OPTIMAL PLACEMENT OF IDENTICAL RESQURCES I

Michael J. Fischer
University of Washington

Nancy D. Griffeth
Georgia Institute of Technology

ABSTRACT

The problem is considered of locating a
number of identical resources at nodes of a
tree so as to minimize the total expected cost
of servicing a set of random requests for the
resources. The cost of servicing a request is
the tree distance from the requesting node to
the node at which the resource satisfying the
request is located. An algorithm for finding
an optimal placement of t resources 1ls pre~

sented which runs in time 0(t2-IE|): where R
is the edge set of the tree. In the special
case of a complete binary tree with requests
uniformly distributed over the n leaves,
another algorithm works in time O(t logzn).

While optimal placements in general seem diffi-
cult to characterize, there is a very simple
placement whose total cost differs from optis
mality by at most |E|. The expected cost of
this placement on a complete binary tree is
Cl{n + Yta).

1. INTRODUCTION
We consider the problem of locating some num-
ber t of identical resovurces at nodes of a dis-

tributed network in such a way as to minimize the
expected "cost” of servicing a random set of t
requests for those resources. Various different
costs are likely to be important in different
situations.

For example, suppose the resources are pro-
cessors and requests are to establish a virtual
connection with a processor which will be used for
a very long period of time. In this case one
might want to minimize the expected total of all
the network distances (measured in some appropriate
way) between requesting users and their assigned
processors. Because of the long holding times, it
is probably reasonable to expend considerable
effort to find a good matching of requests to

FThis research was supported in part by the
National Science Foundation under grants MCS77-
02474, MCS77-15628, MCS78-01698, MCS80-03337, U.S.
Army Research Office Contract Number DAAG29-79-C-
0155, and the Office of Naval Research Contract
Numbers N0OC014-79-C-0873 and N00014-80-C-0221.

CHI15%1-7/81/0000/0324500.75 © 1981 IEEE

324

N A DISTRIBUTED NETWORK'

Leo J. Guibas
Xerox Palo Alto Research Center

Nancy A. Lynch
Georgia Institute of Technology

regources. The total of the network digtances
provides a measure of the expected communication
traffic introduced into the network by the compu-~
tations.

For another example, suppose the resources
are tickets to sporting events (or alrline seats),
A relevant cost 1s the expected walilng time until
a buyer recelves his tlckeb, or equlvalently, the
expected total walting time for all buyers, In
this situation, it 18 probably not reasonable to
expend much effort iIn attalning a near-optimal
matching, for the time to find the matching can
eagily exceed the eventual savings in locating a
nearby ticket. Iven so, the expected total dis-
tance in an optimal matching is signlflcant as a
lower bound for the axpected total walting time.

This paper Investigates propertiles of optimal
resource placements and provides [ast algorithms
for finding them, It also provides upper bounds
for the costs of optimal placements and of certain
nearly-optimal and easily~described placements,
The network in all cases ls assumed to be con-
figured as a tree, Nevertheless, the upper bounds
can often be applied to an arbitrary (connected)
distributed network by constructing a spanning
tree.

In this paper, we allow for the possibility
that fractions of resources, and not only whole
resources, might be located at some nodes of the
network tree. This is reasonable if, for instance,
the resources are large blocks of available data
storage space, It would be perfectly permissable
for a user to obtailn parts of his needed storage
from several different nodes. On the other hand,
we assume that the requests are discrete -- each
request is for one unit of resource.

In Section 2, we present our notation, defini-
tions, and those results which apply to arbitrary
trees and arbitrary probability distributions for
arrlvals of requests, §2.1 defines matchings and
relates them to network flows. §2.2 defines the
expected total cost of a placement in terms of
expected total flow., Both the function describing
the expected flow on each edge and the function
describing the minimum possible expected total flow
for any subtree are of a particularly simple
form -- they are unbounded, convex, plecewise
linear functions on the nomnnegative reals, with

!

all singularities at integers. This immediately
implies (in §2.3) that there are always optimal
resource placements consisting of whole numbers of
resources located at each node; it is never neces-
sary to place fractions of resources at any node
in order to achieve an optimal placement. An

algorithm using O(tz-#edges) arithmetic opera-
tions is presented which always finds an optimal
whole resource placement. This is the fastest
algoritim we have which is completely general.
Section 4 contains faster algorithms for special
cases.

§2.4 considers what is required for a place~
ment to optimlze the expected flow over any
particular edge in the tree -~ i.e. to be locally
optimal. Unfortunately, it is not possible in
general to obtaln a single placement which simul-
taneously optimlzes the expected flow on all edges.

A fair whole placement is one which "almost
optimizes" the flow on each edge -~ that is, one
in which the number of resources in each subtree
is either the mean rounded up or down, It is
always possible (and quite easy) to obtain a
fair whole placement, and such placements are
close to optimal.

In §2.5, we show that if there is a proba-
bility less than s that any request will arrive in
a particular subtree, then it 1s always bad to
place even a very small fraction of a resource
anywhere in that subtree.

