""Helping'': Several Formalizations

Nancy Lynch
Journal of Symbolic Logic, Volume 40, Issue 4 (Dec., 1975), 555-566.

Stable URL:
http://links jstor.org/sici?sici=0022-4812%28197512%2940%3 Ad%3C555%3 A%22SF%3E2.0.CO%3B2-3

Your use of the JSTOR archive indicates your acceptance of JSTOR’s Terms and Conditions of Use, available at
http://www.jstor.org/about/terms.html. JSTOR’s Terms and Conditions of Use provides, in part, that unless you
have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and
you may use content in the JSTOR archive only for your personal, non-commercial use.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or
printed page of such transmission.

Journal of Symbolic Logic is published by Association for Symbolic Logic. Please contact the publisher for further
permissions regarding the use of this work. Publisher contact information may be obtained at
http://www jstor.org/journals/asl.html.

Journal of Symbolic Logic
©1975 Association for Symbolic Logic

JSTOR and the JSTOR logo are trademarks of JSTOR, and are Registered in the U.S. Patent and Trademark Office.
For more information on JSTOR contact jstor-info@umich.edu.

©2002 JSTOR

http://www.jstor.org/
Fri Jul 26 15:41:39 2002

THE JOURNAL OF SymsoLIC Logic
Volume 40, Number 4, Dec. 1975

“HELPING”: SEVERAL FORMALIZATIONS

NANCY LYNCH

§1. Introduction. Much recent work in the theory of computational complexity
([Me], [FR]. [S1]) is concerned with establishing ‘“the complexity” of various
recursive functions, as measured by the time or space requirements of Turing
machines which compute them. In the above work, we also observe another
phenomenon: knowing the values of certain functions makes certain other func-
tions easier to compute than they would be without this knowledge. We could say
that the auxiliary functions “help” the computation of the other functions.

For example, we may conjecture that the *polynomial-complete” problems of
Cook [C] and Karp [K] and Stockmeyer [S2], such as satisfiability of propositional
formulas or 3-colorability of planar graphs, in fact require time proportional to
n'°s2® to be computed on a deterministic Turing machine. Then since the time
required to decide if a planar graph with # nodes is 3-colorable can be lowered to a
polynomial in # if we have a precomputed table of the satisfiable formulas in the
propositional calculus, it is natural to say that the satisfiability problem *helps”
the computation of the answers to the 3-coloring problem. Similar remarks may
be made for any pair of polynomial-complete problems.

As a further illustration, Meyer and Stockmeyer [MS] have shown that, for a
certain alphabet X, recognition of the set of regular expressions with squaring
which are equivalent to Z* requires Turing machine space ¢ for some constant c,
on an infinite set of arguments. We also know that this set of regular expressions,
which we call RSQ, may actually be recognized in space d™ for some other constant
d. Theorem 6.2 in [LMF] implies that there is some problem (not necessarily an
interesting one) of complexity approximately equal to that of RSQ, which does not
reduce the complexity of RSQ below c". It does not “help” the computation of
RSQ.

Thus, we have many examples of a phenomenon we can think of as ““ helping”,
but we have no formal definition. We would like to have a definition which applies
not only to problems with well-defined complexity, but to all recursive functions,
even those with speed-up properties [B].

In this paper, we first define “complexity sequences” and present two results
which motivate their use in one possible definition of “helping”. We then present
several other definitions which naturally suggest themselves. Finally, we show that
these definitions are all essentially equivalent.

§2. Notation. We assume familiarity with the notation in [R]. In addition, we
use the following:

Received March 26, 1974.
555

© 1976, Association for Symbolic Logic

556 NANCY LYNCH

e.” (almost everywhere) (V) will mean “for all but a finite number of argu-
ments”. Similarly, “i.0.” (infinitely often) will mean “for finitely many arguments’.
We write ““a = b” to mean

a—b ifaz=b,
0 ifa < b.

The composition “g o ¢, where ¢ is a function of one variable and g is a function
of two variables, will indicate Ax[g(x, #(x))]. Similarly, if g and 4 are both functions
of two variables, “g o A denotes Ax, y[g(x, A(x, y))]. An extended composition of
two-variable functions “g; o gg 0o ggo---0 g, denotes (- - -((g1 o g2) °© ga) © - - - © &)-
We use “g®> as an abbreviation for go g. “g®” for go g o g, etc.

