
Log Space Recognition and Translation of Parenthesis
Languages

NANCY LYNCH

Umverstty of Southern Cahfornta, Los Angeles, Cahfornta

ABSTRACT It ~S shown how to determine membership in any parenthesis context-free language in log space
As an apphcatton, the evaluation of Boolean sentences ~s shown to be log space computable Log space
translatton of parenthesis languages ~s slmdarly shown to be possible, thus log space translators among
various representations of Boolean formulas may be constructed

KEY WORDS AND PHRASES log space, parenthesis grammars, parenthesis languages

CR CATEGORIES" 5 23, 5 25, 5 26

1. Introduction

The time-complexity classification of the membership problem for general context-free
languages [3, 15] and for subclasses of the context-free languages [1] has been carefully
exammed because of its importance in parsing. Of less practical significance, but of
equal theoretical interest, is the corresponding space-complexity classification, both for
general context-free languages and for natural subclasses.

It has been shown [3] that the membership problem for every context-free language
is solvable with space at most the square of the log of the input length being used. It is
an open question whether this bound may be improved to nondeterministic log space.
In fact, it is conceivable that the bound might be improved to deterministic log space,
but [12] this improvement would imply that unlikely result that any problem solvable in
nondetermlnistic log space is also solvable in deterministic log space. A more likely
possibility ~s that the membership problem for every deterministic context-free language
is solvable in deterministic log space. Although it is not yet known whether this is so,
this problem is reduced to simpler subcases in [13]. For example, it is shown there that
there exists a simple precedence language which is "at least as hard as" all deterministic
context-free languages; so the above question for deterministic context-free languages
is equivalent to the corresponding question for simple precedence languages.

In the present paper attention is restricted to one particular class of languages,
namely, those which are log space reducible, in the sense of [14] and [5], to parenthesis
context-free languages [6, 10]. It is shown in Section 3 that the membership problem
for any parenthesis language is solvable in determimstic log space; thus the membership
problem for any language log space reducible to a parenthesis language is also solvable
in deterministic.log space.

As examples of such languages, we consider in Section 4 the set of all Boolean
sentences (in any reasonable notation) which evaluate to 1 (true). It is concluded that
the evaluation of Boolean sentences may be done in log space.

Copyright © 1977, Association for Computing Machinery, lnc General permission to repubhsh, but not for
profit, all or part of this material is granted provided that ACM's copyright noUce is gtven and that reference
is made to the pubhcat~on, to its date of issue, and to the fact that repnntmg privileges were granted by
permtsston of the AssoclaUon for Computing Machinery
A part of this work was done whde the author was a v~sltor at the IBM Thomas J Watson Research Center,
Yorktown Heights, N Y.
Th~s work was supported m part by the National Science Foundatton under Grant DCR-92373
Author's present address' School of Informatton and Computer Science, Georgia Institute of Technology,
Atlanta, GA 30332.

Journal of the AsSoclaUon for Compuung Machinery, Vol 24, No 4, October t977, pp 583-590

584 NANCY LYNCh

There have been several other recent papers on space classificatmn of various
subclasses of the context-free languages. In [11] it is shown that the Dyck languages
have their membership problems.solvable in log space. In [8] a similar result is proved
for the word problem for free groups with finitely many generators. In [9] Theorem 1
of this paper is independently presented; in [2] are several log space lower bounds for
context-free languages. And in [4] several subclasses of the deterministic context-free
languages defined by restrictions on the automaton model are shown to have log space
membership algorithms.

It should be noted that the original motivation for the work in the present paper
came not from context-free language classification but from previous work by the
author and others on log space reducibihties. A reasonable generalization of the log
space reducibility of [14] and [5] is the log space truth-table reducibility proposed and
studied in [7]. The naturalness of the definition in [7] depends on the ability to
evaluate truth-table conditions (i.e. Boolean sentences) in log space. Further discussion
of this application of the present work appears in the other paper.