In Section 3, we analyze the cost of an
optimal placement for the case of a complete binaxry
tree of n leaves but with an arbitrary probabi-
lity distribution for request arrivals., An
arbitrary fair whole resource placement has
expected total cost at most O(n + vt vn). Note
that in the very important case where t is
roughly proportional to n (i.e, the number of
resources in the network is proportional to the
number of nodes), that the expected average cost
per request is bounded by a constant, independent
of the size of the network., This situation is
very different from the case of centralizing the
resources, where the average cost grows propor-
tionately with the log of the number of nodes in
the network.

2, NOTATION, DEFINITIONS AND GENERAL RESULTS

2,1. Trees, Matchings and Flows

A tree T = (V,E) 1s an undirected acyclic
graph, where V is the vertex (node) set and E
is the edge set,

Let N denote the natural numbers, including

0, and let K" denote the nonnegative reals,

A set of requests is described by a function

. +
r: V=R such that x(v) is the number of

requests originating at node v. A placement of
Tesources is described by a function s: V->R+

325

such that
at node

s(v) 1is the number of resources placed

v. We always assume total(r) = total(s),

where for any g: V-+R+, total(g) = Z g(v).
veV

A matching is a function m: VXV—+R+. m(u,Vv)
glves the number of requests at node u which are

satisfied by resources at node v, m 1is exact
for r,s if for all u,veV, Z m{u,w) = r(u) and
weV
Z m{w,v) = s(v), Thus, an exact matching gives a
weV

complete correspondence between requests and
resources, Clearly, an exact matching exists
whenever total(r) = total(s).

The cost of a matching is defined to be

cost(m) = Z m{u,v)d(u,v)
u,veV
where d(u,v) 1is the number of edges in the

unique path from u to v in T. Let

cost(r,s) = min {cost(m) | m is an exact
matching for r,s}.

if

A matching m cost(m) =

cost(r,s).

is optimal for r,s

It is convenient to relate a matching to a
flow in a directed graph. Choose a node w, and
direct the edges of the tree to point away from w.
Corresponding to the usual way of drawing trees
with the root at the top, we let high(e) be the
endpoint of edge e which is closest to w, and
low(e) be the endpoint farthest from w.

In the remainder of this paper, it will be
convenient for w itself to have an edge entering
it. Therefore, we add a new node v to serve as
the root, and we let rootedge(T) = (v,w), an edge
from v to w. Resources will never be placed
on v, and requests will never originate at v;

v and rootedge(T) are just notational conven-

iences,

A flow is a function f: E~+R which des-
cribes the "movement' of resources from thedlr
initial placement to corresponding requests. A
positive value of f(e) denotes a flow along the
direction of the edge (i.e. towards the leaves)
whereas a negative value of f(e) denotes a flow

towards the root. A flow is stable for =r,s if
for every vevV,
r(v) + E f(e) = s(v) + Z fle").
erhigh(e)=v e':low(e)=v

Thus, at every node, the flow out equals the flow
in.

The cost of a flow is defined to be

cost(f) =) lf(e)l.
eckE
if it is stable

Call a flow f optimal for r,s

for r,s and has minimal cost over all such flows.

The following theorem formalizes the intui-
tion the flows correspond to resources moving
along edges and that in an optimal matching,
resources do not move both directions along the
same edge. We omit the straightforward but
tedious proof. ’

Theorem 2.1.1. Let m be an optimal match-
ing and £ an optimal flow for =r,s. Then
cost(m) = cost(f), Moreover, if either m or f
has an integral range, then the other can be
chosen so also.

The removal of any edge e of a tree T
splits the tree into two disconnected components:
B(e), the nodes "below" e, and A(e), the nodes
"above' e, B(e) and A(e) are defined by:

B(e) = {veV | v is in the subtree
rooted by low(e)}

A(e) =V -B(e).

The flow along e in any flow for r,s depends
only on the total number of requests and the total
number of resources in B(e). For any function

a: V—>R+ and ecE, let

total(e,g) = Z g(v).
veB(e)
If total(e,r) exceeds total(e,s), then there

are more requests than resources in the subtree
B(e), so the excess must be satisfied by resources
flowing into B(e) wvia the edge e. On the other
hand, if total(e,s) exceeds total(e,r), the
excess resources in B(e) are needed by requests
in A(e) (since total(r) = total(s)), so they
must flow out of the subtree via e. By our con-
vention that the sign of the flow denotes its
direction, the directed flow in either case is
given by

dflowr S(e) = total(e,r) - total(e,s).
E]

Theorem 2.1.2. dflowr s is the unique

L
stable flow for r,s.

Proof, The argument sketched above shows
that there is at most one stable flow for =r,s.

We leave to the reader to show that dflowI s is
3

stable for r,s. O
Theorems 2.1.1 and 2.1.2 immediately yield:
Theorem 2,1,3. cost(r,s) = cost(dflowr S).