“R,” represents the set of total recursive functions of n integer variables.

To represent computation using a set for help, we will use “relatively computable
functions” [LMF] which are partial recursive functions of one set variable and one
integer variable. We assume a G3del numbering of such functions [LMF], writing

¢§ 2> for the ith function in this enumeration. We write “¢{®” for the partlal
X-recurswe function computed by ¢f ’ using set X. We write <p"” as simply “g,”,
and thus obtain an acceptable G6del numbering [R] for the partial recursive
functions.

The standard way to derive the collection of relatively computable functions and
a Godel numbering thereof is by Davis’ oracle Turing machine model [R]. The
oracle Turing machine is exactly like an ordinary Turing machine, except that it has
the ability to pause during its computation to ask the oracle about membership in
the oracle set of a number written on a specified portion of the Turing machine’s
worktape. The oracle returns the answer, and, based on the answer, the Turing
machine’s computation proceeds. However, we avoid reference to a specific oracle
Turing machine model, following instead the abstract approach in [LMF].

We must provide a way to measure the complexity of relatively computable
functions. We use the following:

DEerINITION 1. A relative complexity measure {®¢ ’} is a sequence of relatively
computable functions satisfying:

(D) (vi, x, X)D®(x) converges if and only if ¢{¥(x) converges, and

(2) there exists ¥ , a relatively computable function, such that

(Vi, X5 Vs X)T.(X)(<i’ X, J’>) =1 if (ng(x) =D
= 0 otherwise.

These two properties are similar to the axioms of Blum for the complexity of
partial recursive functions [B], and are used in the study of relative complexity in
[LMF]. The most natural examples of relative complexity measures are time and
space measures on oracle Turing machines.

We abbreviate ®{? by ®;, obtaining a complexity measure on the set of partial
recursive functions, in the sense of Blum.

Finally, if 4 is a set, f € R,, and b is a total function of one variable, then we say:

“Comp“ f < bi.0.” to mean (I)[(¢{® = f) and (P < bi.0.)].

Similarly, we say:

“Comp“ f > b i.0.” to mean (Vi)[(¢{® = f) = (P > bi.0.)].

‘“HELPING’’: SEVERAL FORMALIZATIONS 557

We use analogous definitions for “a.e.” in place of i.0. We write “Comp ™ in
place of Comp‘® f.

§3. Complexity sequences. Much work in “concrete”” complexity theory involves
attempts to find ““the complexity” of problems (i.e. a single function describing the
optimal running time for a solution to the problem). The speed-up theorem says
that this is impossible in general, for recursive functions. However, we discover in
[MF] that every recursive function has a certain sequence of functions describing
its complexity. We show in this section that every recursive function has a sequence
of functions of a type which we call ““monotone-honest” describing its complexity,
and also that a converse holds: any monotone-honest sequence describes the
complexity of some recursive function. Thus, the complexities of recursive functions
may be identified with monotone-honest sequences.

These results are similar to those of Schnorr [SS].

We define the two concepts central for this section:

DEeFINITION 2. If 4 is a function of two variables, '€ R, and {p;} is a sequence
of total functions of one variable, we say that {p;} is an h-complexity sequence for
S provided:

(VDENp: =f) = (ps < ho ©; ae)],

and

(V)@E)(es =) and (®; < hop; ae)].

That is, to within amount 4, the running-times for programs computing f are
interlaced with the functions in the sequence {p;}.

DEerINITION 3. If 4 is a function of two variables and {p;} is a sequence of total
functions, we say that {p;} is h-monotone-honest if it satisfies the following three
properties:

(1) 39 € R)(V)[p: = Pew);

(2) (V))[pis1 < hop;ael, and

) (vi)AN(p: = @) and (?; < hop, ae)].

That is, the sequence is a recursively enumerable sequence of total recursive
functions, approximately successively decreasing (hence “monotone”), and with
every function in the sequence ““honest . Honesty, the property which requires that
a function be computable within running time which is not much greater than the
size of the function itself, is explored in [MM].

