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ABSTRACT. Grammar forms are compared for their efficiency in representing languages. as measured by the
sizes (1 ¢ total number of symbols, number of variable occurrences, number of productions, and number of
distinct variables) of interpretation grammars For every regular set, right- and left-hinear forms are essentially
equal n efficiency Any form for the regular sets provides, at most, polynomal improvement over night-hnear
form Moreover, any polynomial improvement 1s attained by some such form, at least on certain languages
Greater improvement for some languages 1s possible using forms expressing larger classes of languages than the
regular sets However, there are some languages for which no improvement over nght-linear form 1s possible

While a similar set of results holds for forms expressing exactly the linear languages, only linear improve-
ment can occur for forms expressing all the context-free languages.
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1. Introduction

In [1], the concept of “‘grammar form” was introduced to model the situation where all
grammars structurally close to a given master grammar are of interest Among questions
naturally formulated n this framework are many about the complexity or efficiency of
grammars. For example, is there a “‘type of grammar” which improves the efficiency of
right-linear form for defining the regular sets, and if so, by how much? Grammar forms
provide a reasonable and tractable way of considering the totality of allowable expres-
sions, thereby permitting the above question to be answered with both upper and lower
bounds.

The general problem of concern to us is the following: Which grammar forms are more
efficient than others for defining families of languages, and how much gain in efficiency is
possible? In [2], this question is answered for efficiency measured in terms of derivation
complexity. The purpose of this paper 1s to consider the question when “size of
grammar” is the complexity measure.

There are five sections 1n addition to the present introductory one. Section 2 contains
basic notions about context-free grammar forms, as well as definitions of four measures
of grammar size (each similar to one in [3]) considered throughout the paper. The results
obtained usually apply to all four measures.

Section 3 deals with forms defining exactly the regular sets. Using a ‘‘reversal”
construction, it 1s first shown that for every regular set right- and left-hnear forms are of
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equal efficiency. Next, an upper bound is given on the amount of improvement possible
over right- or left-linear form. A key point n the argument is the simulation of variables
embedding themselves on the right by variables embedding themselves on the left; a
construction similar to the reversal mentioned above 1s used. Finally, it 1s proved that
every polynomial improvement over right-linear form is actually attainable by some form
defining the regular sets.

Section 4 considers grammar forms whose defining power is greater than the regular
sets. For such forms, it 1s possible to get greater improvement than that obtained in
Section 3. However, there are some regular sets for which nght-linear form is optimal,
that 1s, these sets cannot be defined more efficiently by any other form, regardless of the
expressive power.

Section 5 sketches results, similar to those in Sections 3 and 4, for grammar forms
defining the linear languages. In addition, it is noted that for forms defimng all the
context-free languages, the variation possible is much less (in fact, linear).

Sectton 6 discusses some open questions.

2. Preliminaries

We first recall some elementary notions about context-free grammar forms. Then we
present four types of ‘‘sizes’” with which we shall be concerned

Definition. A (context-free) grammar form 1s a 6-tuple F = (V,2,9,¥,P,0), where

(1) V is an nfinite set of abstract symbols,
(ii) X is an infimte subset of V such that V — X is infinite, and
(i) Gr = (V,%,P,0), called the form grammar, is a context-free grammar' such that
FCland (V- F)C(V-3).

The reader is referred to [1] for motivation and further details about grammar forms.

Throughout, V and ¥ are assumed to be fixed mfinite sets satisfying conditions (i) and
(i1) above. All context-free grammar forms are with respect to this V and 3. Also, the
adjective ‘‘context-free” is usually omitted from the phrase ‘‘context-free grammar
form.”

For our purposes, we shall henceforth assume each context-free grammar has at least
one production

The purpose of a grammar form 1s to specify a family of grammars, each “‘structurally
close” to the form grammar. This 1s done via the notion of:

Definition. An interpretation of a grammar form F = (V,3,7,¥%,P,0) is a 5-tuple [ =
(w,V,2,,P,,S,), where

(i) u 15 a substitution on ¥™* such that u(a) is a fimte subset of 3* for each a n

&, r(€)1s afinite subset of V — 3, for each £ n ¥ — &, and u(€) N u(n) = O for each ¢
andn, € #n,in ¥V - &.

(ii) P, 1s a subset of u(P) = U e u(m), where u(a— 8) = {u — v ] un pu(a),v in
m(B)},

(ni) §; 15 1n u(o), and

(iv) Z; (V;) contams the set of all symbols in 3(V) which occur in P, (together with
S:).
G, = (V,3, P,S)) is called the grammar of I.

An interpretation 1s usually exhibited by indicating S,, P,, and (implicity or explicity)
u. The sets V; and 3,; are ordinarily not stated exphcity.

A grammar form determines a family of grammars and a family of languages as
follows:

Definition. For each grammar form F, 4(F) = {G, | I an interpretation of F} 1s called
the fanuly of grammars of F and £(F) = {L(G)) | G, n 9(F)} the grammatical family of F.
! We assume the reader 1s famihar with context-free grammars Here 7" 1s the total alphabet, ¥ 1s the terminal

alphabet, 2 1s the set of productions, and o 1s the start vanable The empty work e 1s allowed as the right-hand
side of a production
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As mentioned in the Introduction, we are concerned with certain “‘size” measures of
various grammar forms. Four specific such forms, to be considered in the remaining
sections, are the following:

Definition. The grammar form (V,3 {o,a},{a},{c — ao, 0 — a},0) is called right-
linear form. The grammar form (V.3 {o,a},{a},{0 — oa, o — a},o) 1s called left-linear
form. The grammar form (V,3 {0 ,a},{a},{c — aca, o — a},0) is called standard linear
form The grammar form (V.3 {o.a},{a},{o — o0, o — a},0) is called Chomsky binary
form.

Note that the grammars of the interpretations of each of the above forms are weil-
known types of context-free grammars. Thus each grammar of an interpretation of left-
linear form 1s a left-linear grammar (and conversely), each grammar of an interpretation
of standard linear form is a hnear context-free grammar (and conversely), etc.

The s1ze measures of concern to us are now given. Each has already been considered in
the literature with respect to context-free grammars [3].

Notation. For each context-free grammar G, let

(a) S(G) be the total number of occurrences of variables and terminals? on both sides
of all productions in G,

(b) V(G) be the total number of occurrences of variables on both sides of all
productions in G, ‘

(c) P(G) be the number of productions in G,

(d) N(G) be the number of variables in G.

Clearly, N(G) = P(G) = V(G) = S(G) for each reduced context-free grammar® G.

3. Forms Defirung the Regular Sets

In this section we first establish that right- and left-linear forms are of approximately
equal efficiency, as measured by each of our four criteria. Then we prove that any
grammar form defining the regular sets gives at most polynomial improvement over
night-hinear form. Finally, by exhibiting a sequence of ‘“worst possible” languages, we
show that every polynomal improvement may be realized by some form defining the
regular sets.

ProposITION 3.1.  For each right-linear (left-linear) grammar G, there exists an equiv-
alent? left-linear (right-linear) grammar G' such that

S(G') = 8(G) + P(G) + 1, V(G) = V(G) + P(G) +1,
P(G'y = P(G) + 1, and N(G') = N(G) + 1.