L
Thus, our original problem of studying opti~
mal exact matchings reduces to the problem of
studying a particular stable flow.
2.2, Expected Costs

In this section, we introduce probability

326

distributions for sets of requests and define costg
of placements in terms of thelr expected costs
given a randomly chosen set of requests,

If ¢ is a probability functlon on V apq

+
teN, then a random i V=R can be chosen accord-
ing to a probability distributlon determined as

follows: for each 1 din turn, 1lsis=t, ¢ 45
used to select a vertex., Then =©(v) is the total
number of times v is selected for each veV, ye

always assume ¢(root) = O,

Fix ¢, t as above, and let a: Vﬂ»R+ with
total(s) = t. Then expcost(s) denotes the
expected value of cost(r,s), where ¥ 18 chosen
as deseribed above, and minexpeost =

+ \ .
min {expcost(s) | a1 VR and total(s) = },
The flow along an edge ¢ depends only on
total(e,s), the number resources Iu the subtree

below e, and not on Lthelr partlcular placement,
Let expflow (u) be the expected value of

|dflowr S(e)|, where 1 18 chosen randomly as
»

described above, and 8 18 any placement with

total{e,s8) = u,
The following two expanslons are easy to see,

Theorem 2.,2,1. Expcost(s) =

Z expflowe (total{e,s)).
egl
Theorem 2,2,2. Expflowe(u) =

) $lv).

t

ty 1 -1,
I Gptap) ™ u-t], where p =
1=0 veB (@)

The next theorem shows that the expflow
function has a simple form.

Theorem 2.2,3., Tor any fixed ¢, t=1, and
eel, expflowe 18 an unbounded, convex, piecewlse
linear function from R+ to R+, with all singu-
larities occurring at integer values.

Proof. By Theorem 2,2.2, expflowe(u) is the

sum of functions gi(u) = lci'

u—i[, where ki

does not depend on u, 0sls<t, Each 8y ls a
convex, plecewise linear function from R+ to R+
with a singularity at u = i, and at least one of

the gi's is unbounded. Since addition preserves
all four required properties, the result follows.[]
If eeE, let E denote the set consisting

of e, together with all edges below e in T,
50 dsEe if low(d) e B{e). Define

expeost _(s) =) expflowd(total(d,s))
deE
e

and

minexpecost (u) = min{expcoste(s) | total(e,s)=ul

Thus, expcoste(s) gives the portion of the

expected cost of placement s due to flow in the
subtree below (and including) e, and
minexpcoste(u) gives the least such cost, sub-

ject to the constraint that exactly u resources
be placed in the subtree.

From these definitions and Theorem 2.2.1, it
should be clear that

expcoste(s) = expflowe(total(e,s))

2
+ Z expcoste (s)
i=1 1
where B1seen €, are the immediate descendants of
edge e. Optimizing over all s with
total(e,s) = u, we get
Theorem 2.2.4, Let ¢, t, and e be fixed.
Let Bireensey be the immediate descendant edges
of e, and let ue R+. Then
minexpcoste(u)==expflowe(u)
L
+min {izlminexpcosl:ei (ui) l EuiSu} .

In order to obtain more information about the
values of the minexpcoste function, we first

show that it has a simple form.

Theorem 2.2.5. For any fixed ¢, t=1, and
minexpcoste is an unbounded, convex, piece-

wise linear function from R* to R+, with all

singularities occurring at integer values,

e,

Proof. We use induction on edges in the tree,
working from the leaves toward the root.

If
one edge,

e is a lowest edge, then there is only
e, in Ee' Thus, minexpcoste =

expflowe, which has the needed properties by

Theorem 2,2,3.

Now assume the result holds for edges below
e, and let e.,...,e denote the immediate
descendant edgés of €. Consider the expression
for minexpcoste(u) given in Theorem 2.2.4. The

first term has the needed properties by Theorem
2.2.3, It remains to show that the second term is
convex, plecewise linear and has all singularities
at integers.

Write fi for minexpcoste , g(u) for
i

min { Z fi(ui) I b uiSu 1.

By the induction hypothesis, each fi is

unbounded, convex and piecewise linear with all
singularities at integers. Hence, the derivative
fi(x) is defined at all non-singular points, We

327

define fi(n)

the limit of fi(x)

for n a singularity of fi to be

as x approaches n from

above. By convexity and linearity of fi’ fi is

a non-decreasing step function over the domaim R
with steps occurring at integer points.

let r be the small-

i
- '
with fi(ri) =20, T

For each 1, 1<ic<g,

est element of R+ exists

i

since f €N by the proper-

i i
ties of fi. We consider two cases:

is unbounded, and r

uzi r,. 80

i
g 1s constant for all such

Case 1. Then g(u) = I f,(x,),

u.

Case 2. u<Zr;,. Let § = {fj(x) [

1=i<8, xel0, ri)]}. Tor o&S and 15158,
define
%0 = glb {z I £f'(z) 20}
i i
a !
vy = lub {=z [fi(z) g}
By the properties of f], we have xg,

o o _ c ' - ;
y; €N, x; Sy;st;, and fi(z) =g 1ff z €
a [e1 . o2 a .
[xi, yi). Hence, the intervals [xi, yi) for
0, r.J,

= g c .
IU = [Exi, Eyi) for o0eS partition [0, I ri).

g eS8 partition s0 the dntervals

We now show that g 1s linear
Choose y = (ul,...,uz)

gEeS,
Let ue IU.

Choose
I.

o
such that g(u) = & fi(ui)

over
and I uiSu.
choice of u and using the facts that fi(z) <g

iff z<xg and f__;_(z)>cf iff zZyz, it is

By the

straightforward to show that xg SLH'syz and

- = g L3 - a
I u; = u. Hence, fi(ui) fi(xi)-kc (ui xi).

