to be in A.)

Clearly G is full, so by Lemma 4.11, G is loopy. Let {(*rl(x), ~r2(x)):x ~ A }
be a set of loop trails from the vertices of G and L~ t.J L2 a partition of L with
labels(~rl(x)) ~ L1 and labels(Tr2(x)) __ L2 for all x in A.

CLAIM 1. I f a is a highway all o f whose edges are normal, and i f q' ~ f'),eZab,ls(~) R,
is an i.d. reachable f rom q with V(q') = orig(a), then V(r(q', sched(a))) = term(a).

PROOE. Straightforward. []

CLAIM 2. l f i E L, q' E C1 tq R, is reachable f rom q, and V(q') -- v, then there is
a normal edge e with orig(e) = v and label(e) = i.

PROOF. By the finiteness of A. []

Let B _C A denote { V(q') : q' ~ C~ f') N~-2 R, is reachable from q}.

CLAIM 3. I f V ~ B and a is any highway with orig(a) = v, then a contains no
dummy edges.

PROOF. Let q' ~ C~ tq f')N,.2 R, be reachable from q and such that V(q') = v. Let
a ffi (v ffi Xo, e~, x~ era, xm), m _ 0, and assume e~ e,-~ are normal edges.
We show e, is a normal edge. Consider fl = (Xo, el, x l e , , x,-O. If q" =
r(q', sched(fl)), then clearly q" is reachable from q and q" E C~ N R~,be~te,). Moreover,
V(q") = x , , by Claim 1. By Claim 2, there is a normal edge e with orig(e) = x,_~
and label(e) -- label(e,). Thus there is no dummy edge e' with orig(e') ffi x,-~ and
label(e') = label(e,). It follows that e, is a normal edge.

CLAIM 4. For v E B, it is the case that neither ~r~(v) nor *re(v) contains a dummy
edge.

PROOF. Let e be any edge of ~r~(v) or ~r2(v). In either case it is easy to see that
there is a highway a with orig(a) ffi v, containing e. Claim 3 then suffices. []

I m p l e m e n t a t i o n o f NoProces s M u t u a l E x c l u s i o n 201

Let qo = r(q, exit(q)). Starting f rom qo, we define a schedule h in (L, t3 {1}) ~°. This
schedule will later have steps o f L2 processes inserted, thereby yielding a new schedule
which locks out the new L2 processes.

The definition o f h involves simultaneous definition o f three sequences o f i.d.'s,
t oo (q,)~-~ (s,),-o,°° and (,),=o. Each q, is in nT-, Rj and each s, in C, n n,g.2 R~, i -> 0. qo

has already been defined. For each i _> 0, let s, = r(q,, enter(q,, 1)). (That is, let P,
enter and go to its critical region.) Then let t, = r(s, , sched(~n(V(s,)))). (That is,
consider the er, highway corresponding to V(s,) and allow processes to enter the
system in order to make the indicated changes. Claim 4 shows that this schedule is
defined.) Finally, let q,+l = r(t,, exit(t,)). (That is, let all processes re turn to their
remainder regions.) Schedule h is then defined to be

enter(qo, 1)sched(~rx(V(so)))exi t (to)enter(ql , 1)

• . . enter(q,, l) sched(~r l (V(s ,)))ex i t (t ,)

Since IA I is finite, there is some fixed v E V such that v = V(s,) for infinitely many
i. (That is, the same value o f V will be reproduced at infinitely many o f the steps
when P, enters its critical region.) Let (s,,)°f.o be a subsequence o f (s,)~°.o for which
v = l/(s,,) for all j . Write h = hoahxohnh2oh21h3oh3, . . . , where the substrings are
defined as follows:

(a) h01 = enter(qo, 1)sched(~r,(V(so)))exi t (to)enter(q~, 1) . . . enter~/~, 1).
(b) For each j >_ 1, hj0 = sched(¢a(v)).
(c) For e a c h j ___ 1, hj1 = exi t(t , ,_Oenter(q, ,_ , , 1) . . . enter(q,,, 1).

Now we modify h to obtain a new schedule h ' exhibiting lockout. Let h ' --
t t ? t ! t t ho, h l o h n h2oh2,hzohz, • • • , where the substrings are defined as follows:

(a) For each j _> 0, h~l = hj1.
(b) h]o = sched(xo, el, x , ek, xk) sched(I r2 (v)) sched(xk , ek+l, xk+l era, X,n),

where ~r,(v) = (Xo, e,, x, era, Xm) and orig(er2(v)) -- xk.
(c) Assume ~r,(v) -- (Xo, el, xl em, Xm) and *r2(v) = (x6, el, x] e ' , , x~,). Since

vert(~r2(v)) C vert(rr,(v)), we can define a function f : [m'] ~ [m] such that x~ =
xt~k) for all k ~ [m']. Now consider a n y j >__ 2, and recall that

hjo = sched(Tr,(v)) = (label(e0) ~t(~'a) . . . (labe l (e , ,)) "e~et(~''').

