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278 Garland & LynchOne reasonable mathematical basis is the I/O automaton model [LT87], which hasbeen used to describe and verify distributed algorithms and to express impossibilityresults (see, e.g., [Lyn96]). Several aspects of this model make it good for suchtasks. It is based on set-theoretic mathematics rather than on a particular logic orprogramming language. I/O automata are nondeterministic, which allows systemsto be described in their most general forms. I/O automata have a simple notionof external behavior based on sets of traces of external actions. Moreover, I/Oautomata can be composed by identifying external actions, in a way that respectsexternal behavior, and pairs of automata can be related using various forms ofimplementation relations that preserve external behavior. The model supports arich set of proof methods, including invariant assertion techniques for proving thata property is true in all reachable states, forward and backward simulation methodsfor proving that one automaton implements another, and compositional methodsfor reasoning about collections of interacting components.Also, the model has been extended to a timed I/O automaton model [LV96],which allows modeling of timing aspects of distributed systems, including timingassumptions and performance guarantees. Both I/O automata and timed I/O au-tomata can be described using simple guarded-command-style pseudocode (see, e.g.,[LMWF94, Lyn96]).Although I/O automata were originally developed for modeling theoretical dis-tributed algorithms, in the past few years they have been used to model practi-cal system components such as distributed shared memory services (e.g., [FKL98,FGL+99]), group communication services [FLS97, DFLS98, HLvR99], and standardcommunication protocols like TCP [Smi97]. This work has resolved ambiguities andcontributed proofs that systems meet their speci�cations. It has led to the discov-ery of problems, including logical errors in key algorithms in the Orca [BKT92],Horus [vRBM96], and Ensemble [HvR96] systems. Moreover, it has produced I/Oautomaton pseudocode that is close to actual system code: for example, some I/Oautomaton pseudocode for the Ensemble system [HLvR99] is similar to the actualML code that appears in the system implementation.Because the model and pseudocode have worked well in these case studies, webelieve they can be made to play a signi�cant role in developing real distributedsystems. In this paper, we describe one way this might work.Most of the work done so far using I/O automata has been carried out by hand.However, for these methods to play a serious role in system development, they willrequire computer tool support. So far, tool-based work with I/O automata has con-sisted mainly of using interactive theorem provers to verify invariant assertions andsimulation relations (e.g., [Nip89, SAGG+93, PPG+96, Arc97]) for I/O-automaton-based designs. The TAME system [AHS98] provides a high-level interface to thePVS theorem prover [ORR+96] for specifying and proving properties of a timed ver-



Using I/O Automata for Developing Distributed Systems 279sion of I/O automata. Other tool support for I/O automata includes the Spectrumprogramming language and simulator [Gol90].13.2 General Design GuidelinesThe tool support we are constructing begins with a simple formal language for mod-eling distributed systems using I/O automata, based on the guarded-command-stylepseudocode already in use. Such a language should support the system designer inexpressing his/her design at di�erent levels of abstraction, starting with a high-levelspeci�cation of the required global behavior and ending with a low-level version thatcan be translated easily into real code. The language should also allow the designerto decompose designs into separable components with clearly de�ned external be-havior.This language should be supported by a tools providing access to a full range ofvalidation methods, including proof using an interactive theorem prover, simulation,and model-checking. These tools should allow designers to reason about propertiesof their designs at all levels of abstraction, and about relationships between di�erentlevels.However, we would like more than just validation tools: we would also like toolsfor connecting veri�ed designs to runnable distributed code. (Our experience withsystems like Ensemble suggests that such connections are feasible.) Such toolswould allow claims and proofs about designs to be carried over automatically toreal distributed programs.In particular, we believe that, with some well-chosen programmer input, real dis-tributed code in a standard programming language like C++, Java, or ML, canbe generated automatically from low-level I/O-automaton-based designs. The val-idation tools should be able to ensure that the �nal programs are correct, subjectto assumptions about externally provided system components (e.g., communica-tion services). Runnable distributed code has already been generated by handtranslation of some speci�c I/O-automaton-based distributed algorithm descrip-tions [Che97, Tau].A programming environment based on such a language and tools could help math-ematicians write distributed programs, and help programmers who are not mathe-maticians use mathematical methods in their work.In this paper, we outline our design for such a programming environment anddescribe our progress on building a research prototype.As a starting point, we have developed a candidate programming language, theIOA language, designed speci�cally to describe I/O automata and their relation-ships. IOA has evolved from the various forms of pseudocode used in previous work;it also uses ideas from Spectrum [Gol90]. It allows automata to be described usingtransition de�nitions (guarded commands) consisting of preconditions and e�ects.It allows explicit description of nondeterministic choice, composition, and levels of



280 Garland & Lynchabstraction. It permits both declarative and imperative system descriptions. Al-though the IOA language may need to be enhanced later to increase its expressivepower, we think it is a good starting point for developing a good programmingenvironment.We have also developed designs for a set of tools for validating and transformingIOA descriptions and for generating code from IOA descriptions. We are currentlyre�ning the designs and constructing prototypes. Key ideas of the high-level designsinvolve mechanisms for resolving nondeterminism, support for programming usinglevels of abstraction, and integration of externally provided system components, bymodeling them as automata.The rest of the paper is organized as follows. Section 13.3 contains a description ofthe IOA language. Section 13.4 contains an extended example|IOA programs fora toy distributed banking system. Section 13.5 contains a discussion of the languagedesign. Section 13.6 contains an overview of our work on tools to manipulate IOAprograms. Section 13.7 contains some conclusions. An earlier version of this paper(with more details) appeared as a technical report [GL98].13.3 The IOA Language13.3.1 The I/O automaton modelAn I/O automaton is a labeled state transition system used to model a reactivesystem. It consists of a set of actions � (classi�ed as input, output , or internal), aset of states s (including a nonempty subset of start states), a set of transitions ofthe form (s; �; s0) that specify the e�ects of the automaton's actions, and a set oftasks, which are sets of locally controlled (i.e., non-input) actions.y Input actionsare enabled in all states. The operation of an I/O automaton is described by itsexecutions s0; �1; s1; : : :, which are alternating sequences of states and actions, andits traces, which are the externally visible behavior (sequences of input and outputactions) occurring in executions. One automaton is said to implement another if allits traces are also traces of the other. I/O automata admit a parallel compositionoperator, which allows an output action of one automaton to be identi�ed withinput actions in other automata; this operator respects the trace semantics.Proof methods supported by the model include invariant assertion techniquesfor proving that a particular property is true in all reachable states, forward andbackward simulation methods for proving that one automaton implements another(see, e.g., [LV95]), and compositional methods for reasoning about collections ofinteracting components. For example, a forward simulation from automaton A toautomaton B is a relation R between states of A and states of B that satis�es twoconditions: (i) each start state of A is R-related to some start state of B, and (ii)for each step (sA; �; s0A) of A and each state sB of B such that (sA; sB) 2 R, therey Tasks are used primarily to describe liveness; we will mostly ignore them here.



