SHARED DATA REQUIREMENTS FOR IMPLEMENTATION OF MUTUAL EXCLUSION
USING A TEST-AND~SET PRIMITIVE'

1 . 2 1
James E. Burns, Michael J. Fischer, Paul Jackson, Nancy A. Lynch} and Gary L. Peterson2

1

School of Information and Computer Science
Georgia Institute of Technology

Atlanta, GA 30332

Abstract

We analyze the shared memory requirements for
implementing mutual exclusion of N asynchronous
parallel processes in a model where the only prim-
itive communication mechanism 1s a generalized
test~and-set operation. While two memory states
suffice to implement mutual exclusion, we show
that any solution which avoids possible lockout of
processes requires at least V2N - states. A
technical restriction on the model increases this
requirement to (N+1)/2 states, while achieving
bounded waiting ("fairness") further increases
the requirement to N+1 states. These bounds are
nearly optimal, for we exhibit algorithms for the
last two cases using |N/2] +9 and N+3 states,
respectively. All our lower bounds apply a
fortiori to the space requirements for weaker
primitives such as P and V using busy-waiting.

1. INTRODUCTION

Concurrent processing by several asynchronous
parallel processes differs from sequential proc-
essing in that the order in which the elementary
steps of the various processes are executed is
not predetermined, but may depend on difficult~to-
predict variables such as the relative speeds of
the processes and external events such as inter-
rupts and operator intervention. To prevent in-
terference among the various processes, one often
designates certain sensitive sections of code in
the various processes "critical sections" which
are never to be executed simultaneously by two or
more processes., Such mutual exclusion of access
to critical sections is provided by means of entry
protocols and exit protocols, sections of code
which a process executes before entering and upon

leaving a critical section, respectively. It is
the job of the protocols to insure that only one
process at a time is in a critical section and
that any other process trying to enter a critical
section waits. In addition, the protocols play a
scheduling role in determining which of several
contending processes is allowed to proceed.

In order to provide mutual exclusion at all,
there must be some primitive operations for inter-

T This material is based upon work supported
by the National Science Foundation under Grants
No. MCS77~02474, MCS77-15628, and MCS77-28305.

2

Department of Computer Sciemce, FR-35
University of Washington

Seattle, WA 98195

process communication. Examples of communication
mechanisms are shared memory with elementary read
and write operationms [Dil, EM, Kn], shared mem-
ory with test-and-set operations [CH1], message
channels [F}, P and V operations [Di2], etc.
Given a set of primitive operations, the "ecrit-
ical section problem" is to find entry and exit
protocols using those operations which insure mu~
tual exclusion and at the same time have various
desirable scheduling and other properties. Thus,
there is not a single critical section problem
but many, and an extensive literature has devel-
oped around this class of problems [CHL, CH2, Dil,
EM, Kn, La, PF, RP, and others].

Much work on the critical section problem
has been concerned with finding protocols for a
particular model and proving that they possess
certain desired properties. More recently, there
has been interest in finding out not only what
can be done with a particular set of primitives
but also what cannot [Li, LZS, CHL, MY, etc]. To
prove a negative result of the sort "'no protocol
exists such that ...'", it becomes necessary to
define carefully the model of computation so that
it is clear what solutions are allowed. In sec-
tion 2, we present a formal model based on a gen-
eral test—-and-set communication primitive which
borrows ideas from the models of [CHl, MY, RP].

Section 3 presents algorithms which define
upper limits on the amount of shared memory (meas-
ured by counting the number of distinct values
which it can contain) for three critical section
problems. Deadlock-free mutual exclusion of N
processes can be achieved with only two shared
memory values. Lock out-free mutual exclusion
requires at most [N/ZJ+9 values. Finally, mutual
exclusion with bounded waiting is solvable with
N+3 values.

Lower bounds for the above problems aregiven
in section 4. Any algorithm solving deadlock-
free mutual exclusion must use at least two shared
memory values. Bounded waiting and lockout-free
mutual exclusion must use at least N+1 and V2N %
shared values, respectively. If lockout-free mu-
tual exclusion is further constrained to be 'mem-
oryless" (i.e., each process always executes the
same trying protocol whenever it attempts to en-
ter a critical section), then at least (¥1)/2
states are required. (All of our upper bound al-
gorithms are memoryless.)

2. A FORMAL MODEL FOR EXCLUSION PROBLEMS

Our model is a hybrid of the models of [CHIL]
and [MY], tailored to the problems of this paper.

2.1. Systems of Processes

We consider a set of asynchronous parallel
processes with a single shared communication var-
iable. Processes access the variable using a gen-
eral test-and-set instruction which, in one indi-
visible step, fetches the contents of the variable
and stores a new value which depends on the value
fetched. Intuitively, a process consists of a
program, a program counter and an internal memory
which together define the action of the process.
Tn considering lower bounds, the internal details
of the process are unimportant, so in our model a
process is simply a set of states with a transi-
tion function. For presenting the upper bounds,
we specify the transition function using an Algol-
like notation.