Proor. We give the argument for the case where G = (V,,3,, P,,S,) 15 a night-linear
grammar Essentially we simulate each left-to-right derivation in G by a right-to-left
derivation m G'. Specifically. let S be a new symbol not in V,, and let P’ consist of the
following:

(a) For each production in P, of the type A — wB, with Bin V, — 3, andw in 3,*, let
B — Aw be in P'.

(b) For each production in P, of the type A — w, w in 3}, let $ — Aw be in P’.

(c)S, > eisin P'.

Then G’ = (V,U{S},3,,P’,S) satisfies the conclusions of the proposition. (Intuitively, G’
simulates the action of G ““in reverse,” i.e. S, > wydy > - - ? Wy WA, ? Wy
G G

wep,eachw, 3 fandonlyif S S A,w,yy - > AgWwy - Wiy DS Wo " - Wiy >
G’ G’ G’ G’ G’

Wo " Wryg-
We now consider arbitrary forms defining exactly the regular sets. Our interest 1s in
determining if any are substantially more efficient than right- (or left-) linear form for the

% Thus, no occurrence of the symbol € 1s counted 1n determining S(G)
3 Remember that all context-free grammars here are assumed to have at least one production
* Two context-free grammars G, and G, are said to be equivalent if L(G,) = L(G)).
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representation of particular regular sets. Several general questions arise: (1) How large a
gain n efficiency can be achieved? (2) Is there a single most efficient form for the entire
family of regular sets? (3) Are there pairs of forms, each more efficient than the other,
for different languages? Questions (1) and (2) are answered 1n this section, while (3)
remains open.

We begin by showing that, for three of the four measures under consideration, every
form for the regular sets has a polynomial that bounds its improvement over right- or
left-linear form. To do this, we need two lemmas, each transforming arbitrary forms
defining the regular sets mnto a normal form.

LemMA 3.2. For each grammar form F, there exists an equivalent> form F' and
positive integers ¢, n with the following properties:

(1) F' is completely reduced® and sequential,” and

(2) for each G in YF), there exists an equivalent G' in 4(F') such that M(G') =
MG if M 1s in {S,V,P}, and N(G") = N(G).

ProorF The existence of an F’ satisfying condition (1) 1s guaranteed by® Theorem 3.1
of [1]. To verify that F' also satisfies condition (2), we follow the constructions leading to
the proof of Theorem 3.1 of [1], showing that the growth in size of interpretation
grammars 1S bounded at each step.

Given F, we obtam, in the obvious way, an equivalent reduced grammar form F, by
Lemma 3.1 of [1]. For each G in 4(F), there 1s some equivalent G’ in 9(F,) such that
S(G") = S(G), V(G") = V(G), P(G') = P(G), and N(G') = N(G).

By the proof of Lemma 3.2 of [1], we obtain a reduced, noncyclic grammar form F,
equivalent to F,,. This procedure involves at most N(G;,) repetitions of a construction
eltminating a single maximal cycle set of F, Let F, denote the form resulting from F,
after : maximal cycle sets are eliminated. Then for each G 1n %(F,) we obtain, in the
natural way, an equivalent G’ in 9(F,,,). Since each production of G’ has as its left
(night) side the left (right) side of some production of G, 1t 1s straightforward to see that
S(G) = [S(G)E, V(G) =[V(G)E, P(G) =[P(G))?, and N(G") = N(G). Thus to each G
in 9(F,) there corresponds an equivalent G’ in 4(F;), with S(G') = [S(G)}"“r,
V(G') = [V(G)PP"r?, P(G’) = [P(G)}*¢7, and N(G') £ N(G).

The construction of Lemma 3.3 of [1] 1s now applied to F, to obtain an equivalent,
reduced form F, with no productions of the type ¢ — v, £ and » variables. For each G in
%(F,), the natural equivalent G’ in 9(F,) has S(G’) = [S(G)]?, V(G’) = [V(G)], P(G') =
[P(G)}?, and N(G’) = N(G).

Next, the construction of Lemma 3.4 of [1] 1s apphed to F, to get an equivalent,
completely reduced grammar form F,;. This procedure imnvolves at most N(Gy,) repeti-
tions of a construction which ehminates a single non-partially-self-embedding variable of
F,, followed by the addition of several productions to insure that each nonstart variable
partially embeds itself in one step. The addition of productions involves no increase in
size of interpretation grammars. Let F, be the form resulting from F, after : non-partially-
self-embedding variables are eliminated For each ¢, suppose v(i) is the variable elimi-
nated i going from F, to F,,, Let k() be the maximum number of times v(i) occurs on
the right of any single production of F, Then for each G in 4(F,), the natural equivalent
G'in9(F,,,) has S(G") = (k(i) + DIS(GT®*2, V(G') = (k(i) + DIV(G)]*2, P(G) =

* Two forms F and F' are called equivalent f £(F) = L(F’)

¢ A context-free grammar G = (V,,3,,P,c) 1s said to be completely reduced if (1) G 1s reduced, (u) there are no

variables @ and 81n V, — 3, such that « — B1s1n P, and (1) for each variable a m V; — (3, U {o}) there exist x

and y m 2, xy # €, such that @ — xay 15 m P A grammar form 1s said 1o be completely reduced if nts form

grammar 1s

? A context-free grammar G = (V,.%,,P,S) 1s said to be sequential if the variables in V, — 5, can be ordered £,,
, €x, with £, = S, m such a way that if ¢, — x£,y 1s a production in P then y =1 A grammar form 1s said to be

sequential 1f 1ts form grammar 1s

& Theorem 3.1 of [1] 1s the following result Each grammar form has an equivalent, completely reduced,

sequential grammar form
N
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[P+, and N(G") = N(G). (This is because each production of G’ has as 1ts left
side the left side of some production of G, and as its right side the right side of some
production of G, with at most k(i) positions replaced by right sides of productions of G .)
Let k = max{k(i) | i}. Then for each G in %(F,), an equivalent G' in %(F ) can be found so
that:

S(G) = (k + 1)+ [§(G)|e+D" %,
V(G') = (k + 1)@+ 6 [V(G)](k-n)'we,p)’
P(G') = [P(G)]**?"%’, and N(G') = N(G).

These bounds are obtaned by replacing each k(i) by k in the bounds for F,,, and using
direct substitution. The bounds for P(G’) and N(G') are obtained in a straightforward
manner, while those for $(G’) and V(G’) require bounding a geometric series in the
exponent of kK + 1.

Finally, Theorem 3.1 of [1] 1s apphed to F, to obtain an equivalent, completely
reduced, sequential form F’. Since 9(F;) C 9(F'), there 1s no increase in grammar size at
this step.

Using the above sequence of construction and bounds, the lemma follows.

Lemma 3.3. For each grammar form F defining the regular sets, there exists an
equivalent form F' and positive integers c, n with the following properties:

(1) each production of F' is one of the types a — By, a —>wf, a— pw,or a > w,
where o, B, vy are variables and w is a terminal word,;

(2) F' is sequential, reduced, and for every variable o of F', & :} w for some nonempty
terminal word w; and G

(3) for each G in 4(F), there exists an equivalent G' in G(F') such that M(G') =
AM(GY for all M in {S,V P}

Proor. LetF" = (N,2,%,,%,%,,0) be the grammar form given by the conclusion of
Lemma 3.2 Informally, F' 1s obtained from F” by simulating single productions with
“long” right-hand sides by sequences of productions with *‘short” right-hand sides
Formally, let 2, consist of the following productions:

(a) Each production in F” which is one of the four permitted types is in %,.

