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1. Introduction 

The time-complexity classification of the membership problem for general context-free 
languages [3, 15] and for subclasses of the context-free languages [1] has been carefully 
exammed because of its importance in parsing. Of less practical significance, but of 
equal theoretical interest, is the corresponding space-complexity classification, both for 
general context-free languages and for natural subclasses. 

It has been shown [3] that the membership problem for every context-free language 
is solvable with space at most the square of the log of the input length being used. It is 
an open question whether this bound may be improved to nondeterministic log space. 
In fact, it is conceivable that the bound might be improved to deterministic log space, 
but [12] this improvement would imply that unlikely result that any problem solvable in 
nondetermlnistic log space is also solvable in deterministic log space. A more likely 
possibility ~s that the membership problem for every deterministic context-free language 
is solvable in deterministic log space. Although it is not yet known whether this is so, 
this problem is reduced to simpler subcases in [13]. For example, it is shown there that 
there exists a simple precedence language which is "at least as hard as" all deterministic 
context-free languages; so the above question for deterministic context-free languages 
is equivalent to the corresponding question for simple precedence languages. 

In the present paper attention is restricted to one particular class of languages, 
namely, those which are log space reducible, in the sense of [14] and [5], to parenthesis 
context-free languages [6, 10]. It is shown in Section 3 that the membership problem 
for any parenthesis language is solvable in determimstic log space; thus the membership 
problem for any language log space reducible to a parenthesis language is also solvable 
in deterministic.log space. 

As examples of such languages, we consider in Section 4 the set of all Boolean 
sentences (in any reasonable notation) which evaluate to 1 (true). It is concluded that 
the evaluation of Boolean sentences may be done in log space. 
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There have been several other recent papers on space classificatmn of various 
subclasses of the context-free languages. In [11] it is shown that the Dyck languages 
have their membership problems.solvable in log space. In [8] a similar result is proved 
for the word problem for free groups with finitely many generators. In [9] Theorem 1 
of this paper is independently presented; in [2] are several log space lower bounds for 
context-free languages. And in [4] several subclasses of the deterministic context-free 
languages defined by restrictions on the automaton model are shown to have log space 
membership algorithms. 

It should be noted that the original motivation for the work in the present paper 
came not from context-free language classification but from previous work by the 
author and others on log space reducibihties. A reasonable generalization of the log 
space reducibility of [14] and [5] is the log space truth-table reducibility proposed and 
studied in [7]. The naturalness of the definition in [7] depends on the ability to 
evaluate truth-table conditions (i.e. Boolean sentences) in log space. Further discussion 
of this application of the present work appears in the other paper. 

An operation seemingly related to the evaluation of Boolean sentences is the 
translation of Boolean formulas from infix notation to prefix or postfix notation, and 
vice versa. We consider in Section 5 the analogous syntax directed translation from a 
parenthesis language to any context-free language. It is shown that such a translation 
may be performed in log space. In particular, a "parse" may be obtained in log space 
for any word in a parenthesis language Also, as a consequence, translation among 
various representations of Boolean formulas is shown in Section 6 to require no more 
than log space. 

It is known that deterministic context-free languages may be parsed m linear time 
and (therefore) linear space. The algorithms in this paper for membership and 
translation all require higher degree polynomial amounts of time for the languages to 
which they apply. It would be interesting to show that this trade-off is inherent. 

Another interesting question arises from consideration of the distinction between the 
membership question (a language problem) and the determination of a parse for a 
word (a grammar problem) for context-free languages. Does the log space computability 
of the former problem necessarily imply the existence of a grammar for which the latter 
problem is also log space computable? 

2. Notatton and Defimtions 

A context-free grammar G is written as ('V, ~ ,  ~ ,  S), where ~ is the set of variables, 5r 
the set of terminal symbols, ~ the set of rules, and S the start variable. L(G) represents 
the language generated by grammar G. 