An operation seemingly related to the evaluation of Boolean sentences is the
translation of Boolean formulas from infix notation to prefix or postfix notation, and
vice versa. We consider in Section 5 the analogous syntax directed translation from a
parenthesis language to any context-free language. It is shown that such a translation
may be performed in log space. In particular, a "parse" may be obtained in log space
for any word in a parenthesis language Also, as a consequence, translation among
various representations of Boolean formulas is shown in Section 6 to require no more
than log space.

It is known that deterministic context-free languages may be parsed m linear time
and (therefore) linear space. The algorithms in this paper for membership and
translation all require higher degree polynomial amounts of time for the languages to
which they apply. It would be interesting to show that this trade-off is inherent.

Another interesting question arises from consideration of the distinction between the
membership question (a language problem) and the determination of a parse for a
word (a grammar problem) for context-free languages. Does the log space computability
of the former problem necessarily imply the existence of a grammar for which the latter
problem is also log space computable?

2. Notatton and Defimtions

A context-free grammar G is written as ('V, ~ , ~ , S), where ~ is the set of variables, 5r
the set of terminal symbols, ~ the set of rules, and S the start variable. L(G) represents
the language generated by grammar G.

A parenthesis (context-free) grammar [10] is a context-free grammar ('V, 5r, ~, S)
having two distinguished terminal symbols "(" and ")", with every rule in ~ of the form
A -~ (x), where x U ('V t.J if)* and x contains no occurrences of "(" or ")". A
parenthests (context-free) language is a language which is L(G) for some parenthesis
grammer G.

Ix I represents the length of string x. ~, represents the empty string.
A log space machtne M is a deterministic Turing machine having the following

properties: M has three tapes. One is a two-way read-only input tape (with end
markers) which may contain symbols from a finite input alphabet. The second is a two-
way read-write worktape which may contain symbols from a finite worktape alphabet.
The third is a right-moving write-only output tape, on which may be written symbols
from a finite output alphabet. If M is started with any input x with the input head at the
left, then M eventually halts with at most logs(Ix I) worktape squares having been
visited during the computation; if y is the contents of the output tape when M halts,
then M computes y on input x.

Log Space Recognition and Translation o f Parenthesis Languages 585

If M, ~ are finite alphabets andf :M* ~ ~* , t h e n f is log space computable if there is
a log space machine M with input alphabet M and output alphabet ~ such that M
computes f(x) on input x for all x E M*.

If A C M* for alphabet M, C~ is defined by:

Caa(X)= if x E M * - A .

A setA is log space computable if CA ~ is log space computable for some M.
If A _C M*, B C ~* for alphabets M, ~ , and if A, B, A, J~ -~ 0 , then we write

A -<'~ B (A ts log space many-one reducible to B) provided there is a log space
computable functionf:M* ~ ~* such that x E M ifff(x) ~ B. It is seen in [14] that i fA
_<~ B and B is log space computable, then A is log space computable.

3. Recognition of Parenthesis Languages

We prove our main result:
THEOREM 1. All parenthesis languages are log space computable.
PROOF. Let G = (~, 3-, ~ , S) be any parenthesis grammar. We describe the

C£ (G) operation of a log space machine M which computes
Let m be the largest number of variable occurrences on the right of any single rule in

~ . M's worktape will be divided into several tracks. The first m tracks will be called
storage tracks and will be used to keep account of partial determinations of parses. The
remaining tracks will be used for bookkeeping operations, primarily counting parenthe-
ses.