(b) Each production in F” not one of the four permitted types is of the type a —
Xy X,, m= 3, where each x, 1s either a variable or a nonempty terminal word, and no
two consecutive x, are terminal words.

By Theorem 2.3 of® [1] (since F” 1s reduced), only x, or x,,, but not both, can be «. If

either x; = « or neither x, nor x,, is «, let 8, - - -, B,-» be new variables and let & —
xlBls Bl - Xsz, e, By xnz—zﬁm—% and Bm-Z > Xp—1Xm be in &;. If Xm = O, let Brru
Bm-1, * * *» Bs be new variables and & — B %m, B = Bm—iXm—1, * * *» B1 = Baxs, Bz —

XX, be in Py

Let ¥; consist of the variables occurring in the productions of %; and F' =
(V,2,Y3,%s, Ps,a2). Clearly, F' is equivalent to F, each production in F' is one of the four
types in (1), and F’ is sequential Although F’ has no productions of the type & — 5, &
and 7) variables, F' may not be completely reduced. However, each variable of F' derives
a nonempty terminal word. (This 1s because o, derives a nonempty terminal word and for
each variable y in F”, y — xyy for some terminal word xy # e since F” is completely
reduced.) Thus (2) is satisfied. Let k£ be the largest value of m for which
o — X, ...Xxp,is a production of F”, where « is a variable, each x, 1s either a variable
or a nonempty terminal word, and no two consecutive x, are terminal words. Then for
each G in 9(F"), the natural equivalent G' m 9(F') has S(G') = 3[S(G)], V(G') =

9 Theorem 2 3 of {1] 1s the following. Let F = (V,.2,%,%,%,0) be a reduced grammar form Then £(F) 1s the
family of regular sets 1f and only 1f L(Gy) 1s infimite and F contains no vanable ¢ such that ¢ £ ugv for some
words u, v in F* p
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2K V(G)], and P(G’) = 2k[P(G)]. These bounds, combined with the bounds for F”
arising from Lemma 3.2, yield (3), thereby completing the proof.

In order to show that each form for the regular sets can be simulated by right-linear
form with at most polynomial loss of efficiency (for three of the four measures under
consideration), 1t therefore suffices to restrict our attention to Lemma 3.3 forms For
each of the Lemma 3.3 type forms, each variable may embed itself on the right or on the
left, but not both The next lemma shows how to convert such a form into an equivalent
one 1n which variables may only embed themselves on the right. The technique is similar
to that used n Proposition 3.1 to convert left-linear to right-linear form. First though, we
define an infimite sequence {F,} of forms for the regular sets, of successively greater
“sequential depth,” 1in which every variable embeds 1tself only on the right

Definition 3.4. Foreachn = 1,letF, = (V.2 {ay, - -, an_y,a}{a}, P, ap), Whete P, =
o, o |0=1=k=n-1,1<y=n-1}VU{a,—ae,|0=15j=n -1} U{e,—>
aa|0=1<ys=n—-1}U{a,—al0=1=n-1}

Note that F, 1s a right-linear form.,

We now simulate an arbitrary Lemma 3 3 form with a member of the sequence {F,}.

LeMMA 3 5. Let F be a grammar form for the regular sets, satisfying the following
conditions: (1) Each production of F is one of the types a — By, a—=> wf, a— Bw,or
a — w, where a, 3, y are variables and w 1s a ternunal word; and (ii) F is sequential,

*
reduced, and for every variable c of F, a = w for some nonempty terminal word w. Let n
G

F
be the number of varwables in G. Then there exists a positive integer ¢ with the following
property: For every G in G(F) there exists some equivalent G’ in G(F,,) such that M(G') =
cfM(GYY for M in {S, P, V} and N(G") = c[N(G)P.

Proor Since F is sequential and generates only regular sets, the variables of the
grammar G may be partitioned mnto levels so that all variables on a given level are either
left recursive or night recursive. By means of a construction similar to that used in
Proposition 3.1, we may transform each left recursive level into a right recursive level.
More formally, we may assume without loss of generalty that the variables of F =
(V.5 ,%,P,0) are 0 = o, ay, * -, a,_,. Consider any interpretation (u, G ) of F, with
G = (V,,2,,P,5). There 1s no loss of generality in assuming that G 1s reduced and V, -
2, = U u(e,). Because of Theorem 2.3 of {1] and the fact that F 1s reduced, each
production of G 1s one of the following types:

(1)A — BC, where A and B are in u(e,)and C1sin u(a,), forsomei,j, 0=1<j=n
-1;

(2) A— BC, where A 1s1n pu(a,), Bisin u(e,), and C 1s in p(ay), for some i, j, k, 0
si<y=E=n-—-land0=1=k=n-1,

(3) A— wB, where A isn u{a,), Bisn u(a,), and wis m2*, forsomei, j, 0=i=j
=n-1;

(4) A— Bw, where A, Bare n u(a,) andw is in 2*, forsome:, 0=i=n — 1;

(5) A— Bw, where A 1s1n u(e,), B isn u(a,)), and wis 1in £*, forsome 1,7, 0 =i <
=n—1;and

(6) A — w, where A 1sin u(o,) and wis in 2*, forsome:, 0 £ i=n — 1.

We now define an interpretation (u’, G') of F, Let G’ = (V,,%,,P,,S) where V,
consists of S and all the variables in P, The set P, consists of all productions in P, of
types (2), (3), (5), and (6), as well as the following productions. (Productions (a)-(g)
below simulate, 1n reverse, as in Proposition 3.1, the effect of taking types (1) and (4), in
combination )

(@) A—> w[BAl'f A, Bare n u(a,) forsomei, 0=i=n—1, wisinS*and B> wis
n Py;

(b) A — C[BCA), and[BCA), — w[BA]if A, B are in u(e,) and C is in p(a,) for some
L,j,0=1<j=n, wism* and B— Cw s in Py;

(c) A— w[BCA], and[BCA],— C[BA]if A, B are in u(e,) and C 1s in p(e, ) for some
Lj, 0=i<j=n-1,wism3I* and B— wCism Py;
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(d) A — C[BCA), and [BCA}; — D[BA]if A, B are in u(e,), Cisin u(a), and D is
in u(ay) forsome i,jk,0=i<k=n-1l,and0=i<k=n-1,and B— CDisin Py;

(e) [CA}— D[BA]if A, B, C are in u(e;) and D is in u(a;), forsome i, j, 0 =i <j=n
—1,and B—> CDisin P;;

(f)[CA]— w[BA]if A, B, C are in u(e;) forsomei, 0=i=n -1, wisin2*,and B
- Cw 1s in P,; and

(g) [AA] — ¢ for all variables A in V.

Let u'(a) contain € and every terminal word occurring in at least one production n P,.
HAwisin VN pu(e), let A bein p'(a). If A is in u(a,), then let [BCA],, [BCA],
[BCA];, and [BA] be in u(a,) for all variables [BCA];, [BCA],, [BCAl, and [BA].
Clearly G’ is in %(F,). It is straightforward to verify that the size of G’ satisfies the
conclusions of the lemma. It remains to show that L(G") = L(G).