Using I/O Automata for Developing Distributed Systems 281exists an execution fragment (i.e., a sequence of steps) of B that \corresponds" tothe step in a particular way. Namely, it has the same trace and leads to a states0B with (s0A; s0B) 2 R. A summary of the model, its features for expressing systemstructure, and its proof methods, appears in Chapter 8 of [Lyn96].The I/O automaton model is similar to the labeled transition system modelsused to de�ne semantics for process algebraic languages like CSP [Hoa85] and CCS[Mil89]. In particular, those models also de�ne parallel composition in terms ofidentifying external actions, and have trace-like notions of external behavior. Otherlanguages for describing concurrent systems are based on di�erent types of au-tomata, with di�erent notions of composition and external behavior; for instance,TLA [Lam94] and Unity [CM88] are based on automata that combine via sharedvariables. 13.3.2 Language designThe IOA language is designed to allow precise and direct description of I/O au-tomata. Since the I/O automaton model is a reactive system model rather than asequential program model, the language reects this fundamental distinction. Thatis, it is not a standard sequential programming language with some constructs forconcurrency and interaction added on; rather, concurrency and interaction are atits core.The IOA language is designed to support both proving correctness and gener-ating code. This leads to a tension in the design, because the features that makelanguages suitable for proofs (e.g., declarative style, simplicity, and support for non-determinism) di�er from those that make them suitable for code generation (e.g.,imperative style, expressive power, determinism). Nondeterminism helps veri�ca-tion by allowing designers to validate designs in a general form. A simple languagewith a declarative style is easiest to translate into the input languages of standardtheorem provers and easiest to manipulate in interactive proofs. On the other hand,programmers generally prefer a language with high expressive power. Moreover, adeterministic language with an imperative style is easiest to translate into runnablecode.The starting point for IOA was the pseudocode used in earlier work on I/Oautomata. This pseudocode contains explicit representations of the parts of anautomaton de�nition (actions, states, transitions, etc.). Transitions are describedusing transition de�nitions (TDs) containing preconditions and e�ects. This pseu-docode has evolved in two di�erent forms: a declarative style (see, e.g., [LMWF94]),in which e�ects are described by predicates relating pre- and post-states, and animperative style (e.g., [Lyn96]), in which e�ects are described by simple imperativeprograms.In moving from pseudocode to a formally de�ned programming language, wemade the following design decisions:



282 Garland & Lynch� Data types are de�ned axiomatically, in the style used by Isabelle [Pau93], theLarch Prover (LP) [GG91, Gar94], PVS [ORR+96] and other theorem provers.This facilitates translation into theorem prover input languages. We providede�nitions for built-in data types and allow the programmer to de�ne new types,using the Larch Shared Language (LSL) [GH93].� TDs can be parameterized and the values of the parameters constrained by pred-icates that we call \where predicates." A TD can have additional choose param-eters, which are not formally part of the action name, but which allow values tobe chosen to satisfy the precondition and then used in describing the e�ect.� Since neither the declarative style nor the imperative style for describing TDe�ects is adequate for all purposes, we allow both, either separately or in combi-nation. Thus, a TD e�ect may be described entirely by a program, entirely by apredicate, or by a combination: a program that includes explicit nondeterministicchoices, followed by a predicate that constrains these choices.� Imperative descriptions of e�ects are kept simple, consisting of (possibly nonde-terministic) assignments, conditionals, and simple bounded loops. This simplicitymakes sense, because transitions are supposed to be executed atomically.� Variables can be initialized using ordinary assignments and nondeterministicchoice statements. The entire initial state may be constrained by a predicate.� Automaton de�nitions can be parameterized.� There is an explicit notation for parallel composition. In order to describe valuesof variables in the state of a composed automaton, we use a naming conventionthat pre�xes the name of each such state variable with a sequence of namesdesignating the automata of which it is a part. Users can abbreviate some ofthese names by shorter or more mnemonic \handles." When there is no ambiguity,some of the automaton names or handles in the sequence may be suppressed.� There are explicit notations for hiding output actions and asserting that a pred-icate is an invariant of an automaton or that a binary relation is a forward orbackward simulation from one automaton to another.Other languages, such as TLA, Unity, and Spectrum, are similar to IOA inthat their basic program units are transition de�nitions with preconditions ande�ects. However, e�ects in TLA are described declaratively, e�ects in Unity andSpectrum are described imperatively, and we allow both. Spectrum also hasother features in common with IOA; for example, it uses parameters similar to ourchoose parameters.The IOA reference manual [GLV97] contains complete de�nitions of the syntaxand semantics of IOA, as well as some sample programs.



Using I/O Automata for Developing Distributed Systems 28313.3.3 A simple example: a communication channelThe following IOA program presents an abstract view of a reliable FIFO send-receive communication channel. A client can place a message in the channel via asend action, after which the channel can deliver the message via a receive action.The speci�cation says nothing about how the channel is implemented to ensurereliable delivery. It simply requires that messages are received in the order they aresent, with no duplicates or omissions.automaton channel(i, j: Node, Node, Msg: type)signatureinput send(m: Msg, const i, const j)output receive(m: Msg, const i, const j)states queue: Seq[M] := { }transitionsinput send(m, i, j)e� queue := queue ` moutput receive(m, i, j)pre queue 6= { } ^ m = head(queue)e� queue := tail(queue)The automaton is parameterized by two data types, Node and Msg, which canbe instantiated to describe a set of indices for communicating nodes and a set ofmessages that can be sent; it is also parameterized by the indices i and j of thesending and receiving nodes. Its signature contains a single send and receiveaction for each m in M; the keyword const indicates that the values of i and j inthese actions are �xed by the values of the automaton's parameters. Each channelautomaton has a state consisting of a single variable, which holds an initially emptysequence of messages. Its actions are described in terms of their preconditions ande�ects, using the keywords pre and eff. An axiomatic de�nition of the sequencedata type provides precise meanings for all other types and operations ({} denotesthe empty sequence, and ` appends an element to a sequence).IOA can also be used to describe speci�c implementations for abstract channels,in which lower-level protocols ensure reliable message delivery. Furthermore, itallows a designer to assert that these protocols in fact implement the abstractchannel, by de�ning a relation between the states of the high-level and lower-levelautomata.13.4 Extended Example: a Distributed Banking SystemIn this section, we use IOA to describe a toy banking system in which a single bankaccount is accessed from several locations, using deposit and withdrawal operationsand balance queries. We specify the system and its environment using two I/Oautomata, A and Env. Env describes what operations can be invoked, where, andwhen; it represents, for example, a collection of ATMs and customers interactingwith those ATMs. Automaton A describes what the bank is allowed to do, withoutany details of the distributed implementation. We also give a formal descriptionC of a distributed algorithm that implements A, in the context of Env. We give



