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ABSTRACT. Grammar forms are compared for their effioency in representing languages, as measured by the 
sizes 0 e total number of symbols, number of varmble occurrences, number of productions, and number of 
distract varmbles) of interpretation grammars For every regular set, right- and left-hnear forms are essentially 
equal in efficaency Any form for the regular sets provides, at most, polynomial improvement over nght-hnear 
form Moreover, any polynomial improvement is attained by some such form, at least on certain languages 
Greater improvement for some languages is possible using forms expressing larger classes of languages than the 
regular sets However, there are some languages for which no improvement over rtght-hnear form is possible 

Whde a similar set of results holds for forms expressing exactly the hnear languages, only linear improve- 
ment can occur for forms expressing all the context-free languages. 
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1. Introduction 

In [1], the  c o n c e p t  of  " g r a m m a r  f o r m "  was i n t r o d u c e d  to m o d e l  the  s i tua t ion  w h e r e  all 
g r a m m a r s  s t ruc tu ra l ly  close to a g iven  m a s t e r  g r a m m a r  are  of  in t e res t  A m o n g  q u e s t i o n s  
na tu r a l l y  f o r m u l a t e d  in this  f r a m e w o r k  are  m a n y  a b o u t  the  complex i ty  o r  e f f ic iency  of  
g r a m m a r s .  Fo r  e x a m p l e ,  is t he re  a " t y p e  of  g r a m m a r "  wh ich  i m p r o v e s  the  e f f i o e n c y  of  
r i g h t - h n e a r  fo rm for  de f in ing  the  r egu la r  se ts ,  a n d  if so,  by how m u c h ?  G r a m m a r  f o r m s  
p rov ide  a r e a s o n a b l e  a n d  t r ac t ab le  way of  cons i de r i ng  the  t o t ah ty  of  a l lowab le  expres -  
s ions ,  t h e r e b y  p e r m i t t i n g  the  a b o v e  q u e s t i o n  to be  a n s w e r e d  wi th  b o t h  u p p e r  a n d  lower  
b o u n d s .  

T h e  g e n e r a l  p r o b l e m  of  c o n c e r n  to us  is the  fol lowing:  W h i c h  g r a m m a r  f o r m s  are  m o r e  
ef f ic ient  t h a n  o t h e r s  for  de f in ing  f a m i h e s  of  l anguages ,  a n d  how m u c h  gain in e f f i o e n c y  is 
poss ib le?  In [2], th is  q u e s t i o n  is a n s w e r e d  for  ef f ic iency m e a s u r e d  in t e r m s  of  d e r i v a t i o n  
complex i ty .  T h e  p u r p o s e  of  this  p a p e r  Is to cons ide r  the  ques t i on  w h e n  "s ize  of  
g r a m m a r "  is the  complex i ty  m e a s u r e .  

T h e r e  a re  five sec t ions  m a d d m o n  to the  p r e s e n t  i n t r o d u c t o r y  one .  Sec t ion  2 c o n t a i n s  
basic  n o t i o n s  a b o u t  con t ex t - f r ee  g r a m m a r  fo rms ,  as well  as de f in i t ions  of  four  m e a s u r e s  
of  g r a m m a r  size ( each  s imi la r  to  one  in [3]) c o n s i d e r e d  t h r o u g h o u t  the  p a p e r .  T h e  resu l t s  
o b t a i n e d  usual ly  app ly  to all four  m e a s u r e s .  

Sec t ion  3 dea ls  wi th  fo rms  de f in ing  exact ly  the  r e g u l a r  sets .  Us ing  a " r e v e r s a l "  
c o n s t r u c t i o n ,  it ~s first  s h o w n  tha t  for  eve ry  r egu la r  set  r ight -  and  l e f t - h n e a r  f o r m s  are  of  
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equal  efficiency. Next ,  an upper  b o u n d  is given on the a m o u n t  of i m p r o v e m e n t  possible 
over right- or  lef t- l inear  form. A key point  m the a rgumen t  is the s imula t ion  of variables  
embedd ing  themselves  on the right by variables embedd ing  themselves on  the left; a 
const ruct ion similar to the reversal men t ioned  above is used.  Final ly,  it ~s proved  that 
every polynomial  imp ro v e me n t  over  r ight- l inear  form is actually a t ta inable  by some form 
defining the regular  sets. 

Section 4 considers  g rammar  forms whose defining power  is greater  than the regular  
sets. For  such forms,  it is possible to get greater  im provem en t  than that ob ta ined  in 
Section 3. However ,  there are some regular  sets for which n g h t - h n e a r  form is opt imal ,  
that is, these sets cannot  be def ined more  efficiently by any o ther  form,  regardless of the 
expressive power.  

Section 5 sketches results,  similar to those in Sections 3 and 4, for g r am m ar  forms 
defining the l inear  languages.  In addi t ion ,  it is no ted  that for forms def ining all the 
context-free languages,  the var ia t ion possible is much less (m fact, l inear) .  

Sectton 6 discusses some open  ques t ions .  

2. Prehmmartes 

We first recall some e lementa ry  no t ions  about  context-free g rammar  forms. T h e n  we 
present  four types of "sizes" with which we shall be concerned  

Definition. A (context-free) grammar form is a 6-tuple F = (V,E,~ ,50,~ ,o ' ) ,  where  
(1) V is an infinite set of abstract  symbols,  

(it) ~ is an infimte subset  of V such that  V - ~ is inf imte ,  and  
(lit) GF = (~,50,~,o ' ) ,  called the form grammar, is a context-free g rammar  ~ such that 

c_ E and ( ~ -  50) C_ ( V -  ~). 
The reader  is referred to [1] for mot iva t ion  and fur ther  details about  g rammar  forms. 
Throughou t ,  V and  E are assumed to be fixed infinite sets satisfying condi t ions  (i) and 

(it) above.  All  context-free g rammar  forms are with respect to this V and ~ .  Also ,  the 
adjective "contex t - f ree"  is usually omi t ted  from the phrase "context- f ree  g rammar  
form."  

For  our  purposes ,  we shall hencefor th  assume each context-free g rammar  has at least 
one product ion  

The purpose of a g rammar  form is to specify a family of g rammars ,  each "s t ructural ly  
close" to the form grammar .  This is done  via the not ion  of: 

Definition. A n  interpretation of a g rammar  form F = (V,E,~,50,~,o-)  is a 5-tuple 1 = 
([d., Vi,~i,Pi,S1) , where 

(i) p. is a subs t l tu tmn on ~V* such that p.(a) is a f imte subset  of E* for each a m 
5 °, ~(~) is a finite subset  of V - E for each ~: in ~ - 50, and  ~(~:) N #(,q) = O for each 
and 7,  ( 4: -q, in ~ - 50. 

(ii) P t t s  a subset  of p.(~) = U~n~ ~(Tr), where p.(~t ~ fl) = {u --~ v t u in /~(ot), v in 
~(~)}, 

(ni) St IS m /~(o'), and 
(iv) E1 (Vt )  contams the set of all symbols  in ~(V) which occur m Pt ( together  with 

St). 
Gt = (Vl, Et, Pt, St) is called the grammar of I .  

An  in terpre ta t ion  is usually exhibi ted by indicat ing St, Pt ,  and (implicity or expl io ty)  
/.t. The sets V t and  Et are ordinar i ly  not  stated exphcity.  

A g rammar  form de te rmines  a family of g rammars  and  a famdy of languages  as 
follows: 

Defin#ion. For  each g rammar  form F,  ~3(F) = {Gt I I an in terpre ta t ion  o f F }  is called 
thefamdy of  grammars o fF  and .Sf(F) = {L(Gt) I Gt m ~(F)} the grammatical family ofF. 

1 We assume the reader ~s famlhar with context-free grammars Here Y" is the total alphabet, ~ is the terminal 
alphabet, ~ is the set of productions, and o- is the start variable The empty work ~ is allowed as the right-hand 
side of a productmn 
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As mentioned m the Introduct ion,  we are concerned with certain "size" measures  of 
various grammar  forms. Four  specific such forms, to be considered in the remaining 
sections, are the following: 

Def in i t ion .  The grammar  form (V,~,{o',a},{a},{o" ~ act, o" ---> a},o') is ca l led  r i g h t -  

l inear form. The grammar  form (V,E,{~r,a},{a},{6- ~ o'a, ~r ---~ a},o') Is called le f t - l inear 

form. The g rammar  form (V,~,{o-,a},{a),{cr ~ ao'a, o" ~ a},o') is called s tandard  l inear 
form The grammar  form (V,~,{o-,a},{a},{cr ~ ~ror, o" ~ a},o') is called C h o m s k y  b inary  
form. 

Note that the grammars  of the interpretat ions of each of the above forms are well- 
known types of context-free grammars.  Thus each g rammar  of an interpreta t ion of left- 
l inear form is a left-hnear g rammar  (and conversely),  each grammar  of an interpreta t ion 
of s tandard l inear form is a hnear  context-free g rammar  (and conversely),  etc. 

The size measures of concern to us are now given. Each has already been considered in 
the l i terature with respect to context-free grammars  [3]. 