We first state a result which shows that every recursive function has a complexity
sequence which is monotone-honest. The ideas are essentially similar to those in
[MF]; we include the construction here because it does not explicitly appear in the
preceding paper. We omit the verification as it is analogous to the verification of
Lemma 4 of [MF].

PROPOSITION 4. There exists he Ry such that (Nfe R)Hp)Up} is an h-
complexity sequence for f and {p;} is h-monotone-honest].

PrROOF. We first use the s-m-n theorem to define a collection of partial recursive
functions as follows:

558 NANCY LYNCH

Instructions for computing @y i,(X).

1. If i < e, compute and output ¢@,(x) if it converges. (If it does not converge,
the function will be undefined.)

2 Ifize let C={j<i|(Vy <Py < x and D (y) < x) = (p,(») =
L X69))12

Find j e C U {e} such that ®(x) is minimal. (If no ¢;(x) converges, the function
will be undefined.)

If several give the minimal value, consider the least such j. Compute and output
P(x).

END OF CONSTRUCTION

For fixed e, i and x, these instructions tell us to use x steps to see which indices
<i could possibly represent the function ¢,. We run all of those possibilities “in
parallel” on argument x, and output the first answer that arises.

For ¢, = f, we claim that p, = @, has the required properties. As in [MF],
A is constructed using an elementary convergence argument, similar to many of
those in [LMF]. Q.E.D.

The next result is a converse of the preceding proposition—that every monotone-
honest sequence is a complexity sequence for some recursive function. My original
proof was a complex direct diagonalization; the following simplified version is
due to Schnorr [S].

THEOREM 5. For any g € R, there is an h € R, with the following property:

Whenever {p} is a g-monotone-honest sequence, then {p;} is an h-complexity
sequence for some recursive function.

Proor. We use the following lemma to obtain from {p;} a sequence of honest
indices for the respective functions:

LEMMA 6. For any g€ R,, there exists he R, satisfying the following: If
{®aw} is a recursively enumerable sequence of total functions, and if (Vi) /) [(®qay = ¥5)
and (®; < g o gy a.e.)], then there exists r € Ry such that {@.y} is also a recursively
enumerable sequence of total functions, and

VD) (Pewy = Pray a-¢.) and (Vpy < h o @y a.e.)]-

Proor. The result and construction are similar to Machtey’s Lemma 3.5 in
[Ma]. We assume without loss of generality that g is monotone increasing in both
variables. We use the s-m-n theorem to define the following collection of functions:

Instructions for computing @uq,q(x).
1. See if @,(i) < x. If not, let @y q)(x) = 0.
2. Otherwise, consider

@y, y2> < x)(Vz, y2 < z < X)
[(@g,0(2) < x) = (Py,(2) < g Po,m(2)) and (gy,(2) = Poa(@))]-
Let

s =y if {y1, yo) exists,
= x otherwise.

a. If py(x) converges and @y (x) < g o @, (%), then let @y q)(%X) = Ps(X).

‘““HELPING ”’: SEVERAL FORMALIZATIONS 559

b. Otherwise, if @,,4(x) converges, let @uy qo(x) = 0. If Poum(x) diverges, let
Pad,q)(X) be undefined.
END OF CONSTRUCTION

In the above construction, we assume that ¢, will be equal to g, where p, =
Paw, and that (7, @) will be the required r(i). We are trying to guess an honest index
for the function p,, or at least for a function which is equal to p, almost everywhere.
We let s be the first index that, within measure x, cannot be disproved to be such
an honest index, and use s to determine the value of @, o).

If {pew} is a recursively enumerable sequence of total functions, then {g,y} is
also a recursively enumerable sequence of total functions. Also, @,y = @ a.c.,
since the guessed values for s will change as x increases until we eventually settle
on one such that

((Ps(2) = pa(2)) and (D(2) < g © Po(2)))

for sufficiently large z.
To show that @, < ho gy ae., we use a simple domain-of-convergence
argument [LMF]. We define A(x, y) = max,,..<.#'(x, y, i, a), where

W (x, y,i,a) = @uq,a(x) if, for s in the definition of g, 4(x), Oy(x) < g(x, y),
=0 otherwise.

h € Ry, since the condition in the definition of A’ insures the convergence of
Pag,a(X). The inequality @,4, < & o @y, follows from the hypotheses on g.