Intuitively, the new variables in G’ play the following role. The purpose of the paired
variables is to simulate from left to right a derivation which in G proceeds from right to
left. Specifically, if a variable [BA] 1s generated (from §') in a G'-derivation, then a word
x, consisting entirely of terminals and of variables in V, which correspond to (sequen-
tially) higher variables in F than A does, has already been generated immediately to the

*
left of [BA]. Furthermore, B = x. Part of a G-derivation, from A, 1s being simulated,
G

and one is waiting to see if A G-generates B (along with possibly other symbols) In
particular, if a variable [AA] is generated, then a word x, G-derivable from A, has
already been generated, and the production [AA] — ¢ is used. The purpose of the triple
varables is to ensure that no more than two symbols occur on the right of any production
i G'. If a variable [ BCA]; 1s generated during a G'-derivation, then C has already been
deposited immediately to the left of [BCA),, and some w 1n 3* such that B — Cw 1s in P,
will next be deposited, along with [BA]. Sumilar remarks may be made for [BCA}, and
[BCA);.

We now show that L(G) C L(G’). Consider a G-derivation & of some word in L(G).
The only productions of 8 not in P, are either of the type A — BC, where A, B are in
m(e,) and Cisin u(a,)), 0 =i <j=n — 1, or of the type A — Bw, where A, B are in
wla,), 0=i=n-1,and wisin Z*. (A production in P, of the type A — B, where A
and B are in u(e,), 0 =i=n — 1,15in P, since it is of type 3.) Note that for each such

*

production, «, = a,z for some nonempty word z in &*, i.e. a, 1s “‘partially self-
Gf
embedding on the left.”” We shall see that the effect of such productions can be simulated

by using productions (a)-(g) in combination. Suppose there are no such productions in §.
Then there is nothing to prove and we are done. Suppose there are such productions.
Consider the first such production, say A — BC or A — Bw, with A, B, C, and w as
above. Rearrange § after using this occurrence so that B is the next variable which is
expanded. (Clearly, this is possible.) Let 8’ be the new G-derivation. Since G is reduced,
L(G) 1s regular, B is in u(a,), and a, is partially self-embedding on the leftin F, it follows
that the only possible productions with B on the left are either B— DE, B— Dw, or
B — x, where D is in p(ey), E ism e, i <y =n — 1,wisin Z*, and x is a word of
terminals and of variables corresponding to variables e,, r > i. If the expansion of B 1s
one of the first two types, then without loss of generality we may assume that D 1s the
next variable expanded, etc. Thus we may assume (with a possible change in notation)
that the expansion of A in §' involves

A= Ag> Ay D Apiyxy 000 D AgXg Xy S Xeer T X (%)
¢ G G G G

where A,, A,, -+, Ag are in u(e,); eachx,, 1 =j = k, 1s either a terminal word or a
variable corresponding to some «,, r > 1; and x;.., is a word of terminals and of variables
corresponding to «,., r > 1. Also, x,., is of a form consistent with the allowable types of
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productions in F. To prove that L(G) C L(G"), it obviously suffices (by induction) to
show that A ;> Xig41 * " Xp

To see this?note that A ;x,\.H[A,\.A] is implemented by using one or two productions
of P,, of types (a)-(d). Fo(r; each j, 1 =j = k, [A,A] ;‘}x, [A,_; A] is implemented by
either a type (e) or type (f) production. Also,[A,A] = [AA], so that [A,A] ; ¢ by a type
(g) production. Combining, A %xkﬂ- < x[AgA] :é ETVREERS I ’

We next show that L(G") C L(G). Consider a G’-derivation 8 of an arbitrary word in
L(G"). The only productions occurring in & not in P, are those of types (a)-(g). We shall
see that the effect of such productions can be simulated in G Suppose there are no such
productions in 8. Then there is nothing to prove and we are done. Suppose there are
some such productions. Consider the first production of types (a)-(d) occurring in §, with
A, B i u(e,). Without loss of generality, this production, or this production in
combination with the next production applied in §, may be assumed to cause the
depositing of a word of terminals and of variables corresponding to variables a,, r > i,

*
say A > z[ BA]. Also, [BA] may be assumed to be the next variable expanded (using a
p

type (e) or (f) production), and it may hkewise be assumed that the paired variables are
expanded immediately until an application of [AA] — € occurs. Thus the expansion of
the variable A in § (with a possible change in notation) involves

%
A=A :G>' X i[ArAl ? Tir1Xx[ArA] ? ce ? Zirr” " Xi[AoA] ? ESPLERY M (L))

where A, A,, -+ -, A, are in u(a,), each x,, 1 = = k, 1s etther a terminal word or a

variable corresponding to some o, r >1i, and x,,, is a word of terminals and of variables

corresponding to variables a,, r > i. Also x,,, must be of a type obtainable from (a),
*

(b), (c), or (d). It suffices (by induction) to verify that A = xp4,- - - x,.
G

To see this, note from the definition of (e) and (f) that G must contain the productions
A_,— Ax, | =j = k. Also, from the definition of x,,,, A, — Xy, is n P,. Thus

ADAX D 0 DA Xy D Xy ” Xy,
¢ G G G

*
i.e. A = Xgyy - -x;. This completes the proof.
G

The final lemma needed to show that every grammar form for the regular sets is
simulatable by right-linear form with at most polynomual increase n size (for three of the
size measures) states that each form F, has the desired simulation property.

LeMMa 3.6. For each positive integer n, there exists a positwve integer ¢ with the
following property: For each G in 4(F,), there exists an equivalent G' in G(F,) such that
M(G') = c[M(G)]** for each M in {S,V,P ,N}.

Proor. Let G = (V,,%,,P,S) be in 4(F,). We now define G’ = (V,,3,,P,, [S]) in
%(F,) in such a way that G’ simulates leftmost derivations of G. Let

V= 3= X1 X in UV~ 5) U2 - 20 % (V, = SO,

1.€. the variables of G’ are to be all words of length less than or equal to n in which every
position 1s occupied by either a variable of G or by an ordered pair of variables of G. Let
P, consist of the following productions (where A, B, C are in V, — £,, wisin 3}, and
Dy, -+, Dyyarein (Vi — Z) U ((V, — Zp) X (Vi — )
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(@a)[AD, --D] > [BCD,-- -D,JifA—>BCisinPiand0 =k £n — 2;

(b)[AD,---D;}J— w[BD, - -D,]Jif A >wBisinP,and 0=k =n - 1;

(C) [AD| t Dk] hard [B(A,B)D] . Dk] and [(A,B) D,-- 'Dk] b W[Dl‘ . Dk] ifA—
BwssinP,and0=k=n - 2;

(d)[AD,---D]—> w[D,---D]JifA—>wismP,and0 =k =n - 1; and

(e) [e] = e.

Itis easy to see that G’ 1s in 9(F)), L(G') C L(G), and the size increase is as stated. To
complete the proof it thus suffices to show that L(G) € L(G'). Therefore let § be a
leftmost derivation of a word x in L(G), and let §' be the natural simulation of § using
productions of the type (a)-(e), where k 1s allowed to be as large as necessary. It then
suffices to show that:

(*) No word 1n §' has brackets containing more than n symbols.