Nota t ion .  For  each context-free grammar  G,  let 
(a) S(G)  be the total number  of occurrences of varmbles and terminals 2 on both sides 

of all productions tn G, 
(b) V(G) be the total number  of  occurrences of  variables on both sides of  all 

productions m G,  
(c) P(G)  be the number  of productions in G, 
(d) N ( G )  be the number  of variables in G. 
Clearly, N ( G )  ~ P(G)  =< V(G) ~ S (G)  for each reduced context-free grammar  a G.  

3. F o r m s  D e f i n m g  the Regu lar  Sets 

In this section we first estabhsh that right- and left-l inear forms are of approximately  
equal efficiency, as measured by each of our four criteria.  Then we prove that any 
grammar  form defining the regular sets g~ves at most polynomial  Improvement  over 
rtght-hnear form. Finally, by exhibiting a sequence of "worst  possible" languages,  we 
show that every polynomial  improvement  may be realized by some form defining the 
regular sets. 

PROPOSITION 3.1. For  each right- l inear ( le f t - l inear)  g r a m m a r  G,  there extsts an equiv-  

alent  4 lef t- l inear (r ight- l inear)  g r a m m a r  G '  such  that  

S( G ' )  ~ S(  G) + P( G) + 1, V( G')  =< V( G) + P( G) +1, 
P ( G ' )  = P(G)  + 1, a n d  N ( G ' )  = N ( G )  + 1. 

PROOF. We give the argument for the case where G = ( V , , E 1 , P , , S , )  is a right-l inear 
grammar  Essentially we .simulate each left-to-right derivation in G by a right-to-left 
derwat ion m G ' .  Specifically, let S be a new symbol not in V~, and let P '  consist of the 
following: 

(a) For  each production in P~ of the t y p e A  ~ w B ,  with B m Vi - E~ and w in X~*, let 
B ---~ A w  be m P ' .  

(b) For  each production in P,  of the type A ~ w, w in E l ,  let S ~ A w  be m P ' .  
(c) $1 ~ E is in P ' .  

Then G '  = (V, t..J{S},2~,P',S) satisfies the conclusions of the proposi t ion.  (Intuit ively,  G '  
simulates the action of G "m revcrse ,"  i.e. S,  ~ woAo ~ " • • ~ We • • • w r A ,  ~ We • • • 

G G G G 

Wr+ l ,  each w, m ~ ' ,  f fand  only i fS  ::~ A~wr+l ~ " • • ~ Aowl • • • w,+l ~ S lwo " • • w~+l 
G" G'  G' G" G" 

WO • . .  W r + l .  

We now consider arbitrary forms defining exactly the regular sets. Our  interest  is in 
determining ff any are substantially more efficwnt than r,ght- (or left-) l inear form for the 

2 Thus ,  no occurrence of  the symbol e ,s counted m de t e rmlmng  S ( G )  

3 R e m e m b e r  that all context-free g r a m m a r s  here are assumed to have at least one product ,on 

4 Two context-free g r a m m a r s  G, and G2 are sa,d to be equ:valen t  f f  L(G~)  = L(G2).  
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representa t ion  of  part tcular  regular  sets. Several  genera l  ques t ions  arise: (1) H o w  large a 
gain in efficiency can be ach ieved?  (2) Is there  a single most  eff icient  form for the ent i re  
family of  regular  sets 9 (3) Are  there  pairs of  forms,  each more  efficient  than the o ther ,  
for different  languages 9 Ques t ions  (1) and (2) are answered  m this sect ion,  while (3) 
r emams  open .  

We begin by showing that ,  for  three  of  the four  measures  under  cons idera t ion ,  eve ry  
form for the regular  sets has a po lynomia l  that bounds  its i m p r o v e m e n t  o v e r  right- or  
lef t- l inear  form.  To  do this, we need  two lemmas ,  each t rans formmg arbi t rary  forms 
defining the regular  sets mto  a normal  form.  

LEMMA 3.2. For each grammar form F, there exists an equivalent 5 form F' and 
positive integers c, n with the following properties: 

(1) F' is completely reduced 6 and sequential, 7 and 
(2) for  each G in ~(F), there exists an equivalent G' in ~(F') such that M(G')  

c[M(G)] ~ i f  M ts in {S,V,P}, and N(G')  ~ N(G). 
PROOF The  exis tence of an F '  satisfying condi t ion (1) ts guaran teed  by 8 T h e o r e m  3.1 

of  [1 ]. To verify that F '  also satisfies c o n d m o n  (2), we follow the const ruct ions  leading to 
the p roof  of T h e o r e m  3.1 of  [1], showing that the growth m size of  in te rpre ta t ion  
g rammars  is bounded  at each step. 

G w e n  F,  we obta in ,  m the obvious  way,  an equiva len t  reduced  g r ammar  fo rm F ,  by 
L e m m a  3.1 of  [1]. For  each G m ~(F) ,  there  is some equ iva len t  G '  in Cg(F~) such that 
S(G') ~ S(G), V(G') ~ V(G), P(G')  =< P(G), and N(G')  =< N(G). 

By the p roof  of  L e m m a  3.2 of  [1], we obtain a reduced ,  noncychc g r ammar  form Fo 
equiva len t  to F,,. This p rocedure  revolves  at most  N(GF,)  repe t i t ions  of  a cons t ruc t ion  
ehmmat ing  a single maximal  cycle set of  F, Let  F, deno te  the form resul t ing f rom F ,  
af ter  t maximal  cycle sets are e l imina ted .  Then  for each G in Cg(F,) we obta in ,  in the 
natural  way, an equiva len t  G '  in q3(F,+~). Since each product ion  of  G '  has as its left 
(right) side the left  (rtght) side of  some  product ion  of  G ,  it is s t ra ight forward to see that  
S(G') ~ [S(G)] z, V( G') ~ [V(G)] 2, P(G')  ~ [P(G)] 2, and N(G')  ~ N(G).  Thus  to each G 
in ~(F~) there  cor responds  an equ iva len t  G '  in Cg(Fb) , with S(G') ~ IS(G)] 2N~GF.', 
V(G') ~ [V(G)]2N'GF2, P(G') ~ [P(G)] z~'GF '̀, and N(G')  =< N(G).  

The const ruct ion of  L e m m a  3.3 of  [1 ] is now appl ied to Fb to obtain an eqmva l en t ,  
reduced form F~ with no product ions  of  the type ~: ~ '0, ~ and r t variables.  For  each  G in 

~(Fb), the natural  e q m v a l e n t  G '  in Cg(F¢) has S(G') ~ [S(G)] z, V(G') =< IV(G)] 2, P(G') 
[P(G)] 2, and N(G')  =< N(G).  

Next ,  the const ruct ion of  L e m m a  3.4 of  [1] is apphed  to F~ to get an equiva len t ,  
comple te ly  reduced  g r ammar  form Fa. This procedure  revolves  at most  N(GF)  repet i -  

tions of  a const ruct ion which e l iminates  a single non-par t ia l ly-se l f -embedding  var iable  of  
Fc, fol lowed by the addi t ion of  several  product ions  to insure that each nons tar t  var iable  
partially embeds  itself in one  step. The  addi t ion of  product ions  revolves no increase in 
size of  in terpre ta t ion  grammars .  Let  F, be the form result ing f rom F~ af ter  t non-part ia l ly-  
se l f -embedding  var iables  are e l imina ted  For  each 1, suppose v(i) is the var iable  ehmi-  
nated m going f rom F, to P,+~ Let  k(t) be the max imum number  of  tames v(i) occurs  on 
the right of  any single product ion  of  F', Then  for each G m ~(P,),  the natural  e q m v a l e n t  
G '  in ~3(/~,+~) h a s S ( G ' )  < (k(i) + 1)[S(G)] k'°+z, V ( G ' )  < (k(i) + 1)[V(G)]k")+. 2, P(G' )  < 

5 Two forms F and F' are called equtvalent ff .Y(F) = ~(F') 
6 A context-free grammar G = (V~,~,~,P,cr) is said to be completely reduced ff 0) G is reduced, (t|) there are no 
variables a and/3 m V~ - Xj such that a --*/3 is in P, and (m) for each varmble a m Vj - (X~ t.A {o'}) there exist x 
and y m .~,*, xy q: ~, such that c~ ~ xay ~s m P A grammar form ~s stud to be completely reduced ff its form 
grammar is 
7 A context-free grammar G = (V~,X~,P,S) ~s sand to he sequenttal ff the varmbles m V~ - ~;~ can be ordered ~q, 

, ~:h, w~th ~:~ = S, m such a way that ff~, --->x(,y ~s a production m P then I -->- t A grammar form ~s sand to be 
sequenttal ff ~ts form grammar ~s 

Theorem 3.1 of [1] ~s the following result Each grammar form has an equwalent, completely reduced, 
sequentml grammar form 
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[P(G)] ~t~)+2, and N(G'J =< N(G).  (This is because each production of G '  has as its left 
side the left side of some production of G,  and as its right side the right side of some 
production of G,  with at most k(i) positions replaced by right sides of productions of G.)  
Let k = max{k(i) I i}. Then for each G in ~(Fc), an equivalent G '  in ~(Fa) can be found so 
that: 

S(G' )  _-< (k + 1) (k+~'~'%' IS(G)] '~+2r~'%', 

V(G') _-< (k + 1) (~+ze'c'~' IV(G)] (k+2~v'~'~', 

P(G' )  _-< [P(G)] (k+zr~'%', and N (G ' )  -<_ N(G) .  

