Log Space Recognition and Translation of Parenthesis
Languages

NANCY LYNCH

Uriwversity of Southern Califorma, Los Angeles, Califorma

ABSTRACT It 15 shown how to determme membership in any parenthesis context-free language in log space
As an application, the evaluation of Boolean sentences is shown to be log space computable Log space
translation of parenthesis languages 1s sumilarly shown to be possible, thus log space translators among
various representations of Boolean formulas may be constructed

KEY WORDS AND PHRASES log space, parenthesis grammars, parenthesis languages

CR CATEGORIES® § 23,525,526

1. Introduction

The time-complexity classification of the membership problem for general context-free
languages [3, 15] and for subclasses of the context-free languages [1] has been carefully
examined because of its importance in parsing. Of less practical significance, but of
equal theoretical interest, is the corresponding space-complexity classification, both for
general context-free languages and for natural subclasses.

It has been shown [3] that the membership problem for every context-free language
is solvable with space at most the square of the log of the input length being used. It is
an open question whether this bound may be improved to nondeterministic log space.
In fact, it is conceivable that the bound might be improved to deterministic log space,
but [12] this improvement would imply that unlikely result that any problem solvable in
nondeterministic log space is also solvable in deterministic log space. A more likely
possibility 1s that the membership problem for every deterministic context-free language
is solvable in deterministic log space. Although it is not yet known whether this is so,
this problem is reduced to simpler subcases in [13]. For example, it is shown there that
there exists a simple precedence language which is “at least as hard as” all deterministic
context-free languages; so the above question for deterministic context-free languages
is equivalent to the corresponding question for simple precedence languages.

In the present paper attention is restricted to one particular class of languages,
namely, those which are log space reducible, in the sense of [14] and [5], to parenthesis
context-free languages (6, 10]. It is shown in Section 3 that the membership problem
for any parenthesis language is solvable in deterministic log space; thus the membership
problem for any language log space reducible to a parenthesis language is also solvable
in deterministic log space.

As examples of such languages, we consider in Section 4 the set of all Boolean
sentences (in any reasonable notation) which evaluate to 1 (true). It is concluded that
the evaluation of Boolean sentences may be done in log space.

Copyright © 1977, Association for Computing Machinery, Inc General permussion to republish, but not for
profit, all or part of this matenal 1s granted provided that ACM’s copyright notice 1s given and that reference
1s made to the publication, to its date of issue, and to the fact that reprinting privileges were granted by
permission of the Association for Computing Machinery

A part of this work was done while the author was a visitor at the IBM Thomas J Watson Research Center,
Yorktown Heights, N Y.

This work was supported 1n part by the National Science Foundation under Grant DCR-92373

Author’s present address: School of Information and Computer Science, Georgia Institute of Technology,
Atlanta, GA 30332.

Journal of the Association for Computing Machinery, Vol 24, No 4, October 1977, pp 583-590

584 NANCY LYNCH

There have been several other recent papers on space classification of various
subclasses of the context-free languages. In [11] it is shown that the Dyck languages
have their membership problems,solvable in log space. In {8] a similar result is proved
for the word problem for free groups with finitely many generators. In [9] Theorem 1
of this paper is independently presented; in [2] are several log space lower bounds for
context-free languages. And in [4] several subclasses of the deterministic context-free
languages defined by restrictions on the automaton model are shown to have log space
membership algorithms.

It should be noted that the original motivation for the work in the present paper
came not from context-free language classification but from previous work by the
author and others on log space reducibilities. A reasonable generalization of the log
space reductbility of [14] and [5] is the log space truth-table reducibility proposed and
studied in [7]. The naturalness of the definition in [7] depends on the ability to
evaluate truth-table conditions (i.e. Boolean sentences) in log space. Further discussion
of this application of the present work appears in the other paper.

An operation seemingly related to the evaluation of Boolean sentences is the
translation of Boolean formulas from infix notation to prefix or postfix notation, and
vice versa. We consider in Section 5 the analogous syntax directed translation from a
parenthesis language to any context-free language. It is shown that such a translation
may be performed in log space. In particular, a “parse” may be obtained in log space
for any word in a parenthesis language Also, as a consequence, translation among
various representations of Boolean formulas is shown in Section 6 to require no more
than log space.