The desired exclusion behavior of a set of
processes is specified in terms of sets of states
comprising "regions'. The ecritical region of a
process 1s a set of states which that process can
only ocecupy while no other process is in its own
critical region. The remainder region encom-
passes the rest of the process states. In order
to solve synchronization problems, however, it
appears necessary that new states other than
those in the critical and remainder regions be in-
troduced into each process. Thus, we include two
other sets of states in the basic definition as
follows:

A process 1s a triple P = (V, X, p) where V
is a set of values, X 1s a (not necessarily fin-
ite) set of states partitioned into disjoint sub-
sets R, T, C and E, where R is nonempty, and the
transition function p 1s a total function,

p: VxX <+ ¥VxX with the following properties:

(a) x e R, veVimply p(v,x) e V x (Tu C),
(b) xe T, veVimply p(v,x) ¢V x (T u C),
(c) xeC, veVimply p{v,x) e Vx (EuR),
(d) xeE, veVimply p(v,x) e V x(Eu R).

The set V is referred to as the message variable.
X is the set of local states of process P. R, T,
C and E are the remainder region, trying region,
eritical région, and exit region of P, respective-
ly. A transition from (v,x) to p(v,x) is a step
ef process P. Transitions described in (a) and

{(b) are called trying transitions, while those
deseribed in (¢) and (d) are called exit
trangitions.

of states
to its
exit re-

The trying region describes a set
wherein a process is seeking admission
critical region, as in [CHl1, MY]. The
gion describes a set of states wherein a process
has just left its critical region, but for pur-
poses of synchronization must execute a protocol
before being permitted to return to its own com-
puting task. Although the exit protocols in many

80

algorithms are very simple. (such as a single "V"
operation), we do not wish to exclude more sophis-
ticated protocols from our model, for we wish our
lower bounds to be as generally applicable as
possible. To our knowledge, we are the first to
include exit regions in a formal model, and our
upper bound algorithms illustrate some ways in
which exit regions can be used. Conditions (a)
and (c) above indicate that the actual computing
steps of the original process being modelled are
suppressed. All steps of interest in the present
paper involve attempts to enter the critical re-
gion or return to the remainder region. Condi-
tion (b) indicates that the process, having once
decided to attempt entry into its ecritical region,
is thereafter committed to continue trying until
it succeeds. Condition (d) indicates that exit
from the critical region requires returning to
the remainder region before attempting to re-—
enter the critical region.

Notation: T¥or N e W, [N] = {1,...,N}.
For N ¢ IN, a system of N procesees is a
2N+1-tuple § = (V’Xl""’XN’pl""PN) where

for each i ¢ [N], Pi = (V,Xi,pi) is a process.

The remainder region, trying region, critical re-
gion and exit region of process Pi are denoted by

Ri’ T Ci’ and Ei’ respectively.

i!
An instantaneous description (i.d.) of 8 is
an N+l-tuple q = (v,xl,...xN), where v € V and

X, € Xi for all i € [N]. We define V(q) = v.

The functions Py of the individual processes have

natural extensions to the set of i.d.'s of S, de-

fined by pi(v,xl,...xN) = (v’,xl,...xi_l,x',xi+l,
.,xN), where pi(v,xi) = (v',x'). We also use

(ambiguously) the notation Ri, Ti
the natural extensions of the denoted sets of
states to corresponding sets of i.d.'s. TFor ex-

ample, (v,xl,. .,xN) € Ri if and only if x; € R,.

’ Ci and Ei for

If S is a system of N processes, then any
finite or infinite sequence of elements of [N]
will be called a schedule for S. In a natural
way, each schedule’defines a "computation' of
system 3, when applied to any i.d. q of S.
Namely, if h = hl...hk is a finite schedule for
S, then

r(q,h) =p_ (p (.ovpy, (@000

o
is the result of applying schedule h to i.d. q.
We say i.d. q' is reachable from i.d. q in 8 if
for some schedule h, r(q,h) = q'. Process
i ¢ [N] halts in schedule h for 8 if 1 appears
only finitely often in h. If i halts in h and q
ig an i.d., we define final(i,q,h) to be the in-
ternal state of process i when it halts. Form-
ally, final(d, q,h) = y if there exists an i.d.
q' = (v,yl,...,yN), schedules hl,h2 with
hl finite and h = hlh2
no occurrence of i, r(q,hl) = q' and v, =V

such that h2 contains

The correctness of our algorithms depends on
certain assumptions about the scheduling of pro-
cesses. Namely, we assume that no process halts
anywhere except possibly in its remainder region.
Schedules with this property are called admisgi-
ble and are defined below.