284 Garland & Lyncha speci�cation B for an intermediate service describing stronger guarantees aboutwhat the bank does, and we use it to help prove that C implements A (in the contextof Env). We also give IOA statements expressing some simple invariants and someforward simulation relations between the levels. These programs illustrate most ofthe language constructs.The code in this section has been checked for validity using our front-end tools,and its correctness has been proved using the Larch Prover.13.4.1 Banking environmentThe automaton Env describes the environment for the banking system. It de-scribes the interface by which the environment interacts with the bank (requestsand responses at locations indexed by elements of type I), and it expresses \well-formedness conditions" saying that an operation at any location i must completebefore another operation can be submitted at i. Env simply keeps track, for eachi, of whether or not there is an outstanding operation at i, and allows submissionof a new operation if not.The de�nition of Env is parameterized by the location type I. The output ac-tions of Env are requests to perform deposit and withdrawal operations and balancequeries. Each request indicates a location i. Each deposit or withdrawal requestalso indicates a (positive) amount n being deposited or withdrawn. The where pred-icates are constraints on the action parameters. The input actions of Env, whichwill be synchronized with outputs actions of the bank, are responses OK(i) (to de-posit and withdrawal requests at location i), and reportBalance(n,i) (to balancequeries).The only state information is a ag active[i] for each location i, indicatingwhether or not there is an active request at location i. The rest of the automatondescription consists of a collection of TDs that constrain when new requests canbe issued. An input at location i sets active[i] to false. An output is allowedto occur at location i provided that active[i] is false, and its e�ect is to setactive[i] to true. In this description, Int and Bool are built-in types of IOA,Array is a built-in type constructor, and the operator constant appearing in theinitialization is a built-in operator associated with the Array constructor.automaton Env(I: type)signatureinput OK(i: I),reportBalance(n: Int, i: I)output requestDeposit(n: Int, i: I) where n > 0,requestWithdrawal(n: Int, i: I) where n > 0,requestBalance(i: I)states active: Array[I, Bool] := constant(false)transitionsinput OK(i)e� active[i] := falseinput reportBalance(n, i)e� active[i] := false



Using I/O Automata for Developing Distributed Systems 285output requestDeposit(n, i)pre : active[i]e� active[i] := trueoutput requestWithdrawal(n, i)pre : active[i]e� active[i] := trueoutput requestBalance(i)pre : active[i]e� active[i] := true13.4.2 Weak requirements speci�cationAutomaton A is an abstract, global description of the basic requirements on thebehavior of the banking system. It simply records all deposits and withdrawalsin a set of elements of data type OpRec. It allows a balance query to return theresult of any set of prior deposits and withdrawals that includes all the operationssubmitted at the same location as the query. The response need not reect depositand withdrawal operations submitted at other locations.A is parameterized by the location type I. The de�nition of A introduces sev-eral data types: Each OpRec is an \operation record" indicating the amount ofa deposit or withdrawal|positive numbers for deposits and negative numbers forwithdrawals|plus the location at which it was submitted, a sequence number, anda Boolean value indicating whether the system has reported the completion of theoperation to the environment. Each BalRec is a \balance record" indicating thelocation at which a balance request was submitted and a value to be reported inresponse. An auxiliary speci�cation Total, written in LSL, de�nes the functiontotalAmount, which sums the amount �elds in a set of operation records. The typeNull[Int] contains a special value null, which indicates the absence of a numericalvalue. It is used here to indicate that the return value has not yet been determined.The external signature of A is the \mirror image" of that of Env|its inputscompose with Env's outputs and vice versa. A also has an internal action doBalance,which calculates the balance for a balance query. The state of A consists of fourvariables: ops holds records of all submitted deposit and withdrawal operations(as OpRecs); bals keeps track of current balance requests (as BalRecs); lastSeqnocontains an array of the last sequence numbers assigned to deposits or withdrawalsat all locations; and chosenOps is a temporary variable used in one of the TDs.The functions insert and delete are de�ned by the built-in data type Set.The program statements involving these functions look slightly complicated becausethe functions have no side e�ects. The function nat2pos (de�ned in the auxiliaryspeci�cation NumericConversions) converts natural numbers (elements of built-intype Nat) to positive natural numbers (elements of built-in type Pos). The functiondefine converts an element of any type T to an element of type Null[T].The action requestDeposit causes a new sequence number to be generatedand associated with the newly requested deposit operation. The combination ofthe location at which the operation is submitted and the sequence number serves



286 Garland & Lynchas an identi�er for the operation. The requested deposit amount, the locationand sequence number, and the value false indicating that no response for thisoperation has yet been made to the environment, are all recorded in ops. ArequestWithdrawal causes similar e�ects, only this time the amount recorded isnegative. A requestBalance causes a record to be made of the balance query, inbals.The action OK(i) is allowed to occur any time there is an active deposit orwithdrawal operation at location i; its e�ect is to set the reported ag for theoperation to true. The nondeterministic \choose parameter" x in its TD picks aparticular operation record x from the set ops. The action doBalance(i) is allowedto occur any time there is an active balance query at location i; its e�ect is to chooseany set of operations that includes all those previously performed at location i, tocalculate the balance by summing the amounts in all the chosen operations, and tostore the result in the balance record in bals. Because we are currently using a�rst-order language, without any special notations for set construction, the e�ectexpresses a set inclusion using an explicit quanti�er. Finally, reportBalance reportsany calculated, unreported balance to the environment.automaton A(I: type)type OpRec = tuple of amount: Int, loc: I, seqno: Pos, reported: Booltype BalRec = tuple of loc: I, value: Null[Int]uses NumericConversions, Total(OpRec, .amount, totalAmount), Null(Int)signatureinput requestDeposit(n: Int, i: I) where n > 0,requestWithdrawal(n: Int, i: I) where n > 0,requestBalance(i: I)output OK(i: I),reportBalance(n: Int, i: I)internal doBalance(i: I)statesops: Set[OpRec] := { },bals: Set[BalRec] := { },lastSeqno: Array[I, Nat] := constant(0),chosenOps: Set[OpRec]transitionsinput requestDeposit(n, i)e� lastSeqno[i] := lastSeqno[i] + 1;ops := insert([n, i, nat2pos(lastSeqno[i]), false], ops)input requestWithdrawal(n, i)e� lastSeqno[i] := lastSeqno[i] + 1;ops := insert([-n, i, nat2pos(lastSeqno[i]), false], ops)input requestBalance(i)e� bals := insert([i, null], bals)output OK(i)choose x: OpRecpre x 2 ops ^ x.loc = i ^ : x.reportede� ops := insert(set_reported(x, true), delete(x, ops))output reportBalance(n, i)pre [i, define(n)] 2 balse� bals := delete([i, define(n)], bals)internal doBalance(i)pre [i, null] 2 balse� chosenOps := choose cwhere 8 y:OpRec (y.loc = i ^ y 2 ops ) y 2 c) ^ c � ops;