Summing over all i, we get

L
g(w) =] £ (u)
1=

1

il

o o
b fi(xi) + 0+ (2 u, - I xi)

)]

o a
% fi(xi) + g+(u - I xi),

a linear function of u as desired.
The convexity of g follows from the mono-
tinicity of the fi. 0

Examination of the proof of Theorem 2.2.5
allows us to sharpen Theorem 2.2.4 by stating that
the minimum cost can always be achieved by placing
whole resources on all vertices.

Theorem 2.2.6. Let ¢, t, e be fixed.
Let el, ...,ez be the immediate descendant edges

of e, and let ueN. Then minexpcoste(u) =

L
eXPflcme(u) +min { . Zlminexpcostei(ui) IZuiS u and uieN}.
i=

2.3, Optimal Placement

We are interested in determining the "best™
placement functions s: V+R+ in the following

sense, We say s: V+R+ is optimal for ¢, t
provided total(s) = t and expcost(s) =minexpcost.
The first characterization result follows imme-
diately from Theorem 2.2.6 and shows that there
are optimal s which take on integral values only,

For any probability function
there exists s: V+N which 1s
t.

Theorem 2.3.1.
¢ and any teN,
optimal for ¢,

Proof. Theorem 2.2.6 essentlally provides an
algorithm for producing such s. For any edge e

of T with immediate descendants BpaseraByy and

any ueN, one determines values of s for all
nodes below e by considering all possible decom—

positions Ugsennylly with EuiSu and uieN for
all i.

Foxr each such decomposition, one recur-
sively determines values of s for all nodes

below each e and corresponding costs. The
decomposition with the smallest total cost is
chosen. 0

In order to analyze the cost of determining
an optimal placement as above, we do not perform a
straightforward recursive analysis of the algorithm
described in the proof of Theorem 2,3,1, Rather,
we take advantage of repeated work in various
recursive calls., During the algorithms, one must
calculate expflowe(u) for all e ¢ E and

all u, O0=<us<t, The number of arithuetic opera-
tions involved in one calculation of expflowe(u)

is 0(t) (if performed judiciously), independent
of e and u., It is these costs which dominate
the total count of arithmetic operations, so that

an O(tz-, E|) analysis results. We summarize
this discussion in the following theorem.

Theorem 2.3.2., There is an algorithm using

0(1:2-' E|) arithmetic operations which, for any
tree T = (E,V) probability function ¢, and
t €N, determines a placement of whole resources
which is8 optimal for ¢, t.

2.4, Optimizing Flow on Individual Edges

In this section, we show that the flow on
each individual edge is optimized for a number
equal to the median of an appropriate binomial
distribution. We use this to bound the distance
from optimal of two simple placements,

Let neN - {0}, 0sp<l, Let x be

328

a random variable whose value ds the number of suc~
cesses In n independent trials, each of whoge

probability of success i1s p. Define %P_)_
as the smallest cg rt such that Prlxs<c]al ,

Theorem 2.4.1., Let ¢ bhe a probability
function on V, teN - {0}, ec¢E. Then

expflowe(u) is minimized at u = median(t,p),

where p = | $(v) .

veB(e)

Proof. Write f for expflowa. By Theorem

2.2.3, f is minimized at an Integer u which is
the smallest reN with F£(r+l) - £(r) ponnega-
tive. Now

E(r+1) - £(r)

["
= Z (_'i)pj'(l-p)t‘ J“lr-i-l—-il
1=0 ~

t . -
-7 (;)pi(bp)" jL|r~:L|
1=0

by Theorem 2.2.2,

t - .
Zoq)pi(l-xnL Ylerr-a] = |x-2)
d=

o o L S .
= 1 Getatte T Gptamptt
1=0 I=rl ™
r “ 4]
=2 (i)pi(l»p)i' 1oy
1=0 :
= 2Pr{x<gr]~1.
Thus, u 1s the smallest reN with 2Pr[xsr]-

1 nonnegative, or Pri{xs<r]lzk%; that is, u-=
median(t,p). 0

The following theorem follows immediately
from Theorem 3,2 and Corallary 3.1 of Jogdeo and
Samuels [1]., It dis also implicit in some earlier
work by Uhlmann [2,3].

Theorem 2.4.2 Let
neN, n=z21l,

{|np|, [np]}.

Since wnp 1s the mean number of successes iIn
n independent trials with succesa probability p,
this theorem implies that the mean and median
differ by less than one,

(Jogdeo and Samuels).
0<psl. Then median(n,p) €

Thus, each edge individually has its flow
optimized at a value which 1s either the mean

rounded up or the mean rounded down. However, it
is not always possible to achieve this local

optimum consistently throughout the tree. In fact,
in this very general setting, an optimal placement
might require some subtree to contain a value
other than the mean rounded up or down.

For any T, ¢, t, and for each edge ec<E,
let p, = Z p(v). s V-+R% is an exact fair-~
veB(e)
share placement for T, ¢, t if for each ecE,
total(e,s) = tp,. s': V+N dis a fair whole
placement for T, ¢, t if for each ecE,

I_tpej < total(e,s) < rtpe—l.