Lemma 6 applied to {p;} = {p.} leaves us to show that {p,} is a complexity
sequence for some recursive function, in order to complete the proof of Theorem 5.
Specifically, we need the following:

LEMMA 7.1 For any g€ R,, there exists he Ry satisfying the following: If
{®rw} is a recursively enumerable sequence of total functions, and for all i, D, <
8o Py a.e. and @yy1y < g0 @ry a.e., then {pyy} is an h-complexity sequence for
some f € R,.

Proor. The basic idea for this lemma is due to Schnorr, with a slight improve-
ment due to Meyer. It is based originally on the speed-up construction, to be found
in [B] and [MF].

We may surely assume g is monotone increasing in both variables. We first
use {@,q} to construct f. After this construction is completed, we will define the
function /4 making {¢,,} an A-complexity sequence for f.

The function f is constructed depending uniformly on {g,} and since we will
need this uniformity in the definition of 4, we define £ (using the s-m-n theorem and
the recursion theorem) in the form g, . @ is to be thought of as a partial recursive
index for r.

Instructions for computing @yq(x). :
1. Forall y < x, test if @yy(y) < x. For any y such that this inequality holds,

1 A careful implementation on a Turing machine of the construction given here for abstract
measures essentially shows that for Turing machine time, 4 need only grow linearly in its second
argument [SS].

560 NANCY LYNCH

simulate the computation g.,(»). Put a mark next to any index that becomes
cancelled during any of these simulated computations.

2. See if @, 0)(x) converges. If not, g,«,(x) will diverge. If it does, then, for each
unmarked i, i < x, see if [(Vj < i)(P(j) < x) and (Vj, 1 < j < i)(Pe,(x) <
8?0 g,i-1(¥)) and (Py(x) < pyw(X))]-

If there is no i for which this is true, let @,(x) = 0.

If there is, consider the least such i.

Let @uay(x) = 1 = @i(x), and cancel i.

END OF CONSTRUCTION

Part 1 of the above construction is an attempt to avoid redundancy by not forcing
us to cancel the same index more times than necessary. Part 2 tries to define f to
be different from any partial recursive function which runs too quickly, assuming
the successive functions in the given are decreasing, as they should be.

To show that this construction works, it remains to show:

(V)3 =) = (prp < ho Pyae)], and
(Vi)EAP(p; = f) and (Q; < ko ¢ 28],

provided that f = @4, Where a is a partial recursive index for r. To do this, we
must, of course, define A.
For the first condition, we claim that

(VD)@ = f) = (@ry < D, ae.)].

To see this, assume that ¢,q, > ®@; i.0. For sufficiently large x, any index <i which-
ever gets cancelled during the construction of f also gets marked in part 1 of the
definition of f(x) and so will not be considered in part 2 of the definition of f(x).
For sufficiently large x, (Vj < i)(®,(j) < x). Also, for sufficiently large x,

V), 1 < j < i)(@pp(x) < 82 © gry-1(X))s

by the hypotheses on {g,q}. Thus, for some x, the condition for index i in part 2
of the definition of f(x) will be satisfied, and so f(x) is defined to be different from
Pi(x).

This implies that, for the first condition, any 2 > Ax, y[y] will suffice.

For the second condition, we must show how to obtain j from i. For this purpose,
we use the s-m-n theorem to define a collection of functions @g. 4.4, 8 € Rs, such
that if @ is a partial recursive index for r, u = i and F, is a certain finite function,
then ¢; = @pa.u,n Will have the desired properties.

We assume that {F,} is an effective enumeration of all finite functions. The
construction of @ 4.4 is similar to the construction of ¢, with two exceptions:
we only consider tests involving indices >u in part 2 instead of all indices, and F,
provides values of the function on a certain finite set of arguments for which we
do not use the general procedure.

Instructions for computing @z, u,v»)(%)-
0. If x € domain F,, let @y u.u(x) = Fy(x). Otherwise, proceed through parts 1
and 2.