M first performs a preliminary check that its input string x is of the appropriate form.
Specifically, M checks that x contains equal numbers of "(" and ")", that x begins with
"(" and ends with ")", and that x cannot be written as x~x2, xl, Xz -~ h, where the
number of "(" in xl is less than or equal to the number of ")" in xl. If this check is
successful, it is then known that each parenthesis has a well-defined matching paren-
thesis. M then checks that there is no substring of x of the form (xl(yl)xz(y2) "'"
(Ym+0Xm+2), where x~x2 "." x~+2 contains no "(" or ")", and where the pairs of
parentheses surrounding y~, ... , Ym+~ and the entire expression are all matching pairs.
If x is not of the appropriate form, M outputs 0. If x is of the appropriate form, it is
meaningful to use certain descriptive terminology in presenting the remainder of the
construction:

When the input head rests on a square containing "(", we call that symbol the current
parenthesis. A phrase is a substring of x which begins and ends with matching
parentheses. The phrase beginning at the current parenthesis is the current phrase. The
maximal subphrases of each phrase are its children; the minimal phrase containing a
proper subphrase of x Is the parent of that proper subphrase. Children of a common
parent are siblings. The children of each phrase are ordered according to length, the
longest subphrase first m this ordering. If two are of equal length, the leftmost precedes
the rightmost.

Symbols will be placed in columns consisting of corresponding squares on the m
storage tracks. An auxiliary variable Vars, which can assume any value from 2 v (the set
of subsets of ~) , is kept in M's finite control.

M places its input head on the leftmost symbol of x and proceeds to step 1 below. At
the outset, all storage tracks are blank (i.e contain only a designated symbol b).

1 See ff the current phrase contains any "(" other than the current parenthesis
1 1 If so, move the input head to the leftmost symbol of the first child of the current phrase Return to

1. (Note "first" refers to the ordering of children estabhshed above)
1 2 If not, set Vars equal to the set of all variables appearing on the left of productions m ~' for which

the current phrase is the right side Go to 2

586 NANCY LYNCH

2. See if the current phrase is x.
2 1. If so, then see ff S is in Vats.

2.1.1. If so, M outputs 1 and halts
2.1.2. If not, M outputs 0 and halts.

2.2 If not, see if the current phrase is a first but not an only child, a middle child, a last but not an only
child, or an only chdd.
2.2.1 If the current phrase is a first but not an only child, then record the current value of Vars m

the topmost square of the first blank column of the storage tracks Move the input head to
the leftmost symbol of the next sibhng of the current phrase. Return to 1.

2 2 2 If the current phrase is a middle child, then record the current value of Vats in the topmost
blank square of the last nonblank column of the storage tracks Move the input head to the
leftmost symbol of the next sibling of the current phrase. Return to 1

2 2.3. If the current phrase is a last but not an only child, then record the current value of Vars m
the topmost blank square of the last nonblank column of the storage tracks Move the input
bead to the leftmost symbol of the parent of the current phrase Set Vats equal to the set of
all variables appearing on the left of productions m ~ for which the right side is

(xlVlx2V2"" V,x,+0, x, Eff* , 1 - < t - < n + 1, V,E'V, 1 - < t - ~ n ,

where the current phrase ,s

(x,(rl)x~(y~) "" ~v.)x.+O

(all the pmrs of parentheses shown being matching pairs), and for all ~,/, if (y~) is the i th chdd
of the current phrase, then V, ts a member of the set represented on thelth track of the last
nonblank column Erase the last nonblank column Return to 2.

2 2.4 If the current phrase ~s an only chdd, record the current value of Vars in the topmost square
of the first blank column Move the input head to the leftmost symbol of the parent of the
current phrase Set Vars equal to the set of all varmbles appearing on the left of productions
m ~ for which the right side is

(x~Vx~), x~, xz ~ ~*, V E V,

where the current phrase Is

(x,(v)xd

(both the pairs of parentheses shown being matching pairs), and V is a member of the set
represented m the topmost square of the last nonblank column Erase the last nonblank
column Return to 2

I t s h o u l d be c l ea r t h a t M is s imply p e r f o r m i n g a b o t t o m - u p parse of x , pa r s ing
p h r a s e s in o r d e r of l eng th . A t any t ime , any c o l u m n of t he s to rage t r acks c o n t a i n s on ly
va lues of Vars ar is ing f r o m pa r s ing s ib l ing ph ra se s . Since n o p a r e n t has m o r e t h a n m
c h i l d r e n , the m s to rage t racks a re suff ic ient .