It is not difficult to see that for any T,

¢, t, an exact fair-share placement and a fair
whole placement exist., Let s(v) = te¢(v) for
veV. Then s 1ig an exact fair-share placement.

Let s'(v) = Lp~¢(v1j if v is a leaf. Let
g'(v) = 0 1if v is the root. TFor v not a leaf
or root, let e be the edge with low(e) = v,

and let CRERRYLT) be its immediate descendants,

L
Let s'(v) = Lppej ~ Z Lppe J. An easy induction
1=1 1

' is a fair whole placement for T,
total(e,s') = L;pej for

shows that s
¢, t, and in fact,
every e€R.

In the special case that ¢ is non-zero only
on leaves, then there is a fair whole placement
s" which is non~zero only on leaves. It can be
obtained by a simple recursive construction.
Start at the root of T with ¢t resources to
distribute. Below any edge e in the tree, we
will have either [}pej or [EpET to distribute.

Assume e has descendants 85008y Distribute

th

subtree. Since

Ltpe_l or rtpe_l to the i
1 1

L

 Leng 1< Len) < ool < 1 Tep, T
i=1 1 1 i

i=

the distribution is possible. We then proceed

recuraively on Biseresy.

Example 2.4.1.

binary tree (except for rootedge(T)), ¢(l)==é%%
2,

Let T be a 32-leaf complete

for each of the leftmost 16 leaves for

256
each of the rightmost 16 leaves, and 0 for all
other nodes. Let t = 16, The placement s which

has s(2) = 1 for each of the leftmost 16 leaves
£, and 0 elsewhere, has total(e,s) = 16 for e
the left descendant of rootedge(T). However, the

mean number of requests in the subtree below e
15

is e 15,

Nevertheless, one can determine by

is optimal, and
expcost(s')

[so s is not a fair whole

placement.
exhaustive searching that s
expecost(s) is strietly smaller than
for any fair whole placement s',

We note in general, however, that the optimal
cost cannot be too much less than the cost of any
exact fair-share placement or fair whole placement,

Theorem 2.4.3. Let s be an exact fair-
share placement or a fair whole placement for T,
$, t. Then expcost(s) sminexpeost + |E].

329

By the results of this section,
u, where

Proof.
expflowe is minimized at some

Ltpej Sus rtpe_[. Thus, |total(e,s)-u[=<1, But

then [expflowe (total(e,s))-—expflowe(u)| <1, by

caleculations similar to those in the proof of
Theorem 2,4,1. Since no placement can do better
than the optimal on each edge, s incurs at most
an extra cost of 1 per edge.

For some choices of T, t and ¢, of course,
it is possible to consistently achieve the median
on each edge -- for example, 1f the mean is an integer
for every edge. But in general, we have no global
optimality results. In §4 we obtain optimal
results for a special case.

Example 2.4,2., 1f T dis a complete binary

tree with leaf vertices L, |L| = 2k, t =a -2k
for integer a, and ¢ the uniform distribution
on the leaves, then the placement s such that

s(v) = a for each vel and s(v)=0 for veV-L
is optimal, because it achieves the integer mean on
each edge.

Let T be the tree deplcted

Example 2.4.3.

below, ¢ as indicated on the leaves and 0
elsewhere, and t = 12,
1
s
%
‘
i1 0 1 1 1
4 6 12 12 6

Then the means are indicated on each edge below,
so all resources can be placed at the levels
indicated by the circled numbers.

Nodes with Zero Placements

2.5,

We conclude this section with a somewhat sur-
prising characterization theorem. It says that if
there is a probability less than % of any request
arriving in a subtree, then it is bad to place
even a small fraction of a resource anywhere in
that subtree.

t
Theorem 2.5.1, Let eel satisfy (1-p)~ >%,

where p = Z ¢$(v). Let s be optimal for ¢,
veB(e)
t. Then s(v) =0 for all veB(e).
Proof. Assume not, and fix e, 8 exhibiting

Choose e' below e to be a lowest
s(low(e')) >0, Define a new
placement s', where s'(low(e')) = 0, s'(high(e') =
s(high(e")) + x, and s'(v) = s(v) otherwise.

We show that expcost(s') <expcost(s), contra-
dicting the optimality of s.

the contrary.
edge for which x =

By Theorem 2,2.1, e' is the only edge for
which s and s' have different expected absolute
flows, so

expcost(s) - expcost(s b}

expflowe, (total(e',s)) - expflowe, (total(e',s'))

expflowe (X)) - expflowe, 0).

- 1

veB(e')

Applying Theorem 2.2.2, the

Let o(v).

n

difference is

t .
I Grta-n il - 1)

i=0
£, 5 oe 4 i
> x(l-r)" +] (Or @ (=x)
i
i=1
t

= x(2(1-r)" - 1.
since (1-r)t =2 (1-p)F>%, the difference > 0,
giving the needed contradiction. 0
3, BOUNDS ON THE- COSTS OF OPTIMAL PLACEMENTS

In this section, we assume that T dis a com-
plete (balanced) binary tree (except for
rootedge(T)) with leaves L, and let n = |L]|.