Using I/O Automata for Developing Distributed Systems 287bals := insert([i,define(totalAmount(chosenOps))],delete([i, null], bals))Automaton AEnv is the parallel composition of automata A and Env, matching ex-ternal actions:automaton AEnv(I: type)compose A(I); Env(I)The programmer can state invariants of AEnv within IOA. In the following invari-ant, the �rst clause implies that the value of the variable lastSeqno[i] is greaterthan or equal to all sequence numbers that have ever been assigned to operationsoriginating at location i. The second clause implies that the sequence numbersassigned to operations submitted at location i form a pre�x of the positive integers.The third and fourth clauses say that the environment's active[i] ag correctlyindicates when an operation or balance query is active, and also say that only oneoperation is active at any location at any time. The �nal clause says that thelocation and sequence number together identify an operation in ops uniquely.invariant of AEnv:8 x:OpRec (x 2 ops ) pos2nat(x.seqno) � lastSeqno[x.loc])^ 8 i:I 8 k:Pos (pos2nat(k) � lastSeqno[i]) 9 z:OpRec (z 2 ops ^ z.loc = i ^ z.seqno = k))^ 8 x:OpRec( x 2 ops ^ : x.reported) active[x.loc]^ 8 y:OpRec (y 2 ops ^ x.loc = y.loc ^ : y.reported ) x = y)^ 8 b:BalRec (b 2 bals ) x.loc 6= b.loc))^ 8 b:BalRec(b 2 bals ) active[b.loc]^ 8 b1:BalRec (b1 2 bals ^ b.loc = b1.loc ) b = b1))^ 8 x:OpRec 8 y:OpRec(x 2 ops ^ y 2 ops ^ x.loc = y.loc ^ x.seqno = y.seqno ) x = y)13.4.3 Strong requirements speci�cationAutomaton B is very much like A, but imposes a stronger requirement, namely, thatthe response to a balance query include the results of all deposits and withdrawalsanywhere in the system that complete before the query is issued. It does this byadding a state variable mustInclude[i] of type Array[I, Set[OpRec]] to A, byappending the statementmustInclude[i] := choose s where 8 x:OpRec (x 2 s , x 2 ops ^ x.reported)to the e�ect of the requestBalance(i) TD, and by modifying the choose state-ment in the doBalance(i) TD to require the chosen set c of operations to includemustInclude[i]. The changed parts appear below.automaton B(I: type)...states...mustInclude: Array[I, Set[OpRec]] := constant({ })transitionsinput requestBalance(i)



288 Garland & Lynche� bals := insert([i, null], bals);mustInclude[i] := choose s where8 x:OpRec (x 2 s , x 2 ops ^ x.reported)internal doBalance(i)pre [i, null] 2 balse� chosenOps := choose c where8 y:OpRec (y.loc = i ^ y 2 ops ) y 2 c)^ mustInclude[i] � c ^ c � ops;bals := insert([i, define(totalAmount(chosenOps))],delete([i,null], bals))automaton BEnv(I: type)compose B(I); Env(I)Informally, it is easy to see that BEnv implements AEnv in the sense that everytrace of BEnv is also a trace of AEnv. Formally, this can be shown using a trivialforward simulation relation from BEnv to AEnv, namely, the identity relation for thestate variables of AEnv. This relation can be expressed in IOA as follows, usingour pre�x naming convention for variables in a composition. Since there is noambiguity, we can write, for example, AEnv.active and A.ops as abbreviations forthe complete names AEnv.A.active and AEnv.A.ops, respectively.forward simulation from BEnv to AEnv:AEnv.active = BEnv.active ^ A.ops = B.ops ^ A.bals = B.bals^ A.lastSeqno = B.lastSeqno ^ A.chosenOps = B.chosenOps13.4.4 Distributed implementationNow we describe a distributed implementation as an automaton C that is the com-position of a node automaton C0(i) for each i in I, plus reliable FIFO send/receivecommunication channels channel(i,j) for each pair of distinct i and j in I, asdescribed in Section 13.3.3. Each node automaton C0(i) keeps track of the set of de-posit and withdrawal operations that it \knows about," including all the local ones.It works locally to process deposits and withdrawals, but a balance query causes itto send explicit messages to all other nodes. It collects responses to these messagesand combines them with its own known operations to calculate the response to thebalance query.Since the automaton C0(i) corresponds to a location i, its action names areparameterized by i. Its send and receive actions are intended to match the same-named channel actions. In the state of C0(i), ops is maintained as a set of recordswith no reported �eld; each record is an element of a new type OpRec1. The in-formation about which operations have been completed is kept locally in a separatevariable reports, and is not sent in messages. Balance information is also recordedlocally, as elements of a new type BalRec1, and never sent. Additional state vari-ables keep track of request messages that have been sent, response messages thathave been received, and response messages that must be sent. Speci�cally, theBoolean ag reqSent[j] is used to keep track of whether a req message has beensent to j, and the Boolean ag respRcvd[j] is used to keep track of whether aresponse has been received from j. The ag reqRcvd[j] is used to record that a