It is known that deterministic context-free languages may be parsed 1n linear time
and (therefore) linear space. The algorithms in this paper for membership and
translation all require higher degree polynomial amounts of time for the languages to
which they apply. It would be interesting to show that this trade-off is inherent.

Another interesting question arises from consideration of the distinction between the
membership question (a language problem) and the determination of a parse for a
word (a grammar problem) for context-free languages. Does the log space computability
of the former problem necessarily imply the existence of a grammar for which the latter
problem is also log space computable?

2. Notation and Definitions

A context-free grammar G 1s written as (¥, 7, 2,), where ¥ 1s the set of variables, 7
the set of terminal symbols, P the set of rules, and § the start variable. L(G) represents
the language generated by grammar G.

A parenthesis (context-free) grammar [10] is a context-free grammar (¥, 7, @, §)
having two distinguished terminal symbols “(’’ and *)”’, with every rule in & of the form
A — (x), where x € (¥ U 9)* and x contains no occurrences of “(” or “)’. A
parenthesis (context-free) language is a language which is L(G) for some parenthesis
grammer G.

jx| represents the length of string x. A represents the empty string.

A log space machine M is a deterministic Turing machine having the following
properties: M has three tapes. One is a two-way read-only input tape (with end
markers) which may contain symbols from a finite input alphabet. The second is a two-
way read-write worktape which may contain symbols from a finite worktape alphaber.
The thitd is a right-moving write-only output tape, on which may be written symbols
from a finite output alphabet. 1f M is started with any input x with the input head at the
left, then M eventually halts with at most log,(|x|) worktape squares having been
visited during the computation; if y is the contents of the output tape when M halits,
then M computes y on input x.

Log Space Recognition and Translation of Parenthesis Languages 585

If &, B are finite alphabets and f: * — B*, then f is log space computable if there 1s
a log space machine M with input alphabet o/ and output alphabet B such that M
computes f(x) on input x for all x € of*.

If A C «* for alphabet &, C¥ 1s defined by:

1 if x€A
Ay} = ’
i) {0 if x € - A

A set A is log space computable if C# is log space computable for some .

If A C o*, B C B* for alphabets &/, B, and if A, B, A, B # &, then we write
A =% B (A 1s log space many-one reducible to B) provided there is a log space
computable function f:sf* — %* such that x € & iff f(x) € B. It is seen in [14] that if A
=% B and B 1s log space computable, then A is log space computable.

3. Recognition of Parenthesis Languages

We prove our main result:

TueoreM 1. A/l parenthesis languages are log space computable.

Proor. Let G = (V, I, ?, S) be any parenthesis grammar. We describe the
operation of a log space machine M which computes C%)

Let m be the largest number of variable occurrences on the right of any single rule in
P. M’s worktape will be divided into several tracks. The first m tracks will be called
storage tracks and will be used to keep account of partial determinations of parses. The
remaining tracks will be used for bookkeeping operations, primarily counting parenthe-
ses.

M first performs a prelimimnary check that its input string x is of the appropriate form.
Specifically, M checks that x contains equal numbers of “(”” and ‘), that x begins with
“C” and ends with “)”, and that x cannot be written as x.x,, x;, X, ¥ A, where the
number of ‘“(” in x, is less than or equal to the number of “)” in x,. If this check is
successful, 1t is then known that each parenthesis has a well-defined matching paren-
thesis. M then checks that there 1s no substring of x of the form (x,(y x.(ys) -
Vme1)Xme2), Where x,x, *+* xmip contains no “(’’ or “)”, and where the pairs of
parentheses surrounding y,, ... , y,, and the entire expression are all matching pairs.
If x is not of the appropriate form, M outputs 0. If x is of the appropriate form, it is
meaningful to use certain descriptive terminology in presenting the remainder of the
construction:

When the input head rests on a square containing “(”, we call that symbol the current
parenthests. A phrase 1s a substring of x which begins and ends with matching
parentheses. The phrase beginning at the current parenthesis is the current phrase. The
maximal subphrases of each phrase are its children; the minimal phrase containing a
proper subphrase of x 1s the parent of that proper subphrase. Children of a common
parent are siblings. The children of each phrase are ordered according to length, the
longest subphrase first in this ordering. If two are of equal length, the leftmost precedes
the rightmost.