Define

h'jo = (label(e l))r~t(e" l) a l (label (e2))~t (e2 ' l) a2 . . . (label(e,~))~e~et(e"l) am,

where each as, 1 <_ k _< m, is defined as follows. Let

a~ = (label(e]))"~P'(label(e~)) ~p2 . . . (label(e ' .)) ~xp" ,

where expt = reset(e~, j) i f f (l) = k and 0 otherwise. Recall that the existence o f
edge e~ from x~_, to x~ means that process label(el) can reset V to value x~ an
infinite number o f times. For each I the appropriate number o f steps o f process
label(e~) is spliced into hi0 at the place corresponding to the occurrence o f
V = x ' t .

Now consider execution o f schedule h' starting from i.d. q0. Claim 1 and the fact
that ~r2(v) is a loop can be used to show that the insertion o f sched(~2(v)) into hlo
affects nothing except for the internal states o f L2 processes. For each point o f
subsequent insertion o f L2 process steps, Claim 1 is again used, this t ime to show that
the value of V immediately preceding the insertion is one which that process can
reset; the number o f steps spliced in is some number known to reset that value. Thus

202 J .E. BURNS, M. J. FISCHER, P. JACKSON, N. A. LYNCH, AND G. L. PETERSON

all insertions of L2 process steps affect nothing except for the internal state of L2
processes.

Now it is easy to see that schedule h' executed from q0 locks out the processes in
labels(~r2(v)). This is because every step that is executed by those processes occurs
while process P1 is in its critical region. Remaining details are left to the reader. []

5. Open Questions and Directions for Further Investigation

The principal interesting technical question left open by the present paper is the
order-of-magnitude growth of the space bound for lockout-free mutual exclusion.
That is, can Theorem 4.10 be strengthened to yield a lower bound linear in N, can
Theorem 4.12 be strengthened to remove the assumption of "no memory," or is the
true situation somewhere in between?

It would be interesting to consider the questions treated here using variations on
the given general test-and-set primitive. In particular, what bounds are obtainable
for a model in which only reading or writing of a variable, but not a combination of
the two operations, is indivisible? What bounds are obtainable for a model having
several shared 2-valued variables instead of one shared multivalued variable, assum-
ing that the only indivisible access is a test-and-set on a single variable?

Various ways can be developed for measuring the "time" required for execution
by systems of processes. Intuitively, some of our space-efficient system designs seem
to extract a cost in additional computation time. Such trade-offs should be formahzed
and quantified.

Synchronization problems other than simple mutual exclusion should also be
studied in the same framework. Some additional work in several of these directions
appears in [1, 2, 9, 13, 16-18].

Appendix. Proof of Lemma 4.11
We construct the needed highways in a series of stages. At the beginning of each
stage there is a set X _ vert(G) of vertices which have been processed, and sets M,
/141, M2 _ L, [M [_< 2 [X [, MILI M2 a partition of M, of labels which have been used.
For each x E X, highways ~r1(x) and ~r2(x) have been defined, with (a) and (b)
holding:

(a) (~rl(x), ~r2(x)) is a loop trail from x.
(b) labels(crffx)) _ M1 and labels(~r2(x)) C_ M2.

During each stage, X will have at least one new element added, and definitions of
~rl(x) and ~r2(x) will be provided for all new elements of X. Several new elements will
also be added to M. The given conditions are preserved by these changes. At the end
of the final stage, X-- vert(G), thus satisfying the requirements of the lemma.

At the start of the first stage, X = M = O.

Stage of Construction. (Two auxdiary highways, ~bl and $2, are constructed in a
series of steps. Then $~ and $2 are used to help define the required highways.) Choose
x ~ vert(G) - X, and initialize $~ = ¢~2 = (x).

(l) Path Extenswn. See if there exist edges el and e2 satisfying (la)-(ld):

(la) orig(el) = orig(e2) = term(Ol).
(lb) term(el) = term(e2) ~ vert(G) - X - vert((hl).
(lc) label(eQ # label(e2).
(ld) (label(e0, label(e2)) C_ L - M - labels(Ol) - labels(g,2).