T h e r e a d e r may ver i fy t h a t all t he r e q u i r e d b o o k k e e p i n g o p e r a t i o n s may b e p e r f o r m e d
in space log2(lx 1). I t r e m a i n s to show t h a t log2(lx 1) c o l u m n s o f the s to rage t racks suffice.

By the c o n s t r u c t i o n , e a c h symbo l p laced o n any o f the s to rage t racks is a va lue o f
Vars , which ts t he set of va r i ab le s in T ~ wh ich g e n e r a t e (in G) a pa r t i cu la r p r o p e r
s u b p h r a s e of x . D e n o t e by x,a.t t h e p h r a s e wh ich c o r r e s p o n d s na tu ra l ly to the s y m b o l in
s q u a r e j of t rack i a f t e r t s t eps of M ' s c o m p u t a t i o n o n i n p u t x . T h e n a f t e r any n u m b e r t
o f s teps o f M ' s c o m p u t a t i o n , t he fo l lowing are t rue :

(a) F o r a n y] , all x,,j,t wh ich a re de f i ned a re s ibl ings. M o r e o v e r , for any j , xl.~,t (if it
is de f ined) is a first chi ld .

(b) If xLj+l, t is de f ined , t h e n xl,j , t is de f i ned a n d t he p a r e n t of x l , j+l,t is a (no t
necessar i ly p r o p e r) s u b p h r a s e of a s ib l ing of x~,,,t.

P r o o f of (a) and (b) is by i n d u c t i o n o n t. W i t h (a) a n d (b) , it is s t r a i g h t f o r w a r d to
show tha t for a n y] , t , t he l e n g t h o f the p a r e n t ofx~, j+l , t (i fxh j+Lt is de f ined) is less t h a n
ha l f of t he l eng th of t he p a r e n t of x~,~.t. T h e n the n u m b e r of c o l u m n s used a f t e r any
n u m b e r t of s teps is a t m o s t log2(Ixl) .

I t is easy to see t h a t the t ime for th is a l g o r i t h m is O(n~), w h e r e n is t he l e n g t h of t he
i npu t s t r ing.

Log Space Recognition and Translation o f Parenthesis Languages 587

4. Corollaries: Evaluation o f Boolean Sentences

Let f l = {to, I 1 <- i <- 16}. Define an infix Boolean sentence as a word in the language of
grammar ({S}, {0, 1, (,)} t..J 11 , {S ~ SoS, S ~ (StoS)lto ~ fl} t.J {S ~ 0, S ~ 1}, S).
Each to ~ II represents one of the 16 binary Boolean functions. We assume that if i < j
then operat ion tot has the same or greater precedence than toj. Among operat ion
symbols of equal precedence, association is from the left. val(x), for any infix Boolean
sentence x, represents the value of x according to the interpretat ions of the elements of
Ill and the given precedence rules.

COROLLARY 1. There exists a log space machine M with input alphabet {0, 1, (,)} t)
[~ which computes val(x) for any infix Boolean sentence input x.

PROOF. Let A = {infix Boolean sentences xlval(x) = 1}. Let B be the parenthesis
language generated by the grammar ({S, Z}, {0, 1, (,)} U f l , ~ , S), where ~ consists of
the following rules (for all to ~ 12):

S---~ (SOS) if val(ltol) = 1, S ~ (StoZ) if val(ltoO) = 1,
S ~ (ZtoS) if val(Otol) = 1, S ~ (ZtoZ) if val(OtoO) = 1,
Z---> (SOS) if val(ltol) = O, Z---~ (StoZ) if val(ltoO) = O,
Z--> (ZtoS) if val(Otol) = O, Z---~ (ZtoZ) if val(OtoO) = O,
S ---> (1), and Z ~ (0).