‘““HELPING”’: SEVERAL FORMALIZATIONS 561

1. Exactly the same as part 1 of the definition of @gqy(x).

2. See if @,,w(x) converges. If not, @y, ... (x) will diverge.

If it does, then for each unmarked i, u < i < x, see if [(Vj < i)(®,(j) < x) and
(o u + 1 <J < 0)(Py(x) < 82 0 Pyyii-1y(¥) and (Py(x) < @y,(X))].

If there is no i for which this is true, let g ,) (x) = 0.

If there is, consider the least such i.

Let @g,u,0(x) = 1 = ¢,(x).

END OF CONSTRUCTION

We first claim that for any partial recursive index for r, and for any u, there is
some v such that s 4, = Pu- We simply let F, provide the values of @y q,(x)
on small values of x. For sufficiently large values of x, any value of i < u which-
ever gets cancelled in the definition of f = g@,, will be marked in part 1 of the
definition of f(x). Also, for sufficiently large x, (Vj, 1 < j < u)(®,,(x) < g2 o
®r-1)(%)), by the hypotheses on the sequence {g,)}, s0 that gu, and g, 4., Will
yield exactly the same answers on these larger values of x.

We next define 4, € R,. Letting A = max(h,, Ax, y[y]) will provide both the
required inequalities.

Let 2y(x, y) = MaX, <y <x:v<xP (X, ¥, @, u, v), where

H(x, y,8,u,0) = Ppeuun(x) if @) < x and Do, ,\(x) < g(x, y),
=0 otherwise.

#’, and hence 4, is total recursive, since if the conditions in the definition of #’
are satisfied, then @, , () is easily shown to converge.

Now if ¢, =r, u =i and F, is the finite function described above, then
hy(x, @ri(X)) = H'(X, @ray(%), a, i, v) a.e. For sufficiently large x, ®,(/) < x and
Dy (%) < &(x, (%)) Thus, Ay(x, @r(X)) = Ppq,1,0(X) a.e., as required.

Taking 4 = max(h,, Ax, y[y]) gives the required conditions. Q.E.D.

Proposition 4 and Theorem 5 show that it is reasonable to identify the complexities
of recursive functions with monotone-honest sequences. For example, we may obtain
the following:

CorOLLARY 8. (Fh e Ry)(Nf € R,)3 0-1 valued f, € R,) [f and f, have the same
h-complexity sequencel].

Proor. Immediate from Proposition 4 and Theorem 5, since the function
constructed in Theorem 5’s proof is 0-1 valued. It also follows from related work
of Schnorr.

If {®;} represents Turing machine worktape space rather than an arbitrary
measure, the results have slightly cleaner statements. First, we sharpen the
definitions:

DerFINITION 2S. If fe R, and {p} is a sequence of total functions of one
variable, we say that {p;} is a strict complexity sequence for f if

(VD@D = f) = (p; < ®rae)], and
(V)EN)(e; = f) and (P; < p; ae)].

DermviTioN 3S. If {p;} is a sequence of total functions, we say that {p;} is
strictly monotone-honest if it satisfies the following three conditions:

562 NANCY LYNCH

(1) (V)[pi = pqw»] for some total recursive g,

(@ (¥))[pis1 < piae], and

(3) (V)ENI(p: = ¢;) and (P; < p;a.e.)).

We may now obtain the following:

PROPOSITION 4S. Assume {®;} represents Turing machine space. If f€ R, and
Comp f > Mx, y[x] a.e., then there exists a sequence {p;} such that {p;} is a strict
complexity sequence for f and {p;} is strictly monotone-honest.

THEOREM 5S. Again assume {®;} represents Turing machine space. Assume {p;}
is a strictly monotone-honest sequence. Finally, assume (Vi)[p; > Ax, y[x] a.e.]. Then
{p:} is a strict complexity sequence for some recursive function.

Verification is left to the reader.

§4. Definitions of ‘‘helping’’. We are now ready to present several alternative
ways of formalizing the idea that a set helps the computation of a function. The
first definition specifies that there is a way of computing the function using the set
as an oracle which is much more efficient than any way of computing the function
without using the set.

DEFINITION A. For any set A4, any function g of two variables and any function
f of one variable, we say that 4 g-improves f provided

@)(¢® = f) and (Comp f > g o D{? i.0.)].