Let S be a system of Process, q an i.d. A
schedule h is admissible from q if for all i e
[N], 1f i halts in h, then final(l, q,h) ¢ Ri'

2.2. Synchronization Problems

We are now ready to define carefully synchro-
nization problems. We list formal conditions
that may be combined to make precise some of the
informal synchronization problems found in the
literature. In the remainder of this subsection,
S denotes a system of N processes and q an i.d.

Cl: Mutual Exclusion. ¢ 'violates mutual exclu-
sion" if q € ¢, n Cj for some i # j, 1,j « [N].

8 satisfies mutual eweclusion starting at q if no
1.d. reachable from q in S violates mutual ex-
clusion.

The next three properties rerer to a process'
progress through its protocols., Pi is stuck for

q and h if for all finite prefixes hl and h2 of h,
r(q,hl) and r(q,hz) are in the same region of Pi.

C2: Deadlock-free. 8§ is deadlock-free starting
N

from q 1f for all reachable 1.d.'s q' ¢ n R, and
i=1

all schedules h admissible from q', there is some

P, which is not stuck for q' and h.

This property insures that the introduction
of synchronization protocols does not cause the
entire system to stop computing. In particular,
the processes cannot all loop indefinitely in
their trying or exit regioms.

In section 3.1 a description of a system is
presented which satisfies mutual exclusion and no
deadlock,having two values for its message vari-
able. It is also shown in section 4 that two
values are required for any system satisfying
deadlock-free mutual exclusion. Both the algor-
ithm and the lower bound are proved directly
using the model as presented so far, and the
reader may wish at this point to read those sec-
tiouns.

Other properties of interest involve fair-
ness of the system from the point of view of each
individual process. We consider two such prop-
erties.

C3: Lockout-free. Pi can be "locked out" start-

ing from q if there exists a q' ¢ Ri reachable

from q and a schedule h admissible from q' such
that Pi is stuck for q' and h., S is Zockout-

free starting from q if no Pi can be locked out
starting from q.

81

C4: Bounded Waiting. Pj "goes from remainder

to eritical at least k times" for q and h =
hl"'hm if there are indices 0 < il <3 <1, <

+++ <3y S m such that r(q,h1h2...hi) e Rj’ and
i A

" "
r(q,hlhz...hjl) € Cj’ 152 <k, Pi k~waits

starting from q i1f there exists q' ¢ Ry
reachable from q and a schedule h such

that Pi is stuck for q' and h, and for some j «

[N, j #14, Pj goes from remainder to critical

at least k times for q' and h. S satisfies k-
bounded waiting starting from q if no Py (k+1) -

walts starting from q. S satilafies bounded
waiting starting from q if S satisfies k-bounded
walting starting from q for some value of k.

In other words, in a system which satisfies
bounded waiting, 1f a given process 1s not in ics
remainder region, there is a bound on the number
of times any other process is able to enter its
critical region before the given process changes
regions.

Note that it is unnecessary for us to require
the schedule h to be admissible, for given any
schedule h which causes a violation of k-bounded
walting, we can find a new schedule h' which is
admissible and also causes a violation of k-
bounded waiting. This follows because a viola-
tion of k-bounded waiting (unlike a violation of
lockout) occurs after a finite amount of time.

Note also that if § and q satisfy C2 and C4,
then they satisfy €3 as well. Also, C3 implies
C2.

Finally, the following Property does not rep-
resent a requirement one would necessarily care
to impose on a system of Processes, but does not
seem to rule out any known exclusion algordithm.
Intuitively, a process does not use its past comp-
utation history to alter its synchronization pro-
tocols.

C5: No Memory. § satisfies no memory if for all
i e [N], Ril =1,

3. UPPER BOUNDS

This section will present the upper bound
results on the number of states of the shared
variable required to solve the problems of dead-
lock-free, bounded waiting and lockout-free mutual
exclusion. The correctness of the algorithms
will be argued informally. '

3.1. Deadlock-Free Mutual Exclusion

In order to illustrate the model, we give a
detailed description of a very simple system sat-
isfying (Cl), (C2), and (C5) having two values
for its message variable, i

5= (V,%,%X,...,%,p,P»...,P), Where
e P WS)
N N
X=RuUuTuCUuU&Eas above. Here, R = {RO},
T = {Ty}, C = {Cj}, E=¢, and V = {0,1}.
q, the initial i.d., is (0,69130,..7392.
~
Transitions are:
p(0,Ry) = (1,Cy)
(LR = (1,1
P(O’TO) = (l;Co)
p(L,Ty) = (1,10
p(O,CO) = arbitrary
p(l,CO) = (O’RO) .