Symbols will be placed in columns consisting of corresponding squares on the m
storage tracks. An auxihary variable Vars, which can assume any value from 2% (the set
of subsets of V), is kept in M’s finite control.

M places 1ts input head on the leftmost symbol of x and proceeds to step 1 below. At
the outset, all storage tracks are blank (i.e contain only a designated symbol b).

1 See if the current phrase contamns any “(” other than the current parenthesis
11 If so, move the input head to the leftmost symbol of the first child of the current phrase Return to
1. (Note “first” refers to the ordering of children established above)
1 2 If not, set Vars equal to the set of all vanables appearing on the left of productions 1n & for which
the current phrase 1s the right side Goto 2

586 NANCY LYNCH

2. See if the current phrase is x.
2 1. If so, then see 1if S is in Vars.
2.1.1. If so, M outputs 1 and halts
2.1.2. If not, M outputs 0 and halts.
2.2 If not, see if the current phrase is a first but not an only child, a mddle child, a last but not an only
child, or an only child.
2.2.1 If the current phrase is a first but not an only child, then record the current value of Vars in
the topmost square of the first blank column of the storage tracks Move the input head to
the leftmost symbol of the next sibling of the current phrase. Return to 1.
2 22 If the current phrase 1s a middle child, then record the current value of Vars in the topmost
blank square of the last nonblank column of the storage tracks Move the mput head to the
leftmost symbol of the next sibling of the current phrase. Return to 1
2 2.3. If the current phrase 1s a last but not an only child, then record the current value of Vars in
the topmost blank square of the last nonblank column of the storage tracks Move the input
head to the leftmost symbol of the parent of the current phrase Set Vars equal to the set of
all vaniables appearing on the left of productions mn # for which the nght side 1s

W Vi,V o Vaxann), , €%, 1=:1=n+1, VEY, 1=<:1=<n,

where the current phrase 1s

Geayxa(yz) = whnrs)

(all the pairs of parentheses shown bemng matching pairs), and for all s, 5, if (y,) 1s the yth child
of the current phrase, then V, 1s a member of the set represented on the yth track of the last
nonblank column Erase the last nonblank column Return to 2.

2 2.4 If the current phrase 1s an only child, record the current value of Vars in the topmost square
of the first blank column Move the input head to the leftmost symbol of the parent of the
current phrase Set Vars equal to the set of all variables appearing on the left of productions
m P for which the right side 1s

(:Vx)), 2, €T, VEY,
where the current phrase 1s

xa(ydxs)

(both the pairs of parentheses shown being matching pairs), and V is a member of the set
represented 1n the topmost square of the last nonblank column Erase the last nonblank
column Return to 2

It should be clear that M is simply performing a bottom-up parse of x, parsing
phrases in order of length. At any time, any column of the storage tracks contains only
values of Vars arising from parsing sibling phrases. Since no parent has more than m
children, the m storage tracks are sufficient.

The reader may verify that all the required bookkeeping operations may be performed
in space logy(|x|). It remains to show that fogy(jx|) columns of the storage tracks suffice.

By the construction, each symbol placed on any of the storage tracks is a value of
Vars, which 1s the set of variables in ¥ which generate (in G) a particular proper
subphrase of x. Denote by x,;, the phrase which corresponds naturally to the symbol in
square j of track i after ¢ steps of M’s computation on input x. Then after any number ¢
of steps of M’s computation, the following are true:

(a) For anyj, all x, ;, which are defined are siblings. Moreover, for anyj, x,,,, (if it
is defined) is a first child.

(b) If x,,;4y,, is defined, then x, ;, is defined and the parent of x,, ;,,,, is a (not
necessarily proper) subphrase of a sibling of x, ,,.

Proof of (a) and (b) is by induction on ¢r. With (a) and (b), it is straightforward to
show that for any j, ¢, the length of the parent of x, j4,,, (if x,, ., is defined) is less than
half of the length of the parent of x,,, ,. Then the number of columns used after any
number ¢ of steps is at most logy(|x|).