The previous section motivates the next definition of helping. Since we here
work with relative computability, it will be convenient to generalize the notation
used in that section.

DerINITION 9. If 4 is a function of two variables, f a function of one variable,
A a set and {p;} a sequence of total functions of one variable, then we say that
{p;} is an h, A-complexity sequence for f provided

(VDENH® =) = (p; < ho P® ae)], and
(V)EN)(@® = f) and (P§* < hop; ae)].

That is, to within amount 4, the running-times for A-oracle programs computing
f are interlaced with the functions in the sequence {p;}. Proposition 4 asserts the
existence of a function /; € Ry, h; > Ax[x], such that all f € R, have A,, $-complexity
sequences {p;} with several additional desirable properties. Henceforth, we use 4,
to refer to this specific function.

Our next formalization of “helping” asserts that the introduction of the set
modifies a complexity sequence for the function.

DEFINITION B. If A4 is a set, g a function of two variables and f a function of
one variable, we say A g-destroys a complexity sequence for fif there exists {p;}, an
hy, -complexity sequence for £, such that {p;} is not a g o ,, A-complexity sequence
for f.

A closely related definition is the following, which specifies that using the set as
an oracle modifies all complexity sequences for the function.

DerINITION C. If A4 is a set, g a function of two variables and f a function of
one variable, we say A g-destroys all complexity sequences for f if, for all {p;},
hy, $-complexity sequences for £, {p;} is not a g o h;, A-complexity sequence for f.

‘““HELPING’’: SEVERAL FORMALIZATIONS 563

For the next definition, we consider that a set helps the computation of a function
if its use as an oracle reduces the complexity of the function below some previous
i.0. lower bound.

DerINITION D. If 4 is a set, g is a function of two variables and £ a function
of one variable, we say A destroys a g-i.o. lower bound for f provided (3b, a total
function) [(Comp f > go bi.0.) and (Comp™® f < b a.e)].

A closely related definition arises if we add on the hypothesis that b is recursive :

DerNiTION E. If A4 is a set, g a function of two variables and f a function of
one variable, we say A destroys a recursive g-i.o. lower bound for f provided
[@b e R)[(Comp f > gobio.)and (Comp“ f < b a.e)].

Finally, our last definitions are similar to the immediately preceding ones, but
for a different sort of lower bound on the function’s complexity:

DeriniTION F. If A4 is a set, g a function of two variables and f a function of
one variable, we say A destroys a g-a.e. lower bound for f provided (3b, a total
function) [(Comp f > go b a.e.) and (Comp” f < b i.0.)].

DerinTION G. If A4 is a set, g a function of two variables and f a function of
one variable, we say A destroys a recursive g-a.e. lower bound for f provided
(3b e R)[(Comp f > gobae.)and (Comp” f < bi.0.)].

Any of these provides a reasonable formalization of the idea that a set helps
the computation of a function. We can express this concisely by saying ““ A4 g-helps
faccording to Definition A”, etc.

§5. The equivalence theorem. We now prove that all the definitions in the
preceding section are equivalent in the following sense: if a set 4 helps a function
faccording to any of these definitions, it also helps faccording to all of the others.
The function g involved in the various definitions may differ, however.

We require two lemmas:

LemMMA 10. (3h; € R,, monotone increasing in both variables) (Vi, A)(Nf, a total
Sfunction of one variable)[(p; = f) = (Comp® f < hy o ®; a.e)].

This lemma simply states the fact (obvious for time and space) that having an
unnecessary oracle set does not increase the difficulty of computing a function.
This lemma may be proved by an easy application of recursive relatedness [LMF].

The second lemma is of interest in itself; it states that if a function is complex
i.o., then there is an infinite set of arguments on which it is complex a.e. The proof
is a simplification of one due to Meyer.

LEMMA 11. There exists hs € R, with the following property: If b, f€ R, and
Comp f > hg o b i.o., then there exists an infinite recursive set X such that

(VO(Vx)(p: = fand x € X) = (D(x) > b(x))].

Proor. The result will follow by recursive relatedness if we give a proof for
the Turing machine space measure. For space, we will prove the lemma with
hs = Ax, y[y].

Given b and f, we construct our set X by executing an effective sequence of stages
numbered 0, 1, 2, .. .; a new element x, will be added into X at stage n.