Using I/O Automata for Developing Distributed Systems 289request has just been received from j and is waiting to be answered. (Althoughthese ag arrays are indexed by all of I, the ags for i itself are not really needed.)Since two kinds of messages are sent in this algorithm, we de�ne a new messagetype Msg as the union of the two individual types.automaton C0(i: I, I: type)type OpRec1 = tuple of amount: Int, loc: I, seqno: Postype BalRec1 = tuple of value: Null[Int]type Msg = union of set: Set[OpRec1], req: Stringuses NumericConversions, Total(OpRec1, .amount, totalAmount), Null(Int)signatureinput requestDeposit(n: Int, const i) where n > 0,requestWithdrawal(n: Int, const i) where n > 0,requestBalance(const i),receive(m: Msg, j: I, const i) where j 6= ioutput OK(const i),reportBalance(n: Int, const i),send(m: Msg, const i, j: I) where j 6= iinternal doBalance(const i)statesops: Set[OpRec1] := { },reports: Set[Pos] := { },bals: Set[BalRec1] := { },lastSeqno: Nat := 0,reqSent: Array[I, Bool] := constant(false),respRcvd: Array[I, Bool] := constant(false),reqRcvd: Array[I, Bool] := constant(false)transitionsinput requestDeposit(n, i)e� lastSeqno := lastSeqno + 1;ops := insert([n, i, nat2pos(lastSeqno)], ops)input requestWithdrawal(n, i)e� lastSeqno := lastSeqno + 1;ops := insert([-n, i, nat2pos(lastSeqno)], ops)input requestBalance(i)e� bals := insert([null], bals);reqSent := constant(false);respRcvd := constant(false)output OK(i)choose x: OpRec1pre x 2 ops ^ x.loc = i ^ : ((x.seqno) 2 reports)e� reports := insert(x.seqno, reports)output reportBalance(n, i)pre [define(n)] 2 balse� bals := delete([define(n)], bals)internal doBalance(i)pre [null] 2 bals ^ 8 j:I (j 6= i ) respRcvd[j])e� bals := insert([define(totalAmount(ops))], delete([null], bals))output send(req(x), i, j)pre : reqSent[j] ^ [null] 2 balse� reqSent[j] := trueoutput send(set(m), i, j)pre m = ops ^ reqRcvd[j]e� reqRcvd[j] := falseinput receive(set(m), j, i)e� ops := ops [ m;respRcvd[j] := trueinput receive(req(x), j, i)e� reqRcvd[j] := trueWe de�ne C to be the composition of all the C0(i) and all the channels, with the



290 Garland & Lynchcommunication actions hidden (to match the external signature of B), and CEnv tobe the composition of C with the environment.automaton C(I: type)compose C0(i) for i: I; channel(i, j, I, Msg) for i: I, j: I where i 6= jhide send(m, i, j), receive(m, i, j) for m: Msg, i: I, j: Iautomaton CEnv(I: type)compose C(I); Env(I)CEnv has invariants analogous to those of AEnv, as well as trivial invariants sayingthat channels from nodes to themselves are never used. A new invariant says thatany (deposit or withdrawal) operation that appears anywhere in the state (at a nodeor in a message) also appears in ops at its originating location. Other invariantsexpress consistency conditions such as the following. (a) If there is a request in achannel, then there is an active query, the ags for sending and receiving are setcorrectly, there is only one request in that channel, and there is no response in thereturn channel. (These last two conclusions rule out messages left over from earlierbalance queries.) (b) If there is a response in a channel, then there is an active query,the ags are set correctly, there is only one response in the channel, and there is norequest in the corresponding channel. (c) The sending and receiving ags are setconsistently. (d) If a response has been received, then a corresponding request wassent. We omit the IOA formulations of these invariants here; the technical report[GL98] contains them all.To show that CEnv implements BEnv, we de�ne a forward simulation relationfrom CEnv to BEnv. This uses a projection function proj from OpRecs to OpRec1s,de�ned in an auxiliary speci�cation Projections, that just eliminates the reportedcomponent.uses Projectionforward simulation from CEnv to BEnv:BEnv.active = CEnv.active^ 8 x:OpRec(x 2 B.ops , proj(x) 2 C0(x.loc).ops^ (x.reported , x.seqno 2 C0(x.loc).reports))^ 8 x:BalRec (x 2 B.bals , [x.value] 2 C0(x.loc).bals)^ 8 i:I (B.lastSeqno[i] = C0(i).lastSeqno)^ 8 i:I 8 j:I 8 x:OpRec( [i,null] 2 B.bals ^ x 2 B.mustInclude[i] ^ x.loc = j ^ j 6= i) proj(x) 2 C0(j).ops^ 8 m:Set[OpRec1](set(m) 2 channel(j,i).queue ) proj(x) 2 m)^ (C0(i).respRcvd[j] ) proj(x) 2 C0(i).ops))The �rst four conjuncts de�ne simple correspondences between the ops, bals,lastSeqno, and active components in BEnv and CEnv. The last conjunct saysthat, if there is an active balance query at location i, and if operation x, originatingat another location j, is one of those that must be included in the query, then xmust appear in certain places in the global state of CEnv. In particular, x must bein ops at location j, must be in any response message in transit from j to i, and,in case i has received a message from j, must be at location i. The existence of



Using I/O Automata for Developing Distributed Systems 291this forward simulation implies that CEnv implements BEnv, which in turn impliesthat CEnv implements AEnv.13.5 Discussion of Language DesignNondeterminism is an important feature of IOA, because it allows programmers toavoid restricting their designs unnecessarily. Reasoning about a design in a generalform is desirable because it produces insights (and theorems) that may apply tomany di�erent implementations. Removing the \clutter" of unnecessary restrictionsmakes it easier to understand why designs work, because it is easier to see whatcorrectness properties really depend on.An important aspect of nondeterministic programming is allowing maximum free-dom in the order of action execution. In speci�cations for interactive programs,considerable freedom in action order is often acceptable. Unlike traditional sequen-tial programming styles, the guarded command style used in IOA makes it easy forprogrammers to constrain action order only when necessary.Of course, control over action order is sometimes needed, particularly at lower lev-els of abstraction where performance requirements may force particular schedulingdecisions. The current version of IOA lacks explicit control structures for describingsuch constraints. (In examples, these have generally been expressed using specialpc or status variables to track progress in the sequential part of a computation.) Itis likely that we will want later to enhance IOA with explicit support for specifyingaction order.However, new research is needed to discover how best to do this. Standardsequential control constructs are neither su�cient nor entirely necessary. For exam-ple, reactive systems may contain threads that are intended to execute sequentially,but can be interrupted at any time; describing interactions between threads andinterrupt-handling routines may require special control structures. On the otherhand, guarded commands can be used to describe iteration, which suggests thatsome standard looping constructs can be avoided. In any case, to maintain sim-plicity and provability and to ensure consistency with the mathematical model, wethink that new sequencing constructs should be added as pure syntactic sugar, thatis, that there should be an unambiguous translation of the code with the additionsinto code without them.Another possible improvement to IOA would add further local naming conven-tions. For instance, currently all of an automaton's state variables are global to allof its TDs; one could add variables whose scope is limited to a single TD. Also,currently all action names in a composition are global. One could also allow localaction names, with a more exible method of matching up names in a composition;Spectrum [Gol90] uses such a mechanism. A renaming operator for actions wouldalso be useful.It might also be desirable to add other \standard" programming language features