These bounds are obtained by replacing each k(i) by k in the bounds for P,+~ and using 
direct substitution. The bounds for P(G' )  and N(G' )  are obtained in a straightforward 
manner,  while those for S(G' )  and V(G')  require bounding a geometric series in the 
exponent of k + 1. 

Finally, Theorem 3.1 of [1] is apphed to Fa to obtain an equivalent, completely 
reduced, sequential form F ' .  Since ~(Fa) C ~(F') ,  there is no increase in grammar size at 
this step. 

Using the above sequence of construction and bounds,  the lemma follows. 
LEM~IA 3.3. For each grammar  f o r m  F defining the regular sets, there exists an 

equivalent f o r m  F '  and  positive integers c, n with the fo l lowing properties: 
(1) each production o f F '  is one o f  the types o~ ~ BY, a ~ w13, a --~ flw , or  ce ~ w, 

where c~, fl, y are variables and w is a termmal word; • 
(2) F'  is sequential, reduced, and f o r  every variable ot o f F ' ,  ot ~ w f o r  some nonempty  

terminal word  w; and  OF, 
(3) f o r  each G in ~(F),  there exists an equivalent G' in ~(F')  such that M(G ' )  =< 

c[M(G)]" f o r  all M in {S,V,P}.  
PROOF. Let F" = (N,~, ~.z, ~2, ~2,o'2) be the grammar form given by the conclusion of 

Lemma 3.2 Informally, F '  is obtained from F" by simulating single productions with 
"long" right-hand sides by sequences of productions with "short" right-hand sides 
Formally, let ~a consist of the following productions: 

(a) Each production in F" which is one of the four permitted types is in ~a. 
(b) Each production in F" not one of the four permitted types is of the type a 

xt • • • Xm, m ~ 3, where eachx, is either a variable or a nonempty terminal word, and no 
two consecutive x, are terminal words. 

By Theorem 2.3 of 9 [1] (since F" is reduced), onlyx~ OrXm, but not both, can be ~. If 
either x~ = ~ or neither x~ nor x,, is or, let fl~, • • •, ft,,-2 be new variables and let ot --> 
x~13~, 13~ ~ x2f12, • • ", 13,,-~ ~ x,,~-~fl,,-2, and fl,~-2 ~ x,,_~x,, be in ~ .  IfXm = or, let tim, 
flm-~, " • ", 13a be new variables and ot ~ flmXm, tim ~ 13m-~Xm-~, " " ", 134 --~ 13zXa, 13a "--> 
X~XZ be in ~a. 

Let ~a consist of the variables occurring in the productions of ~a and F '  = 
(V,E, ~,5e2, ~a,(rz). Clearly, F '  is equivalent to F, each production in F '  is one of the four 
types in (1), and F '  is sequential Although F '  has no productions of the type ( ~ 'r/, ( 
and .r I variables, F '  may not be completely reduced. However,  each variable of F '  derives 
a nonempty terminal word. (This is because (rz derives a nonempty terminal word and for 
each variable 3, in F", y ~ x yy  for some terminal word xy ~ ~ since F" is completely 
reduced.) Thus (2) is satisfied. Let k be the largest value of m for which 
ot ~ x~ . . . x m is a production of F", where ot is a variable, each x, is either a variable 
or a nonempty terminal word, and no two consecutive x, are terminal words. Then for 
each G in ~(F"),  the natural equivalent G '  in ~ (F ' )  has S ( G ' )  _-< 3IS(G)], V(G')  _-< 

9 Theorem 2 3 of [1] is the following. Let F = (V,~,~,~,~,o-) be a reduced grammar form Then ~(bF) is the 
famdy of regular sets If and only if L(GF) is mflmte and F contains no variable ~ such that ~: ~ u~v for some 
words u, v In ..90++ .1 
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2k[V(G)],  and P ( G ' )  N 2k[P(G)]. These  bounds,  combined  with the bounds  for F"  
arising from L e m m a  3.2,  yield (3),  thereby  comple t ing  the proof.  

In o rder  to show that each form for the regular  sets can be s imulated by r ight -hnear  
form with at most  po lynomia l  loss of  eff iciency (for three of  the four  measures  under  
considera t ion) ,  it there fore  suffices to restrict our  a t ten t ion  to L e m m a  3.3 forms For  
each of the L e m m a  3.3 type forms,  each  variable  may e m b e d  itself on the right o r  on the 
left,  but  not  both  The next  l emma  shows how to conver t  such a form into an equ iva len t  
one in which var iables  may only e m b e d  themselves  on the right.  The  technique  is similar 
to that used in P r o p o s m o n  3.1 to conver t  lef t- l inear  to r ight- l inear  form.  First though,  we 
define an infinite sequence  {F,,} of forms for the regular  sets, of  successively grea te r  
"sequent ia l  d e p t h , "  in which every  variable  embeds  itself only on the right 

Definition 3.4.  For  each  n ~ l ,  let  F,  = (V,Z,{a0," " .,et,,_l,a},{a},~,,cto), where  ~ ,  = 
{a, ~ a ~  I O < = l N k  <=n - 1, l < l < = n  - 1 }  U {ot,---->aot~ I O N l < - j < - - n  - 1} U {a,---, 
a~a lO ~ l  < I N n  - 1} U {a , - -~a  l O=< t N n  - 1}. 

Note  that F~ is a r ight- l inear  form..  
We now simulate  an arbi t rary L e m m a  3 3 form with a m e m b e r  of  the sequence  {Fn}. 
LEMMA 3 5. Let  F be a g rammar  fo rm for  the regular sets, sattsfying the fo l lowing 

conditions: (t) Each production o f F  is one o f  the types a --~ 1377, et -.o w13, a ~ 13w, or 
ct ~ w,  where a,  13, 77 are variables and w ts a terminal word; and (ii) F is sequential, 

reduced, and f o r  every variable ot o f F ,  a ~ w for  some  nonempty  terminal word  w. Let  n 
GF 

be the number  o f  variables m GF. Then there exists a positive integer c with the fo l lowing 
property: For every G m ~q(F) there exists some  equivalent G '  m ~(F,~ ) such that M ( G ' )  N 
c[M(G)]2 fo r  M in {S, P, V} and N ( G ' )  =< c[N(G)] ~. 

PROOF Since F is sequent ia l  and genera tes  only regular  sets, the var iables  of  the 
g rammar  G may be par t i t ioned into levels so that all var iables  on a given level  are e i ther  
left recursive or right recurswe.  By means  of a const ruct ion  similar to that  used in 
Proposi t ion 3.1,  we may t ransform each left recurslve level  into a right recurs ive  level .  
More  formally,  we may assume wi thout  loss of  general i ty  that the var iables  of  F = 
(V,E,~F, Se,~,o-) are o- = a0, a t ,  • - ", a,~_ j. Cons ider  any in te rpre ta t ion  (/.t, G )  of  F ,  with 
G = (V~,E1,P~,S). There  is no loss of  general i ty  in assuming that G is reduced  and V~ - 
Ez = Ll~-ff0~ /x(oQ. Because  of  T h e o r e m  2.3 of  {1] and the fact that F is r educed ,  each 
product ion  of G is one of the fol lowing types: 

(1) A --~ BC,  where  A and B are i n / z ( a ,  ) and C is in /x(a~) ,  for some i, j, 0 N t < j N n 
- l ;  

(2) A ~ BC,  where  A is in ~ ( a , ) ,  B IS in /L(o(,), and C IS in/ ,~(ah),  for some i, 1, k, 0 
N i < j = < n  - 1 and 0 N t ~ k  N n  - 1, 

(3) A ~ wB,  where  A is in /z(ot, ), B is in/.t(a~), and w is in E*,  for some i, ], 0 N i N j  
= < n - l ;  

(4) A ~ B w ,  where  A, B are in /x(a , )  and w is in E*,  for some t, 0 N i N n - 1; 
(5) A ~ Bw,  where  A is in/,.t(a, ), B is In/~(a~), and w IS in E*,  for some l , j ,  0 ~ i < j  

_-< n - 1; and 
(6) A --~ w, where  A is in /x(a~) and w is in ~* ,  for some i, 0 N i N n - 1. 
We now define an in te rpre ta t ion  (/x' ,  G ' )  of  F,~ Le t  G '  = (V2 ,~ ,P2 ,S )  where  V2 

consists of S and all the variables  in P2 The  set Po consists of  all p roduct ions  in P~ of 
types (2), (3),  (5),  and (6),  as well as the fol lowing product ions .  (Product ions  (a ) - (g)  
below simulate ,  in reverse ,  as in Proposi t ion  3.1,  the effect  of  taking types (1) and (4),  in 
combina t ion  ) 

(a) A ~ w [ B A ] i f A ,  B are in /z(a, ) for  some i, 0 N i = < n -  1, w i s i n ] ~ * a n d B ~ w i s  
in P~ ; 

(b) A ~ C[BCA]i  and [BCA]i  --> w[BA]  if A ,  B are in p~(a,) and C is in ~(o~)  for some 
l , j ,  O N I  < j ~ n ,  W i S l n X * , a n d B - - - - ~ C w l s i n P l ;  

(c) A ~ w[BCA]2 and [BCA]2 ~ C[BA]  if A,  B are in p.(a~ ) and C is in/J.(o~) for  some 
t , j ,  O<_-i < l N n  - 1, W l S l n E * , a n d B - - ~ w C i s l n P ~ ;  
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( d )  A ---, C[BCA]3 and [BCA]3 ---~ D[BA] if A,  B are i n / x ( a , ) ,  C is in/.L(a~), and D is 
in/x(a~)  for some i , j , k ,  0 _-< i < k ~ n - 1, and 0 <_- i < k _-< n - 1, and B--~ CD is in Pt;  

(e) [CA] ~ D [ B A ]  i rA,  B, C are in/x(oq) and D is in t~(o~), for some i , j ,  0 ~ i <] ~ n 
- 1, and B --~ CD is in Pt ;  

(f)  [CA]---~ w[BA] if A, B, C are in ~(0~,) for some / ,  0 ~ i _<- n - 1, w is in X*, and B 
Cw is in P~; and 

(g) [AA] ~ E for all variables A in Vi. 
Le t /~ ' ( a )  contain ¢ and every terminal  word occurring in at least one product ion in P2. 