During the construction, we cancel an index i when we have discovered that

o # [

564 NANCY LYNCH

Stage n. Let y = 0if n = 0. Otherwise, let y = x,,_; + 1.

Substage 1. For each uncancelled i, 0 < i < n, see if ®,(y) < b(y) and
e:(») # f(»). If, for any i, both are true, cancel these i.

Substage 2. See if (Vi,0 < i < n and i not cancelled) [®,(y) > b(p)]. If so,
let x, = y and go on to stage n + 1. If not, let y = y + 1 and go back to substage
L.

END OF CONSTRUCTION

We must show that for each n, stage n» must terminate. Assume not, and let »
be the first stage that does not terminate. Then for each sufficiently large y, there
exists an index i with i < n, such that i is never cancelled, and ®,(y) < b(y). By
substage 1, for each sufficiently large y, we know that if / < n and i is never can-
celled, then [(D,(y) < b(»)) = (p(») = f(¥))]. We may therefore run ““in parallel”
all Turing machines of index i < n such that i is never cancelled, with a finite modi-
fication for small arguments, and obtain a new Turing machine computing f and
requiring only space b. But this contradicts the assumption Comp f > b i.o.

Since the construction is effective and (Vi)(x;,, > x;), it follows that X is infinite
and recursive.

We claim (Vi)(V°x)[(¢; = f and x € X) = (®,(x) > b(x))]. This is because if
¢, = f, then i is never cancelled during the construction of X. Then if n > i,
substage 2 guarantees that ®,(x,) > b(x,). Q.E.D.

We now state and prove the equivalence. We say that a statement is true “for
sufficiently complex fe R,” if (3t € R,)(¥f e R,)[(Comp f > ¢ a.e.) = (the state-
ment is true for f)].

THEOREM 12. For any g € R,, there exists h € R, satisfying the following: For
any sufficiently complex f€ R, and any recursive set A, if A h-helps f according to
any of the definitions A, B, C, D, E, F or G, then A g-helps f according to all of these
definitions.

Proor. We will show:

G = F and E = D are obvious.

C = B follows by Proposition 4.

A = E. For g, f, A as above, if 4 g-improves f, then A destroys a recursive
g-i.0. lower bound.

For, if A g-improves f, Definition A yields an index i such that [(¢{* = f) and
Comp f > go ®® i.0.)]. Let b = ®{?. Since A is recursive, b € R, and b satisfies
Definition E.

D = A. Forg, f, Aasabove, with g monotone increasing in its second variable,
if A destroys a g-i.0. lower bound for £, then 4 g-improves f.

For, Definition D yields a function » and an index i such that ¢ = f and

““HELPING”’: SEVERAL FORMALIZATIONS 565

O < b a.e. This index i satisfies Definition A, with g’s monotonicity giving the
desired result.

F = A. Similar to the preceding case.

B = A. For g, f, A as above, with g monotone increasing in its second variable
and g > max(h, hy), if A g®-destroys a complexity sequence for f, then 4 g-
improves f. (Here, h, and A, are previously specified functions.)

For, if A g®-destroys a complexity sequence {p;} for f; then since g > A, and by
Lemma 10, we obtain

@E)NI@? = f) and (p; > g2 o hy o D{? i.0.)].
Thus, since {p;} is an h,, $-complexity sequence for f, we have
(VE) (@i = f) = (hy o @y > &P 0 hy o B? i.0.)].
Since g = &, and g is monotone increasing in its second variable we obtain
(VE) (@ = f) = (Dy > g o B* i.0.)].

But this satisfies Definition A.

A = C. For g, f, A as above, with g monotone increasing in its second variable
and g > hy, if A g®-improves f, then A4 g-destroys all complexity sequences for f.

By Definition A,

EDNU® = f) and ((p; = 1) = (P; > g2 ®i? i.0)].

Let {p;} be any h,, #-complexity sequence for f. For any p,, there exists ¢, = f with
hyop; > @, ae. Thus, hy o p; > g® o O i.o., for i as above.

Since g > hy, this implies p; > g o h;, o ®{? i.0., thus satisfying Definition C.