A parenthesis (context-free) grammar [10] is a context-free grammar ('V, 5r, ~,  S) 
having two distinguished terminal symbols "(" and ")", with every rule in ~ of the form 
A -~ (x), where x U ('V t.J if)* and x contains no occurrences of "(" or ")". A 
parenthests (context-free) language is a language which is L(G) for some parenthesis 
grammer G. 

Ix I represents the length of string x. ~, represents the empty string. 
A log space machtne M is a deterministic Turing machine having the following 

properties: M has three tapes. One is a two-way read-only input tape (with end 
markers) which may contain symbols from a finite input alphabet. The second is a two- 
way read-write worktape which may contain symbols from a finite worktape alphabet. 
The third is a right-moving write-only output tape, on which may be written symbols 
from a finite output alphabet. If M is started with any input x with the input head at the 
left, then M eventually halts with at most logs(Ix I) worktape squares having been 
visited during the computation; if y is the contents of the output tape when M halts, 
then M computes y on input x. 
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If M, ~ are finite alphabets andf :M* ~ ~* ,  t h e n f  is log space computable if there is 
a log space machine M with input alphabet M and output alphabet ~ such that M 
computes f(x) on input x for all x E M*. 

If A C M* for alphabet M, C~ is defined by: 

Caa(X)= if x E M * - A .  

A setA is log space computable if CA ~ is log space computable for some M. 
If A _C M*, B C ~* for alphabets M, ~ ,  and if A, B, A,  J~ -~ 0 ,  then we write 

A -<'~ B (A ts log space many-one reducible to B) provided there is a log space 
computable functionf:M* ~ ~*  such that x E M ifff(x) ~ B. It is seen in [14] that i fA 
_<~ B and B is log space computable, then A is log space computable. 

3. Recognition of  Parenthesis Languages 

We prove our main result: 
THEOREM 1. All parenthesis languages are log space computable. 
PROOF. Let G = (~,  3-, ~ ,  S) be any parenthesis grammar. We describe the 

C£ (G) operation of a log space machine M which computes 
Let m be the largest number  of variable occurrences on the right of any single rule in 

~ .  M's worktape will be divided into several tracks. The first m tracks will be called 
storage tracks and will be used to keep account of partial determinations of parses. The 
remaining tracks will be used for bookkeeping operations, primarily counting parenthe- 
ses. 

M first performs a preliminary check that its input string x is of the appropriate form. 
Specifically, M checks that x contains equal numbers of "(" and ")",  that x begins with 
"(" and ends with ")", and that x cannot be written as x~x2, xl, Xz -~ h, where the 
number of "(" in xl is less than or equal to the number  of ")" in xl. If this check is 
successful, it is then known that each parenthesis has a well-defined matching paren- 
thesis. M then checks that there is no substring of x of the form (xl(yl)xz(y2) "'" 
(Ym+0Xm+2), where x~x2 "." x~+2 contains no "(" or ")", and where the pairs of 
parentheses surrounding y~, ... , Ym+~ and the entire expression are all matching pairs. 
If x is not of the appropriate form, M outputs 0. If x is of the appropriate form, it is 
meaningful to use certain descriptive terminology in presenting the remainder of the 
construction: 

When the input head rests on a square containing "(", we call that symbol the current 
parenthesis. A phrase is a substring of x which begins and ends with matching 
parentheses. The phrase beginning at the current parenthesis is the current phrase. The 
maximal subphrases of each phrase are its children; the minimal phrase containing a 
proper subphrase of x Is the parent of that proper subphrase. Children of a common 
parent are siblings. The children of each phrase are ordered according to length, the 
longest subphrase first m this ordering. If two are of equal length, the leftmost precedes 
the rightmost. 

Symbols will be placed in columns consisting of corresponding squares on the m 
storage tracks. An auxiliary variable Vars, which can assume any value from 2 v (the set 
of subsets of ~) ,  is kept in M's finite control. 