That is, B consists of all the infix Boolean sentences x having val(x) = 1 with a full
parenthesis structure superimposed.

It suffices to show A -<'~ B. But this is simply the statement that there exists a log
space machine which fully parenthesizes an infix Boolean sentence, which the reader
may verify. []

Similarily, define a prefix Boolean sentence as a word in the language of grammar
({S}, {0, 1} LI [~ , {S ~ toSSlto ~ fl} U {S ~ O, S ~ 1}, S). val(x), for any prefix
Boolean sentence x, represents the value of x according to the usual rules.

COROLLARY 2. There exists a log space machme M with input alphabet {0, 1} t_J
which computes val(x) for any prefix Boolean sentence input x.

PROOF. The proof is very similar to that of Corollary 1 and is left to the reader . O
Clearly, a result similar to Corollaries 1 and 2 is true for postfix representat ion of

Boolean sentences.
Note that the apparent t ime requirement for evaluation of (infix, prefix, or postfix)

Boolean sentences according to the given algorithms is O(n4). This is because parenthe-
sizing any type of Boolean sentence seems to require time O(n2), as does the evaluation
algorithm. Straightforward composit ion of the given log space algorithms (as in [14])
requires time proport ional to the product of the times of the component algorithms.

5. Translation of Parenthesis Languages

A syntax-directed translation schema (SDTS) [1] is a 5-tuple T = ('V, i f , ~r,, ~ , S),
where

(1) ~V is a finite set of variables,
(2) f f and i f ' are finite input and output alphabets, respectively,
(3) ~ is a finite set of rules of the form A --> x, x ' , where x ~ ('V LI if)*, x '

('V U ~-')*, and the variables of x ' are a permutat ion of the variables of x. To each
occurrence of a variable x is assoctated an occurrence of an identical variable in x ' , in a
one-to-one manner, and

(4) S E ~V is the start symbol.
We define a translation form of T:
(1) (S, S) is a translation form, and the two S's are associated, and
(2) if (wAx, w'Ax') is a translation form in which the two instances of A are

associated, and i r a ---~ y, y ' is a rule in ~ , then (wyx, w'y'x') is a translation form of T.
The variables in the new translation form have the natural association deriving from the

588 NANCY LYNCH

association in the previous form and in the rule.
We write in the preceding situation (wAx, w'Ax') . f (wyx, w'y'x'); -~ is the transitive

closure of-ft . The translation ¢(T) defined by an SDTS T is {(x, x')l(S, S) --~ (x, x'), x
if*, x ' E (3")*}. The domain of the translation dora ¢(T) is {x 1(3 x')[(x, x ') ~ ¢(T)]}.

A parenthesis (syntax-directed translation) schema is an SDTS (~, ~-, i f ' , ~ , S) in
which f f contains two distinguished symbols, "(" and ")", and each rule of ~ is of the
form A ~ (x), x ' , where A ~ ~, x E (~ t.J if ')*, and x and x ' contain no occurrences
of "(" or ")".

THEOREM 2. For any parenthesis schema T = (~, ~', 5 r', ~, S), there extsts a log
space machine M with input alphabet 3- such that on any input x ~ dom ~'(T), M
computes some value x' with (x, x') ~ ~'(T).

PROOF. We may assume that M's input x is in dora ~'(T). The terminology current
parenthesis, phrase, current phrase, child, parent, and sibling is used as in Theorem 1.
However, the ordering of children established in Theorem 1 wdl not be used in the
description of M.

We select a derivation of x by ordering the rules of T in some fixed way. Every
phrase of x then has a corresponding rule, determined as follows:

(1) The rule corresponding to x is the first rule S ~ y, y ' , such that (3x ')[(y, y ')
(x, x')], and

(2) if z is the kth child (from the left) of phrase y, and A ~ vBw, v'Bw' is the rule
corresponding to y (where B is the kth variable of vBw), then the rule corresponding to
z is the first rule B --> u, u ' such that (3y')[(u, u') -~ (y, y')].