If A is in V2 N /x(o~,), let A be in /z'(o~,). If a is in ~(~x,), then let [BCA]i,  [BCA]2, 
[BCA]3, and [BA] be in ~(ot,) for all variables [BCA]~, [BCA]2, [BCA]a, and [BA]. 
Clearly G' is in C~(F,). It is s traightforward to verify that the size of  G'  satisfies the 
conclusions of the lemma. It remains to show that L(G')  = L(G). 

Intuitwely,  the new variables in G '  play the following role.  The purpose of  the paired 
variables is to stmulate from left to right a derivation which in G proceeds from right to 
left. Specifically, tf a variable [BA] ts generated (from S )  in a G ' -de r ivauon ,  then a word 
x,  consisting entirely of terminals and of variables in V~ which correspond to (sequen- 
tially) higher variables in F than A does,  has a l ready been generated immediate ly  to the 

left of [BA]. Fur thermore ,  B ~ x. Part  of a G-der ivat ion,  from A ,  Is being simulated,  

and one is waiting to see if A G-generates  B (along with possibly other  symbols) In 
particular,  if a variable [AA] is genera ted ,  then a word x, G-derivable  from A ,  has 
already been generated,  and the product ion [AA] ~ E is used. The purpose of the triple 
variables is to ensure that no more than two symbols occur on the right of any production 
m G ' .  If a variable [BCA]~ is generated during a G ' -der iva t ion ,  then C has a l ready been 
deposi ted immediate ly  to the left of  [BCA]t, and some w m X* such that B ~ Cw is in P~ 
will next be deposi ted,  along with [BA]. Similar remarks  may be made for [BCA]2 and 
[BCA]3. 

We now show that L(G) C L(G') .  Consider  a G-der ivat ion ~5 of some word in L(G). 
The only productions of 8 not in P2 are ei ther of the type A ~ BC, where A, B are in 
/z(o~,) and C is in/~.(tz~), 0 ~ i < j ~ n - 1, or  of the type A ~ Bw,  where A, B are in 
/x(ot,), 0 ~ i =< n - 1, and w is in ~+. (A production in P~ of the type A ~ B, where A 
and B are in/x(tz,) ,  0 ~ i ~ n - 1, is in P2 since it is of type 3.) Note that for each such 

production,  or, ~ a,z for some nonempty  word z in .5 a+, i.e. or, ~s "part ia l ly  self- 
GF 

embedding on the left ."  We shall see that the effect of such productions can be simulated 
by using productions (a) - (g)  in combinat ion.  Suppose there are no such productions in 8. 
Then there is nothing to prove and we are done.  Suppose there are" such productions.  
Consider  the first such product ion,  say A ~ BC or A ~ Bw, with A,  B, C, and w as 
above.  Rearrange 8 after using this occurrence so that B is the next variable which is 
expanded.  (Clearly,  this is possible.)  Let  8' be the new G-der ivat ion.  Since G is reduced,  
L(G) is regular,  B is i n /x (a , ) ,  and or, is partially self-embedding on the left in F,  it follows 
that the only possible productions with B on the left are ei ther B ~ DE,  B ~ Dw,  or 
B-.-~x,  where D is in /.t(tx,), E is in/.t(tx~), i < /  ~ n - 1, w is in X*, a n d x  is a word of 
terminals and of variables corresponding to variables or,, r > i. If the expansion of  B is 
one of the first two types, then without loss of generali ty we may assume that D is the 
next variable expanded,  etc. Thus we may assume (with a possible change in notat ion) 
that the expansion of A in ~' involves 

A = Ao ~ A~x~ ~ A2x~x~ ~ • • • ~ A~x~. • .x~ ~ x~.+l" • .x~, (*) 
G G G G G 

where A0, A~, • . . ,  A~ are in /x(a,);  each x~, 1 ~ j ~ k,  is ei ther a terminal  word or a 
variable corresponding to some a , ,  r > ~; andx~.+~ is a word of terminals and of variables 
corresponding to ~x~, r > 1. Also,  xe+t is of a form consistent with the allowable types of 
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productions in F. To prove that L(G) C L(G') ,  it obviously suffices (by induction) to 

show that A ~ x,+~ • • "xl. 
G t 

To see this, note that A ~ xk+~[AkA] is implemented by using one or two productions 
G '  

of P2, of types (a)-(d).  For each j ,  1 _-< j ~ k, [A,A] ~ x~ [ A~-iA] is implemented by 
G '  

either a type (e) or type (f) production. Also, [AoA] = [AA], so that [AoA] ~ e by a type 
• * G ~ 

(g) production. Combining, A ~ Xk+l" " "x~[AoA] ~ Xk+l" " " X l "  
G '  G '  

We next show that L(G')  C L(G). Consider a G'-derivat ion 8 of an arbitrary word in 
L(G') .  The only productions occurring m 8 not m Pz are those of types (a)-(g).  We shall 
see that the effect of such productions can be simulated in G Suppose there are no such 
productions in 8. Then there is nothing to prove and we are done. Suppose there are 
some such productions. Consider the first production of types (a)-(d) occurring in 8, with 
A, B m /z(ot,). Without loss of generality, this production, or this production in 
combination with the next production applied in 8, may be assumed to cause the 
depositing of a word of terminals and of variables corresponding to variables at ,  r > i, 

say A ~ z[BA]. Also, [BA] may be assumed to be the next variable expanded (using a 
G '  

type (e) or (f) production), and it may hkewlse be assumed that the paired variables are 
expanded immediately until an apphcation of [AA] ~ E occurs. Thus the expansion of 
the variable A in 8 (with a possible change in notation) involves 

A = Ao ~ xk+~[AkA] ~ x~+lxk[Ak-~A] ~ "'" © xk+i'" "x~[AoA] ~ Xk+l"" "Xl, (**) 
G' G' G' G' G' 

where A, A~, • • ", Ak are in /x(ct,), each x,, 1 ~ 1 ~ k, is etther a terminal word or a 
variable corresponding to some a, ,  r > i, andxk+~ is a word of terminals and of variables 
corresponding to variables o~, r > t. Also xk+l must be of a type obtainable from (a), 

(b), (c), or (d). It suffices (by induction) to verify that A ~ x~+~. • .xl. 
G 

To see this, note from the definition of (e) and (f) that G must contain the productions 
A~_~ --~A,x~, 1 ~ j ~ k. Also, from the definition ofxk+~, Ak ---~ x~+l is m Pl.  Thus 

A ~ A~x~ ~ • • • ~ A~x~'" "x~ ~ Xk+~" " "X~, 
G G G G 

* 

i.e. A ~ x~+~. • .xl. This completes the proof. 

The final lemma needed to show that every grammar form for the regular sets is 
stmulatable by right-linear form with at most polynomml increase m size (for three of the 
size measures) states that cach form Fn has thc desircd simulation property. 

LEMMA 3.6. For each positive integer n,  there exists a positive integer c wtth the 
following property: For each G in ~(Fn), there exists an equivalent G'  m ~(F~) such that 
M ( G ' )  ~ c[M(G)I  z" for each M in {S ,V,P,N}.  

PROOF. Let G = (V~,Ez,P,S)  be in ~(F~). We now define G '  = (Vz,I~,P2, [S]) in 
~(F~) in such a way that G '  simulates leftmost derivations of G. Let 

n 

V~ - E~ = {[X][ X in ~ ((V1 - E~) t.3 ((V~ - ~ )  × (Vt - E~)))'}, 
; = 0  

i.e. the variables of G '  are to be all words of length less than or equal to n in which every 
position is occupied by either a variable of G or by an ordered pair of variables of G. Let 
P~ consist of the following productions (where A, B, C are in V~ - E~, w ~s in E~, and 
D1, "" ", D , .  are in (V~ - ~ )  U ((V~ - ~ )  × (V~ - 1~)): 
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(a) [AD1" • "Dk] ~ [BCDi" • -Dg] l fA  ~ BC is in P~ and 0 ~ k ~_ n - 2; 
( b ) [ A D ~ . . - D g ] - - ~ w [ B D l . - . D k ] i f A ~ w B i s i n P l a n d 0 ~ k ~ n -  1; 
(c) [AD,"" "Dk] --~ [B(A,B}D1"" "Dk] and [ (A ,B )  D1". "Dk] ~ w[D~-. "Dk] l fA  

B w i s i n P ~ a n d O ~ k  ~ n  - 2; 
(d) [ A D ~ ' '  "Dk] ~ w[D~. . .D~]  i fA --~ w is in P~ and 0 ~ k ~ n - 1; and 
(e) [~] ~ ,. 