Verification by induction is straightforward.
Note that S1 and q do not satisfy (C3) since the

schedule (121)w locks the second process out.
Thus, we have proved:

Theorem 3.1. For each N = 1 there is a system §
of N processes and an 1.d. g such that 5, q sat-
isfy mutual exclusion (Cl), are deadlock-free
(C2), and use no memory (C5), and IVI = 2,

3.2. Higher-Level Notation for Bounded-Waiting

and No Lockout Mutual Exclusion Algorithms

The latter two upper bounds will be shown by
giving algorithms in an Algol-like notation, for
understandability. States can be thought of as
having components corresponding to internal vari-
ables and to program instruction counters. Some
state transformations are implicitly expressible
by the usual flow of control of Algol programs;
others (branching and alteration of values of in-
ternal variables) must be explicitly expressed.

Access to the shared variable, V, is allowed
only with the test-and-set primitive, which has
the following syntax.

test <variable> until <set>
{ ; set} endtest

<test—and-set> ::=

<set> <gcalary > setto <scalarjy>

[+ statement]

The intended semantics is to compare the
«variable> to the <scalar;> values, all of which
must be distinet. If a match is found, the
<variable> is set to the corresponding <scalarjp>
value, the corresponding statement (which repre-
sents a state change) is executed and control

82

passes to the point immediately following the
test—-and-set. If no match is found, the test-and-
set is re-executed from the beginning (busy-
waiting). Only the testing and setting actionms,
(up to the colon), are explicitly indivisible;

the <statement> portion is local to the acting
process.

There are other non~standard Algol features
in the algorithm, but these should be transparent
to the reader. TFor example, the symbols "| |" are
used for the floor function. The "exit" state-
ment is used to escape from the closest enclosing
"while" loop.

It should now be straightforward to trans-
late the next two algorithms into the basic model.
Statements and tests not involving V will be ab-
sorbed into internal state changes in the basic
test-and-sets in the translated algorithm.

3.3. Mutual Exclusion with Bounded Waiting

In this section, we prove the following
theorem by exhibiting Algorithm B. We present
first Algorithm A which is somewhat simpler but
uses a few more states.

Theorem 3.2, For each N 2 1 there is a system §
of N processes and an i.d. q such that S, ¢ satis-
fy mutual exclusion (Cl), are deadlock-free (C2),
have bounded waiting (C4) and no memory (C5), and
V] = 3. Moreover, k=1 in the bound of (C4).

Algorithm A below satisfies the conditions
of the theorem except that there are N+6 values
of the shared variable., We later indicate how to
reduce this to N+3.

The basic structure of the algorithm is the
same as that in [CH]. A process desiring to
enter its critical region goes in immediately if
there are no other active processes; otherwise,
it waits in the "buffer". Eventually, all proc—
esses waiting in the buffer are moved into the
"main area'. Processes are chosen one at a time
from the main area to go to their critical re-
gions (see Figure 1). Since no process may enter
the main area until it is emptied, this procedure
gives l-bounded waiting.

The above procedure requires a mechanism for
controlling the movement of processes through the
buffer and main area. As each process leaves its
critical region (i.e., while it is in its exit
region), it is temporarily designated the "con-
troller'. The controller has the responsibility
of keeping track of the number of processes in
the buffer and main area, sending messages to
cause processes to move, and passing on the nec-
essary control Information to the next designated
controller. All this is done through the single
shared variable V which takes on the values
{s0,s1,...,SN-1,FREE,ENTER,ELECT ,COUNT,ACK,BYE}.
The last six values are called "messages'.

A process desiring to enter its critical re-
gion examines V. If V=FREE, (indicating that the
system is empty), then the process sets V to S0
and enters its critical region. If V=8j, the pro-
cess sets V to Sj+l. The S-values of V are thus
used by the controller to keep track of the count

of the number of processes in the buffer. (This count

is kept in the controller's local variable, BUFF.)

REMAINDER
s M E

BUFFER

\I{o// alonce

RECEIVE

COUNTS one
1 ote

::; time

SELECT NEW
CONTROLLER

)

SEND
COUNTS

MAIN AREA

CRITICAL

FIGURE 1

The controller loads the main area, when empty,
by sending one ENTER message through V for each
process in the buffer, If additional processes
come into the buffer during this time, they too
are moved into the main area. The controller
selects the process to become the next controller
by sending a single ELECT message, which will be
picked up by some process in the main area., The
controller then sends the current counts of the
number of processes in the buffer and main area
to the controller-to-be before signing off with
the BYE message. (Note: in the special case when
there are no processes in the buffer or main area
and the process leaving its critical region sees
V=50, the process simply sets V to FREE and
leaves; the system has been returned to the empty
state.)

The only problem with the above scheme is
that a process entering its trying region must
alter V; otherwise, since the other processes
would be unaware of it, they could execute any
number of critical regions before the first pro-
cess could get in. Thus processes entering their
trying regions may hinder communication between
the controller and the other processes. In [CH],
about 2N values of V areused to allow commnication
to go on concurrently with the counting function.
We solve the problem in the following way. Every
message requires a response (usually ACK). While

awaiting the response, the controller continually
examines V, resetting it to S0 whenever Sj is
detected (and keeping track of the number of new
processes in the buffer by setting BUFF to
BUFF+j). If an entering processes sees a message
in V, it holds this value and sets V to 81, an-
nouncing its presence to the controller. It then
waits until V takes on a value of S0, at which
point it resets V to the held message. V will
eventually "settle down' at SO since the control-
ler continues to reset V to this value, and the
value can only be changed a finite number of
times by entering processes. The messages are of
course designed so that only those processes
which should receive the message will act on it.

For simplicity, the counts of the number of
processes in the buffer and main area are sent to
the new controller in unary. The main area count
is sent with the COUNT message, while the buffer
count is sent by incrementing the S0 value of V.
It should be clear that more "time efficient"
methods could be used for passing this informa-
tion. We are primarily interested in presenting
a clear algorithm which 1s compatible with the
more complex algorithm given in section 3.4.

Algorithm A

Shared Variable: msgvar V initlal FREE;

Algorithm for each process:

begin integer MAIN,BUFF initial 0;
msgvar M initial S0;

REMAINDER: ! remainder region !

! trying protocol follows !
test V until
FREE setto SO : goto CRITICAL
8j setto Sj+1: goto BUFFER;
other setto 81 : M := other
endtest;

! g<N-11¢

HOLDING:
test .V until SO setto M: M := SO endtest;

BUFFER:
test V until ENTER setto ACK endtest;

MATNAREA :
test V until ELECT setto ACK endtest;

RECEIVECOUNTS:
while true do
test V until
5j setto SO : BUFF :
COUNT setto ACK: MAIN :
BYE setto SO @ exit
endtest;

It

BUFF + i;
MAIN + 1;

CRITICAL: ! critical region !

! exit protocol follows !
if (MAIN=0 and BUFF=0) then
test V until
S0 setto FREE: goto REMAINDER;
Sj setto SO : BUFF := BUFF + j
endtest;

115 j<nN-11

SELECT NEW CONTROLLER:
if MAIN=0 then ! move processes from buffer to
main area !
while BUFF > 0 do begin
test V until

Sj setto ENTER: (BUFF:= BUFF + j - 1;
MAIN:= MAIN + 1)
endtest;
while true do
test V until
8j setto 50: BUFF := BUFF + j;
ACK setto SO: exit
endtest
end;

test V until
Sj setto ELECT:
endtest;
while true do
test V until

(BUFF :=BUFF+j; MAIN:=MAIN-1)

Sj setto SO: BUFF := BUFF + j;
ACK setto S0: exit
endtest;
SENDCOUNTS:

while MAIN > 0 do begin
test V until SO setto COUNT: MAIN:=MAIN-1
endtest;
test V until ACK setto SO
end;
while BUFF > O do
test Vuntil SO setto S1: BUFF:=BUFF-1 endtest;
test V until SO setto BYE endtest;
goto REMAINDER
end.

endtest

We now sketch how to modify Algorithm A to
use only N+3 shared values. One value is saved
by equating FREE with SN-1. It is easy to see
that these two values can never be confused since
SN-1 can only oceur with fio process in its remain-
der region, while FREE can only occur when all
processes are in their remainder regions. The
values COUNT and BYE can be eliminated by modify-
ing the sections of code labelled "RECELVECOUNTS"
and "SENDCOUNTS", as shown in Figure 3. Both
counts are sent as a single coded integer by
using the S-values, WNote that the first waiting
loop after "RECEIVECOUNTS" is required in Algo-
rithm B to be certain that the ACK response to
the ELECT message has been seen by the control-
ler.

84

Algorithm B

Replace the indicated sections of Algorithm A by
the following code. Note that COUNT and BYE are
no longer used so that the number of shared
values is veduced to N+3 (FREE is equated to
SN-1).

RECEIVECOUNTS : |

while BUFF<N do

test V until Sj setto S0: BUFF := BUFF + j :
endtest; :
while true do §
test V until ;
8j setto SO: BUFF := BUFF + j; !
ACK setto SO: exit |
endtest; !
MAIN := |BUFF/N] - 1; !
BUFF := BUFF - (MAIN+1)*N; ;
SENDCOUNTS : g

BUFF := BUFF + (MAIN+1)#N;
while BUFF > 0 do :
test V until SO setto 81: BUFF := BUFF - 1 ‘
endtest; :
MAIN := 0;]

test V until SO setto ACK endtest;
goto REMAINDER:

3,4, Lockout-Free Mutual Exclusion

If we drop the requirement of bounded wait-
ing and ask only for a lockout~free solution, the
number of states needed to achieve mutual exclu-
sion can be cut roughly in half, as shown by Al-
gorithm C. We thus obtain:

Theorem 3.3. For each Nx1 there is a system S

of N processes and an 1.d. q such that S, q satis-
fy mutual exclusion (Cl), are lockout—free (C3),
and have no memory (C5), and |V| = [N/2] + 9.

In Algorithm C, the shared variable V takes
on the following LN/ZJ + 9 values, {80,S81,...,Sk,
FREE, ENTER,ELECT, COUNT,ACK,BYE, STOP,GO}, where k
= [N/2]. Since there are fewer values of V than
processes (for sufficiently large N), the count
of entering processes cannot be kept unambiguous-
ly in V. 1In particular, more than k processes
entering their trying regions closely together
will cause the transition of V from Sk to SO.
call this transition 'wraparound'. The process
causing this transition is called the "executive".
Since only the executive knows that wraparound
has occured, it has the responsibility to see
that those processes which were not able to an~
nouce their presence unambiguously will eventual-
ly get to their critical regions.

We

The executive knows that there are k pro-
cesses in the buffer which are unknown to the con-
troller. These processes (and possibly some
others which are incidentally detected by the ex-~
ecutive) are suspended by sending STOP signals to
each. If the executive sees a controller message
during this process, it merely holds the message

value until the procedure is complete and then re-
stores the held value. The executive then an-
nounces its presence to the controller in the nor-
mal way and enters the buffer., (If there is no
controller, the executive goes directly to its
critical region.)

Once at least k processes have been suspend-
ed by the executive, Algorithm C behaves identi-
cally to Algorithm A, since wraparound cannot
occur again. Thus, the executive eventually
reaches its critical region. When leaving its
critical region, the former executive (now a con-
troller) sends a GO message to each process which
was suspended, causing it to go to the main area.
Since no additional wraparounds (and hence no
additional executives) can have occurred at this
time, all the processes in the main area must get
to their critical regions before any other pro-
cesses can enter the main area. This guarantees
that lockout is prevented.

Algorithm C
Replaece the first sections of Algorithm A, (up to
MAINAREA:) with the following code.

begin integer MAIN, BUFF, IDLERS initial 0;
msgvar M initial S50;
REMAINDER: ! remainder regionm !

! trying protocol follows !
test V until

FREE setto SO : goto CRITICAL;
53 setto Sj+l: goto BUFFER; ! #k !
Sk setto S0 : goto EXECUTIVE; / k= LN/2}!
STOP setto S1 : goto IDLE; i
other setto S1 : (M := other;
goto HOLDING)
endtest;
EXECUTIVE:
BUFF := k;

while BUFF > 0 do
test V until
S5 setto STOP: (BUFF := BUFF + j - 1;
IDLERS := IDLERS + 1)
STOP setto STOP:
other setto S0 : M :=
endtest;
_1f M # 80 then
test V until SO setto M: M :=
test V until

other

S0 endtest;

FREE setto SO : goto CRITICAL;
S3 setto Sj+l: goto BUFFER;
other setto S1 : M := other
endtest;
HOLDING:
test V until
80 setto M: (M := S0; goto BUFFER) ;
STOP setto M: (M := S0; goto IDLE)
endtest;

85

Theorem 4.3.

BUFFER:
test V until
ENTER setto ACK: goto MATINAREA:
STOP setto SO0 : goto IDLE
endtest;

IDLE:
test Vuntil GO setto ACK: goto MAINAREA endtest;

Insert the following code after "! exit
protocol follows ¥"

while IDLERS > 0 do begin
test V until Sj setto GO: BUFF := BUFF + j

endtest;
IDLERS := IDLERS - 1;
MAIN = MAIN + 1;

while true do
test V until
Sj setto S0: BUFF
ACK setto S0: exit
endtest
end;

1= BUFF + {;

4. LOWER BOUNDS

We state and sketch proofs for four lower
bound theorems. More detailed versions of the
proofs are deferred to a longer paper. In each
case, proof i1s by contradiction; assuming there
are too few values of V, we construct a schedule
violating one of the needed conditions.

Corresponding to Theorem 3.1, we have the
following.

Theorem 4.1. Let S be a system of N processes,
N=z2, q any 1.d. Assume §, q satisfy mutual ex-—
clusion (Cl) and are deadlock-free (C2). Then
vl = 2.

N
r{(q,h)enRr

i=1
Again by (C2), obtain k,%=1 with

2° Since |V| =1,
contradicting (C1). [

Proof: Assume |V] = 1. Obtain q' =

i’

(by (c2)).
] k' 1 ‘Q’

r{(q',17) € C1 and r(q',2”) € C

r(q,hlkzz) € Cln c

2’

To obtain a lower bound theorem correspond-
ing to Theorem 3.2 we require a lemma giving a
lower bound on the number of values needed for
synchronization of 2 processes.

Lemma 4.2. Let S be a system of 2 processes, q
any i.d. Assume 8, q satisfy mutdal exclusion
(Cl) and are lockout-free (C3). Then there do
not exist v,,v, with V(q')s{vryz} for all q' ¢

Rl n R2 reachable from q.

Proof: By a detailed case analysis following the
ideas of [CH1]. 0

Let S be a system of N processes,
N2z2, qgany 1.d. Assume S, q satisfy mutual ex-
clusion (Cl), are deadlock-free (C2) and satisfy
bounded waiting (C4). Then]Vl = N+1.

Since (C2) and (C4) together imply (C3),
Assume N=23,

Proof:
Lemma 4.2 gives the result for N=2.

Construct {qi}§=0 a sequence of i.d.'s as follows.

N
n'R, be reachable from q.
i=1 i

g
ql=r(q0,1) e Cy> 2 = 1.

Let qq € Let

(That is, run P, alone

1
For each
(That is,

in turn enter its try-

until it enters its critical region.)
i, 2 £ 4 £ N, let 9= r(qi_l,i) € Ti'

.PN
ing region.) Assuming |V| < N, one of the follow-
ing cases must hold.

let each process PZ"'

Case 1: V(qi) = V(qj) for some 0 <1 <3j S N.
Then qj looks exactly like 4 to processes Pl’
. P Since there is an admissible schedule h

»P

i

from 9 which involves Pl,... only and which

i
causes some process to enter its critical region
an infinite number of times, it follows that h
(although not admissible from qj) causes the same
effect when applied from qj. But this violates
{C4), since Pj remains in its trying region dur-

ing the application of h from qj.

Case 2: V(q,) = V(q;) for some 0 <1 <N.
Since r(qO,Nm) € CN for some m 2 1 (by (C2)), it
follows that r(qi,Nm) € C,. But r(qi,Nm) € Cl’

violating (Cl).

N

Case 3: V(qo) = V(qN) and cases 1, 2 do not hold.

By Lemma 4.2, there is some schedule h involving
1 and 2 only with q' r(qo,h) ¢ Rl n R, and V(q'")

¢ {V(ql),V(qz)}. There are two possibilities.

Case 3.1: V(q") = V(qo).
Then q' looks exactly like qq to PB' Since the

schedule 3 causes P, to enter its critical re—

3
glon infinitely often when applied from g (by

(C2)), it does the same when applied from q'.
This violates (C4) since one of (Pl,PZ) remains

meanwhile in some region other than its remainder
region.

Case 3.2: V(q') = V(qi) for some i, 3 £ i £ N,
Then q' looks exactly like q; to processes P

i+1?
"’PN' Let " = r(q',({+1)(d+2)...(N)). (That
is, allow each of Pi+l""’PN in turn to enter

86

its trying regiom.) Then q" looks just like 4

to P3, since V(q") = V(qN) = V(qo). Thus, the
schedule 3° causes P3 to enter its critical re-

gion infinitely often when applied from q", vio-

lating (C4) since q" ¢ Rl n R2'

We have two lower bound results correspond-
ing to Theorem 3.3. The first does not depend on
any extra assumptions but leaves a gap open. The
second depends on the introduction of the techni-
cal assumption (C5) but essentially closes the

gap.

Let S be a system of N processes
Assume S, q satisfy mutual exclu-

Theorem 4.4.
and q any 1i.d.

sion (Cl) and are lockout-free (C3). Then
[v| 2 /2N - %.
Proof., We show by induction on k that, for k = 3,

2
and q any i.d. such that §, q satisfy (Cl) and
(C3), then |V| 2 k. The theorem then follows

if S8 is any system of - 1 or more processes

immediately.
For k=3, Lemma 4.2 gives the result. For
2
the induction step, let N 2 (et1)” =~ (ktl) 1,

2
let S be a system of N processes, ¢ an i.d. such
that 8, q satisfy (Cl) and (C3), and assume con-
trary to the induction hypothesis for k+l that

|V| <k+l. We proceed to derive a contradiction.

Construct {qi}§=0 as follows. Let 9y €

2
be reachable from q. Let q; = r(qo,l 1) €

2 1. (These are as for Theorem 4.3.) For

12
zi

i, 2 £4 <N, let q = r(qi_l,i) € Ti’

1, and assume (without loss of generality)

each 44 is such that there are infinitely

m with V(r(qi,im)) = V(q,). (That is, let

process P2""’PN in turn enter its trying

many
each

region to a point where it could, on its own,
cause the current value of V to recur infinitely
many times. This is possible since V is finite
and (Cl) holds.)

Since |V| < k, there exist 1, j with N-k <
i <j s N and V(qi) = V(qj). The processes Pl,

..,Pi, starting at P comprise a system of at

2
least N-k = k ;k
and (C3), so by the inductive hypothesis,]Vl > k.
Hence, |V] = k. It follows that for every v ¢ V

and every q' reachable from ch using only pro-

S 8

using only processes Pl,...,Pi with V(q") = v.

- 1 processes satisfying (Cl)

cesses Pl"' there is a q" reachable from q'

(If not, then P ,P, starting from q' would be

1o0e 0By
a system of processes satisfying (Cl) and (C3)

and using only values in V - {v}, contradicting
the induction hypothesis.) In other words, Pl’

...,Pi can be run in an admissible fashion, start-
ing from 4y, SO that V assumes every possible
value infinitely often. Since V(qi) = V(qj), the
same is true starting from qj.

We now construct a schedule admissible from
qj which locks out Pi+1""’Pj' We do this by
running Pl,...,Pi to periodically set V to each
V(qm), i+l € m £ j. Each time the value 1s set
to some V(qm), Pm is run enough stéps to return
(Recall by the choice of lm

that this can be done infinitely often.) Repeat-
ing this process forever yields an infinite
schedule admissible from qj in which none of

the value to V(qm).

Pi+1""’Pj ever leaves its trying region. This
violates (C3), a contradiction. We conclude that
|V]2 kt+l. O

Theorem 4.5. Let S be a system of N processes

and q any i.d. Assume S, q satisfy mutual exclu-
sion (Cl), are lockout-free (C3) and have no mem-
ory (C5). Then |[V| 2 |[{V(g"): q' € ¢, is reach-

able from g}| Z‘E%l .

Proof. The complete proof is too lengthy for
this paper, so we present a simplified version
which assumes that all processes are identically
programmed and that there is only one "free"
N

i.e. 1f q¢' e n Ri is reachable from q,

i=1
(In this case, we also get a

value VO’

then V(q') = Vo
slightly better bound.)

Let k = N/2 + 1 and assume |{V(q'): q' € Cl

S N
is reachable from q}| < k. Construct {qi}i=0 as
in the proof of Theorem 4.4, choosing each Zi to

be as small as possible., Since 9 € Cl, i=21,

there exist 1i', j' with 1 £ i' < j' < k, and
V(qi,)=V(qj,). Since all the processes are iden-
<

tically programmed, V(qi'+m) = V(qj'+m)’ 0<m

N-j'. Let i =3'-1, j = i+(j'-1') < N. We have
V(gy) = V(qj) and {V(qy),...,V(gy)} 2

{V(qi+1),...,V(qj)}. By condition (C5) and the

assumption of only one free value, processes
Pl""’Pi can be run in an admissible fashion

so as to drive V to each value in V(qo),...,V(qi)
can be

infinitely often. Thus, Pi+l""’Pj

locked out exactly as in the proof of theorem

4.4, contradicting (C3). O

87

References

[CH1] Cremers, A. and T. Hibbard. "An Algebraic
Approach to Concurrent Programming Control
and Related Complexity Problems." Univer-
sity of Southern California Computer

Science Department technical report, Nov.,

1975.

Cremers, A. and T. Hibbard. "™Mutual Exclu-
sion of N Processors using an 0(N)-valued
Message Variable." (extended abstract).
University of Southern California, 1977.

[cH2]

[Dil] Dijkstra, E. "Solution of a Problem in Con-
current Programming Control.'" CACM 9,

9 (1965), p. 569.

[Di2] Dijkstra, E. "Cooperating Sequential Pro-
cesses.”" In Programming Languages, F.
Genuys, ed., Academic Press, New York,

N.Y., 1968.

Eisenberg, M. and M. McGuire. 'Further
Comments on Dijkstra's Concurrent Program-
ming Control Problem." CACM 15, 11 (1972),
p. 999.

Feldman, J. "A Programming Methodology
for Distributed Computing (among other
things)." Technical report TR9, Dept. of
Computer Science, University of Rochester
(1977), 5ipp.

"Additional Comments on a Prob-—
CACM 9 (1966),

[Kn] Knuth, D.
lem in Concurrent Control."

p. 321.

"A New Solution of Dijkstra's
CACM 17,

[La] Lamport, L.
Concurrent Programming Problem."
8 (1974), p. 453.

[14] Lipton, R. "Limitations of Synchronization
Primitives with Conditional Branching and
Global Variables.'" Proc. Sixth Annual Sym-

posium on Theory of Computing, (1974).

{LzS] Lipton, R., Y. Zalestein and L. Snyder.
"A Comparative Study of Models of Parallel
Computation." Proc. 15th Annual Symposium

on Switching and Automata Theory, (1974).

[M¥Y] Miller, R. and C. Yap. 'Formal Specifica-
tion and Analysis of Loosely Connected
Processes.'" IBM Research Report RC 6716,
9/717.

[PF] Peterson, G. and M. Fischer. '"Economical
Solutions for the Critical Section Problem
in a Distributed System." Proc. Ninth ACM
Symposium on Theory of Computing, (1977),
p. 91~97.

[RP] Rivest, R. and V. Pratt. "The Mutual Ex-
clusion Problem for Unreliable Processes:
Preliminary Report." Proc. 17th Annual
Symposium on Foundation of Computer

Science, (1976), p. 1-8.