E = G. Forg,f, A as above, with g monotone increasing in its second variable,
with g > h;, and with Comp f > Ax[g(x, 0)] a.e., if 4 destroys a recursive g®-i.o.
lower bound for f then 4 destroys a recursive g-a.e. lower bound for f.

For if A destroys a recursive g®-i.o. lower bound, then

(3b € R)[(Comp f > g® o b i.0.) and (Comp® f < b a.e.)].

1t follows that Comp f > h3 o g o b i.0., so we may apply Lemma 11 and obtain
set X. We define ¢ € R, as follows:

c(x) = b(x) if xe X,
=0 if not.

Then Comp f > goca.e., by the lower bound on the complexity of f, and
Comp“ f < c i.0., thus satisfying Definition G.

1t is now straightforward to combine the pieces and show that the theorem holds.
Q.E.D.

Once again, if {®{ ’} represents Turing machine work-tape space rather than an
arbitrary measure, the result has a slightly cleaner statement. Specifically, we may
obtain:

THEOREM 12S. Assume {®} ’} represents Turing machine space. Assume g € Rg
and g monotone increasing in both variables. Then for any sufficiently complex

566 NANCY LYNCH

f€ R, and any recursive set A, if A g-helps f according to any of the definitions
A, B, C, D, E, F or G, then A g-helps f according to all of these definitions.

Finally, the equivalence we have proved enables us to formulate without am-
biguity the following conjecture. The statement is a generalization of Theorems
6.2 and 6.3 of [LMF], which essentially give the desired result for functions with
well-determined complexities. We would like to have the same result for all
recursive functions, including those with speed-up properties. We say that a
statement is true for ““arbitrarily complex B” if

(Vt € R))(3B, recursive)[(Comp C; > ¢ a.e.) and (the statement is true for B)].
CONJECTURE 13. There exists g € R, with the following property:
(Vf € R))3B, arbitrarily complex)[B does not g-help f].

In attempting to prove this conjecture, we have at our disposal all of the
equivalent formalizations of “helping”.

REFERENCES

[B] M. BLuM, A machine-independent theory of the complexity of recursive functions, Journal
of the Association for Computing Machinery, vol. 14 (1967), pp. 322-336.

[C] S. A. Cook, The complexity of theorem-proving procedures, Conference Record of the
Third Annual ACM Symposium on Theory of Computing, 1971, pp. 151-158.

[FR] M. FiscHer and M. RABIN, Super-exponential complexity of Presburger arithmetic,
Project MAC TM 43 (1974).

[K] R. KARP, Reducibility among combinatorial problems, Complexity of computer computa-
tions, Plenum, 1972,

[LMF] N. LyNcH, A. MEYER and M. FISCHER, Relativization of the theory of computational
complexity, Transactions of the American Mathematical Society (to appear).

[Ma] M. MACHTEY, The honest subrecursive classes are a lattice, Purdue University Technical
Report 82.

[ME] A. MEYER, Weak monadic second order theory of successor is not elementary-recursive,
MIT manuscript, 1972.

[MF] A. MEYER and P. FiscHER, Computational speed-up by effective operators, this JOURNAL,
vol. 37 (1972), pp. 55-68.

[MM] A. MEeyYer and R. MoLL, Honest bounds for complexity classes of recursive functions,
13th Annual Symposium on Switching and Automata Theory, 1IEEE, 1972.

[MS] A. MEYER and L. STOCKMEYER, The equivalence problem for regular expressions with
squaring requires exponential space, 13th Annual Symposium on Switching and Automata
Theory, IEEE, 1972.

[R] H. RoGERS, Theory of recursive functions and effective computability, McGraw-Hill, New
York, 1967.

[S] C. P. SCHNORR, private communication.

[S1] L. StockMEYER, Ph.D. Thesis, MIT, Department of Electrical Engineering, 1974.

[S2] , Planar three-colorability is polynomial-complete. SIGACT News, vol. 5 (1973),
pp. 19-25.

[SS] C. P. ScHNORR and G. STUMPF, A characterization of complexity sequences. Zeitschrift
fiir Logik und mathematische Grundlagenforschung, Spring/1975.

UNIVERSITY OF SOUTHERN CALIFORNIA
LOS ANGELES, CALIFORNIA 90007