It is easy to see that G '  1s in Cg(FO, L(G')  C_ L(G), and the size increase is as stated. To 
complete the proof it thus suffices to show that L(G) C L(G').  Therefore let 8 be a 
leftmost derivation of a word x in L(G), and let 8' be the natural simulation of 8 using 
productions of the type (a)-(e) ,  where k is allowed to be as large as necessary. It then 
suffices to show that: 

(*) No word m 8' has brackets containing more than n symbols. 
We prove (*) by showing inductively that 
(**) In each word of 8 ' ,  the number  of symbols in the brackets is at most n ,  and for 

each i, 1 _-< t =< n,  the symbol in position i from the right, if it is a single variable, 
is in /.,(tz~) for some/  >_- i - 1 

Now (**) is certainly true for the first word, IS], of S'. Assume it is true for some word in 
8' and that [Ek" • • Et] is the varmble being expanded by the next production. If k = 0. 
the induction clearly follows Suppose 1 =< k ~ n and for all i, 1 _-< t ~ k, E, is m #(~ , )  for 
some j _~ 1 - 1 if E, is a single varmble If Ek is a single variable and k ~ n,  then the next 
production m ~' is one of the types: 

[Ek ' '  El] ~ [BCEk_i" ' 'E i ] ,  where Ek --, BC is in Pi ,  or 
[Ek' • • Et] ~ w[BE~_t. • • E~], where Ek --~ wB is in Pt for some w m X~, or 
[E~. • "Et] ~ [B(Ek, B)EA.-i" • • Eli, where Ek --~ Bw is in P1 for some w in X~, or 
[ E h . . . E i ]  --~ w [ E k - i " ' E 1 ] ,  where Ek ~ w is in Pl and w is in X~ 

In all cases the induction follows. If E~ ~s a single variable and k = n,  then since E~ is in 
~(o~_~) the next production m 8' can only be one of the types 

[ E n ' " E ~ ] ~ w [ B E ~ _ i  "'E,], w h e r e E , ~ w B i s m P ~ a n d w l s i n X f f ,  or 
[ E , . . ' E ~ ]  --0 w[E,,_t. . .E~], where E,  ~ w is m Pt and w is m X~'. 

In either case, the induction follows. If Ek is a double variable (A~ B), then the next 
production ~s of the type 

[(A,B)E~_~. . .E~] ~ w[E~_~...E~] for some w in ~ ' ,  

and again the mduct~on follows. Thus the induction holds in all cases. Therefore L(G) C 
L(G')  and the lemma is proved. 

Combining Lemmas 3.3, 3.5, and 3 6, we have: 
THEOREM 3.7 For each grammar form F defining the regular sets, there extst posittve 

integers c and n with the following property: For every G m ~(F), there exists an 
equivalent G' in right-linear form such that M(G')  =< c[M(G)]" for  each M in {S,V,P}. 

Because of Proposition 3.1, Theorem 3.7 is also true for left-linear form. 
Theorem 3 7 is not stated for N(G) since the proof of Lemma 3.3 does not hold in this 

case However, Theorem 3.7 is still true for N(G).  Roughly, we apply Lemma 3 2 to an 
arbitrary form for the regular sets, obtaining an equivalent form m which N(G) does not 
increase. We then use a reversal construction s~mdar to the one in the proof of Lemma 
3.5, to insure that all embedding takes place on the right Finally, we simulate the 
resulting form by nght-hnear  form using a construction similar to that used in the proof 
of Lemma 3.6. Here, longer strings of variables may be needed than m the simpler 
"binary" case, and the possible cases to consider are notationally more complicated, but 
the ideas are essentially the same. 

We now turn to the second major result of the section, namely, that any polynomial 
improvement may actually be obtained by some form defining the regular sets, at least 
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on an infinite set of languages We begin by in t roducing  a special family of  languages  and  
establish two lemmas  about  it 

Definttton 3.8.  For  all posltwe integers  n and k,  let L,,,k = 0"(10") k'. 
Thus  L, .  k is the set of all words in {0, 1}* which have exactly k n occurrences  of 1. 
The first l emma states that each L,,.k is def inable  by a g rammar  in F,, of  saze at most 

lanear in k.  
LEMMA 3.9.  For all positive mtegers n and k, there ts a grammar G in ~g(Fn) such that 

L(G) = L,,,k and M(G) <_- (4n + 6)k for  each M in {S,V,P,N}.  
PROOF. Let V ~ =  {0, l } t . . J { A , ~ [ 0 ~  i_--< n - 1, 0 _--< ] ----< k} and  G = 

(Vi,{0, 1},P, Ao.o), where 

P={Ai.~--->A,+i.0A,,~+~ 10=<i - - - -<n-  2 , 0 _ ~ j = <  k -  l } U { A , . k - - - > E } 0 ~ i ~ n - -  1} 

O {an-~,j'--> oa,_~,~ [ 0 _-<j =< k} U {An-~,~ ~ IAn-j,,+, [ 0 =<j ~ k - 1}. 

Clearly,  G is m ~(F,,), with each A,., cor responding  to a, .  It as readily seen that  every A,,0 
generates  L,_,,e. (The second index of A,., is used to count  up to k.)  Thus  L(G) = Ln.k 
Finally,  it as a s traightforward mat te r  to verify the size bounds .  

The second l emma asserts that each g rammar ,  m r ight-hnear  form, which defines Ln,k 
is of size at least k n. 

LEMMA 3 10. For each posttive integer s and each grammar G in right-linear 
form,  with L(G) = 0"(10") s, M(G) => s + 1 for  each M in {N,P,  V,S}. 

PROOF. It suffices to show that N(G) ~ s + 1. The a rgumen t  is of  a s tandard  type and  
consists of showang that f iN(G)  < s + 1 then an incorrect  word is genera ted .  Consider  a 
word x = 0m(10m) ~, where m is some integer  larger than the m a m m u m  n u m b e r  of 
terminal  symbols  in each p ro d u c n o n  of P~. Let 

a: S ~ wiAi  ~ wlw2A2 ~ "'" ~ wl "" "wtAt ~ wl "" "w~+l = x 

be a G-der iva t ion  o fx ,  where each A, ,  1 ~ i ~ l ,  as a variable,  and each w,, 1 _--< t _--< 1 + 
1, is in {0, 1}*. F rom the choice of m ,  exactly s distract words w , ,  • • ", w ,  conta in  a 
single occurrence of the symbol  1, and  wt+~ is not  one of them To complete  the proof,  it 
suffices to show that A,,_~, • • • ,  A,_a ,  A~ are all different variables.  Suppose A~,_~ = 
A,_a  for some t and  u, t < u.  Then  

S ~ w~A1 ~ • • • ~ wl • • • w,~-i A,.-1 = wl • • • w,~-tA,,-i 

~ W 1 • • • W l u _  1 W I  t " • • W l W l +  1 

I 

is a de r ivanon  of a word x '  in L(G). But  x '  has at least s + 1 occurrences of 1, 
contradict ing the na ture  of the words in L(G). A simdar a rgument  showsA t to be dastinct 
from the remain ing  variables.  Thus  A,_~, • • • , A,_~, At are all different .  

From 0)  Lemmas  3.9 and 3 10. (n) the fact that for each context-free g rammar  G~ = 
(V~,Zi,P~,S~) there ~s an equivalent  reduced g rammar  G2 = (Vz,Z~,P2,SO, wath V2 C V~ 
and P2 C P~, and (ui) the fact that S(G) is the largest,  and N(G) the smallest,  of  the four  
measures  for each reduced context-free g rammar  G ;  we get 

THEOREM 3.11.  For each posttive mteger n, there extsts a grammar form F for the 
regular sets and a posittve integer c wtth the followmg property: For every integer 
k => 1, there is a grammar G m ~(F) such that for  each M in {S,V,P,N},  (1) M(G) ~ ck, 
and (2) M(G') ~ kn for  every equivalent grammar G' in right-linear form. 

From Theorem 3.11,  Theorem 3.7,  and the c o mmen t  following Theorem 3.7,  we see 
that every form for the regular  sets may be samllarly improved  by any polynomial .  In 
other  words: 

COROLLARY 3.12.  For every form F' defining the regular sets and every postttve 
mteger n, there exists a form F defining the regular sets and a posttive integer c with the 
followmg property: For every mteger k => 1, there is a grammar G in ,~(F) such that for 
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each M in {S ,V,P,N},  (1) M(G) <= ck and (2) M(G')  > k" for  every equivalent grammar 
G' in ~(F'). 

The  effect  of  Coro l la ry  3 .12 ~s that  there  is no " b e s t "  form for  the regular  sets. 

4. Forms Defining More than the Regular Sets 

In Sect ion 3 we discussed the i m p r o v e m e n t  possible using forms which def ine  exact ly  the 
regular  sets. In this section we examine  the effect  of  a l lowing forms which def ine  more  
than the regular  sets. Specifically,  we es tabhsh two results .  The  first asserts that  by 
permi t t ing  such forms ,  we can achieve  more  than po lynomia l  i m p r o v e m e n t  on an infinite 
family o f  regular  sets. The  second says that  even  permi t t ing  such forms ,  there  [s an 
infinite family of  regular  sets for which no i m p r o v e m e n t  ove r  r ight- l inear  form is 
possible.  