Assume ¢ is arbitrary, except that as always
$(root) = 0. We show that optimal placements are
much better than centralized placements; in fact,
their expected cost is linear in the number of
leaves of the tree.

3.1. Cost of Exact Fair-Share Placements

Since we do not have a direct characteriza-
tion of optimal placements, we instead bound the
expected cost of an arbitrary exact fair-share
placement. This upper bound, of course, provides
an upper bound for optimal placements, Moreover,
by Theorem 2.4.3, the costs cannot differ by more
than 2n.

330

Theorem 3.1.1. Let T, ¢, L, n be as

Let teN, t=zl, and let s V+R+ be an

above.

exact falr-share placement with total(s) = t. ILet

ecE and p, = 7 (), m=[LnB(e)|. Then
veh (a)

expcoste(s) Scvymtp,

ig a fixed constant independent of the
¢, t, 8, or e,

Here ¢
cholce of T,

Before proving the theorem, we need some
technical lemmas.

For teN, bzl,

Lemma 3.1.2.
0spsl, i1t dis the case that

sst-1,

8 N E e — N
I Gptap) ey = e e e,
1=0

Proof, (li:)pi(].—-p) t;“i(tp-i)
- opGptam Tt - eThet e

Since (;) = (tll) + (;:_:'.IL), this expression is in

turn equal to
- " t~1 =) 1 oy
tp(til)pi(lrp) e et a-pt L
-1, 4. ek
- et O

= tP(t:Ll)pi(l—p)t"i - L'p(ijj)pi—]'(Ilrp)t”(i_l).

s o "
Thus iZO<§>pL<1—p>L *(ep-1)

N 8 o K -
Gapter + o |) CTheta-m
=1 -

s i
- iZl(giJl_)pi—l(l.-p)L (4-1)

t~1

] .’_' . !
ep(-p) o+ ep |] (Tt (1R
=1 -

s-1 -
- izo(tll)pi(l_p)t i

e (0 ep | (7% (1) 0 - (Fhp”)

t-1

ep(" S (1-p) 578, O

Lemma 3.1.3, If teN, t=1, 0sp<l, then

F (Eyok(1py ti -1, |tn] £-lep)
.zo(i)l’ (1-p) | tp-i] =2tp(|)P Bl -p) T
i=

t
Proof Z(z)pi(l—p)t—iltp-il

i=0

[tp] .
) (p" (1-p)
i=0

]

t_'i(tp—i)

t
-7 (E)pi

i=[tp|+1

(1-p) " (ep-1)

Lepl -
2 T Eptaep T ep-0)
i=0

t
- 1 Gt -0
1=0

2tp<@5§>pLFPJ<1—p>t‘LFEJ

[

t -
- 1 Gt a-e) T ep-0)
i=0

by Lemma 3.1.2,

t
t, i
iZo(i)p

But

(1-p) " (ep-1)

Z (; >p (1-p)*~

i=1

T-p) Fep

t
I G

i=0

1

t .
=) Optaptt
i=0
1(1 P)(t 1)-(i~-1)_ tp-tp=0.

0

- tp Z (i l)pi

Lemma 3.1.4. For teN, t=21, 0<p<l,

tp21l, it is the case that
¢ ampy t Ll Uﬂ<<rh~)—————
(&) /I len]

A version of Stirling's formula says
n=1, it is the case that

Proof.
that for all neN,

n.n n,n 1
<e) Y21n £ n! £ (E) Y2mn (l+~4*1—_:) .
tp<t so [tp]=t-1 and t-|tp]=21.

Then

e-lepl |

gy

t- Lep 1
=(=). (l+7&—
Lt

T TED - L]) e [y)

331

Therefore,

-1 -
(&ﬂ)ﬂﬂﬁtbﬂpbﬂ
t-|tp]
5(.1?___[4:_&). (l+..1___).(_t‘t)
/T 4t t-tp
t Leel 1
(1}§ir) C)
V2m|ep| (- |tp|)
/ £ l_tE . (Lotp |_th)I-EJ
2wt | tp] t-Ltp |tR
But
X)[_tp_l t-l_t__ll‘t:[)'l< . 1)Ltlﬂ
(tp = LFRJ) < (Iziﬂ
. e~ Lep]
SE,F—Tb:Jf?asl ad(t_Ep <1,
The lemma follows. f
Lemma 3.1.5. Let T, ¢, t be as in Theorem
3.1.1. Let eecE and let p=) $(v). Then
expflowe(tp) <6-vtp . veB (e)
Proof. If p= 0 or p=1, then
expflow ow (tp) = 0. Assume O < p <1, By
Theorem 2.2.2 and Lemma 3.1.3,
t
expflow (tp) =) (E)pi(l-wt"iltp-il
i=0

= 2p (D) o) Lenl , Leel
tpz1l,

1f Lemma 3.1.4 shows this is at most

e

4t V21r|tp

2tp = (1 + 5=

A
[

On the other hand, if then

X (@;h)cl—p>t'lfﬁjptﬁpj==2tp + (1-p) "< 2vip.

tp<1,

In any case,

expflowe(tp) <6°vVtp . 0

Define a function

Proof of Theorem 3.1.1.