M places its input head on the leftmost symbol of x and proceeds to step 1 below. At 
the outset, all storage tracks are blank (i.e contain only a designated symbol b). 

1 See ff the current phrase contains any "(" other than the current parenthesis 
1 1 If so, move the input head to the leftmost symbol of the first child of the current phrase Return to 

1. (Note "first" refers to the ordering of children estabhshed above ) 
1 2 If not, set Vars equal to the set of all variables appearing on the left of productions m ~' for which 

the current phrase is the right side Go to 2 
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2. See if the current phrase is x. 
2 1. If so, then see ff S is in Vats. 

2.1.1. If so, M outputs 1 and halts 
2.1.2. If not, M outputs 0 and halts. 

2.2 If not, see if the current phrase is a first but not an only child, a middle child, a last but not an only 
child, or an only chdd. 
2.2.1 If the current phrase is a first but not an only child, then record the current value of Vars m 

the topmost square of the first blank column of the storage tracks Move the input head to 
the leftmost symbol of the next sibhng of the current phrase. Return to 1. 

2 2 2 If the current phrase is a middle child, then record the current value of Vats in the topmost 
blank square of the last nonblank column of the storage tracks Move the input head to the 
leftmost symbol of the next sibling of the current phrase. Return to 1 

2 2.3. If the current phrase is a last but not an only child, then record the current value of Vars m 
the topmost blank square of the last nonblank column of the storage tracks Move the input 
bead to the leftmost symbol of the parent of the current phrase Set Vats equal to the set of 
all variables appearing on the left of productions m ~ for which the right side is 

(xlVlx2V2"" V,x,+0, x, Eff* ,  1 - < t - < n  + 1, V,E'V, 1 - < t - ~ n ,  

where the current phrase ,s 

(x,(rl)x~(y~) "" ~v.)x.+O 

(all the pmrs of parentheses shown being matching pairs), and for all ~,/, if (y~) is the i th chdd 
of the current phrase, then V, ts a member of the set represented on thelth track of the last 
nonblank column Erase the last nonblank column Return to 2. 

2 2.4 If the current phrase ~s an only chdd, record the current value of Vars in the topmost square 
of the first blank column Move the input head to the leftmost symbol of the parent of the 
current phrase Set Vars equal to the set of all varmbles appearing on the left of productions 
m ~ for which the right side is 

(x~Vx~), x~, xz ~ ~*, V E V, 

where the current phrase Is 

(x,(v)xd 

(both the pairs of parentheses shown being matching pairs), and V is a member of the set 
represented m the topmost square of the last nonblank column Erase the last nonblank 
column Return to 2 

I t  s h o u l d  be  c l ea r  t h a t  M is s imply  p e r f o r m i n g  a b o t t o m - u p  parse  of  x ,  pa r s ing  
p h r a s e s  in o r d e r  of  l eng th .  A t  any  t ime ,  any  c o l u m n  of  t he  s to rage  t r acks  c o n t a i n s  on ly  
va lues  of  Vars  ar is ing  f r o m  pa r s ing  s ib l ing  ph ra se s .  Since n o  p a r e n t  has  m o r e  t h a n  m 
c h i l d r e n ,  the  m s to rage  t racks  a re  suff ic ient .  

T h e  r e a d e r  may  ver i fy  t h a t  all t he  r e q u i r e d  b o o k k e e p i n g  o p e r a t i o n s  may  b e  p e r f o r m e d  
in space  log2(lx 1). I t  r e m a i n s  to  show t h a t  log2(lx 1) c o l u m n s  o f  the  s to rage  t racks  suffice.  