Fo r  the first resul t ,  we have:  
THEOREM 4.1.  For each recurstve function l a n d  for arbitrarily large positive mtegers 

k,  there is a grammar G in Chomsky binary form, defining a regular set, such that for each 
M in {S ,V,P,N},  (1) M(G) .~ k, and (2) M(G')  _~ f ( k ) f o r  each equivalentgrammar G' 
in right-linear form. 

The p roo f  is an easy corol lary o f  [4, Prop .  7], the b o u n d e d  s imulat ion o f  r ight- l inear  
g rammars  by one-way  finite state acceptors ,  and the b o u n d e d  s imulat ion of  any context-  
f ree g rammar  by one  in Chomsky  binary form.  

Fo r  the second resul t ,  we have:  
THEOREM 4.2.  For each positive integer k, there is a grammar G m right-hnear form 

such that for each M in {S ,V,P,N},  (1) M(G) ~ 10k, and (2) M(G')  ~ k for  every 
equivalent context-free grammar G'. 

PROOF. Let  G = (V  I,{al, • • " ,azk}, P,A1), where  Vi = {ai, • • • , azk} U {A~, • • • , Azk} 

and P = {A,---> a,A,,A,---> A,+i [ 1 < i <= 2k - 1} U {Azk---> a2kA2h ,A2h -> ~}. T h e n  G is in 
r ight- l inear  fo rm,  M(G) <= 10k, and 

L(G) = a~a* . . . .  • a 2 k _  iC/2h.  

Suppose that  G' = ( V2, {al, • " • , a2k},P2,S~) is a context - f ree  g r ammar  equ iva len t  to G 
The re  is no loss of  general i ty  in assuming that G '  is r educed .  To  comple te  the p roof  it 
suffices to show that  for each t, 1 ~ i ~ 2k,  there  exists a var iable  B, in G' such that  

• * 

(*) E i the r  B, ~ u,B~v,a,w~ o r B s  ~ u~a,v,B,w,, for  some  u,, 4 ,  w, m {aj, • • • , ask}*. 
G'  G '  

For  suppose (*) holds.  T h e n  there  are  no three  indices i,j,l, with t <1  < l ,  such that  B, = 
~g 

B~ = Bi. (For  assume there  are.  If  B~ ~ usBsv~asw~, then since Bz = B~, a word  in L(G')  is 

ob ta ined  with at to the left  of  a~, a cont radic t ion .  If  B~ ~ u~asvsB3ws, then since B~ = B~, a 
G' 

word in L(G')  is ob ta ined  with a~ to the left  of  a, .  a con t rad lc tmn. )  Hence  at least  half  of  
the variables  B~, • • • , B2k are di f ferent ,  i .e.  N(G')  > k. 

To see (*), we shall show that genera t ion  in G '  o f  long words  requires  var iables  with 
the given proper ty .  Le t  r be the n u m b e r  of  var iables  in G '  and i a g iven in teger ,  
1 < t -<- 2k L e t m  be a pos i twe in teger  such that  every  der iva t ion  t ree in G '  of  a;" has a 
path with at least  r + 2 nodes .  N o w  cons ider  a shortes t  G ' - d e r i v a t m n  of  a m, and let  T be 
the associated der iva t ion  t ree Le t  zr be a longest  path  m T,  and let  B0, ' "  •, B~ be  the first 
r + 1 node  names  on 7r. Thus  B0 = S ' .  Le t  B~ ---> x)+~Bj+ayj+~, 0 < j < r - 1 and all xj+~ 
and y,+~ in V * ,  be the produc t ions  in P2 which realize the first r node  names  on rr. Since 
the sequence  {B~}o-~r is of  length  r + 1 and G '  has only r var iables ,  B~ = Bt for  some  s < 
t. Then  

X s + l  " " " x t Y t  " " "Ys+l  ~ g l a ~ g 2  
G' 
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for some termmal words z~ and ze, smce T ts a tree for a shortest G'-derivat ion of an. 
From this, (*) immediately follows. 

5. Forms  for  the L inear  and  the Contex t -Free  Languages  

In thts section we examine the complexity situation for forms whose expresstve power is 
exactly the hnear languages or exactly the context-free languages. The results for the 
linear languages parallel those for the regular sets, whereas the context-free languages 
only permit lmear tmprovement rather than arbitrary polynomial improvement.  

Analogous to Lemma 3.3, we have 
LEMMA 5.1. For each g r a m m a r  f o r m  F def in ing  the l inear languages,  there exists an 

equtvalent  f o r m  F' and  pos i t tve  integers c, n wtth the f o l l o w i n g  propert tes:  

(1) Every  p roduc t ion  o f F '  ts one  o f  the types a --* f l y ,  a ---> w[3, a ~ f lw ,  a ---> w,  

a ---> f l a y ,  a ---> w a y ,  a ---> f l a w ,  or  a ~ w~aw2, where or, 13, 3/are vartables a n d  w ,  w l ,  
w2, are terminal  words;  

(2) F' is sequential ,  reduced,  and  f o r  every  vartable a o f  F' ,  a ~ w f o r  s o m e  non-  
emp ty  terminal  word  w; and  ce'  

(3) f o r  each G in ~(bF) there extsts an  equiva len t  G '  in ~(F ' )  such  that  M ( G ' )  
c[M(G)] n f o r  each M in {S, V, P}. 

PROOF As in the proof of Lemma 3.3, we obtain F" from Lemma 3 2. Note that F" 
satisfies conditions (2) and (3) We transform F" mto the required F '  by the following 
procedure. Productions of F" of the eight permitted types are put into F ' .  Each 
remaining F" production whose left-hand variable does not occur on its right-hand side is 
treated exactly as in Lemma 3.3 The remaming productions of F" are of the type a 
x , , . . . x ~ c ~ y l . . . y , ,  where either r n o r n  (or both) Is at least 2, a is a variable, each x, and 
y, is either a variable different from a or a nonempty terminal word, and no two 
consecutwe x, or yj are terminal words (At this point, [1, Th. 2 4] is used? °) If m and n 
are both at least two, then put into F '  the set of productions 

{'~ ---' f lo '~r , , ,  f l , ,  -'-" f l , x , ,  f l ,  ---, f l 2 x . , ,  • ""  , ~ , , , - 3  ~ f l . , _ . , x , . _ . , ,  t i m - , ,  - - "  x , . x . , _ , }  

U {Yl "-> YF/J, Yl --> YzYz, " " ", Yn-3 "-->Yn-~Yn--2, Yn-~ "-->Yn-fYn}, 

where the /3,, 3,, are new vartables, chosen to be different for each new production. If 
either m or n is at most 1, then make the obvious modtfication. The rest of the proof ts 
straightforward. 
• Similar to Definmon 3.4, we define an infinite sequence {J,} of forms for the linear 
languages. 

Def in i t ton  5 2. For each n > 1, let J,, = (V,~,~,,{a},~,,,ao), where 

7/',, = { a }  U {or0,  ' ' "  , o ~ . - 1 , / 3 2 ,  " ' "  , fl,_,, Ti, " '"  , T . - , }  

and 

~n = {a, --> [3~a,yk, a, ---> [3pt~a, a,  ---> acqTk, a, --> aaea [ 0 <-- i <---- n -- 1, 1 <= j ,  k < n - 1} 
U {a,~f l~Th,  c q ~ / 3 f l ,  a , ~ a T e ,  a , ~ a [ 0 ~  i<= n -  1, 1 ~ j ,  k ~  n -  1} 
U {a~ ~ ajTk, a~--~ a a ,  a, ~/3lap,  a~ ~ aa~ I 0 --<_ i < j  ~ n - 1, 1 ~ k, ! =< n - 1} 

U {13, ~ t3~13k [ l =< t ~ k =< n - I, i < j}  U {13, ~ al3~,13~ ~13~a  [ l ~ i=< k --< n - 1, 
1 = < i < j ~ n -  1} 

U {fl,----~ a, y,----~ a [ 1 ~ i ~ n  - 1} u { r , ~  y~T~ [ 1 ~ i ~ j ~ n -  1, i <  k} 
U {T,--~ 3,,a, y,---~ aye  ] 1 ~ i ~ j _--< n - 1, 1 ~ i ~ k e n -  1}. 

Intmttvely, the a 's  provide n sequential levels of self-embedding variables, and the/3's 

~0 T h e o r e m  2 4 o f  [1 ] ~s the fol lowing.  Le t  F = (V ,E ,~ ,b° ,~ ,o r )  be a r educed  g r a m m a r  fo rm .  Cal l  a v a r m b l e  self- 
embedding ff the re  are  words  u, v m 5 ¢+ such tha t  ~ ~ u~v T h e n  .M(F) is the  f a m d y  o f  h n e a r  l anguages  if and  
only if (1) F has  a s e l f - e m b e d d i n g  var iab le  and  (11) if o" ~ u~:u2"ou3, w~th u~, u~, u3 m 'V* and  ~, ~ m 'V - ~ ,  then  

and  ,/ a re  not  bo th  s e l f - embedd ing  var iab les  
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and T's are strictly right recurslve and strictly left recursive, respectively. In particular, J i 
is standard hnear form. 