G NXR++ R+ recursively:
G(0, u) = 6 Yu H
G(k, u) = max {G(k—l,ul)+G(k—1,u2)

+6¢Vu | ul+u2Su} , k>L.,

We first show by induction on m that
expcoste(s) SG(log2 m, tpe). Since s 1s an exact

fair-share placement, total(e,s) = tp,

m=1: Then low(e) is a leaf, so
expcoste(s) = expflowe(total(e,s))
<6 /EEE by Lemma 3.1.5
= G(0, tpe)-
m>1: Then m=2k since T is a complete
binary tree. Let er 8y be the two immediate
descendant edges of e. Then

expcost (s) = expflow (total(e,s))
*P e e

2
+ X expcoste (s).
i=1 i

By induction,

expcost (s) =G(k-1, tp_), 1=1, 2.
e, e,

i
Again using Lemma 3.1.,5, we have

2
} 601, tp,)
i=1l i

<G(k, tpe)=G(log2m, tpe)

expcoste(s) <6 thE +

+ tp

since tpe e
2

s tp_.
1 e

We complete the proof of the theorem by show-
ing that

G(k, u) sc* Zk/2 . Y

for some constant c.

First observe that for each keN, G(k, u},
regarded as a function of wu, is concave and mono-—
tonically increasing. This is clearly true for
k=0. For k>0, we know inductively that
G(k-1, u) is concave and monotonically increasing.
Hence, G(k—l,ul) +G(k—-l,u2) <2+ 6(k-1, (ul+u2)/2)

< 2+ G(k-1, u/2) whenever ul+u2£u, s0

(*) Gk, u) =2-G(k-1, u/2)+6+/u,
and G(k, u) dis concave and increasing.

We proceed to solve the recurrence equation
(*), First, substitute a- Zk for u din (%) to

332

get
Gl,a s 2% =2 - 6(k-1, a- 25Ny 46252 /2T
Now, divide both sides bv 2k and express in terms

of G', where G'(k, a)=0C(k, a- 2k)/2k, to get

' - 6:Va
6'(k, a)=G'"(k~1, a)+ 2k/2 .

Also,

G'(0, a)=G(0, a)=6+/a .

Hence,

P

G'(k, a)=
i

N o~
o

R 56 0E] 2742

0 2 i=0

6 - E p~1/2
1=0

The series is convergent, so let c=

Then G'(k,a) <c/a . Substituting back, we get

G, w) =25-G'(k, /2% sc- 22/

as desired.
We conclude that

expcoste(s) < G(logzm, tpa) Sec/mtp, . |

Let T, ¢, L, mn, t be

Corollary 3.1.6.
as in Theorem 3.1.1. Let s: ‘J+R+ be an exact
fair-share placement for T, ¢, ¢, and let
s': V+N be a falr whole placement for T,
Then

expcost(s) Sc*vnt

b, L.

and
expecost(s') £ c+V/nt+2n-1.

Proof. The first bound comes from a direct
application of Theorem 3.1.1 to rootedge(T). The
second bound follows from the first using Theorem
2.4.3 and that fact that an n-leaf binary tree
has at most 2n-1 edges (including vrootedge(T)).

O

3.2. Cost of Centralized Placement

s is a centralized placement if s(v) =0
everywhere except at Tow(rootedge(T)), and
s(low(rootedge(T)))=t. For such an s,

expcost(s) =t logz(n) .

Note that the ratio of expected cost for a
centralized placement to a fair whole placement is
at least

t logz(n)
e Y€ Vn+on

When t is small relative to n, then the cen-
tralized placement is superior, for reasons
similar to those discussed in Section 2.5.

However, for t=§(n), the fair whole placement
is better by a factor of Q(logzn), and for

t»>>n, the ratio approaches /E, that is, the
centralized placement is worse by a square.

Note also that for t=Q(n), the fair whole
placement has linear expected cost, so the expected
cost per request is a constant, whereas the cost
per request for a centralized placement is logzn.

4. OPTIMAL PLACEMENTS FOR SPECIAL DISTRIBUTION

In this section, we give several characteriza-
tion results and algorithms for optimal placements
for a further restrxiction of the case considered in
Section 3 in which we assume ¢ is the same on all
leaves and zero elsewhere. Specifically, we assume
the following for this section:

(a) T=(V, E) is a complete binary tree
with leaves LcV, n=]|L|, except that, as
before, the root has a single emanating edge,
rootedge(T).

(b) ¢(v)=1/n for all vel, and ¢(v)=0 Ffor
all veV-L,

We define the level of a vertex to be its
distance from the root. By our conventions regard-
ing rootedge(T), the leaves are at level
log2n+l.

For the special case being considered in this
section, certain of the relevant definitions can
be generalized to reflect the symmetry in the tree.

For example, if ey and e, are edges with

high(el) and high(ez) at the same level k,

then expflowe = expflowe . Therefore, we write
2

expflowk in place of either. Similarly, we write

minexpcost{c for minexpcoste, where k 1s the

level of high(e).

4,1, A Bound on Levels with Nonzero Placements

Theorem 2,5.1 can be used to bound the level
at which nonzero placement can occur in an optimal
placement.

Theorem 4.1.1. Let wveV be at level
kz I—logzt_l +2. Let s be optimal for ¢, ¢t.
Then s(v)=0.