We prove (*) by showing inductively that

(**) In each word of §', the number of symbols in the brackets 1s at most n, and for

eachi, 1 =1 = n, the symbol in position i from the nght, if it 1s a single variable,
1sin u(a,) forsomeyzi -1
Now (*#) 18 certainly true for the first word, [$], of §’. Assume it 1s true for some word n
&’ and that [E, - - - E,] 1s the vanable being expanded by the next production. If k = 0.
the induction clearly follows Suppose 1 =k =nandforalli,1 =:=k,E, ism u(a,) for
somej =21 — 1if E, is a single variable If E, 15 a single variable and k # n, then the next
production in §' is one of the types:

(Ey-- E,} »[BCE,.,--E,], where E, - BC sin Py, or

{Ey*--E,}— w[BE,_,---E,], where E, - wB s in P, for some w 1x 2%, or
[E;---E]— [B(E;,B)E,_, - E,], where E, — Bw is n P, for some w n X}, or
(E,---E]—> w[E(, --E)], where E,—>wismP,andw 1sin 3}

In all cases the induction follows. If E, 1s a single variable and k = n, then since E,, 1s 1n
u(an_;) the next production in 8’ can only be one of the types

[(E,---E]— w[BE,_, --E,], where E, - wBismn P, andw s3I}, or
[En'-*E]— W[E,.,---E;], where E, > wismn Pyandwisn 3.

In either case, the induction follows. If E, is a double variable (A,B), then the next
production 1s of the type

[(A,B)E,_,* - -E,] = w[E_,* - - E;] for some w in X},

and again the induction follows. Thus the induction holds in all cases. Therefore L(G) C
L(G") and the lemma is proved.

Combining Lemmas 3.3, 3.5, and 3 6, we have:

THEOREM 3.7  For each grammar form F defining the regular sets, there exist positive
integers ¢ and n with the following property: For every G in 4(F), there exists an
equivalent G' in right-linear form such that M(G') = c[M(G)}* for each M in {S,V, P}.

Because of Proposition 3.1, Theorem 3.7 is also true for left-linear form.

Theorem 3 7 1s not stated for N(G) since the proof of Lemma 3.3 does not hold in this
case However, Theorem 3.7 1s still true for N(G). Roughly, we apply Lemma 3 2 to an
arbitrary form for the regular sets, obtaining an equivalent form in which N(G) does not
increase. We then use a reversal construction similar to the one in the proof of Lemma
3.5, to mnsure that all embedding takes place on the night Finally, we simulate the
resulting form by right-linear form using a construction similar to that used in the proof
of Lemma 3.6. Here, longer strings of varnables may be needed than in the simpler
“binary” case, and the possible cases to consider are notationally more complicated, but
the ideas are essentially the same.

We now turn to the second major result of the section, namely, that any polynomial
mmprovement may actually be obtained by some form defimng the regular sets, at least
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on an infinite set of languages We begin by introducing a special family of languages and
establish two lemmas about it

Definition 3.8. For all posttive integers n and k, let L, = 0*(10*)¥".

Thus L, , is the set of all words in {0, 1}* which have exactly k* occurrences of 1.

The first lemma states that each L, , is definable by a grammar in F, of size at most
linear in k.

LemMMA 3.9.  For all positve integers n and k, there 1s a grammar G in 4(F,) such that
L(G) = L, and M(G) = (4n + 6}k for each M in {S,V,P,N}.

Proor. Let V,={0,1}U{4,|0=i=n — 1, 0 =7 = k} and G =
(Vi,{0, 1}, P, A, ), where

P={A,> A1 oA, |0=2i=2n-20=2j=k-1JU{A,,>€|0=i=n—-1}
U {An-—l,J_) OAn—l,) I 0 =j= k} ) {An~l,J - 1An-l,]+l l 0 =j=s k — 1}

Clearly, G is in 9(F,), with each A, , corresponding to «,. It 1s readily seen that every A,
generates L,_, .. (The second index of A, is used to count up to k.) Thus L(G) = L,
Finally, 1t 1s a straightforward matter to verify the size bounds.

The second lemma asserts that each grammar, in right-linear form, which defines L,
is of size at least k”.

LemMma 3 10. For each posttive integer s and each grammar G in right-linear
Sorm, with L(G) = 0*(10*y*, M(G) =z s + 1 for each M in {N,P,V,S}.

Proor. It suffices to show that N(G) = s + 1. The argument is of a standard type and
consists of showing that if N(G) <s + 1 then an incorrect word is generated. Consider a
word x = 0m(10™)°, where m is some mteger larger than the maximum number of
terminal symbols in each production of P,. Let

8 SOWA DWW A, D DD W WA DWW =X

be a G-derivation of x, where each A,, 1 =i =/, 1s a variable, and eachw,, 1 =1 =1+
1, 15 in {0, 1}*. From the choice of m, exactly s distinct words w,,, - - -, w,, contain a
single occurrence of the symbol 1, and w,, is not one of them To complete the proof, it
suffices to show that A4,,_,,---, A, _;, A, are all different variables. Suppose A,_; =
A, -, for some ¢t and u, ¢t < u. Then

SPwA; - Dw; Wyt Ay = wy et Wn,,—lAz,—l

*
>Dw e Wom1 Wy ° " Wiy
’

is a derivation of a word x’ in L(G). But x’ has at least s + 1 occurrences of 1,
contradicting the nature of the words in L(G). A similar argument shows A, to be distinct
from the remaiming vanables. Thus A, _,, - - - , A, _,, 4, are all different.

From (1) Lemmas 3.9 and 3 10. (n) the fact that for each context-free grammar G, =
(V1,%4, Py, S,) there 1s an equivalent reduced grammar G, = (V3,24, P3,S5)), with V, C V,
and P, C P,, and (ui) the fact that S(G) is the largest, and N(G) the smallest, of the four
measures for each reduced context-free grammar G; we get

THEOREM 3.11. For each positive integer n, there exists a grammar form F for the
regular sets and a positve integer ¢ with the following property: For every integer
k = 1, there is a grammar G in G(F) such that for each M in {S,V,P,N}, (1) M(G) = ck,
and (2) M(G') = k" for every equivalent grammar G’ in right-linear form.

From Theorem 3.11, Theorem 3.7, and the comment following Theorem 3.7, we see
that every form for the regular sets may be similarly improved by any polynomial. In
other words:

CoRrOLLARY 3.12. For every form F' defining the regular sets and every positive
integer n, there exists a form F defining the regular sets and a positive integer ¢ with the
Jfollowing property: For every integer k = 1, there is a grammar G in G(F) such that for
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each M in {S,V,P,N}, (1) M(G) = ck and (2) M(G') = k" for every equivalent grammar
G' in G(F").
The effect of Corollary 3.12 1s that there is no “best” form for the regular sets.

4. Forms Defining More than the Regular Sets

In Section 3 we discussed the improvement possible using forms which define exactly the
regular sets. In this section we examine the effect of allowing forms which define more
than the regular sets. Specifically, we establish two results. The first asserts that by
permitting such forms, we can achieve more than polynomial improvement on an infinite
family of regular sets. The second says that even permitting such forms, there 1s an
infinite family of regular sets for which no improvement over right-linear form is
possible.

For the first result, we have:

THEOREM 4.1. For each recursive function fand for arbitrarily large positive integers
k,there is a grammar G in Chomsky binary form, defining a regular set, such that for each
M in {S,V,P,N}, (1) M(G) = k, and (2) M(G") = f(k) for each equivalent grammar G’
in right-linear form.

The proof 1s an easy corollary of [4, Prop. 7], the bounded simulation of right-linear
grammars by one-way finite state acceptors, and the bounded simulation of any context-
free grammar by one in Chomsky binary form.