It is easy to see that the time for this algorithm 1s O(n?), where n is the length of the
input string.

Log Space Recognition and Translation of Parenthesis Languages 587

4. Corollaries: Evaluation of Boolean Sentences

Let Q = {0,|1 =i = 16}. Define an infix Boolean sentence as a word in the language of
grammar ({S}, {0, 1, ()} U Q, {S— SuS, S— (SuoS)lo € QU {§— 0, S— 1},).
Each o €) represents one of the 16 binary Boolean functions. We assume that if i <j
then operation @, has the same or greater precedence than w;. Among operation
symbols of equal precedence, association is from the left. val(x), for any infix Boolean
sentence x, represents the value of x according to the interpretations of the elements of
) and the given precedence rules.

CoroOLLARY 1. There exists a log space machine M with input alphabet {0, 1, (,)} U
) which computes val(x) for any infix Boolean sentence input x.

Proor. Let A = {infix Boolean sentences x|val(x) = 1}. Let B be the parenthesis
language generated by the grammar ({S, Z}, {0, 1, (,)} U Q, 2, S), where & consists of
the following rules (for all ® € }):

S>> 8w if vad(lel)=1, §S—> SwZ) if val(lewd) =1,
S—=(ZwS) if val(lwl) =1, S —>(ZwZ) if val0wl) =1,
Z—-> SwsS) if vallwl)=0, Z— (Se2) if val(1w0) =0,
Z— (ZwS) if vall0wl)=0, Z— (ZwZ) if val(0w0) =0,
S — (1), and Z — (0).

That is, B consists of all the infix Boolean sentences x having val(x) = 1 with a full
parenthesis structure superimposed.

It suffices to show A <Z B. But this is simply the statement that there exists a log
space machine which fully parenthesizes an infix Boolean sentence, which the reader
may verify. 0

Similarily, define a prefix Boolean sentence as a word in the language of grammar
(S {0, L UQ ,{S— wSSlo € Q} U {S — 0, S — 1}, S). val(x), for any prefix
Boolean sentence x, represents the value of x according to the usual rules.

CoROLLARY 2. There exists a log space machine M with input alphabet {0, 1} U Q
which computes val(x) for any prefix Boolean sentence input x.

Proor. The proof is very similar to that of Corollary 1 and is left to the reader. O

Clearly, a result similar to Corollaries 1 and 2 is true for postfix representation of
Boolean sentences.

Note that the apparent time requirement for evaluation of (infix, prefix, or postfix)
Boolean sentences according to the given algorithms is O(n?). This is because parenthe-
sizing any type of Boolean sentence seems to require time O(n?), as does the evaluation
algorithm. Straightforward composition of the given log space algorithms (as in [14])
requires time proportional to the product of the times of the component algorithms.

5. Translation of Parenthesis Languages

A syntax-directed translation schema (SDTS) [1]is a 5-tuple T = (¥, J, ', ?, S),
where

(1) 7 is a finite set of variables,

(2) 7 and 9" are finite input and output alphabets, respectively,

(3) @ is a finite set of rules of the form A — x, x’, where x € (V' U I)*, x’ €
(V' U J')*, and the variables of x’ are a permutation of the variables of x. To each
occurrence of a variable x is associated an occurrence of an identical variable inx’, in a
one-to-one manner, and

(4) S € 7 is the start symbol.

We define a translation form of T

(1) (S, S) is a translation form, and the two S’s are associated, and

(2) if (wAx, w'Ax’) 1s a translation form in which the two instances of A4 are
associated, and if A — y, y’ is a rule in &, then (wyx, w'y’'x’) is a translation form of T.
The variables in the new translation form have the natural association deriving from the

588 NANCY LYNCH

association in the previous form and in the rule.

We write in the preceding situation (wAx, w'Ax') - (wyx, w'y’x’); $ is the transitive
closure of . The translation +(T) defined by an SDTS T is {(x, x)[(S, S) % (x,x),x €
T*,x’ € (J97)*}. The domain of the translation dom #(T) is {x | x)(x, x") € +(D)]}.