M will require the following subroutine N, which starts with the mput head on a "("
and determines the rule corresponding to the current phrase. A variable Rule, which
can assume as its value any rule in ~ , is kept in the finite control.

Subroutine N: Record the current input head position on track 1 and the position of the left end of the input
on track 2

1 By simulating the machine of Theorem 1, determine the rule corresponding to the phrase beginning at the
position recorded on track 2 (If Rule has a previously defined value, this value will be used here.) Set
Rule = the newly determined rule, See if the head positions recorded on tracks 1 and 2 are identical.
1,1, If not, then determine the position of the leftmost symbol of that child of the phrase beginning at the

posmon now recorded on track 2, which contains the phrase begmmng at the position now recorded
on track 1
Record th~s newly determined position on track 2
Return to 1

1.2. If so then the current value of Rule is the needed value.

Subroutine N simply follows the inductive definition of the corresponding rule; it
obtains the rule corresponding to the current phrase by first obtaining the rule
corresponding to the entire input and then doing the same for successive children which
contain the current phrase.

We now describe the main construction of M. M begins at the leftmost symbol of x,
at stage 1 below..

1 Call subroutine N to determine the rule A ~ w, w' corresponding to the current phrase See if w contains
any variables
1.1. If so, output all symbols of w' up to and not including the first variable If the kth variable (from the

left) of w is associated with the first variable of w', move the input head to the first symbol of the kth
child (from the left) of the current phrase
Return to 1

1.2 If not, then output w'
Go to 2.

2 See If the current phrase is x
2 1. If so, halt.
2 2. ff not, then call subroutine N to determine the rule, A ~ w, w', corresponding to the parent of the

current phrase If the current phrase is the kth child, and if the lth variable of w' is associated with
the kth variable of w, then see if the lth variable of w' ~s the last variable of w'

Log Space Recognition and Translation o f Parenthesis Languages 589

2 2 1 If not, then output the terminal symbols of w' between its lth and (l + 1)-th variables. If the
ruth variable of w is associated with the (l + 1)-th variable of w', move the input head to the
first symbol of the ruth child of the parent of the current phrase.
Return to 1

2 2 2 If so, output the terminal symbols of w' following the last variable Move the input head to
the first symbol of the parent of the current phrase
Return to 2.

Veri f icat ion of the correctness of the const ruct ion is left to the reader ; it is obvious
that all steps can be done in log space.

It is easy to see that the t ime for this a lgor i thm is O(na).
With appropr ia te def ini t ions, T h e o r e m 2 implies that any word in a parenthes is

language can be assigned a parse (for a par t icular parenthesis g rammar) in log space.

6. Corollaries: Translation o f Boolean Formulas

Def ine an infix Boo lean formula as a word in the language o f g r a m m a r ({S, V},
{0, 1, (,)} U 12, {S--~ SoJS, S---~ (SoJS)[co ~ 1~} tO {S---~ V, e---~ V1, V---~ V0, V--* h}, S).
H e r e V genera tes binary strings which represen t Boo lean variables . Def ine a prefix.
Boolean formula as a word in the language of g r ammar ({S, V}, {0, 1, #} tO f~,
{S ~ ooSSIo~ ~ f~} tO {S --~ V, V ~ V1, V .-~ VO, V ~ #}, S). T w o B o o l e a n formulas
are equivalent if they have the same values under the in te rpre ta t ion of the e l emen t s of
~ , the gwen p recedence rules , and all values of the variables .

COROLLARY 3. There is a log space machine M wtth the input alphabet {0, 1, (,)}
tO ~ which computes, for any infix Boolean formula, an equivalent prefix Boolean
formula.