Paralleling Lemma 3.5, we obtain: 
L~MMA 5.3. Let  F be a grammar form for  the linear languages, having the fol lowmg 

conditions: (t ) Each producuon o f F ts one o f the types a ~ fiT, a ~ w/3, a ~ / 3 w ,  a 
w, a --> f la  T, a ~ w a  T, a ~ f law,  or a --> wlaw2, where a,  [3, T are variables and w, 
wl,  w2 are terminal words; and (it) F is sequential, reduced, and for  every variable a o f  

F, a ~ w for  some nonempty terminal word w. Let  n be the number o f  variables in G~,. 
GF 

Then there exists a positive integer c such that for  every G m ~(F), an equivalent G' in ~(J,,) 
can be f ound  satisfying M(G')  =< c[M(G)]Z f o r  M in {S,V,P}, and N(G')  =< c[N(G)] a. 

The proof involves a complicated construction and is given in Appendix A Roughly 
speaking, we augment  each interpretation grammar o f F  to contain both a left and a right 
recursive equivalent of every non-self-embedding variable Since the right-hand side of 
each production contains at most one self-embedding variable, we may replace each 
variable to the left (right) of a self-embedding variable with its right (left) recurslve 
equivalent, thereby producing a grammar in form J,,,. 

The next preliminary result corresponds to Lemma 3.6. 
LEMMA 5.4. For each positive integer n, there exists a positive integer c with the 

following property: For each G in ~(J,~), there exists an equivalent G' in ~(J~) such that 
M(G')  ~ c[M(G)]4" f o r  each M in {S,V,P,N}.  

The proof IS similar to that of Lemma 3.6 and is gwen in Appendix B. The idea here is 
that G '  simulates "outermost"  derivations of G 

Combining Lemmas 5.1, 5.3, and 5.4, we obtain: 
THEOREM 5.5. For each grammar form F defining the hnear languages, there exist 

positive integers c and n with the following property: For every G m ~(F), there exists an 
equivalent G' m standard linear fo rm such that M(G')  ~ c[M(G)]'~ f o r  each M in {S, V,P}. 

Remarks similar to those following Theorem 3.7 indicate how Theorem 5.5 can be 
extended to the measure N(G) .  

The attalnabihty of any polynomial improvement is seen using the family 
{L,,.k t n ~ 1, k _-> 1} of languages defined m Section 3. 

As m Lemma 3.9, so (proof omitted) we have 
LEMMA 5.6. For every positive integer n,  there is a posmve mteger c with the 

fol lowmg property: For each positive integer k ,  there is a grammar G m (~(J,,+~) such that 
L(G) = L,,.~, and M(G) =< ck  f o r  each M in {S,V,P,N}.  

Parallel to Lemma 3.10, we have 
LEMMA 5.7. For each positive integer s and each grammar G in standard hnear form,  

with L(G) = 0"(10") s, M(G) ~ [(s - 1)/2] + 1 f o r "  each M tn {S,V,P,N}.  
PROOF. It suffices to show that N(G) >= [(s - 1)/2] + 1. Let x = 0"(10m) s, where m is 

an integer larger than the maximum number  of occurrences of terminals m each 
production of Pi.  Let G = (V,E~,P~,S) and 

~: S = Ao ~ wlAlx j  ~ wlw2Azx2xl ~ "  " " 

w~" • "wtAtxt '"  .x~ ~ w~. • .w tw t+ix t . . . x j  = x 

be a derivation ofx ,  with each A, a variable and w,, x, in {0, 1}*. From the definition of 
m,  each w~ and each x~ can have at most one occurrence of the symbol 1. Let i~, • • •, ir be 
those indices t for which either wt or x~ contains 1. Clearly, r ~ [(s - 1)/2]. By an 
argument as In Lemma 3.10, A,,_, ~ A,A-~ f o r /  ~ k, and A~ is distinct from all A,j. 

Hence N(G) ~ [(s - 1)/2] + 1. 

n [(s - I)/2] denotes the smallest integer equal to or greater than (s - 1)/2 
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Combining the previous lemmas, we get 
THEOREM 5.8 For each posttive mteger n, there exists a grammar form F for the linear 

languages and a positive integer c with the following property: For every mteger k ~ 1, 
there ts a grammar G in ~(F) such that for each M in {S,V,P,N}, (1) M(G) ~ ck, and (2) 
M( G') ~ k ~ for every equivalent grammar G' in standard linear form. 

The analogy to Corollary 3.12 clearly holds. 
Finally, we note that results of the kind obtained for the regular sets and the hnear 

languages do not hold in general. For the case of forms defining all the context-free 
languages, we can show by a straightforward simulation: 

THEOREM 5.9 For each form F defining the context-free languages, there exists a 
positive integer c with the following property: For every G m ~(F),  there exists an 
equivalent G' in Chomsky binary form such that M'(G') ~ c[M(G)] for each M in 
{s, v,e}. 

Thus arbitrary polynomial improvement is not possible for the forms defining the 
context-free languages. 

6. Open Questions 

Many open questions remain, a few of which are now mentioned.  Are there results 
similar to those m Sections 3 and 5 for grammatical famdies other than those of the 
regular sets and hnear languages? (As yet, there is no "canonical form," analogous to 
right-linear form, for each grammatical family. Nevertheless, perhaps it can be shown 
that every two forms with the same expresswe power can simulate each other with at 
most polynommi loss of efficiency.) Do there exist two forms for the regular sets, each of 
which is more efficient than the other for some languages9 What are the tradeoffs 
between derivation complexity [2} and size complexity q And finally, what can be stud 
about complexity of forms which are not context-free? 

Appendix A 

We now present a formal proof for Lemma 5 3. 

Consider those variables c~ of Gr  such that ct ~ wl/3w2 ~ WlW3flw4w2 for some variable 
G F G F 

/3, words w~, w2 m ~*, and words w3, w4 in ~+. Denote these variables, m sequential 
order, by So, • • •, or,,,, whcre m =< n - 1 Since F defines the hnear languages, m ~_ 0. 
Clearly F = (V,E, ~,~,~,0~0). Denote the remaining variables of GF, m sequential order, 

by/3j,/32, " ' ' ,  /3,,-~-m 
Let (#,  G ) be an arbitrary interpretation o fF ,  with G = (V~,~,P~,S). There is no loss 

of generahty m assuming G ~s reduced. We shall define an interpretation ( tx ' ,G ' )  of J,,, 
with G'  = (V2,~,P2,S) The variables of G '  are: (a)  each variable of G in / z (a , )  for each 

n - - I  l, (/3) distinct symbols A L and A~ for each variable A of G m O~=~ /x(/3~); and (T) distract 
symbols [B~AL], [QBLAL]~, [QBLAL]2, [QBLAL]3, [ARBR], [ARBRCR],, [AnBRCR]2, and 
[AnBnCR]3 for all varmbles AL, BL, CL, An, BR, Cn. The set P2 consists of the following 
productions (where w,wl,w2 are i n ~ ' ,  0 =< i,i~,i2 ~ n - 1, and 1 =<j,jl,j2 =< n - 1). 

(a) A ~ BLCD R l fA,C are m U(cq), B is in U(flj,), D is in tx(fl~,), a n d A  -* BCD is in 
P1. 

(b) A ~ BLCW i fA ,C  are in /z(ot,), B is in p.(flj), a n d A  --~ BCw is in Pl- 
(c) A ~ wCD n if A ,C are m /x(o6), D IS m tx(fl~), and A ~ wCD is in Pi .  
(d) A ~ wjCw2 mfA,C are in p.(ot,) a n d A  --* wlCw2 is in P1. 
(e) A ~ BLCn l fA is m iz(a,), B is m tz(fl~,), C is in /z(fl~,), a n d A  ~ BC is in P1- 
(f) A ~ BLw i fA is m /z(ot,), B is in /z(fl~), a n d A  ~ Bw is in P1. 
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(g) A --~ w C  R if A is in /.¢(a,), C is in tx(/3,), and A ~ wC is in P~. 
(h) A ~ w i f A  i s m p ( a , ) a n d A - - ) w i s i n P ~ .  
(i) A ~ BCR ifA is in/ ,(oq,),  B Is in/ ,(oq,),  C is in/ ,(f l , ) ,  i, < i2, andA ~ BC is in P, .  
(j) A --+ B w  i fA is in /z(a~,), B is m / ,(a, , ) ,  t, < i2, and A ~ Bw is in P, .  
(k) A ~ BLC i fA is in/,(0~,~), C is m/,(0~,~), B is in/ , ( f l , ) ,  i, < i2, a n d A  -9 BC is in 

e l .  