A parenthesis (syntax-directed translation) schema is an SDTS (¥, J, J', P, §) in
which J contains two distinguished symbols, ““(”” and “)”, and each rule of ? is of the
form A — (x), x’, where A € ¥, x € (¥ U J')*, and x and x’ contain no occurrences
of “(” or “)”.

THEOREM 2. For any parenthesis schema T = (V, T, I', P, S), there exists a log
space machine M with input alphabet I such that on any imput x € dom «(T), M
computes some value x* with (x, x") € 7(T).

Proor. We may assume that M’s input x is in dom 7(T). The terminology current
parenthesis, phrase, current phrase, child, parent, and sibling is used as in Theorem 1.
However, the ordering of children established in Theorem 1 will not be used in the
description of M.

We select a derivation of x by ordering the rules of T in some fixed way. Every
phrase of x then has a corresponding rule, determined as follows:

(1) The rule corresponding to x is the first rule § — y, y’, such that Ax")[(y, y") +
(x, x)], and

(2) if z is the kth child (from the left) of phrase y, and A — vBw, v'Bw’ is the rule
corresponding to y (where B is the kth variable of v Bw), then the rule corresponding to
z is the first rule B — u, 4’ such that (3y)[(u, u') + (¥, y)).

M will require the following subroutine N, which starts with the mput head on a “(”
and determines the rule corresponding to the current phrase. A variable Rule, which
can assume as its value any rule in &, is kept m the finite control.

Subroutine N': Record the current input head position on track 1 and the posttion of the left end of the mput
on track 2

1 By simulating the machine of Theorem 1, determme the rule corresponding to the phrase beginning at the
position recorded on track 2 (If Rule has a previously defined value, this value will be used here.) Set
Rule = the newly determined rule. See if the head positions recorded on tracks 1 and 2 are identical.
1.1. If not, then determine the position of the leftmost symbol of that child of the phrase begmning at the

position now recorded on track 2, which contains the phrase begimning at the position now recorded
on track 1
Record this newly determined position on track 2
Return to 1
1.2, If so then the current value of Rule 1s the needed value.

Subroutine N simply follows the inductive definition of the corresponding rule; it
obtains the rule corresponding to the current phrase by first obtaining the rule
corresponding to the entire input and then doing the same for successive children which
contain the current phrase.

We now describe the main construction of M. M begins at the leftmost symbol of x,
at stage 1 below..

1 Call subroutine N to determune the rule A — w, w’ corresponding to the current phrase See if w contains
any variables
1.1. If so, output all symbols of w’ up to and not including the first variable If the kth variable (from the
feft) of w is associated with the first variable of w’, move the input head to the first symbol of the kth
child (from the left) of the current phrase
Return to 1
1.2 If not, then output w'
Goto 2.
2 See if the current phrase is x
2 1. K so, halt.
2 2. If not, then call subroutine N to determine the rule, A — w, w’, corresponding to the parent of the
current phrase If the current phrase is the kth child, and if the Ith variable of w' 1s associated with
the kth vanable of w, then see if the Ith variable of w’ 1s the last vanable of w’

Log Space Recognition and Translation of Parenthesis Languages 589

221 1If not, then output the terminal symbols of w' between its Ith and (! + 1)-th variables. If the
mth variable of w 1s associated with the (! + 1)-th vanable of w’, move the input head to the
first symbol of the mth child of the parent of the current phrase.

Return to 1

222 If so, output the terminal symbols of w' followmg the last variable Move the mput head to
the first symbol of the parent of the current phrase
Return to 2.

Verification of the correctness of the construction is left to the reader; it is obvious
that all steps can be done in log space.

It is easy to see that the time for this algorithm is O(n3).

With appropriate definitions, Theorem 2 implies that any word in a parenthesis
language can be assigned a parse (for a particular parenthesis grammar) in log space.

6. Corollaries: Translation of Boolean Formulas

Define an infix Boolean formula as a word in the language of grammar ({S, V},
0, 1,(NUQD{S— Sus, S>> (SuSlo EQ US>V, Vo VL, V- V0, V- AL S).
Here V generates binary strings which represent Boolean variables. Define a prefix.
Boolean formula as a word in the language of grammar ({§, V}, {0, 1, #} U Q,
S>> oSS0 e QU{S—V, Vo V], Vo V0, V- #},5). Two Boolean formulas
are equivalent if they have the same values under the interpretation of the elements of
), the given precedence rules, and all values of the variables.