292 Garland & Lynchto IOA. (The addition of some object-oriented features to I/O automata is describedin [BH98].) However, we think that such features should be added judiciously,to avoid complicating the semantics of IOA. In particular, we think that suchextensions should be made as syntactic sugar.Similarly, it might be desirable to enrich the logical and mathematical featuresof IOA. We have chosen to base IOA on LSL, which uses the familiar syntax andsemantics of �rst-order logic, so as to facilitate translation into the input languagesof several di�erent theorem provers. As a result, we must rewrite an informalstatement such as s := fn : n < 10 ^ a[n] > 0g as an IOA statements := choose x where 8 n: Int (n 2 x , n < 10 ^ a[n] > 0)that uses explicit quanti�ers. Although theorem provers such as PVS and Isabelleprovide richer notations than LP, we are not attracted to gaining expressive power bytying IOA too closely to less widely understood notations and type systems, whichmight limit the range of tools with which IOA could be employed. Instead, weenvision two ways of gaining expressive power. One is to enrich IOA with syntacticsugar for particularly useful constructs. Another is to base IOA on the new CommonAlgebraic Speci�cation Language (CASL) [CoF98] and leverage the work of othersin translating CASL speci�cations into the input languages of di�erent theoremprovers. CASL is attractive because it is an emerging standard, has a richer typesystem than LSL, and provides better support for parameterized speci�cations.A di�erent, and more traditional, approach to constructing veri�ed code has beento begin with a rich, expressive programming language, de�ne formal semantics andproof rules, and try to use them for veri�cation. We think that this approach hasa serious problem: complicated languages have complicated semantics and compli-cated proof rules, which are di�cult to think about and di�cult to manipulate inproofs. The logical complexity of a design described in such a language becomesintertwined with the complexity of the language, making it hard to understand andverify the design. We think that a better approach is to begin with a very simplelanguage that supports good proofs for high-level designs, and to add constructscarefully to obtain expressiveness. 13.6 ToolsIn this section, we describe a set of tools to support IOA programming, and wedescribe our progress in building prototypes. For uniformity of presentation, wedescribe all tools in the present tense, although they are actually in various stagesof development (as indicated at the end of each tool's description).13.6.1 General guidelinesWe require that all tools be based formally on the mathematical model. The toolsshould be accompanied by theory to explain their operation, for example, theo-



Using I/O Automata for Developing Distributed Systems 293rems about the correctness of program transformations and theorems about thecorrectness and performance of generated code.Not all tools need to be capable of processing the full IOA language. Some toolsmay only process restricted forms of programs, with the user responsible for trans-forming programs into the restricted forms.y This approach allows users to expresstheir designs in the general IOA language, yet still utilize tools, like simulators andmodel checkers, that require restrictions. In particular, we believe that the usershould help resolve scheduling decisions and other forms of nondeterministic choicewhen submitting a program to a simulator or code generator.The most important use of the validation tools will be for checking safety proper-ties. In fact, we propose de-emphasizing liveness properties in favor of consideringtime bounds, which yield sharper information, can be expressed formally as safetyproperties, and can be handled using standard assertional methods.zThe entire toolset, except for the theorem prover, should be usable by skilledprogrammers. Use of the theorem prover will require a fair amount of skill in logicand formal methods. 13.6.2 Basic support toolsThe basic tools for IOA include a front end , consisting of a parser and static se-mantic checker, which produces an internal representation suitable for use by theother (back-end) tools. Other basic tools support structured system descriptionsusing composition and levels of abstraction.To support composition, a composer tool converts the description of a compositeautomaton into primitive form by explicitly representing its actions, states, tran-sitions, and tasks. The input to the composer must be a compatible collection ofautomata, which means, for example, that the component automata must have nocommon output actions. (This compatibility can be veri�ed using other tools|insimple cases, the static semantic checker, and in more complicated cases, a theoremprover.) In the resulting automaton description, the name of a state variable ispre�xed with the names (or handles) of the components from which it arises.To support levels of abstraction, the tools provide facilities for de�ning and usingsimulation relations. When users argue that one automaton A implements anotherautomaton B, they normally expect to supply a predicate relating the states of Aand B. We think it is reasonable to expect the user to supply more, in particular,information relating steps of the two automata. Such information can be used by atheorem prover in establishing the correctness of a simulation relation (see Section13.6.3), or by a simulator in testing its correctness (see Section 13.6.4).For example, to show that a relation R is a forward simulation from A to B, they We use \user" to denote the user of the toolset, that is, the system designer, programmer, or programvalidator.z Incorporating time bounds formally into IOA requires an extension to timed I/O automata, which isbeyond the scope of this paper.



294 Garland & Lynchuser can de�ne, for each step (sA; �; s0A) of A (arising from a given TD), and foreach state sB of B such that (sA; sB) 2 R, a \corresponding" execution fragmentof B. One way he/she can specify this fragment is by providing, as a function ofthe given step and state, (a) a sequence of TDs of B, and (b) a way of resolvingthe explicit nondeterministic choices (those represented by choose statements andparameters) in those TDs. This function can be described using cases, based ona user-de�ned classi�cation of the steps of A. To resolve nondeterministic choices,the user can supply subroutines. The programming environment provides an APIfor use in de�ning such step correspondences.It is not always clear how to de�ne the needed execution fragment solely as afunction of the given step and state. For example, the de�nition of the fragmentmight depend on explicit nondeterministic choices or on the outcomes of conditionaltests in the step of A. In such cases, the user can add history variables to A to recordthe relevant choices, and use the values of these variables in state s0A in de�ning thefragment. The tools support the addition of such history variables.We have implemented the front end already. Chefter's Master's Thesis [Che98]describes a design for the composer. Neither the composer nor support for levels ofabstraction has been implemented yet.13.6.3 Interfaces to proof toolsThe toolset includes interfaces to existing theorem provers. The IOA language wasdesigned for easy translation into axioms that can be used by interactive theoremprovers. In this translation, all imperative statements in the e�ects of TDs, includingassignment statements, choose statements, conditionals, and loops, are replaced bypredicates relating poststates to prestates, and similarly for initial state descriptions.Other axioms are derived from formal de�nitions of the data types used in theautomata.Theorem provers can be used to prove validity properties for IOA programs andother user inputs (e.g., that the set of choices for a nondeterministic assignmentis nonempty, that automata being composed do not share output actions, or thatactions speci�ed by the user of the simulator are enabled) in cases where the proper-ties are too hard to establish by static checking. Theorem provers can also be usedto prove properties of data types used in automata, invariants of automata, andsimulation relations between automata. Theorem provers must be able to processprograms written in the full IOA language.For example, showing that a relation R is a forward simulation from A to B in-volves showing a relationship between the start states of A and B and a relationshipbetween the steps of A and B. The latter asserts, for each step of A and each stateof B that is R-related to the pre-state in A, the existence of a \corresponding"fragment of B. Proving such an existence statement automatically is di�cult fortheorem provers, so the interface can ask the user to help by supplying explicit step