For the second result, we have:

THEOREM 4.2. For each posinve integer k, there is a grammar G n right-inear form
such that for each M in {S,V,P,N}, (1) M(G) = 10k, and (2) M(G’) = k for every
equivalent context-free grammar G'.

Proor. LetG = (Vi {a,, - " * ,au}, P,Ay), where V,={a,, - - - ,an} U{A,, " -, Ayt
andP={A, > a,A,A,—> A, |1 Si=2k— 1} U{Asy— as Az, Ag — €. Then G is in
right-linear form, M(G) = 10k, and

L(G) = afay - - aj-az.

Suppose that G’ = (V,, {ay, - - - , as.}, P2,S2) 15 a context-free grammar equivalent to G
There is no loss of generality 1n assuming that G’ is reduced. To complete the proof it

suffices to show that for each:, 1 =/ = 2k, there exists a variable B, in G’ such that
*

(*) Either B, £> uBvaw, orB, ? uavBuw, forsome u, ¥, wnia,, - - -, a,}*.
For suppose (*) holds. Then there are no three indices i,j,/, with: <y </, such that B, =
B, = B,. (For assume there are. If B, %u]B,vJa,w,, then since B, = B,, aword in L(G") is
obtained with g, to the left of a,, a contradiction. If B, G; u,a,v,Bw, thensince B, = B,, a

word in L(G") is obtained with a, to the left of a,. a contradiction.) Hence at least half of
the variables B,, - - - , By, are different, i.e. N(G') = k.

To see (*), we shall show that generation in G’ of long words requires variables with
the given property. Let r be the number of variables in G’ and i a given integer,
1 =1 = 2k Letm be a positive integer such that every derivation tree in G’ of a®™ has a
path with at least r + 2 nodes. Now consider a shortest G'-derivation of ™, and let T be
the associated derivation tree Let 7 be a longest path n 7', and let By, -+, B, be the first
r + 1 node names on 7. Thus By = S'. Let B, = x,4,B,,,¥,1,, 0 =j = r — 1 and all x,,,
andy,,, in V¥ | be the productions in P, which realize the first r node names on 7. Since
the sequence {B }os,<, is of length r + 1 and G’ has only r variables, B, = B, for some s <
t. Then

*
Koy " " " XeYe* " Vs ? 2,a.Z,
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for some terminal words z; and z,, since T 1s a tree for a shortest G'-derivation of a™
From this, (*¥) immediately follows.

5. Forms for the Linear and the Context-Free Languages

In this section we examine the complexity situation for forms whose expressive power 1s
exactly the linear languages or exactly the context-free languages. The results for the
linear languages parallel those for the regular sets, whereas the context-free languages
only permit linear improvement rather than arbitrary polynomial improvement.

Analogous to Lemma 3.3, we have

LemMma 5.1.  For each grammar form F defining the linear languages, there exists an
equwvalent form F' and positive integers ¢, n with the following properties:

(1) Every production of F' is one of the types a — By, a —> wf3, a — Bw, a = w,
a— Bay, a—> way, a— Baw,or a = wyaw,, where «, B,y are variables and w, w,,
w,, are terminal words;

(2) F' is sequential, reduced, and for every varuble a of F', a $ w for some non-
empty ternunal word w; and

(3) for each G in 4(F) there exwsts an equivalent G' in 4(F") such that M(G") =
[ M(G)]" for each M in {S,V, P}.

ProOF  As in the proof of Lemma 3.3, we obtain F” from Lemma 3 2. Note that F"
satisfies conditions (2) and (3) We transform F” into the required F' by the following
procedure. Productions of F" of the eight permitted types are put into F'. Each
remaming F” production whose left-hand variable does not occur on its right-hand side is
treated exactly as in Lemma 3.3 The remaining productions of F" are of the type a —
Xyt Xyay;c -y, where either m or n (or both) 1s at least 2, « is a variable, each x, and
y, is either a vanable different from a or a nonempty termmnal word, and no two
consecutive x, or y, are terminal words (At this point, [1, Th. 2 4] is used.?®) Iif m and n
are both at least two, then put into F’ the set of productions

{a d B()QY()7 ,B() - lel’ Bl d BZXZ, Y Bm——:} - Bm—zxm-z, Bm—z - xmxm—l}

Uyi = 27 1= ¥s¥e, * * Va3 = Yn-s¥n-2, Yn-z = Yn-Vnb;
where the B,, y, are new vanables, chosen to be different for each new production. If
either m or n is at most 1, then make the obvious modification. The rest of the proof 1s
straightforward.

. Similar to Defimtion 3.4, we define an infinite sequence {J/,} of forms for the linear
languages.
Definition 52. Foreachn = 1, letJ, = (V,3,¥,.{a}, P,,a), where

V., = {a} U {am L Quers Brs T, Baos Yy 'Yn—l}
and

P, = {a, = Bayyr, a, = Baa, o, = aayyp, a0, v aqa |0=i=n-1,1=j,k=n -1}
U, = By, = B, a, = ay,a,—>al0=i=n—-LI1=j,k=n~1}
Ula,— ayyr, o, —> ag, 0, By, ay > aa, | 0= i<j=n—- 1L, 1=k Isn-1}
UB—=BBl1si=k=n—-1i<jlU{B —aB.B.—Ball=sisk=n-1,

l=si<j=n-1}
Ui —a,y,—all =i
Uy, = va, v —>ay | 1

Intuitively, the a’s provide n sequential levels of self-embedding variables, and the 8’s

n—BU{y,>yw|lsis=jsn—1,i<k}
isj=n-1,1=isk=n-1}

A TIA

' Theorem 2 4 of [1] 1s the following. Let F = (V,3,%,¥,%P,0) be a reduced grammar form. Call a variable self-
embedding 1f there are words u, v 1n &* such that £ 2 ugv Then #(F) 1s the family of hnear languages 1f and
only if (1) F has a self-embedding variabte and (1) if o %> u,£upmuz, with uy, us, u; m V> and £, m ¥ — &, then
¢ and 7 are not both self-embedding vanables
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and y’s are strictly right recursive and strictly left recursive, respectively. In particular, J,
is standard linear form.

Paralleling Lemma 3.5, we obtain:

LemMMA 5.3. Ler F be a grammar form for the linear languages, having the following
conditions: (1) Each production of F is one of the types a— By, a = wf, a— Bw, a—
w, a— Bay, a— way, a—> Baw,or a = waw,, where o, 3,y are variables and w,

w1, W, are terminal words; and (u) F is sequential,, reduced, and for every variable a of
%

F, a ? w for some nonempty terminal word w. Let n be the number of variables in G .
F

Then there exists a posttive integer c such that for every G in 4(F), an equivalent G' in 4(J,)

can be found satisfying M(G") = [M(G} for M in {S,V,P}, and N(G') = ¢[N(G)P.

The proof involves a complicated construction and is given in Appendix A Roughly
speaking, we augment each interpretation grammar of F to contain both a left and a night
recursive equivalent of every non-self-embedding vanable Since the right-hand side of
each production contains at most one sclf-embedding variable, we may replace each
variable to the left (right) of a self-embedding variable with its right (left) recursive
equivalent, thereby producing a grammar in form J,,.

The next preliminary result corresponds to Lemma 3.6.

Lemma 5.4. For each positive integer n, there exists a positive integer ¢ with the
followng property: For each G in 9J,), there exists an equivalent G' in G(J,) such that
M(G") = [M(G)]*" for each M in {S,V,P,N}.