By the  c o n s t r u c t i o n ,  e a c h  symbo l  p laced  o n  any  o f  the  s to rage  t racks  is a va lue  o f  
Vars ,  which  ts t he  set  of  va r i ab le s  in  T ~ wh ich  g e n e r a t e  ( in G) a pa r t i cu la r  p r o p e r  
s u b p h r a s e  of  x .  D e n o t e  by  x,a.t t h e  p h r a s e  wh ich  c o r r e s p o n d s  na tu ra l ly  to  the  s y m b o l  in 
s q u a r e  j of  t rack  i a f t e r  t s t eps  of  M ' s  c o m p u t a t i o n  o n  i n p u t  x .  T h e n  a f t e r  any  n u m b e r  t 
o f  s teps  o f  M ' s  c o m p u t a t i o n ,  t he  fo l lowing  are  t rue :  

(a )  F o r  a n y ] ,  all x,,j,t wh ich  a re  de f i ned  a re  s ibl ings.  M o r e o v e r ,  for  any  j ,  xl.~,t ( if  it 
is de f ined )  is a first  chi ld .  

(b)  If  xLj+l, t  is de f ined ,  t h e n  xl,j , t  is de f i ned  a n d  t he  p a r e n t  of  x l ,  j+l,t is a ( no t  
necessar i ly  p r o p e r )  s u b p h r a s e  of  a s ib l ing of  x~,,,t. 

P r o o f  of  (a)  and  (b)  is by  i n d u c t i o n  o n  t. W i t h  (a)  a n d  (b ) ,  it is s t r a i g h t f o r w a r d  to  
show tha t  for  a n y ] ,  t ,  t he  l e n g t h  o f  the  p a r e n t  ofx~, j+l , t  ( i fxh j+Lt  is de f ined)  is less t h a n  
ha l f  of  t he  l eng th  of  t he  p a r e n t  of  x~,~.t. T h e n  the  n u m b e r  of  c o l u m n s  used  a f t e r  any  
n u m b e r  t of  s teps  is a t  m o s t  log2(Ixl) .  

I t  is easy  to see  t h a t  the  t ime  for  th is  a l g o r i t h m  is O(n~),  w h e r e  n is t he  l e n g t h  of  t he  
i npu t  s t r ing.  
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4. Corollaries: Evaluation o f  Boolean Sentences 

Let  f l  = {to, I 1 <- i <- 16}. Define an infix Boolean sentence as a word in the language of 
grammar ({S}, {0, 1, (,)} t..J 11 , {S ~ SoS, S ~ (StoS)lto ~ fl} t.J {S ~ 0, S ~ 1}, S). 
Each to ~ II  represents one of the 16 binary Boolean functions. We assume that if i < j 
then operat ion tot has the same or greater precedence than toj. Among  operat ion 
symbols of equal precedence,  association is from the left. val(x), for any infix Boolean 
sentence x,  represents the value of x according to the interpretat ions of the elements  of 
Ill and the given precedence rules. 

COROLLARY 1. There exists a log space machine M with input alphabet {0, 1, (,)} t) 
[~ which computes val(x) for any infix Boolean sentence input x. 

PROOF. Let A = {infix Boolean sentences xlval(x) = 1}. Let  B be the parenthesis 
language generated by the grammar  ({S, Z}, {0, 1, (,)} U f l ,  ~ ,  S), where ~ consists of 
the following rules (for all to ~ 12): 

S---~ (SOS) if val(ltol) = 1, S ~ (StoZ) if val(ltoO) = 1, 
S ~  (ZtoS) if val(Otol) = 1, S ~ (ZtoZ) if val(OtoO) = 1, 
Z---> (SOS) if val(ltol) = O, Z---~ (StoZ) if val(ltoO) = O, 
Z--> (ZtoS) if val(Otol) = O, Z---~ (ZtoZ) if val(OtoO) = O, 
S ---> (1), and Z ~ (0). 

That is, B consists of all the infix Boolean sentences x having val(x) = 1 with a full 
parenthesis structure superimposed.  

It suffices to show A -<'~ B. But this is simply the statement that there exists a log 
space machine which fully parenthesizes an infix Boolean sentence, which the reader  
may verify. [] 

Similarily, define a prefix Boolean sentence as a word in the language of  grammar 
({S}, {0, 1} LI [~ , {S ~ toSSlto ~ fl} U {S ~ O, S ~ 1}, S). val(x), for any prefix 
Boolean sentence x,  represents the value of x according to the usual rules. 

COROLLARY 2. There exists a log space machme M with input alphabet {0, 1} t_J 
which computes val(x) for any prefix Boolean sentence input x. 

PROOF. The proof  is very similar to that of Corollary 1 and is left to the reader .  O 
Clearly, a result similar to Corollaries 1 and 2 is true for postfix representat ion of 

Boolean sentences. 
Note that the apparent  t ime requirement  for evaluation of (infix, prefix, or postfix) 

Boolean sentences according to the given algorithms is O(n4). This is because parenthe-  
sizing any type of Boolean sentence seems to require time O(n2), as does the evaluation 
algorithm. Straightforward composit ion of the given log space algorithms (as in [14]) 
requires time proport ional  to the product  of the times of the component  algorithms. 

5. Translation of  Parenthesis Languages 

A syntax-directed translation schema (SDTS) [1] is a 5-tuple T = ('V, i f ,  ~r,, ~ ,  S), 
where 

(1) ~V is a finite set of variables,  
(2) f f  and i f '  are finite input and output alphabets, respectively, 
(3) ~ is a finite set of rules of the form A --> x, x ' ,  where x ~ ('V LI if)*, x '  

('V U ~-')*, and the variables of x '  are a permutat ion of the variables of x.  To each 
occurrence of a variable x is assoctated an occurrence of an identical variable in x ' ,  in a 
one-to-one manner,  and 

(4) S E ~V is the start symbol. 
We define a translation form of T: 
(1) (S, S) is a translation form, and the two S's are associated, and 
(2) if (wAx, w'Ax') is a translation form in which the two instances of  A are 

associated, and i r a  ---~ y,  y '  is a rule in ~ ,  then (wyx, w'y'x') is a translation form of T. 
The variables in the new translation form have the natural  association deriving from the 
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association in the previous form and in the rule. 
We write in the preceding situation (wAx, w'Ax') . f  (wyx, w'y'x'); -~ is the transitive 

closure of-ft .  The translation ¢(T) defined by an SDTS T is {(x, x')l(S, S) --~ (x, x'),  x 
if*, x '  E (3")*}. The domain of the translation dora ¢(T) is {x 1(3 x')[(x, x ')  ~ ¢(T)]}. 

A parenthesis (syntax-directed translation) schema is an SDTS (~, ~-, i f ' ,  ~ ,  S) in 
which f f  contains two distinguished symbols, "("  and ")",  and each rule of ~ is of the 
form A ~ (x), x ' ,  where A ~ ~,  x E ( ~  t.J if ')*, and x and x '  contain no occurrences 
of "(" or ")".  

THEOREM 2. For any parenthesis schema T = (~, ~', 5 r', ~, S), there extsts a log 
space machine M with input alphabet 3- such that on any input x ~ dom ~'(T), M 
computes some value x' with (x, x') ~ ~'(T). 

PROOF. We may assume that M's input x is in dora ~'(T). The terminology current 
parenthesis, phrase, current phrase, child, parent, and sibling is used as in Theorem 1. 
However, the ordering of children established in Theorem 1 wdl not be used in the 
description of M. 

We select a derivation of x by ordering the rules of T in some fixed way. Every 
phrase of x then has a corresponding rule, determined as follows: 

(1) The rule corresponding to x is the first rule S ~ y, y ' ,  such that (3x ')[(y,  y ' )  
(x, x')], and 

(2) if z is the kth child (from the left) of phrase y, and A ~ vBw, v'Bw' is the rule 
corresponding to y (where B is the kth variable of vBw), then the rule corresponding to 
z is the first rule B --> u, u '  such that (3y')[(u, u') -~ (y, y')]. 

M will require the following subroutine N, which starts with the mput head on a "(" 
and determines the rule corresponding to the current phrase. A variable Rule, which 
can assume as its value any rule in ~ ,  is kept in the finite control. 

Subroutine N: Record the current input head position on track 1 and the position of the left end of the input 
on track 2 

1 By simulating the machine of Theorem 1, determine the rule corresponding to the phrase beginning at the 
position recorded on track 2 (If Rule has a previously defined value, this value will be used here.) Set 
Rule = the newly determined rule, See if the head positions recorded on tracks 1 and 2 are identical. 
1,1, If not, then determine the position of the leftmost symbol of that child of the phrase beginning at the 

posmon now recorded on track 2, which contains the phrase begmmng at the position now recorded 
on track 1 
Record th~s newly determined position on track 2 
Return to 1 

1.2. If so then the current value of Rule is the needed value. 

Subroutine N simply follows the inductive definition of the corresponding rule; it 
obtains the rule corresponding to the current phrase by first obtaining the rule 
corresponding to the entire input and then doing the same for successive children which 
contain the current phrase. 

We now describe the main construction of M. M begins at the leftmost symbol of x, 
at stage 1 below.. 

1 Call subroutine N to determine the rule A ~ w, w' corresponding to the current phrase See if w contains 
any variables 
1.1. If so, output all symbols of w' up to and not including the first variable If the kth variable (from the 

left) of w is associated with the first variable of w',  move the input head to the first symbol of the kth 
child (from the left) of the current phrase 
Return to 1 

1.2 If not, then output w' 
Go to 2. 

2 See If the current phrase is x 
2 1. If so, halt. 
2 2. ff not, then call subroutine N to determine the rule, A ~ w, w', corresponding to the parent of the 

current phrase If the current phrase is the kth child, and if the lth variable of w' is associated with 
the kth variable of w, then see if the lth variable of w' ~s the last variable of w' 
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2 2 1 If not, then output the terminal symbols of w' between its lth and (l + 1)-th variables. If the 
ruth variable of w is associated with the (l + 1)-th variable of w', move the input head to the 
first symbol of the ruth child of the parent of the current phrase. 
Return to 1 

2 2 2 If so, output the terminal symbols of w' following the last variable Move the input head to 
the first symbol of the parent of the current phrase 
Return to 2. 

Veri f icat ion of  the correctness  of  the const ruct ion  is left  to the reader ;  it is obvious  
that  all steps can be done  in log space.  

It  is easy to see that  the t ime  for this a lgor i thm is O(na). 
With appropr ia te  def ini t ions,  T h e o r e m  2 implies  that  any word  in a parenthes is  

language can be assigned a parse (for a par t icular  parenthesis  g rammar )  in log space.  

6. Corollaries: Translation o f  Boolean Formulas 

Def ine  an infix Boo lean  formula  as a word  in the language o f  g r a m m a r  ({S, V}, 
{0, 1, (,)} U 12, {S--~ SoJS, S---~ (SoJS)[co ~ 1~} tO {S---~ V, e---~ V1, V---~ V0, V--* h}, S). 
H e r e  V genera tes  binary strings which represen t  Boo lean  variables .  Def ine  a prefix. 
Boolean formula as a word  in the language of  g r ammar  ({S, V}, {0, 1, #} tO f~, 
{S ~ ooSSIo~ ~ f~} tO {S --~ V, V ~ V1, V .-~ VO, V ~ #}, S). T w o  B o o l e a n  formulas  
are equivalent if they have  the same values under  the in te rpre ta t ion  of  the e l emen t s  of  
~ ,  the gwen  p recedence  rules ,  and all values  of  the  variables .  

COROLLARY 3. There is a log space machine M wtth the input alphabet {0, 1, (,)} 
tO ~ which computes, for any infix Boolean formula, an equivalent prefix Boolean 
formula. 

PROOV. Consider  the parenthesis  schema T = ({S, V}, {0, 1, (,)} 13 1"~, {0, 1, #} 
to l~, ~ ,  S), where  @ consists of  the fol lowing rules (for all co E f~): 

S ~ (So~S), o~SS, S ~ (V), V, V ~ (V1), V1, V ~ ( V 0 ) , V 0 ,  a n d V ~ (  ) , # .  