Using I/O Automata for Developing Distributed Systems 295correspondence information, as described in Section 13.6.2. The user can then usethe theorem prover to verify that the speci�ed sequence satis�es the requirementsfor a forward simulation: that the sequence is really an execution fragment, that ithas the same external behavior as the given step, and that the �nal states are relatedby R. Our experience with proofs of distributed algorithms indicates that such stepcorrespondence information greatly reduces the amount of interaction needed forthe theorem prover to complete its work.Initially, we are developing an interface to the Larch Prover. We have designed atranslation scheme from IOA descriptions into LSL and used it manually to provethe invariants and simulation relations shown in Section 13.4 [GL98]. We have for-malized the translation scheme (cf. [GLV97]) and are in the process of implementingit. Meanwhile, Devillers, working with Vaandrager, is writing a translation fromIOA descriptions to the input language of PVS [Dev99].The toolset also includes interfaces to existing model checkers. These interfacesonly handle a restricted class of IOA programs. Although programs can be non-deterministic, they must be written in an imperative style and use only those datatypes provided by the model checker's input language.So far, Vaziri has written a preliminary translation from a restricted class of IOAprograms into Promela, the input language of the Spin model checker [Hol91].13.6.4 SimulatorThe simulator runs sample executions of an IOA program on a single machine,allowing the user to help select the executions. The simulator is used mainly forchecking proposed invariants and simulation relations.yThe simulator requires that IOA programs be transformed into a restricted form.The biggest problem in this transformation is resolving nondeterminism, which ap-pears in IOA in two ways: explicitly , in the form of choose constructs in statevariable initializations and TD e�ects, and implicitly , in the form of action schedul-ing uncertainty. The restricted form rules out both types of nondeterminism. Wealso assume that an IOA program submitted to the simulator is closed (i.e., has noinput actions) and is written in an imperative style. At most one (locally controlled)action may be enabled in any state; moreover, the user is expected to designate thataction, as a function of the current state.The tools provide support for getting programs into the required form. For ex-ample, the composer can be used to \close" an automaton by composing it with auser-de�ned \environment automaton" (like Env in Section 13.4.1). To resolve ex-plicit nondeterminism, the system can generate probabilistic choices. Alternatively,the system can ask the user to provide explicit choices, for example, by adding astate variable containing a pseudo-random sequence and replacing nondeterministicchoices by successive elements of this sequence. The theorem prover can be usedy There is an unfortunate clash of terminology here, between \simulator" and \simulation relation."



296 Garland & Lynchto check that the provided choices satisfy any required constraints, expressed bywhere clauses, preconditions, and other predicates.To remove implicit nondeterminism, the system can ask the user to constrain theautomaton so only one action is enabled in each state; the user can do this, forexample, by adding state variables containing scheduling information, adding extrapreconditions for actions that involve the new variables, and adding new statementsto the e�ects of actions to maintain the scheduling variables. The user should alsoprovide a function that explicitly designates the next action to be simulated, as afunction of the current state, in the form of a TD plus expressions giving values forthe action's parameters. The programming environment provides an API for usein writing these functions, and the theorem prover can be used to verify that thedesignated action is enabled.For example, if a set of actions is to be executed in round-robin order, then ascheduling variable can keep track of the (index of the) next action to be performed,the precondition of each action can be augmented with a clause saying that theindicated action is the one recorded by this variable, and the e�ect of each actioncan increment the index maintained by the variable. This strategy removes thescheduling nondeterminism, and an explicit function of the state describes the nextaction to be performed.In order to simulate data type operations, which are de�ned axiomatically inIOA, the simulator needs actual code. For operations de�ned by IOA's built-in datatypes, the simulator uses code from class libraries written in a standard sequentialprogramming language like C++ or Java. For operations (like totalAmount inSection 13.4) de�ned in auxiliary LSL speci�cations, the user can choose either towrite these speci�cations in an executable algebraic style or to supply handwrittencode. Although we do not plan to prove the correctness of this handwritten code,such proofs could be carried out using techniques of sequential program veri�cation.With all nondeterminism removed, the simulator's job is easy: starting from theunique initial state, it repeatedly performs the unique enabled action. That is, ituses the user-provided function to determine the next TD and parameter values,then executes that TD with those parameter values. Since there is no explicitnondeterminism, this uniquely determines the next state.The simulator can be used to check that proposed invariants are true in all statesthat arise in the simulated executions. It can also check that a candidate relation Rappears to be a simulation relation from A to B by performing a paired simulationof A and B, that is, by producing an execution of A as usual and using it togenerate a corresponding execution of B. Speci�cally, for each simulated step ofA, the simulator uses a user-speci�ed step correspondence (see Section 13.6.2) toobtain a (proposed) execution fragment of B, then runs the steps of that executionfragment. As it runs those steps, the simulator checks that action preconditionsare satis�ed, that values used to resolve explicit nondeterministic choices satisfy therequired constraints, that the fragment has the same external behavior as the given



Using I/O Automata for Developing Distributed Systems 297step, and that the relation R holds between the states of the two automata afterthe step and fragment.Chefter's Master's Thesis [Che98] contains a detailed design for the basic simu-lator; she has also written a preliminary implementation in Java and produced asmall library of hand-coded data type implementations. More recently, Ramirez hasimproved the simulator, this time starting from the intermediate language describedin Section 13.6.2. It remains to enhance this newer version with more advanced ca-pabilities, including the resolution of explicit and implicit nondeterministic choicesand support for paired simulations.13.6.5 Code generatorNearly all of the issues that arise in the simulator arise also for the code generator.New issues also arise because of distribution, the need to interact with externallyprovided communication services, and the need for good run-time performance.The code generator generates real code for a target distributed system, which maybe an arbitrary con�guration of computing nodes and communication channels. Thecode generation scheme works directly from a low-level IOA language descriptionof the system design, which can arise from a series of re�nements starting witha high-level speci�cation. This strategy allows the formal modeling and analysisfacilities to be used to reason about the design until the last possible moment, whenit is transformed automatically into a working implementation. The veri�cationfacilities can be used to ensure that the �nal implementation provably implementshigher-level IOA descriptions, subject to assumed properties of externally providedservices, of hand-coded data type implementations, and of the underlying hardware.The code generation scheme produces runnable versions of node automata thatcan communicate via pre-existing communication services such as TCP or MPI[MPI95], which are modeled by channel automata. Node automata typically modela combination of application-speci�c code and local pieces of communication proto-cols. A key to making this scheme work is obtaining clear IOA speci�cations of realcommunication services. Such de�nitions may be obtained by formalizing existinginformal interface descriptions and recasting them, if necessary, in terms of sharedactions.The code generator, like the simulator, relies on the user to transform programsinto a special form. As just described, programs provided as input to the code gen-erator must match the given distributed system architecture. Node programs mustalso satisfy restrictions like those required by the simulator, although they need notbe closed. That is, they should include neither explicit nor implicit nondetermin-ism. As before, the user should specify the next enabled action, as a function of thestate.We need another (technical) restriction to get a faithful system implementation.Atomicity requires that the e�ect of each transition occur without interruption,