The proof 1s similar to that of Lemma 3.6 and 1s given in Appendix B. The i1dea here 1s
that G’ simulates “outermost” derivations of G

Combining Lemmas 5.1, 5.3, and 5.4, we obtain:

THEOREM 5.5. For each grammar form F defining the hinear languages, there exist
positive integers ¢ and n with the following property: For every G in G(F), there exists an
equivalent G' in standard linear form such that M(G’) = c[M(G)}" for each M in {S,V,P}.

Remarks similar to those following Theorem 3.7 indicate how Theorem 5.5 can be
extended to the measure N(G).

The attamability of any polynomial improvement 1s seen using the family
{L.x|n 2z 1, k = 1} of languages defined in Section 3.

As in Lemma 3.9, so (proof omitted) we have

Lemma 5.6. For every positive integer n, there is a positive integer ¢ with the
following property: For each posutive integer k , there is a grammar G in §(J,,,) such that
L(G) = L,,, and M(G) = ck for each M in {S,V,P,N}.

Parallel to Lemma 3.10, we have

LeMMA 5.7. For each positive integer s and each grammar G in standard linear form,
with L(G) = 0*(10*¥, M(G) = [(s — 1}/2] + 1 for'! each M i {S,V,P,N}.

Proor. It suffices to show that N(G) = [(s — 1)/2] + 1. Let x = 0"(10™)¢, where m is
an integer larger than the maximum number of occurrences of terminals in each
production of P,. Let G = (V,X,,P,,S) and

8 S = Ay > wiAx D wwaA X, 2
S Wit WA X D W WW X Xy = X

be a derivation of x, with each A, a variable and w,, x, in {0, 1}*. From the definition of
m, each w, and each x, can have at most one occurrence of the symbol 1. Leti;, - - -, i.be
those indices ¢ for which either w, or x, contains 1. Clearly, r = [(s — 1)/2]. By an
argument as mn Lemma 3.10, A,_, # A,_, forj # k, and A, s distinct from all A,,.
Hence N(G) = [(s — 1)/2] + 1.

' [(s — 1)/2] denotes the smallest mteger equal to or greater than (s — 1)/2
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Combining the previous lemmas, we get

THEOREM 5.8  For each postutive integer n, there exists a grammar form F for the linear
languages and a positive integer ¢ with the following property: For every integer k = 1,
there 1s a grammar G in YF) such that for each M in {S,V,P,N}, (1) M(G) = ck, and (2)
M(G") = k" for every equivalent grammar G' in standard linear form.

The analogy to Corollary 3.12 clearly holds.

Finally, we note that results of the kind obtained for the regular sets and the hinear
languages do not hold in general. For the case of forms defining all the context-free
languages, we can show by a straightforward simulation:

THEOREM 5.9  For each form F defining the context-free languages, there exists a
positive integer ¢ with the following property: For every G in 4(F), there exists an
equivalent G' in Chomsky binary form such that M'(G') = [M(G)] for each M in
{S,v, P}

Thus arbitrary polynomial improvement is not possible for the forms defining the
context-free languages.

6. Open Questions

Many open questions remain, a few of which are now mentioned. Are there results
stmilar to those in Sections 3 and 5 for grammatcal families other than those of the
regular sets and linear languages? (As yet, there 1s no ‘‘canonical form,” analogous to
right-linear form, for each grammatical family. Nevertheless, perhaps it can be shown
that every two forms with the same expressive power can sumulate each other with at
most polynomual loss of efficiency.) Do there exist two forms for the regular sets, each of
which 1s more efficient than the other for some languages? What are the tradeoffs
between derivation complexity {2} and size complexity? And finally, what can be said
about complexity of forms which are not context-free?

Appendix A

We now present a formal proof for Lemma 5 3.
* *

Consider those variables a of G such that &« = w, 8w, = w,w3Bw,w, for some variable
Gp Gp

B, words w,, w, 1n %*, and words wy, w, 1n 3*. Denote these variables, in sequential
order, by ay, - -+, a,,, where m = n — 1 Since F defines the linear languages, m = 0.
Clearly F = (V,3,V,%,P,a,). Denote the remaining variables of G, in sequential order,
by :Bh .BZ’ Tt Bn—l—m

Let (1, G') be an arbitrary interpretation of F, with G = (V,3,, P,,5). There 1s no loss
of generality 1n assuming G 1s reduced. We shall define an interpretation (n',G’) of J,,,
with G’ = (V,,3,, P,,8) The vanables of G' are: () each variable of G 1n u(e,) for each
1, (B) distinct symbols A, and A, for each variable A of G 1n U=} wu(B,); and (y) distinct
symbols [B, A,], [C.B,A.)i, [C.BLALL:, [C.BLALs, [ArBg), [ArBrCrli, [AgBrCrl:, and
[ARBrCg]; for all vaniables A,, B,, C,, Ag, Bg, C. The set P, consists of the following
productions (where w,w, wyare in3y, O0=iji,b=n—1,and1 =jj,,jo=n—1).

(a) A—> B, CDyif A,C are n u(e,), Bisin u(B,,), D1sin u(B,,),and A — BCD 1sin
P,.

(b) A > B,Cw 1f A,C are in u(a,), Bisn u(B,), and A — BCw is in P,.

(€) A > wCDyf A,C are m u(e,), D 15 1n u(B,). and A — wCD is in P,.

(d) A - w,Cw, 1if A,C are in u(a,) and A — w,Cw; 15 10 P;.

{(e) A= B, Cpf A s u(e,), Bism u(B,), Cisin u(B,,),and A — BC isin P,.

(f) A— B;wif Asin u(a,), Barsin u(B,),and A —> Bw 1s in P,.
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(g A->wCifAisin u(e,), Cisin u(B)), and A » wCisin P,.

(h) A—»wifAism u(a,) and A - w is in P,.

(i) A= BC,ifAisin u(a,, ), Bisin u(a,,), Cisin u(B,)), i, <iy, andA - BCisin P,.

(G) A—>BwifAsin ula,), Bisin wla,), 1, <i,, and A — Bw is in P,.

(k) A-=B,CifAisin p(a,), Cism p(a,), Bisin u(B,), i; <iy and A — BC is in
P,.

() A>wBif Aisin u(ey,), Bisin u(a,), iy <1, and A - wB 1sm P,.

(m) B,— C,D fBisinu(B,), Cisin u(B,), Disin u(B,), j =j» j <j, and B —
CD isin P,.

(n) B, > wC,if Bisin u(B,), Cisimn u(B,), j1 = js and B = wC is in P,.

(0) B, => Cwif Bisin u(B,,), Cismn u(B,,), j1 <J» and B— Cw is in P,.

(p) B,—>wand By > wif Bisin u(B,) and B —> w isin P,.

Q) By — CyDy if Busin u(B,), Cisin u(B,), Disin u(B,),] =i, j <jp, and B —
CD 1sin P,

(r) B, » wCpif Bisin u(B,), Cisin u(B,,), j1 <Jjs and B - wC ism P,.

(s) By - Cywif Bisin u(B,), Cisin u(B,,), }j1 =) and B > Cw isin P,.

(t) A, - w[B,A;] and A, — [AxB,}w if A,B are in u(B8,) and B — w is in P,.

(u) A, —> w[C,B,A,];, [C.BLA.)i = Ci[B,AL), Ap— [ArBrCr}iCr, and[AgBrCrli —
[ARBR]W if A,B are in ”’(Bﬂ)’ Cisin f"'(BJz)’ ji1 <p,and B — wC s in P,.

(v) A, = C[C.B AL, [C.BLA). = W[BLA,]l, Ag = [AgByCrlw, and [AgBrCyl) —
{ArBy]Cy if A,B are in u(B,,), Cisin u(B,,), j; <j,and B— Cwisin P,.

(W) A, = CJ[C.B,A]s and [C,B,A)s — D,[B,A,] if A,B are n u(B,), C 15 in
r(B,), Disin u(B,.), j <5.j <js, and B - CD 1s in P,.

(x) Ap = [ApBrCyplsCr and [AgBrCpls — [AgBgr]lDy if A,B are m u(B,), C 1s in
©(B,), Disin u(B,), 1 <j1, ] <Jp,and B — DC isin P,.

(y) [BLA]— w[C,A,]f A,B,C are in u(B,) and C — Bw is in P,

(z) [BLA)— DJC A ])ifAB,Carein u(B,), Disinu(B,), j, <J:,and C— BD isin
P,.

(@) [ALA,]— € and [ARA,] — € for each variable A of G.

(b’) [AgBg] — [AxCrlw if A,B,C are in u(B8,) and C — wB 1s in P,.

(') [ArBg] — [AxCy]Dpf A,B,C are in u(B,,), Disn u(B,,), j; <j;,and C — DB is
mn P,.

The substitution u' is defined as follows. Let u'(a) contain € and every terminal word
occurring in at least one production in P,. For each vanable A in u(a,), let A be 1n
u'(a,). For each variable A in u(B,), let A,, [B.A,), [C.B.A;]l, [C.B,A.),, and
[CE,BI),AL]a be in u'(8,), and Ay, [AxBg], [AgBrCrli, [AgBrCrle, and [AgBxCrl; be in
©'(y,)-

Clearly, the size conditions are satisfied. That L(G') = L(G) follows in a similar way to
Lemma 3.5 Derivations in G’ proceed as in G, except that certain vanables are
“reversed.” In particular, variables to the left of a self-embedding variable'? embed
themselves on the right only, while variables to the right of a self-embedding variable
embed themselves on the left only. Since a variable A of G mught occur on both sides of a
self-embedding variable, two copies of A, A, for the left and A, for the right, are
introduced. (A, embeds itself only on the right and A, only on the left.) A formal
argument along the lines of that in Lemma 3.5 is left to the reader

Appendix B

Here we establish Lemma 5 4. Let (u,G) be an interpretation of J,, with G =

12 A vanable £ in a grammar G = (V,,X,,P,,S) 1s called selfembedding if there are words x and v in 2} such that

ESDugy
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V1,21, P1,S). We now define an interpretation (u’,G') of J, in which G’ = (V3,3, Py,[S])
simulates “‘outermost” derivations of G
The set V, — X, consists of the symbols:

(1) [B,---B,AC,---C]),where 0 =r, s=n — 1, A s u(a,) for some i, each B, is
either a variable in w(B,) for some [ or else a pair (D, E,) of variables D, in u(By,)
and E, in u(B,,) for some k,k,, and each C, is either a variable in u(y,) for some! or
else a pair (D),E,) of variables D, in u(y,,) and E, in u(y,,) for some kk,.

(2) [B,* - "BiC; - -C,], where everything is as in (1) except there is no variable A.

The set P, consists of the following productions (where w,w,,w, are words in 37, and
i,j,k,r,s are integers whose quantification will be clear in each case):

(a) [A]— [BCD]if A, C are in u(a,), Bisin u(B,), Cisin u(y,), and A — BCD is in
P

1

(b) [A] = [BClwif A, C are in u(a,), B 1sin u(B,),and A - BCw is in P,.

(c) [A] = w[CD] if A, C are in u(a,), D is m u(y,), and A - wCD is in P,.

(d) [A] = w([CIw, if A, C are in u(a,) and A — w,Cw; 1s 1 P,

(e) [A]— [BC]if A is in pla,), B is n w(B,), C 1s n u(y,), and A — BC s in P,.

(f) [A] > [Blw if A s in p(e,), B s in u(B,), and A — Bw 1sin P,.

(g) fA}—> w[B]if A isin u(a,), B1sin u(y,), and A — wB is in P,.

(h) [A]> wif A isn u(e,) and A — w is in P,.

(i) [A]—=[BCIifAisin u(a,), Bisin pu(a,), i<j, Cisin u(y,),andA — BCisin P,.

() [A]— [Blwif A is in p(a,), B isin u(a,), i <j, and A — Bw is in P,.

(k) [A]—[BC]ifA isn p(e,), Bisin u(B,), Cisin u(ay), i < k,andA — BCisinP,.

) [A] > w[B] f A 1sin u(a,), Bism u(a,), i <j,and A - wB s in P,.

(m) [Br Tt BIACI T Cs] - [Br+2Br+lBr—l T BIACI e C.s] if Br 18 in [L(,B,), Br+2 iS in
w(B), i < j, By s m u(B), i = k, B, = B, B, 18 1n P,, and the
remaining symbols are as in (1).

(n) [B,---B,C,---C,]—> [B,2B,41B,_, " - B,C,+--C,], with the quantification as in (m)
and symbols as in (2).

(o) [B,-+-B,AC,---C;] = w[B,4,B,_,-*BIAC, - C;] if By is in u(B,), B,y 15 in
w(B), i =j, B, > wB,,, is in Py, and the remaining symbols as in (1).

(p) [B,-**B.Cy+-C;] > W[B,,B._," - B,C,--C,], with the quantification as in (0),
symbols as in (2).

(qQ) [B, - B,AC,*--C;]—> W[B,_, - B,AC,---CJ]if B, is in u(B,), B, — wisin P, and
the remaining symbols are as in (1)

(r) {B,--*B:C,"-C;} > w|[B,_,---B,C,---C,), with the quantification as in (q) and
symbols as in (2).

(s) [B,:--BAC,---C)—[D{DB)B,_, - BJAC,--- C,Jand [{DB,)B,_, - - - BJAC,
- Cl— W[Br—l - BlAC, -+ Cs] if B,1sin /-"(Bz)s D isin /““(/31)’ i<j, B,—
Dw is in Py, and the remaining variables are as in (1).

(t) The same as (s), with the variable A omitted (symbols as in (2)).

(u) Symmetric versions of (m)-(t), expanding the C variables.

M [l-e

The argument that G' has the desired properties is similar to that in Lemma 3.6, and is
omitted.

REFERENCES

1 CreMErs, A B, aNp GINsBURG, S Context-free grammar forms J Comput Syst Sci 11 (1975), 86-
117



598 S. GINSBURG AND N. LYNCH

2. GINSBURG, S, AND LyncH, N Denvation complexity mn context-free grammar forms SIAM J

Comput. (to appear).
3 Gruska, J. On the size of context-free grammars Kybernenica 8 (1972), 213-218.

4 MEever, A R., aND FiscHER, M J. Economy of description by automata, grammars, and formal
systems. 12th Annual Symp. on Switching and Automata Theory, 1971, pp 188-191

RECEIVED JUNE 1975, REVISED MARCH 1976

Journal of the Assoctation for Computing Machmnery, Vol 23, No 4, October 1976