M simulates  the  composi t ion  of  two log space machines  M '  and M". M ' ,  on  input  an 
infix B oo l ean  formula  x ,  fully parenthes izes  x. M" produces ,  f rom a fully paren thes ized  
infix Boo lean  formula ,  an equ iva len t  prefix Boo l ean  formula  (by T h e o r e m  2). [] 

COROLLARY 4. There is a log space machine M with input alphabet {0, 1, #} tO 
which computes, for any prefix Boolean formula, an equivalent infix Boolean formula. 

PROOF. Left  to the reader .  
Similar  results hold for the postfix represen ta t ion  o f  Boo l ean  formulas .  The  t ime 

pe r fo rmance  in each case is O(nS). 

ACKNOWLEDGMENTS. This  paper  owes much to the  suggest ions of  A l b e r t  M e y e r  and 
to discussions wLth R o n  Rives t  and Richard  Lip ton .  

REFERENCES 

1 AHO, A , AND ULLMAN, J The Theory of Parsing, Translation and Compdmg, Vol. L Prentice-Hail, 
Englewood Chffs, N J , 1973 

2 ALT, H , AND MEHLHORN, K Lower bounds for the space reqmrement of some famihes of context-free 
languages Tech Pep , U des Saarlandes, Saarbrucken,'West Germany, 1975. 

3 HOPCROFr, J , AND ULLMAN, J Formal Languages and Their Relation to Automata Addnson-Wesley, 
Reading, Mass , 1969. 

4 IGARASHI, "Y Tape bounds for some subclasses of determmnstlc context-free languages Tech Rep No 
80, Centre for Computer Studies, U of Leeds, Leeds, England, 1976. 

5 JONES, N D , ANn LA^SER, W T Complete problems for determimst~c polynomial time. Proc Sixth 
Annual ACM Syrup on Theory of Computing, 1974, pp 40-46 

6 KNUTn, D A characterization of parenthesis languages Inform. and Contr 11 (1967), 269-289. 
7 LADNER, R , AND LYNCH, N Relattvtzatton of questions about log space computablhty In Math Syst. 

Theory 10 (1976), 19-32 
8. LWrON, R., ANO ZALCSTEIr~, Y Word problems solvable in logspace. J. ACM 24, 3 (1977), 522-526 
9 MEHLHORN, K Bracket-languages are recogmzable in loganthmnc space Tech. Rep., U. des Saaflandes, 

Saarbrucken, West Germany, Sept. 1975 
10. McNAuaHTON, R Parenthesis grammars. J. ACM 14, 3 (July 1967), 490-500. 



590 NANCY LYNCH 

11. RrrcmE, R.W., AND SPR1NGSTEEL, T.M. Language recognition by marking automata. Inform. and 
Contr. 20, 4 (May 1972), 313-330. 

12. SUtmOROUGH, I.H. On tape-bounded complexity classes and multi-head finite automata Proc 14th 
Annual IEEE Symp on Switching and Automata Theory, 1973, pp. 138-144. 

13. StrDeOEOV~a, I.H. On deterministic context-free languages, multlhead automata and the power of an 
auxiliary pushdown store Proc. Eighth Annual ACM Symp on Theory of Comptng, 1976, pp. 141-148. 

14. STOCKMEYER, L., AND MEYER, A Word problems requiring exponential time: Preliminary report Proc. 
Fifth Annual ACM Symp on Theory of Comptng ,  1973, pp. 1-9 

15 VALIANT, L General context-free recognition in less than cubic time. J. Complr. Syst Sct. 10, 2 
(1975), 308-315. 

RECEIVED AUGUST 1975; REVISED OCTOBER 1976 

Journal of the Assocmtton for Com0uung Machinery, Vol 24, No 4, October 1977 