Implementation of N-Process Mutual Excluswn

x 0 f l l ~- x I f 1 2 ~ x 2
• • •

f21 f22

203

x 0 Xq Xk_l f l ~ k Xk

I I
e 1

FIGURE 2

If not, then proceed to (2) below. I f so, then let 6, = 6~" (orig(e,), e,, term(e,)), i =
1, 2, and return to (1) above. (That is, extend 61 and 62 as many times as possible to
common previously unprocessed vertices, using pairs of edges with distinct previously
unused labels.)

(2) Loop Trail Construction. See if there exist edges ei and e2 satisfying (2a)-(2d):

(2a) orig(el) = orig(ez) = term(6I).
(2b) (term(el), term(ez)} ___ vert(61).
(2c) label(el) # label(e2).
(2d) {label(el), label(e2)} _ L - M - labels(6z) - labels(62).

If not, then proceed to (3) below. I f so, then assume without loss of generality that
61 = (xo, f i l , x l , i l k , Xk), 62 = (Xo, J~l, xl , j ~ , xk), term(el) = Xp, term(e2) = Xq,
a n d p _ q. Define ¢rl(X,) and ¢r2(x 0 for all L 0 _ i _< k, as follows. For 0 _< i < k, let
~2(Xt) = (Xq, f2(q+l), Xq+l f2k, Xk, e2, Xq). For 0 _< i -----p, let ¢rl(x,) = (x.fi.+l), x,+l ,
. . . . flp, xp, fltp+l), Xp+l f lk, Xk, el, Xp). F o r p + 1 _< i _ k, le t t2Tl(Xt) ~- (xt , fl(t+l),
x,+l fxk, xk, e~, xp, fiCp+l~, xp+l f i , x,). For 0 _< t _ k, add x, to X, and add
labels(~rl(x,)) to M1 and labels(cr2(x,)) to M2. The stage is complete. (Figure 2 should
be helpful. Here 6~ represents the upper and 62 the lower path. Two edges, el and e2,
branch back to prior vertices o f 61 (and 62), thereby creating two loops. For each i,
¢r2(x,) represents the " inner loop" (from xq to xk and back by e2 to xq), while ~rx(x~)
represents a path from x, to a vertex of the "outer loop" (from xp to xk and back by
el to xp) followed by a complete circuit of the outer loop.)

(3) Loop Trail Access. See if there exists an edge e satisfying (3a)-(3c):

(3a) orig(e) = term(60.
(3b) term(e) U X.
(3c) label(e) U L - M - labels(f1) - labels(62).

I f not, then the stage halts with an error. If so, then let 61 = (xo, f i l , Xl ,flk, xD.
Define Tra(x,) and ~r2(x,) for all h 0 _ i <_ k, as follows. ¢;l(X,) = (x,f i ,+l~, X,+l ilk,
xh, e, term(e)) . (¢rl(term(e))). ¢r2(x,) = ~r2(term(e)). For 0 <_ i <__ k, add x, to X and
labels(~rl(x,)) to M1. The stage is complete. (Intuitively, previously constructed loop
trails are being re-used, with the newly-defined path 61 used to provide initial access.)

End of Stage.

It is easily seen that the complete execution o f a stage preserves the needed
conditions. Stages continue to be initiated as long as X # vert(G). Since vert(G) is
finite and at least one element is added to X at each stage, we eventual ly obtain
X = vert(G), provided no stage ends in an infinite loop at step (1) or terminates with
an error. An infinite loop is impossible, because at each execution o f step (1) an
element is added to vert(6~); thus (lb) must eventually fail.

We argue that no stage A having I xI < [vert(G)[at its start terminates with an
error. We know that I M I --- 2 [X I at the start o f stage A, and also that 2 [vert(G) I -<

204 J.E. BURNS, M. J. FISCHER, P. JACKSON, N. A. LYNCH, AND G. L. PETERSON

ILl. Thus IL - MI -> 21vert(G) - XI at the start of stage A. Immediately after
initialization of ~1 and ~2 we have

[L - M - labels(~) - labels(~2) [>_ 21vert(G) - X - vert(¢,l) + 1 I,

and this inequality is preserved by any number of executions of step (1). Thus, after
any number of executions of step (1) we have

IL - M - labels(g~x) - labels(g,2)l ___ I vert(G) - X - vert(<h~) + 11 + 1.