298 Garland & Lyncheven if inputs arrive from clients or communication services during its execution. Inour design, such inputs are bu�ered. In between running locally controlled actions,the generated program examines bu�ers for newly arrived inputs, and handles someor all of them by running code for input actions. Since this delays processinginputs (with respect to when the corresponding outputs occur), it may upset preciseimplementation claims for the node automata. Therefore, we restrict node programsin order to avoid this risk. Stated in its strongest, simplest form, our restrictionis that each node automaton A be input-delay-insensitive: its external behaviorshould not change if its input actions are delayed and reordered before processing.yIt is possible to weaken this requirement slightly, for example, requiring only thatexternal behavior be preserved in \well-formed" environments, for example, onlyfor blocking inputs. In this case, the actual environments of the node automatamust satisfy these assumptions.As for the simulator, the tools provide help in getting programs into the specialform for the code generator. The general tools that support programming usinglevels of abstraction can be used to re�ne a design within the IOA frameworkuntil the required node-and-channel form is reached. IOA speci�cations for actualcommunication services like TCP and MPI are maintained in a library. Support forremoving explicit (choose) and implicit (scheduling) nondeterminism is similar tothat for the simulator. Like the simulator, the code generator uses a library of datatype implementations.For each node automaton, the code generator performs a source-to-source transla-tion, translating the IOA code into a program in a standard programming languagelike C++ or Java. This program performs a simple loop, similar to the one per-formed by the simulator, except that it polls and handles input actions in betweenprocessing locally controlled actions. The code generator may translate the code atdi�erent nodes into di�erent programming languages.By insisting that IOA programs from which we generate code match the avail-able computing hardware and communication services, and by requiring the nodeprograms to tolerate input delays, we can achieve a faithful implementation with-out using any non-local synchronization, such as that required by earlier designs[Gol91, Che97].Abstract channels Before using the code generator, it is often helpful to describea system design as a composition of application automata Ai and high-level abstractchannel automata Cij . Each Cij is, in turn, implemented by lower-level automataDij and Dji, representing real channels, composed with protocol automata Pij andPji. For example, an abstract FIFO send/receive channel can be implemented interms of an MPI service and an IOA protocol [Tau]. At this lower level of design, ay Formally, traces(A0 � Bu�) must be a subset of traces(A), where A0 is like A except that its inputs arerenamed to internal versions, and Bu� is a possibly-reordering delay bu�er that takes the real inputsand delivers them later in their internal versions.



Using I/O Automata for Developing Distributed Systems 299node automaton Ni is, formally, the composition of the application automaton Aiand all the protocol automata Pij (for node i) that appear in the channel imple-mentations. It is this composed automaton Ni that the code generator translatesinto a standard programming language. Figure 13.1 illustrates this design; in this�gure, the composed automata Ni are encircled by dotted lines.
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Fig. 13.1. An implementation using abstract channels implemented by real channels.Abstract channels provide exibility: di�erent abstract channels can be used withthe same distributed system architecture, and the same abstract channels can beused with di�erent architectures. The tools support programming with abstractchannels by maintaining libraries of IOA descriptions of abstract and real channels,and libraries of IOA implementations of abstract channels in terms of real channels.The tools can also assist in proving the correctness of implementations of abstractchannels.Status of code generation Tauber has de�ned IOA models for external systemservices, including the console and a subset of MPI functions. In a �rst projecton abstract channels, he has de�ned a protocol that implements reliable FIFOchannels on top of MPI and proved the correctness of this protocol [Tau]. Hehas hand-translated sample distributed IOA programs using abstract channels intoJava, and he has built an initial version of the code generator for a restricted subsetof IOA, using MPI with a Java wrapper [BCF+99]. This initial version resolvesaction-scheduling nondeterminism using a simple round-robin scheduler.Tauber and Tsai, with help from Ramirez and Reimers, are currently working ona reimplementation of the code generator. This version takes the IOA intermediate



300 Garland & Lynchlanguage as input instead of the source code, uses a exible action scheduler, anddoes not restrict the use of action parameters, as does the initial version. The newversion is constructed as a series of program transformations that use the composerand remove various kinds of nondeterminism.13.7 ConclusionsIt must still be shown that distributed code with acceptable performance can beobtained using IOA. We have many reasons for believing it can. First and foremost,our strategy works locally, without synchronizing any activities involving more thanone machine. Also, the code-generation process incorporates existing services (e.g.,communication services), which may be highly optimized. Also, we allow hand cod-ing of data type implementations in a standard sequential programming language,which provides many opportunities for optimization.We think that giving the user exibility in controlling the order in which actions ofa local node program are performed will yield more e�cient schedules than wouldarise from a �xed scheduling discipline. Allowing the scheduler to call a user-provided function to determine the next action should decrease runtime overhead.Proving some properties statically should save the expense of some runtime checks.Source-to-source translation to C++ or other languages allows the use of opti-mizing compilers for those languages. Also, IOA is su�ciently exible to be usedat di�erent levels of abstraction, including a very low level that can permit detailedoptimization within IOA itself.Many research problems remain. For theorem prover support, an interestingproblem is to devise specialized proof strategies for proving invariants, simulationrelations, and IOA program validity properties, in order to reduce the amount ofinteraction needed in proofs. For model checker support, it would be useful toaugment existing model checkers with additional data types so they can express alarger class of IOA programs. Also, one could develop support for exploring re-stricted subsets of an automaton's execution (for example, based on limiting theamount of asynchrony) in situations where the full automaton is too large to modelcheck. Another interesting problem is to develop support for model checking pro-posed simulation relations, based on the notion of paired simulation described inSection 13.6.4. For the simulator, it would be useful to improve the support for re-solving implicit nondeterminism by developing a library of built-in schedulers, andto develop an API to help users construct new schedulers.For the code generator, research will be needed on improving performance andusability. For example, the target code for node programs could use multithreadingto improve performance; however, this would make atomicity of actions harderto ensure and introduce concurrency control issues. Additional support for theuser in resolving implicit and explicit nondeterminism could be developed. A more
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