PROOV. Consider the parenthesis schema T = ({S, V}, {0, 1, (,)} 13 1"~, {0, 1, #}
to l~, ~ , S), where @ consists of the fol lowing rules (for all co E f~):

S ~ (So~S), o~SS, S ~ (V), V, V ~ (V1), V1, V ~ (V 0) , V 0 , a n d V ~ () , # .

M simulates the composi t ion of two log space machines M ' and M". M ' , on input an
infix B oo l ean formula x , fully parenthes izes x. M" produces , f rom a fully paren thes ized
infix Boo lean formula , an equ iva len t prefix Boo l ean formula (by T h e o r e m 2). []

COROLLARY 4. There is a log space machine M with input alphabet {0, 1, #} tO
which computes, for any prefix Boolean formula, an equivalent infix Boolean formula.

PROOF. Left to the reader .
Similar results hold for the postfix represen ta t ion o f Boo l ean formulas . The t ime

pe r fo rmance in each case is O(nS).

ACKNOWLEDGMENTS. This paper owes much to the suggest ions of A l b e r t M e y e r and
to discussions wLth R o n Rives t and Richard Lip ton .

REFERENCES

1 AHO, A , AND ULLMAN, J The Theory of Parsing, Translation and Compdmg, Vol. L Prentice-Hail,
Englewood Chffs, N J , 1973

2 ALT, H , AND MEHLHORN, K Lower bounds for the space reqmrement of some famihes of context-free
languages Tech Pep , U des Saarlandes, Saarbrucken,'West Germany, 1975.

3 HOPCROFr, J , AND ULLMAN, J Formal Languages and Their Relation to Automata Addnson-Wesley,
Reading, Mass , 1969.

4 IGARASHI, "Y Tape bounds for some subclasses of determmnstlc context-free languages Tech Rep No
80, Centre for Computer Studies, U of Leeds, Leeds, England, 1976.

5 JONES, N D , ANn LA^SER, W T Complete problems for determimst~c polynomial time. Proc Sixth
Annual ACM Syrup on Theory of Computing, 1974, pp 40-46

6 KNUTn, D A characterization of parenthesis languages Inform. and Contr 11 (1967), 269-289.
7 LADNER, R , AND LYNCH, N Relattvtzatton of questions about log space computablhty In Math Syst.

Theory 10 (1976), 19-32
8. LWrON, R., ANO ZALCSTEIr~, Y Word problems solvable in logspace. J. ACM 24, 3 (1977), 522-526
9 MEHLHORN, K Bracket-languages are recogmzable in loganthmnc space Tech. Rep., U. des Saaflandes,

Saarbrucken, West Germany, Sept. 1975
10. McNAuaHTON, R Parenthesis grammars. J. ACM 14, 3 (July 1967), 490-500.

590 NANCY LYNCH

11. RrrcmE, R.W., AND SPR1NGSTEEL, T.M. Language recognition by marking automata. Inform. and
Contr. 20, 4 (May 1972), 313-330.

12. SUtmOROUGH, I.H. On tape-bounded complexity classes and multi-head finite automata Proc 14th
Annual IEEE Symp on Switching and Automata Theory, 1973, pp. 138-144.

13. StrDeOEOV~a, I.H. On deterministic context-free languages, multlhead automata and the power of an
auxiliary pushdown store Proc. Eighth Annual ACM Symp on Theory of Comptng, 1976, pp. 141-148.

14. STOCKMEYER, L., AND MEYER, A Word problems requiring exponential time: Preliminary report Proc.
Fifth Annual ACM Symp on Theory of Comptng , 1973, pp. 1-9

15 VALIANT, L General context-free recognition in less than cubic time. J. Complr. Syst Sct. 10, 2
(1975), 308-315.

RECEIVED AUGUST 1975; REVISED OCTOBER 1976

Journal of the Assocmtton for Com0uung Machinery, Vol 24, No 4, October 1977