We now apply the Pigeonhole Principle. Intuiuvely, the term on the left-hand side
of the last inequality represents the number of unused labels, while the term on the
right-hand side is one more than the number of "pigeonholes," where one pigeonhole
is allotted to each unprocessed vertex and a single pigeonhole is allotted to all the
previously processed vertices. By the Pigeonhole Principle and the fact that G is full,
there exist two edges el and e2 satisfying (c)-(f):

(c) orig(el) -- orig(e2) -- term(,h).
(d) Either (dl) or (d2) holds;

(dl) term(el) = term(e2) ~ vert(G) - X - vert(g,l).
(d2) {term(el), term(e2)) _ X U vert(g,~).

(e) label(el) ~ label(e2).
(f) (label(el), label(e2)) _ L - M - labels(,h) - labels(~).

If (d 1) holds, then step (1) is executed, while if (d2) holds, then either step (2) or step
(3) will be executed. Thus no error will result. []

REFERENCES

I. BURNS, J Mutual exclusion with linear wamng using binary shared variables SIGA CT News 10, 2
(Summer 1978), 42-47

2 BURNS, J. Complexity ofcommumcation among asynchronous parallel processes Ph D. Dissertation,
School of Information and Computer Science, Georgm Institute of Technology, Atlanta, Ga , 198 I.

3. CREMERS, A., AND HIBBARD, T An algebraic approach to concurrent programming control and
related complexRy problems Tech Rep, Computer Science Dep., UCLA, Los Angeles, Cahf, 1975

4 CREM~RS, A, AND HIBaARD, T Mutual exclusion of N processors usmg an O(N)-valued message
variable In Lecture Notes m Computer Science 62, Spnnger-Verlag, 1978, pp. 165-176

5. DIJKSTRA, E.W. Solution of a problem m concurrent programming control. Commun. A CM 8, 9
(Sept 1965), 569

6 DIJKSTRA, E. Cooperating sequenaal processes In Programming Languages, F Genuys, Ed, Aca-
demic Press, New York, 1968.

7 EISENnERG, M.A., AND McGUIRE, M R Further comments on D,jkstra's concurrent programming
control problem Commun ACM 15, I l (Nov. 1972), 999

8. FELDMAN, J. Synchronizing distant cooperating processes TR 26, Univ. of Rochester, Rochester,
N Y., Oct 1977

9 FISCHER, M, LYNCH, N, BURNS, J , AND BORODIN, A. Resource allocation with ~mmumty to limited
process failure Proc. 20th Ann IEEE Symp on Foundations of Computer Science, Puerto Rico,
1979, pp. 234-254

l0 KNUTH, D E Addmonal comments on a problem in concurrent control Commun A CM 9, 5 (May
1966), 321-322

l I LAMPORT, L A new soluaon of D,jkstra's concurrent programming problem Commun. A CM l 7, 8
(Aug. 1974), 453-455

12. LIPTON, R Lumtatlons of synchromzauon primitives wRh condmonal branching and global vari-
ables Proc. 6th Ann ACM Symp on Theory of Computing, Seattle, Wash., 1974, pp 230-241

13. LYNCH, N,ANDFISCHER, M. On descnbmg the behavior and lmplementatlon ofdistnbuted systems
Theor. Comput Sci 13 (1981), 17-43

14. LIPTON, R , SNYDER, L, AND ZALCSTEIN, Y A comparative study of models of parallel computation
Proc. 15th Ann Symp on Swachmg and Automata Theory, New Orleans, La, 1974, pp 145-155

Implementation of N-Process Mutual Exclusion 205

15 MILLER, R , AND YAP, C Formal speclficanon and analysis of loosely connected processes. Res
Rep RC 6716, IBM Thomas J Watson Research Lab, Yorktown Heights, N.Y., Sept. 1977

16 PETERSON, G Time-space trade-offs for asynchronous parallel models--Redueibllities and equiva-
lences Proc l lth Ann ACM Syrup on Theory of Computing, Atlanta, Ga., April 1979, pp 224-230.

17 PETERSON, G The complexity of parallel algorithms Ph D Dissertation, Computer Science Dep.,
Unlv of Washington, Seattle, Wash., 1979

! 8. PETERSON, G , AND FISCHER, M Economical solutions for the cnucal secuon problem in a distributed
system. Proc. 9th ACM Symp on Theory of Computing, Boulder, Colo., 1977, pp. 91-97

19 RIVEST, R , AND PRATT, V The mutual exclusion problem for unreliable processes: Preliminary
report Proc 17th Ann Symp on Foundation of Computer Science, Houston, Texas, 1976, p 1-8.

RECEIVED MAY 1979, REVISED JUNE 1980, ACCEPTED SEPTEMBER 1980

Journal of the Association for Computing Machinery, Vol 29, No 1, January 1982