(I) A ~ wB t f A  is in /,(o~,,), B is in /,(o~,,), i~ < t2, a n d A  ~ wB is m P,.  
(m) BL ~ Q D L  t f B  is in/,(/3,),  C is in #(fl,,),  D is in/,(/3~,), j ~ j , ,  j < j , ,  and B -+ 

CD is in P,.  
(n) B L ---> wCL if B Is in /,(/3~,), C is m /,(/3~,), j ,  _-< 12, and B ~ wC is in P,.  
(o) B L ~ CLw if B Is in /,(/3,,), C is m /,(fl),), j~ </2,  and B --+ Cw is in P, .  
(p) Bi. --+ w and Bn --) w if B is m /,(fl,) and B ~ w is in P1. 
(q) Bn -+ CnD~ if B is in/,(/3j), C is in/ , (f l , , ) ,  D is in/*(/3,~),1 =</1, j <J2, and B -+ 

CD is in P~ 
(r) Bn --~ wC~ t f B  is in /,(fl~,), C is in ~(fl~),  j, <j2,  and B ---~ wC is m P,.  
(s) Bn- -~Cnw i fB  isin /x(/3~,), C l s i n  I.L(fl,~), It ~12, andB - - -~Cw is in P~. 
(t) At. ~ w[Bt.At.] and An ~ [AnBR]w i fA ,B  are in /.~(fl,) and B ~ w is m P~. 
(u) AL ~ w[CtBLAt.]t, [CLBLAL], ~ Ct.[Bt.AL], An ~ [ARBnCR]~Cn, and [AnBnCR]~--> 

[AnB~]w i f A , B  are m/z(fl , , ) ,  C ts in p(/3,,), j~ <12, and B ~ wC is in P~. 
(v) At. -'> CL[Ct.BLAt.]2, [CLBLAt.]2 "-~ w[Bi.AL], An ~ [ARBnCn]zw, and [ARBnCR]2 - - >  

[AnBn]Cn l f A  ,B are in/.t(fl,,), C ts in/.~(/3,~), ]~ < j~, and B --~ Cw ts in P1. 
(w) At. --~ CL[Ct.BLAt.]a and [CLBLAt.]3 ---> DL[Bt.AL] if A ,B are m p.(/3,), C is in 

/.t(/3,,), D is in p.(/3,,), j < l ~ , J  <J~, and B ~ CD is in P~. 
(x) Au ~ [AnBnCu]zCn and [ARBRCR]3 ~ [ARBR]Dn if A,B are in /.,t(/3,), C is in 

/.t(fl~,), D is in /.~(/3,~), / <J~, / <12, and B ---> DC is in P~. 
(y) [Bt.At.] ~ w[CLAL] I f A , B , C  are in p.(fl,) and C ~ Bw is in P~ 
(z) [BLAL]--~ DL[Ct.Ai.] l f A , B , C  are in p.(/3,1), D is m p.(/3~), jl </2,  and C ~ BD is in 

P~.  

(a ')  [At.At.] -~ ¢ and [AnAR] --> ¢ for each variable A of G. 
(b ')  [ARB~] ~ [AnCn]w i fA ,B,C are in Ix(fiE) and C --> wB ~s in P~. 
(c')  [AnBn] --> [ARCn]Dn l f A  ,B,C are in Ix(/3,,), D is in p.(/3,~), Jl <j2,  and C ~ DB is 

m P~. 

The substitution/x' is defined as follows. Let/x '(a) contain E and every terminal word 
occurring in at least one production in P2- For each variable A in Ix(a,), let A be m 
/L'(a,). For each variable A in /.~(fl,), let AL, [BLAt.], [Ct.BLAL]~, [CLBLAt.]2, and 
[Ct.BLAL]3 be in/z'(/3,), and An, [ARBR], [ARBRCR],, [ARBRCR]2, and [AnBRCn]3 be in 
~'(y,). 

Clearly, the size conditions are satisfied. That L(G')  = L(G) follows in a slmdar way to 
Lemma 3.5 Derivations in G '  proceed as in G, except that certain variables are 
"reversed." In particular, variables to the left of a self-embedding variable ~z embed 
themselves on the right only, while variables to the right of a self-embedding variable 
embed themselves on the left only. Since a variable A of G might occur on both sides of a 
self-embedding variable, two copies of A,  At. for the left and AR for the right, are 
introduced. (At. embeds itself only on the right and An only on the left.) m formal 
argument along the lines of that in Lemma 3.5 is left to the reader 

Appen&x  B 

Here we establish Lemma 5 4. Let (/x,G) be an interpretation of J~, with G = 

~z A variable ~ m a g r a m m a r  G = (Vi,I~i,P,,S) is calledself-embeddmg if there are words u and v in Xt + such that 
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(V1,~i,P1,S).  We now define an in t e rp re t a t ion  ( ~ ' , G ' )  of J i  m which G '  = (V2,~,P2,[S]) 
s imulates  " o u t e r m o s t "  der iva t ions  of G 

The set V2 - E~ consists of  the symbols :  

(1) [Br" " "B~AC~" " "C,], where  0 ~ r, s =< n - 1, A is m /z(ct,) for  some i, each  B~ is 
e i ther  a var iable  in /x(/3t) for  some l or  else a pair  (D~, E~) of  var iables  D j m  Ix(ilk,) 
and E~ in #(fib2) for  some k , k 2 ,  and each C~ is e i ther  a var iable  i n / z (y t )  for  s o m e / o r  
else a pa i r  (Dj, Ej) of var iables  De' m # (yh , )  and E j  in g(Tk~) for  some k~,k2. 

(2) [Br'"  "BiCi '"  "C~], where  every th ing  is as in (1) except  there  is no var iab le  A .  

The set Pz consists of the fol lowing p roduc t ions  (where  w,w~,w2 are words  in ~ ,  and 
i , j ,k ,r ,s  are in tegers  whose quant i f ica t ion  will be c lear  m each case):  

(a) [A]---~ [BCD] if A,  C are i n / x ( a , ) ,  B is in/x(/3~), C is in/x(yA),  a n d A  ~ BCD is in 
e l .  

(b) [A] ~ [BC]w if A,  C are in # ( a , ) ,  B ~s in /.~(/3~), and  A ~ BCw is in P i .  
(c) [A] ~ w[CD] if A,  C are in /x(a,) ,  D is in /x(y~), and A ~ wCD is in PI .  
(d) [A] ~ wl[C]w2 if A,  C are in /x(ct,) and A ~ wlCw2 is m Pl. 
(e) [A] ~ [BC] i f A  is in ~(ot,), B is m ~(/3~), C is in /Z(yk), a n d A  ~ B C  Is in P~. 
(f) [A] ~ [B]w if A is in p.(a , ) ,  B is in /x(13~), and A ~ Bw is in P l .  
(g) [A] --> w[B] if A is in /x(a,) ,  B is in /x(Tj), and A ~ wB is in P~. 
(h) [A] ~ w f f A  is in /x(a,)  and A ~ w is in P~. 
(i) [A] ~ [BC] f fA  is in/x(ot,) ,  B is in/x(t~j),  i < j ,  C is in/z(Tk),  a n d A  ~ B C  is in P~. 
(j)  [A] ~ [B]w tf A is m /.L(ot,), B is in ~(ob),  i < j ,  and  A ~ Bw is in P i -  
(k) [A] ~ [BC] i fA  is m/z(ot , ) ,  B is in/x(fl~), C is in /z(otk), i < k, a n d A  ~ B C  Is in P i .  
(1) [A] ~ w[B] if A is in /x(a,) ,  B is m /.t(o~), i < j ,  and  A ~ wB is in P i -  
(m) [ B ~ ' " B ~ A C ~ ' " C ~ ]  ~ [B~+~Br+iBr-~'"B~AC~"'C~] ff Br ~s in /z(/~,), B,+z is in 

tz(13~), i < j ,  B,+~ is m tz( /~) ,  i ~ k, B,  ~ B~+zB~+i ~s m P t ,  and  the 
remain ing  symbols  are as in (1).  

(n) IBm.-.  B~C~'"  Cs] ~ [B~+2Br+ ~B~_~"" BiC~""  C~], with the quant i f ica t ion  as in (m) 
and symbols  as in (2).  

(o) [ B r ' " B ~ A C ~ ' " C ~ ]  ~ w[B,+~Br_~" 'BIAC~'"Cs]  ff B~ is in /x(fl~), Br+~ Is in 
p(fl~), i ~ j ,  B~ ~ wB~+~ is in P~, and the remain ing  symbols  as in (1).  

(p)  [B~.. .B~C~.. .C~] ~ w[B~+iB~_~ . . .BaC ," .C~] ,  with the quant i f ica t ion  as in (o) ,  
symbols  as in (2).  

(q) [Br""  B i A C , " "  CJ ~ w [ B r - , " "  B~AC~"" CJ if B~ is in/z(/3,) ,  B~ ~ w is in P~, and 
the remain ing  symbols  are as in (1) 

(r) [ B , . . . B i C ~ . . . C ~ ]  ~ w[B,_~.. .B~C~.. .C~],  with the quant i f ica t ion  as in (q) and 
symbols  as in (2).  

(s) [B~ • • • B~A C~ . . .  C~] ~ [D(DB,)B~_~ . . .  B~A C ~ . . "  Cs] and [(DB,)Br-~ "'" B~A Ci 
• "" C,] ~ w[B,_~ "'" B~AC~ "'" C~] if Br IS in/.t(/3~), D is in/x(/3~), i < j ,  B~ 
Dw is in P1, and the r ema in ing  var iables  are as in (1).  

(t) The  same as (s),  with the varmble  A omi t t ed  (symbols  as in (2)) .  
(u) Symmet r i c  vers ions  of  ( m ) - ( t ) ,  expand ing  the C var iables .  
(v) [ ] ~ .  

The a rgumen t  that  G '  has the des i red  p roper t i e s  is s imilar  to that  m L e m m a  3.6 ,  and is 
omi t ted .  
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