CororrarY 3. There is a log space machine M with the input alphabet {0, 1, (,)}
U Q which computes, for any infix Boolean formula, an equivalent prefix Boolean
formula.

Proor. Consider the parenthesis schema T = ({S, V}, {0, 1, (,)} U Q, {0, 1, #}
U Q, 2, S), where P consists of the following rules (for all € Q):

§— (Sws), 0SS, S—>(V),V, V> (V1),Vl, V> (V0O), V0, and V— (), #.

M simulates the composition of two log space machines M’ and M". M’', on input an
infix Boolean formula x, fully parenthesizes x. M” produces, from a fully parenthesized
infix Boolean formula, an equivalent prefix Boolean formula (by Theorem 2). O

CoroLLARY 4. There is a log space machine M with input alphabet {0, 1, #} U Q
which computes, for any prefix Boolean formula, an equivalent infix Boolean formula.

Proor. Left to the reader.

Similar results hold for the postfix representation of Boolean formulas. The time
performance in each case is O(n%).

ACKkNOWLEDGMENTS. This paper owes much to the suggestions of Albert Meyer and
to discussions with Ron Rivest and Richard Lipton.

REFERENCES

1 Awno, A, aNp ULLMaN, J The Theory of Parsing, Translanon and Compiling, Vol. I. Prentice-Hall,
Englewood Chffs, N J , 1973
2 Aur, H, aNp MenLHORN, K Lower bounds for the space requirement of some families of context-free
languages Tech Rep , U des Saarlandes, Saarbrucken, West Germany, 1975,
3 HorcrorFr, J, aAND ULLMaN, J Formal Languages and Theiwr Relation to Automata Addison-Wesley,
Reading, Mass , 1969.
4 JYcarasHi, Y Tape bounds for some subclasses of determimstic context-free languages Tech Rep No
80, Centre for Computer Studies, U of Leeds, Leeds, England, 1976.
5 Jonges, N D, anp Laaser, WT Complete problems for deterministic polynomial tume. Proc Sixth
Annual ACM Symp on Theory of Computing, 1974, pp 40-46
KnutH, D A characterization of parenthesis languages Inform. and Contr 11 (1967), 269-289.
7 LapNER, R, anDp Lyncl, N Relativization of questions about log space computability In Math Syst.
Theory 10 (1976), 19-32
. LiproN, R., AND ZALCSTEIN, Y Word problems solvable mn logspace.J. ACM 24, 3 (1977), 522-526
9 MenLHorN, K Bracket-languages are recognizable 1n logarithmic space Tech. Rep., U. des Saarlandes,
Saarbrucken, West Germany, Sept. 1975
10. McNauGHTON, R Parenthesis grammars. J. ACM 14, 3 (July 1967), 490-500.

[=8

oo

590 NANCY LYNCH

11. Rrrcmie, R.W., AND SPRINGSTEEL, T.M. Language recogmtion by marking automata. Inform. and
Contr. 20, 4 (May 1972), 313-330.

12. SubBorouGH, [.H. On tape-bounded complexity classes and multi-head finite automata Proc 14th
Annual IEEE Symp on Switching and Automata Theory, 1973, pp. 138-144.

13. SupBOROUGH, 1.H. On deterministic context-free languages, multthead automata and the power of an
auxiliary pushdown store Proc. Eighth Annual ACM Symp on Theory of Comptng, 1976, pp. 141-148.

14. STOCKMEYER, L., AND MEYER, A Word problems requiring exponential time: Preliminary report Proc.
Fifth Annual ACM Symp on Theory of Comptng , 1973, pp. 1-9

15 Vauant, L General context-free recogmtion in less than cubic time. J. Compir. Syst Sci. 10, 2

(1975), 308-315.

RECEIVED AUGUST 1975; REVISED OCTOBER 1976

Machinery, Vol 24, No 4, October 1977

Journal of the A for C:

