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Abstract 
The problem of implementing reliable broad- 

cast  in ARPA-like computer networks is studied. 
The environment is characterized by the  absence 
of any  multicast facility on the communications 
subnetwork level. Thus, broadcast has t o  be imple- 
mented directly on hosts. A reliable broadcast pro- 
tocol is presented and  evaluated by several impor- 
t a n t  performance criteria. 

1. Introduction. 
Reliable broadcast of messages in point-to- 

point computer networks is a n  important distri- 
buted application t h a t  has received considerable 
attention. A simple and  obvious way to broadcast 
a message is t o  send a separately addressed copy 
of it t o  every host in the  network and  repeat this 
process until a n  acknowledgment is received. This 
solution, however, leaves room for possible 
improvement in several directions. First of all, i t  is 
clearly inefficient since i t  can generate much more 
network traffic t han  necessary. 

Efficiency could be improved if the  network 
servers were programmed t o  handle broadcast mes- 
sages intelligently. This approach is taken  in 
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[AwEv84], [DaMe78], [Peac80], [Rose80], and 
[SeAw83]. Unfortunately, i t  is not always applica- 
ble. For instance, Arpanet users cannot program 
t h a t  network’s servers (IMPS), nor a re  the  servers 
preprogrammed t o  implement broadcast efficiently. 
However, even when servers a re  nonprogrammable, 
one can still achieve better efficiency than  with the 
simple solution. In particular, expensive communi- 
cation links can be identified and  avoided when- 
ever possible. 

While the simple solution has reliability pro- 
visions in the  form of acknowledgments this is not 
always adequate. Consider, for example, a situa- 
tion when the broadcasting host gets disconnected 
form the  network af ter  delivering the  message only 
t o  a portion of all hosts. The rest of the  hosts will 
never (or until the  source is reconnected) receive 
the  message. Therefore, we would like t o  have a 
broadcast algorithm in which all hosts share the 
responsibility for reliable message delivery so tha t  
in the described scenario the  hosts t h a t  success- 
fully received the  message from the  source could 
then propagate i t  t o  others. 

Finally, improvement can also come from 
taking advantage of the  fact  t h a t  broadcast appli- 
cations usually operate on streams of many mes- 
sages rather t han  on a few isolated messages. By 
ordering messages a t  the  source and  keeping track 
of the  messages received so fa r  at  every host the 
algorithm we propose will be able t o  dynamically fi 
make decisions on how t o  propagate newly gen- 
erated messages. The  benefits gained in terms of 
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reliability and low delay will outweigh the extra 
communication cost involved when the broadcast 
s t ream is sufficiently long (consists of many mes- 
sages). 

It is important  t o  note t h a t  reliability is 
t reated here a s  a relative measure rather  t h a n  a n  
all-or-nothing property. T h a t  is, instead of classi- 
fying protocols a s  reliable or unreliable, we t ry  to 
estimate t o  what  degree they are  reliable (or 
unreliable). No s ta tement  can be made about the 
reliability of any broadcast protocol without first 
making some assumptions concerning the reliabil- 
ity of the network itself. For example, if the net- 
work s tays  in a partitioned s ta te  for a n  indefinite 
period of time, no protocol, no matter  how clever, 
can guarantee reliable delivery of broadcast mes- 
sages t o  all destinations. On the other hand,  if the 
partition is repaired for a brief period of time, only 
to  reappear and persist, some protocols might be 
able to  take  advantage of this brief opening t o  
complete a broadcast while others might not. Thus 
i t  seems more justified t o  speak of relative reliabil- 
ity of a protocol, referring to the degree to  which 
it is capable of utilizing communication opportuni- 
ties presented by the dynamically changing net- 
work. This issue is discussed in greater detail in 
subsequent sections. 

Interestingly enough, not all applications 
t h a t  make use of broadcast require t h a t  i t  be reli- 
able. For example, in adaptive routing i t  may be 
necessary to distribute the information regarding 
queueing delays in different par ts  of the network. 
Broadcast could be used for this purpose. How- 
ever, if a broadcast message is la te  in coming, due 
to  communication failures, it might just as well 
not arrive at  all because it will soon be outdated 
by a more recent one anyway. 

So i t  seems useful t o  keep in mind some 
specific applications which require reliable broad- 
cast. The main motivating application t h a t  has  
been driving the present work is management of 
highly available replicated databases. There are  
several known techniques for solving the problem 
of high d a t a  availability in replicated databases  in 
the face of network partitions, all of which require 
reliable broadcast of updates. But  while the goal 
of reliable broadcast is t o  eventually deliver all 
messages to  all destinations, there are  some partic- 
ulars associated with certain approaches. For 
example, in the type of approaches tha t  forego 
serializability of transaction execution in order t o  
achieve maximum d a t a  availability (e.g., Data-  

Pa tch  [Garc83], log transformation [BlKa85], 
[Sari85]), it is not absolutely essential t h a t  updates 
be installed in remote copies of the database 
always in the correct order, i.e., in the order they 
were generated. Consequently, i t  is not essential 
t h a t  broadcast messages be always delivered in the 
order they were dispatched. 

In designing a reliable broadcast we take 
into account this consideration. As a result, the  
stress is pu t  on delivering messages a s  promptly as  
possible, but  not necessarily in the same order as  
they are  sent. Note t h a t  this relaxation of require- 
ments on a reliable broadcast gives potentially 
more flexibility to the protocol and may improve 
i ts  average delay characteristic. 

2. Basic Assumptions. 
In this section, the chosen network environ- 

ment is described in more detail,  and some motiva- 
tions for considering this environment are  intro- 
duced. 

The network consists of a set of hosts, com- 
munication servers ,  and communication links. 
Hosts are  computers t h a t  participate in the broad- 
cast application. Servers are  nodes interconnected 
among themselves by point-to-point bidirectional 
links into a communication subnetwork. (This 
study can be extended to  the case when some of 
the links are  of the broadcast type, however we 
choose not t o  consider this extension here.) Each 
host is a t tached to a server. Some servers, how- 
ever, may have no corresponding hosts, and,  there- 
fore, ac t  only a s  switches. 

In reality, a server is either a separate dedi- 
cated communication processor (e.g., Arpanet) or a 
process residing a t  the same physical computer 
with the corresponding host (e.g., Bitnet). If the 
la t ter  is true,  a clean interface between the host 
and the corresponding server is assumed. For our 
purposes it is both convenient and sufficient t o  
assume t h a t  servers are  separate  nodes. 

There is no multicast facility provided by the 
network, and servers cannot handle messages with 
multiple addresses. The only kind of instruction a 
host can give t o  a server is request it t o  deliver a 
message t o  a single destination. Thus if the same 
message is t o  be sent t o  several destinations, the 
above procedure has  t o  be repeated several times. 
Servers a re  assumed to be nonprogrammable as far 
as the broadcast application is concerned, i.e., the 
code t h a t  is run on the  servers cannot be changed 
to expedite reliable broadcast. T h a t  leaves the 
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only remaining alternative: implementing broad- 
cast  on the  hosts. 

The  kind of scenario described in the  previ- 
ous paragraph is quite realistic. I t  may arise in a 
network of the type of Arpanet (which still does 
not provide a multicast facility) when (some of) 
the hosts connected t o  the  network wish to enact 
efficient and  reliable broadcast for a common 
application. 

The host t h a t  issues broadcast messages 
(which will also be called data messages)  is referred 
to as the source.  Here, we study only a single- 
source broadcast problem. However, a multiple- 
source broadcast can be performed reliably by run- 
ning several identical single-source protocols sug- 
gested in the  present paper. From the point of 
view of efficiency this option also appears t o  be a 
reasonable one. 

The  hosts a r e  reliable and  never fail. The 
servers and  links, however, can fail. In view of this 
la t te r  assumption, the assumption concerning the 
reliability of hosts is no longer overly restrictive, 
for a host crash can now be "simulated" by a 
server or link failure, provided of course t h a t  hosts 
a re  equipped with non-volatile d a t a  storage. 
Namely, if a host crashes, the  effect on the broad- 
cast  application is the  same as if the link connect- 
ing the host t o  i ts  server went down: in either case 
there is no message traffic t o  or from the host. 

W e  make no assumptions about communica- 
tion failures in the  network other t han  the impos- 
sibility of malicious messages being generated. 
Links can fail and  recover a t  any time. Messages 
can arrive out of order, have arbitrary delays, be 
lost a t  any  point (even when the link over which 
the lost message was sent is perceived t o  be opera- 
tional), or be spontaneously duplicated. Moreover, 
the fact  t h a t  a message is lost is not automatically 
detected by the communication subsystem and ,  
therefore, cannot be reported t o  the application. 
Similarly, failures of links and  their recoveries are 
not detected either. Thus, the application can 
never be certain whether a given link is opera- 
tional a t  any  given moment. 

The  reason for making as few assumptions as 
possible about  tlie way the comniunication net- 
work behaves, particularly the  way in which i t  
may fail, is t o  design a protocol t h a t  does not 
depend for reliability on the  d a t a  link layer of the 
network [Tane81]. There is a growing feeling 
among the researchers in the  field against such 
dependency. Moreover, even though most of the 

existing networks have reliability mechanisms - 
such as message acknowledgments - implemented 
a t  the d a t a  link layer, i t  is likely t h a t  future 
designs will favor pushing these mechanisms up  to  
the  application layer. A strong efficiency argument 
can be made in favor of such arrangement. 

The  next assumption will be referred t o  as 
the c o m m u n i c a t i o n  transi t iv i ty  assumption. It pos- 
tulates  t h a t  if during the  (sufficiently long) time 
interval ( t ,  t ' )  host z can communicate with host y ,  
and y can communicate with host z, then, during 
( t ,  t ' ) ,  z should also be able t o  communicate with 
z. The significance of communication transitivity 
will become apparent when we discuss the  particu- 
lars of the proposed protocol. The assumption 
seems quite reasonable for networks with adaptive 
routing since in a situation described there exists 
a t  least one communication pa th  between hosts z 
and z - the  one t h a t  goes through ( the server of) 
host y. Given sufficient time, the routing algorithm 
will discover i t .  

Hosts possess no knowledge of the network 
topology or any  other s ta t ic  information concern- 
ing the  network. They do, however, know the iden- 
tities of other participating hosts. (When this 
la t te r  assumption is not valid, i.e., some hosts do 
not know the identities of all other hosts, the prob- 
lem becomes very different. See (Deme871 for a pos- 
sible solution.) 

We assume t h a t  there is a division of all 
links into two categories, according t o  their 
bandwidth. High bandwidth links are called cheap; 
low bandwidth links a re  called expensive. For obvi- 
ous reasons, i t  is not specified what  high and  low 
mean precisely, bu t  we assume t h a t  expensive links 
a re  much more expensive than  cheap ones. This 
assumption is motivated by the  existence of long 
haul networks (with low bandwidth links) with 
local networks (with high bandwidth links) 
integrated into them. In a global network of this 
kind some hosts a re  connected via cheap links 
while others a re  connected via expensive links 
only. 

Since they have no s ta t ic  information about 
the  network, hosts do not know which links are 
cheap and  which a re  expensive. itre assume, how- 
ever, t h a t  there is a way for a host t o  tell whether 
the message i t  has just received traversed an 
expensive link on its way t o  the destination. (For 
instance, there could be a special bit in the mes- 
sage format initialized t o  0 and  set t o  1 by a 
server whenever the  message in question traversed 
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a n  expensive link. Even if the  network did not pro- 
vide this type of service, i t  could be implemented 
at  the  host level. One way t o  do this would be t o  
timestamp each message at  the  time i t  is sent out .  
This would allow each host t o  estimate the time in 
t ransi t .  Since the  expected times for cheaply 
delivered messages and  for expensively delivered 
ones vary significantly, hosts would be able t o  tell 
them apart .)  The  ability to distinguish expensively 
delivered messages from cheaply delivered ones is 
the  only kind of dynamic information available t o  
hosts. 

Finally, we assume t h a t  at  any  given time all 
the  hosts in the network can be divided into 
groups such t h a t  within each group hosts can com- 
municate among themselves cheaply, bu t  hosts in 
different groups can  only communicate using 
expensive links. Such a group of hosts is called a 
cluster. Clustering of hosts can change over time 
due to failures and  repairs of communication 
links.+ Note t h a t  a host’s view of the constituency 
of its cluster may not always be consistent either 
with t h a t  of other hosts or with reality. 

3. Basic Ideas. 
As was mentioned earlier, the goals of our 

protocol should be low cost, low average delay, 
and  high reliability. In this section we focus on 
some basic ideas on how t o  achieve these goals, 
without going into details of the proposed algo- 
rithm. 

We s t a r t  with a fairly obvious observation, 
namely t h a t  optimal cost cannot be achieved for 
broadcast in our environment. This is illustrated 
by the  example in Figure 3.1. 

In this example we have three hosts con- 
nected by a network of four servers (hosts a re  
denoted by squares, and  servers by circles). Host h l  
is the  source of broadcast. Clearly, the most cost 
efficient (as well as the delay minimizing) way for 
h l  t o  broadcast a message would be as follows. 
Ilost h l  hands the message t o  its server (sl). s,,  
then, sends i t  t o  server s 4 .  s 4  makes two copies of 
the message and  sends one copy each t o  servers s2 
and  s3. Finally, s a  and  s3 pass the message on t o  
hosts h 2  and h 3 ,  respectively. In this way, no link 
is traversed more than  once (and, obviously, every 
liiik has t o  be traversed in the given example for 
the broadcast to  succeed). 

t In this contex t ,  r epa i r  can  also mean an in t roduc t ion  of 
a new I inK.  

9 
h* -5, s 

Figure 3.1. 

Note, however, t ha t ,  according t o  our 
assumptions, servers cannot handle multiply 
addressed messages, nor is there any way for host 
h ,  to explicitly instruct server ,s4 t o  duplicate the 
message and  send the copies t o  two separate desti- 
nations (and even if there were, t h a t  would do no 
good because h l  knows nothing of t he  network 
topology). Hence, broadcast cannot possibly be 
performed as described above. So, no mat te r  what 
type of protocol one comes up  with for our 
environment, i t  will not ,  in general, have optimal 
performance. Therefore, the  goal of our algorithm 
should be t o  minimize the cost of broadcast given 
the restrictions of server nonprogrammability. 

Assuming t h a t  the  network is not partitioned 
and  disregarding for now the  possibility of any 
changes in i t ,  we could arrange clusters in a tree 
rooted at  the cluster containing the  source. Then 
broadcast messages could trickle down the  cluster 
tree from parent cluster to child cluster. 

Every cluster has a special (dynamically 
selected) host in i t ,  called a cluster leader. A clus- 
ter  leader receives broadcast messages from one of 
the hosts in the parent cluster, and  i t  is responsi- 
ble for distributing them t o  other members of its 
own cluster (cluster neighbors). Broadcast is ini- 
t iated when the source sends a message t o  its clus- 
ter  neighbors. The source is considered the leader 
of i ts  own cluster. Figure 3.2 shows a n  example of 
a cluster tree. Nodes of this tree a re  represented 
by ellipses. Within each cluster (ellipse), hosts are 
represented by boxes, with boxes denoting cluster 
leaders shaded. 

The tree arrangement helps reduce the 
number of transmissions required t o  complete 
broadcast of a data message. If we also wan t  low 
average delay, however, i t  is not enough t o  come 
up  with just any  cluster tree. The main idea for 
reducing delays is, for every cluster, t o  t ry  t o  find 
a parent cluster t h a t  can deliver new broadcast 
messages as promptly as possible. Namely suppose 
tha t ,  for a given cluster C, we have a choice of 
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4.1. The Host Parent Graph. 
T o  enact broadcast, hosts a t tempt  to  

configure themselves into a treet with the  source as  
i ts  root. In a failure-free environment, such a tree 
would be stable, and  d a t a  messages could be sent 
from parent t o  child to make broadcast complete. 
However, because of the  possibility of link failures, 
the tree can become disconnected, and  the  nodes 
should be able to reconfigure into a different tree if 
at  all possible. The  resulting structure is, there- 
fore, dynamic and  referred t o  as the 
host parent graph, t o  underscore the  fact  t h a t  con- 
nectivity is not always achieved (e.g., during net- 
work partitions). 

(It is important not t o  confuse communica- 
tion links of the  network with edges of the  host 
parent graph. For the la t te r  correspond t o  com- 
munication pa ths  tha t ,  in general, can consist of 
several links.) 

We say t h a t  a host parent graph H induces a 
cluster tree L if (1) H i s  a tree; and  (2) children of 
every cluster leader include all other hosts t h a t  are  
in the same cluster. Note t h a t  if a child of a clus- 
te r  leader in H is not from the  same cluster, i t  
must be a cluster leader itself, otherwise condition 
(2) above would be violated. 

The relationship between H and L is illus- 
t ra ted  by  the example in Figure 3.2.  A node in L 
(denoted by a n  ellipse) is uniquely determined by 
lumping together a cluster leader and  all its chil- 
dren in H. For example, in Figure 3.2,  C, C', and 
C" are  all nodes in L,  with C being a child of C'. 

Not  every host parent graph, though, induces 
a cluster tree. Consider again the host parent 
graph of Figure 3.2. Suppose t h a t  a high 
bandwidth pa th  has just been repaired between 
clusters C" and  C. T h a t  means t h a t  these two 
clusters have been joined into one. According t o  
the  definition, the host parent graph no longer 
induces a cluster tree. 

T o  reduce the  cost of broadcast, i t  is desir- 
able t o  have a host parent graph t h a t  induces a 
cluster tree. Thus  the  algorithm must maintain a 
host parent graph in such a way t h a t  i t  dynami- 
cally adjusts to changes in the  network and  tends 
t o  assume a configuration t h a t  induces a cluster 
tree. Note tha t ,  because of such dynamic adjust- 
ments, there can  be, at any  given moment, more 
than  one leader in a cluster (or no leader a t  all), a 

Figure 3.2. 

parents C' or C" (see Figure 3.2).  Further,  sup- 
pose t h a t  somehow i t  is known t h a t  cluster C' 
receives broadcast messages ahead of C". Then C' 
is a better candidate for a parent t han  C", and  
cluster C should become a child of C'. Note t h a t  
a t  a la ter  time, due to changing message traffic, 
some other cluster can become a more desirable 
parent for C t h a n  GI. Thus, we may have t o  
dynamically restructure the  cluster tree t o  minim- 
ize delays. 

Dynamic changes in the cluster tree may also 
be necessary t o  allow compensation for component 
failures. For example, if a cluster finds out t h a t  it 
no longer can communicate with i ts  parent,  i t  
should t ry  t o  find a new parent.  In another 
instance, a cluster leader (or its server) may fail, 
in which case the  members of the  cluster must 
come up  with a new cluster leader t o  maintain the 
connectivity of the  tree. 

Failures can  also cause messages t o  get lost, 
and  the  reliable broadcast algorithm must compen- 
sa te  for this. T o  detect lost packets, all broadcast 
messages a re  sequence numbered so t h a t  i t  is easy 
t o  tell when a message has failed t o  be delivered t o  
any  given host. When t h a t  happens, certain 
actions a re  taken  t o  enact a redelivery of the  lost 
message. 

4. The Algorithm. 
In the previous section, some high level s t ra-  

tegies for enacting efficient reliable broadcast were 
outlined. In this section, the  actual broadcast algo- 
ri thm is presented, in particular i t  is shown how t o  
construct and  dynamically maintain a cluster tree. 
(For a formal specification of the  algorithm see 
[Garc87] .) This is diRerent from a cluster tree. 
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situation t h a t  will be eventually corrected by the  
algorithm. In the  remainder of this section, any 
host whose parent is not in the  same cluster will be 
regarded as a cluster leader. 

Broadcast messages a re  propagated in the 
host parent graph from the root all the  way down. 
Thus, upon receipt of a broadcast message, a host, 
sends i t  on t o  all its children. For reasons 
explained below, a host can accept a message 
sequence-numbered higher t han  any i t  has received 
so far ,  only from i ts  parent.  If such a message 
arrives from any other host, i t  is discarded. A 
message is also discarded if the  recipient host has 
previously accepted i t .  (Repeated delivery may be 
caused, for example, by dynamic changes in the 
host parent graph.) 

4.2. The Attachment Procedure. 

A t  the heart  of the algorithm is the attach- 
ment procedure, which is periodically activated at  
every host. The purpose of this procedure is t o  
make sure t h a t  the host is a t tached  t o  a "good" 
parent ,  and  if t h a t  is not the  case, find a better 
one. 

As was mentioned earlier, broadcast mes- 
sages a re  sequence numbered. Every host keeps 
t rack  of all the messages i t  has received so far. For 
each host i, a set  INFOi contains the sequence 
numbers of all messages received by i. Let us define 
a partial  ordering < on sets of message sequence 
numbers. We write A < B if the  largest element 
of A is strictly less t han  the  largest element of B, 
i.e., if max(q) < max(q). Also, we write A N B, if 

max(q) = max(q). These sets a re  used for detection 
q € A  q €B 
and  redelivery of lost packets. They are  also used 
for dynamically maintaining the host parent graph 
with the  goal of maximizing reliability and  minim- 
izing delays. 

Each  host i maintains a n  a r ray  of sets of 
message sequence numbers, MAPi. MAP;[ j] 
represents host a's view of INFO, (thus, 
MAP;[i] = INFOi). Hosts periodically update one 
another on the current values of their INFO sets. 
INFO,, where s is the  source, gets updated every 
time a new broadcast message is generated a t  the 
source. 

CLUSTERi is a set t h a t  contains the identi- 
ties of hosts t ha t ,  according t o  host i, are  in the  
same cluster with i. This set  can be updated when 
a message (of any  kind, not necessarily a broad- 
cast  message) is received from another host j. If 

q € A  q € B  

the  cost bit in the  message is 1, and  j was a 
member of CLUSTERi, then j is taken  out  of this 
set. Similarly, if t he  cost bit is 0, and  j was not in 
the  set, i t  is added. CLUSTERi is initialized t o  { I ] ,  
i.e., in the  beginning each host assumes t h a t  i t  is 
in a cluster by itself. Of course, if there is some 
information t o  the  contrary, then CLUSTER; can 
be initialized differently. 

CHILDRENi is a set of all the children of 
host i in the host parent graph and  is maintained 
by host i itself. Also, host i has a n  a r ray  p i [ ]  such 
t h a t  its j-th element is the  supposed parent of host 
j .  Entry  p i [ ; ] ,  of course, is the t rue  parent of i, at 
all times. Array p i  is updated when cluster neigh- 
bors periodically inform i of the  identities of their 
new parents. 

Finally, there is a s ta t ic  linear ordering 
imposed on all the hosts. The  number assigned by 
the  ordering t o  host i is denoted by order(i). 

The a t tachment  procedure consists of a 
number of options t h a t  must be tried by the host, 
in the  order indicated, until either a suitable new 
parent is found or all options are exhausted 
without success. In the la t te r  case, the  host waits a 
certain period of timet before initiating the  same 
procedure again. If, however, a parent is found, a 
message is sent t o  i t  requesting inclusion in its 
CHILDREN set. If the acknowledgment t o  this 
message times out ,  t he  procedure is repeated to  
find another candidate with which the  given host 
can communicate. The  old parent,  if any, is also 
notified of the change by a n  appropriate message. 

The  options, for each host i, are  as follows 
( the new parent of i is denoted by j ) .  

I. For a host currently without a parent: 

(1) At tach  t o  a host in the  same cluster t h a t  has 
a parent in a different cluster or no parent at  
all (a cluster leader), and  a greater (accord- 
ing t o  relation <) INFO set .  Thus  j must 
satisfy the  following conditions: 

j E CLUSTERi 

p i [ j ]  CLUSTER{ 

MAP;[i] < MAPi[j] 

(2) Attach  t o  a cluster leader in the  same cluster 
with a n  "equal" INFO set  and  a greater 

t This time period is a parameter of the algorithm. 
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stat ic  order number. loads. 

First of all, we need t o  show t h a t  the attach- 
ment procedure constructs a parent graph t h a t  is 
dynamically acyclic, i.e., has no persistent cycles, 
barring the  case of partition. Since hosts accept 
broadcast messages only from their parents and  no 
host ever attaches to a parent with a smaller 
INFO set, no host's INFO set  can be smaller than  
t h a t  of any  of i ts  descendants. Therefore the  only 
way t o  form a cycle is for a host t o  a t t ach  t o  one 
of i ts  own descendants with a n  "equal" INFO set. 

Let us first consider cycles t h a t  involve hosts 
from several clusters. Such a cycle contains at  
least one cluster leader, which will look for a new 
parent with a greater INFO set soon after the 
cycle is formed (case 11, option (3)).  If the cluster 
leader is successful in i ts  search, the cycle will be 
broken when the  leader a t taches  to its new parent. 
Otherwise, i t  means t h a t  the  leader cannot com- 
municate with any  hosts t h a t  have greater INFO 
sets. By the  transitivity assumption, none of the 
hosts on the  cycle can communicate with such 
hosts either. Therefore the  cycle will not be bro- 
ken until communications are restored. Note, 
however, t h a t  a cycle in the  host parent graph is 
undesirable only because no host on i t  can get any 
new broadcast messages. Bu t  in the  described 
situation this is the case even if there were no 
cycle (because of a n  apparent  network partition- 
ing). Thus, the presence of a cycle is unimportant 
here (as long as i t  gets broken when communica- 
tions a re  restored). 

A cycle contained within a single cluster can 
be detected when a host i tries option (1) of case 
I11 and  discovers t h a t  i t  is i ts  own ancestor 
( i  E ANCi), by following parent pointers. But ,  
unlike a cycle t h a t  spans multiple clusters, this 
type of cycle cannot be automatically broken by 
the a t tachment  procedure. Therefore we need a 
special rule for breaking single-cluster cycles. The 
host with the  highest s ta t ic  order number on the 
cycle shall detach from its parent and  go through 
the appropriate options for finding a new one. 
Once again, success is guaranteed unless there is a 
network partition. EIaving considered both types 
of cycles, we can conclude now t h a t  unless there is 
a partition in the network, no cycle in the parent 
graph can be stable. On  the other hand, if there is 
a partition, then the presence of a cycle is not 
detrimental t o  broadcast. 

Options (1) and  (2) of cases I and I1 work 
towards establishing a single cluster leader for 

j E CLUSTERi 

pi[ j]  6 CLUSTERi 

MAPi[i] N lLlAPi[j] 

order(i) < o r d e r ( j )  

(3) Attach  t o  a host in a different cluster with a 
greater INFO set. 

j e CLUSTERi 

MAPi[i] < MAPi[j] 

11. For a host with a parent in a different cluster: 

(1) 

(2) 
(3) 

See Case I, Option (1). 
See Case I, Option (2). 
Attach  t o  a host in a different cluster with 
a n  INFO set  greater t h a n  t h a t  of i 's current 
parent.  

j CLUSTERi 

MAPi[pi[i]] < lLi'APi[j] 

111. For a host with a parent in the same cluster: 

(1) At tach  to the ancestor (other t han  parent,) 
t h a t  is a cluster leader in the  same cluster, 
provided t h a t  i ts  INFO set  is greater or 
"equal" to the  host's own. 

j E CLUSTERi 

pi[ j]  4 CLUSTER; 

j E ANC;, where 

ANCi = {k: k = p ; [ i ]  or k=pi[ l ]  s.t. 1 E ANC,} 

MAPi[i] < MAPi[j] or MAPi[i] E MAP;[j]  

The procedure is run at  all hosts bu t  the  
source. Note t h a t  in the  very beginning of broad- 
cast, the  host parent graph is just a collection of 
hosts with no parent-child connections among 
them. In the  process of broadcast those connec- 
tions a re  established and  changed as appropriate. 

4.3. Properties of the Attachment Pro- 
ce dur e. 

In this subsection, we show t h a t  the attach- 
ment procedure constructs a host parent graph 
t h a t  induces a cluster tree d y n a m i c a l l y ,  by adapt -  
ing t o  constantly changing network topology and  
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each cluster, by making i t  a priority t o  look for a 
new parent within the cluster. Only when this 
fails, does the  host look for a parent outside i ts  
cluster (option (3) of cases I and  11). Option 1 of 
case 111 (for a host with a parent within the  same 
cluster) a t tempts  t o  establish a connection with a 
cluster leader directly, if i t  is not the case already. 
As a result, all hosts in the  same cluster tend t o  
organize into a single cluster tree node. 

Option (3) of case I is for a host t h a t  has 
been unable to find a parent within i ts  own cluster 
and ,  therefore, has  t o  look elsewhere. This host, 
then, becomes a cluster leader. 

Option (3) of case I1 is for a cluster leader 
t h a t  tries to improve i ts  situation in terms of the 
delay with which i t  receives broadcast messages, 
by switching t o  a parent t h a t  has received more 
recent messages (with greater sequence numbers). 
This idea for reducing delays is similar t o  the  one 
proposed by Awerbuch and  Even [AwEv84]. In 
their work, however, i t  was applied in a different 
network setting (programmable severs, more res- 
tricted failure assumptions, disallowed acceptance 
of out-of-order messages). 

Besides being a n  instrument for reducing 
delays, option (3) of case I1 can help a host t o  
detect when i ts  parent has become disconnected 
from i t .  For, in t h a t  case, the old parent’s INFO 
set, as perceived by the  child, will fall behind those 
of other out-of-cluster hosts with which the  given 
host can communicate. Note, however, t h a t  for 
hosts other t han  cluster leaders the a t tachment  
procedure does not provide a n  automatic way of 
detecting the  failure or disconnection of the  
parent.  Therefore, we need a separate provision t o  
help detect this situation. One way t o  do  this 
would be t o  time out on a parent t h a t  fails t o  send 
messages such as the ones containing i ts  INFO set  
and  the identity of i ts  own parent,  which a re  being 
routinely exchanged by hosts in the same cluster. 
When this occurs, the host sets i ts  parent pointer 
t o  NIL and  goes through options (1) t o  (3) of case 
111. 

4.4. Gap Filling. 

The a t tachment  procedure presented above 
is a way for the  hosts participating in broadcast to 
adjust  t o  component failures as  well as t o  the 
changing loads in different par t s  of the  network. 
The pa r t  of the protocol discussed here deals with 
compensating for lost broadcast messages (or filling 
gaps in INFO sets). Note t h a t  loss of messages 

can result not only from unreliable behavior of the 
communication subnetwork, bu t  also from the 
workings of the a t tachment  procedure. In particu- 
lar, af ter  a host has a t tached  to a new parent,  i t  
may receive a broadcast message from i ts  old 
parent (if the old parent never got the  message 
requesting detachment from i ts  former child), but 
in compliance with the  restriction introduced 
above i t  is forced t o  discard i t .  

One type of gap filling action takes place 
among host parent graph neighbors. When a host 
a t taches  to a new parent,  the  parent examines i ts  
new child’s INFO set  and  forwards t o  the  child all 
those messages t h a t  the  child is missing and  t h a t  
the parent has. When a host receives a gap  filling 
message (a broadcast message with a sequence 
number less t han  the  largest i t  has  already seen), 
i t  forwards i t  to all those of i ts  parent graph 
neighbors (its children and  i ts  parent)  t h a t  accord- 
ing to i ts  MAP do  not have i t .  In addition to the 
above, every host periodically tries t o  fill its 
parent graph neighbors’ gaps by sending them mes- 
sages t h a t  i t  perceives as missing from their INFO 
sets. This is done more frequently for the members 
of the  same cluster and  less frequently for the 
members of different clusters. The  restriction tha t  
a host can accept broadcast messages only from its 
parent does not have to apply t o  gap filling mes- 
sages because they do  not a l ter  the < order among 
INFO sets. 

G a p  filling among parent graph neighbors 
only is not sufficient in t h a t  i t  fails, in some cases, 
to fill all the  gaps or a t  least as many gaps as the 
current communication s t a tus  of the  network 
would allow. To illustrate consider the  following 
example. Let there be three hosts in the  network: 8 

( the source), i, and  j (all in different clusters). The 
parent graph is shown in Figure 4.1.  In i t ,  s is the 
root, and  i and j a re  i ts  children. Suppose t h a t  a 
network partitioning occurs t h a t  leaves s isolated 
from the  rest of the network. But  i and j can still 
communicate with each other. Suppose, further, 
t h a t  three d a t a  messages (numbered 1, 2, and  3) 
were issued by s before the  network partitioned; 
message number 2 has not reached node i, and 
message number 1 has not reached node j. Since 
neither INFO; < INFOj nor INFOj < INFO;, hosts 
i and  j will not be able to reconfigure themselves 
into a new parent graph until the  partitioning is 
repaired. And thus,  as i and  j are  not parent 
graph neighbors, they will not be able to fill each 
other’s gap even though they can communicate 
with each other. 
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least k - 1 inter-cluster transmissions, and prob- 
ably more if there is more t h a n  one host per clus- 
ter.  

As far a s  the delay characteristics, our algo- 
rithm appears to be comparable with the basic 
one. Since messages are  addressed individually in 
the basic algorithm, the network can ensure tha t  
they are  delivered to each host along a shortest 
pa th  (assuming t h a t  the network provides a clever 
routing mechanism). In our algorithm, some hosts 
do not get their d a t a  messages directly from the 
source so clever routing by the  network is not 
taken full advantage of. However, due to  the delay 
minimizing properties of the at tachment  procedure 
(already discussed in the previous sections), the 
tree t h a t  is dynamically maintained by i t  tends to  
provide the shortest paths  from the source to  all 
other hosts. Moreover, our algorithm has the 
advantage of not being dependent on the routing 
service provided by the network. 

In terms of recovery provisions our algorithm 
is superior t o  the basic one. When a host misses a 
message (in a fully connected network), the  mes- 
sage is redelivered either by one of i ts  cluster 
neighbors or by a host from the parent cluster, 
which tends to  be one of the "closest" clusters t o  
the host in question. In the basic algorithm, on 
the other hand, the source itself would always 
have to enact a redelivery, which, in general, is 
costlier because the host t h a t  needs this message 
may be in a very "remote" cluster. 

In a partitioned network, the source, using 
the basic algorithm, does not stop trying to  send 
d a t a  messages to all the  hosts t h a t  are  cut off from 
it ,  which is wasteful. In our algorithm, the hosts in 
the same partition will tend t p  organize into a 
tree, and only the root will periodically probe the 
network to  detect when reconnection occurs. 

I t  is important t o  point out  t h a t  the basic 
algorithm can cause congestion of the source host's 
server since d a t a  messages go out  separately to  
every host. Our  algorithm does not present such a 
problem because responsibilities for disseminating 
d a t a  messages are  distributed among all hosts. 

Finally, i t  should be noted tha t ,  compared to  
the basic algorithm, ours may incur more addi- 
tional cost in control messages, i.e., messages other 
than  those containing broadcast da t a .  (An exam- 
ple of control messages is exchange of INFO sets 
among hosts as prescribed by the proposed algo- 
rithm. The basic algorithm also requires control 
messages in the form of acknowledgements.) How- 

Figure 4.1. 

To deal with this kind of situations we have 
to  extend the periodic gap filling process described 
above so t h a t  i t  takes  place even among hosts t h a t  
are  not host parent  graph neighbors (e.g., between 
hosts a' and i in the example of Figure 4.1). As in 
neighbor gap filling, a host tries t o  fill the  gaps of 
other hosts when i t  can.  However, the frequency of 
this type of gap filling should be relatively low 
since it operates across cluster boundaries, and 
therefore the communication cost is high. 

5. Performance. 

In this section, we present arguments t h a t  
explain why the performance of our algorithm 
should be expected to be better than  t h a t  of the 
basic algorithm mentioned in Section 1, which is 
the only known alternative for networks with 
nonprogrammable servers. 

First, we compare the behavior of the two 
algorithms when there a re  no failures in the net- 
work. The cost of a broadcast algorithm is usually 
determined by the amount of traffic it generates, 
or more precisely, the number of transmissions 
over a single link necessary to complete the broad- 
cast of a single d a t a  message (or n messages, aver- 
aged over n). In our discussion, we will approxi- 
mate  the cost by counting only the number of 
inter-cluster host-to-host transmissions (as opposed 
to single link transmissions) since these are  the  
most expensive ones. For example, with this 
metric, the cost of broadcasting a single d a t a  mes- 
sage in the  network of Figure 4.1 would be 2 (pro- 
vided there are  no lost messages). This is so 
because a has t o  send the message to both a' and j ,  
and both of these paths  are  expensive. Note t h a t  
in the original metric the cost would depend on the 
number of links in each pa th .  

With the  cluster tree arrangement we need 
only k - 1 inter-cluster transmissions, where k is 
the number of clusters, t o  broadcast one d a t a  mes- 
sage. Clearly, this is optimal. In the basic algo- 
rithm, a d a t a  message from the source is sent 
separately to each host. T h a t  would require a t  
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ever, the traffic generated by control messages in 
our algorithm is totally independent of the number 
of d a t a  messages and  can be adjusted a s  desired 
(see Section 6 ) .  

8. Conclusions. 
We have presented a broadcast protocol for 

networks with nonprogrammable servers t h a t  
appears  t o  have good cost, delay, and reliability 
characteristics. We wish t o  emphasize, however, 
t h a t  our protocol is based on heuristics and ,  there- 
fore, cannot be expected to  perform optimally. The 
problem of efficient reliable broadcast in networks 
with nonprogrammable servers is a hard one, and 
solving i t  in a truly optimal way appears t o  be 
difficult. 

There is one performance aspect t h a t  has  not 
yet been discussed. I t  is the trade-off between relia- 
bility and cost-delay characteristics. T h a t  such 
should exist is no surprise. Reliability is understood 
to  mean the ability of the algorithm to  utilize a s  
much as possible the communication opportunities 
presented by the network. Thus, if there is even a 
brief interval during which hosts h ,  and h2 can 
communicate, and  h l  has  a broadcast message 
t h a t  h2 does not, a reliable protocol will detect 
this fact and have h l  send this message (repeat- 
edly if necessary) to h 2 .  But  to achieve this, 
including the  detection of the  existence of the  com- 
munication p a t h  between the two hosts, hosts have 
to exchange messages. The more frequently this is 
done, the more chance we will have t o  use the 
brief interval t o  deliver the message, and,  at the 
same time, the  more costly the algorithm will be. 

In the algorithm presented here, these trade- 
offs a re  embodied in the frequency with which 
hosts enact  INFO exchange, parent pointer 
exchange, and  gap  filling. These can be tuned 
according to specific cost-reliability requirements. 

Throughout this paper we have assumed t h a t  
hosts have access t o  dynamic information concern- 
ing clustering. Note t h a t  even if such information 
is unavailable, bu t  instead there is a static 
knowledge of clusters, the la t ter  can be used in the 
algorithm, albeit with less satisfying performance 
results. Furthermore, if no cluster information at  
all is available, the algorithm still can be used, 
with the assumption tha t  every host is in a 
separate  cluster by itself, at  any given moment. 

A number of fairly obvious optimizations can 
be incorporated in the  actual  implementation of 
the algorithm. For instance, some control messages 

t h a t  a re  dispatched by the same host a t  about the 
same time can be piggybacked in one packet. As 
another example, INFO sets can be pruned of mes- 
sages with sequence numbers 1 through n when it 
becomes known t h a t  all hosts have safely received 
them. 
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