Proof. By Theorem 2.5.1, it suffices to

—_—t 1 for teWN. It
[og,t + 1] 2

217982

also suffices to consider t a power of 2. Im

this case, the inequality is just (l""glf t>~21~ s

show that (1-

which follows by an easy induction on log,t. 0

Let Tt= (Vt, Et) denote the tree consisting
of the vertices of T at levels from 0 to
rlogzt'] +1 inclusive and the edges of T between
of Tt are the vertices at

. Let qbt be

them. The leaves Lt

level rlogzt-] +1, and n = 'Lt
defined on the vertices of T _ by ¢t(v) = 1/nt

for all vsLt and ¢t(v)=0 for cht—Lt. If
st V+R+ is such that s(v)=0 for all wveV at
levels below rlogzt—[+l, then S,

be defined from 8 by simply ignoring the missing
vertices. Then it is easy to see that

expcost(T) (8) = expcost(Tt) (st) +te (logzn - rlogzt'-]).

(Superscripts distingulsh the trees under consi~
deration,) We then have the following.

: Vt - R+ can

(T

Theorem 4,1.2, If t>1, then wminexpcost

= minexpcost(Tt) +t (10g2n- rlogzt_l).

Proof. (2) follows from Theorem 4.1,1 and

the remarks.
() follows because any placement for ’l‘t

can be augmented to a placement for T by placing
zeros on the additional nodes, thereby incurring]
the stated cost, [

Thus, in the remainder of this section, we
assume that the maximum level in T is at most
rlogztﬂ +1 (that is, mn<2t). The reader can
then use Theorem 4.1.2 to infer corresponding

results about cases where n22t,

Example 4.1,1., The case where t=1 is
somewhat peculiar. The reader can verify that for
all T with maximum level number at least 2, the
following pictures all reprasent optimal placements.

levels: O

A A A

That is, in the first case,

J

§(v) = 11 for v the son of the root,

0 otherwise,
while in the other two cases,

s(v)= {1 for v the left (resp. right)
grandson of the root,

0 otherwise.

This is the only value of t for which an optimal
placement can have nonzero values below level

[1og tqi + 1,

Example 4.1,2. if 1:=2k and n>t, then
the placement with one resource on each of the ¢t
vertices at level k+1 is optimal: nothing is
placed below this level, and an optimal placement
for the whole tree results from an optimal place-
ment within levels up to log t+1. But clearly
putting one resource across all leaves of Tt is
optimal, as seen in Example 2.4,2.

4.2, Algorithms for Finding Optimal Placements

In this section, we prove two sharper versions
of Theorem 2.2.4 for the special case of this
section, and use them as bases for two algorithms
for finding optimal placements.

+
Theorem 4.2.1. Let teN, ueR and keN,
k < logyn - 1. Then minexpcostk(u) = expflowk(u)

+2 +min {minexpcostk+l(u') [u'e{0,1,..., l:EZ_I’ %}}.

Proof. < is clear. We show 2, Write f for
. + .
minexpcosty . Consider any ugs uzeR with
ul-!-u2 <u and f(ul) + f(uz) minimal, We will

produce u'e{O,l,...,E;—J,lzl—} with 2f(u")

< f(ul) + f(u2) .

By Theorem .2,2.5, there exists reN such that

r dis the smallest element of R+ with £(r) s f£(s)
for all s=zr. We consider two cases.

Case 1. uzlr.
Choose u'=r. u'E{O,l,...,EZAJ} and

26 (u') €£(u)) +£(u,).

Case 2. u<2r.
Then u1+u2=u Choose u' =121-. Then
ul-i'u2
2f(u't) = 2£¢(3)Sf(ul)+f(u2) by convexity of f.

An appeal to Theorem 2,2.4 completes the
proof.

For any telN, there exists
s(v) =s(v') for all palrs of ver-

Theorem 4.2.2.

s such that
1

tices v, v' at the same level, which is optimal
for ¢t.

Proof. s can be found by a recursive
algorithm based on Theorem 4.2.1. |

We proceed as before to analyze the cost of
finding the placement of Theorem 4.2,2, During

334

During the algorithm, one must calculate

t -
expflowo(t) , axpflow:L (7) N ,expflowlog(n) (%) . In
addition, one must calculate expflowl(i) for all

1gk

4 Iy -
ieN, is, expflowz(i) for all ie¢N, B

i . t
expflowg(-z.-) for all feN, 1 S5seee, e.xpflowlog(n)
t

2i t
(—n—) for all 1e¢N, is7.

This is a total of O(t log n) expflow computa-
tions. Since each such computation lnvolves 0(t)
arithmetic operations, we have the following
theorem,

Theorem 4.2,3. There ls an algorithm uging

O(tzlog n) arithmetle operatlous which, for any
cree T with n leaves satisfylng the assumptions
of this section and for any teN, determines an
g which i1s optimal for G such that a(v) =a(v")
for all pailrs of vertlces v, v' at the same
level.,

Note that the bound of Theorem 4,2.3 represents
an improvement over the bound in Theovem 2.3.2
applied to the speclal case of thls sectlon; the
placements produced by the two algorithms have
somewhat different properties, however, The
remainder of this subsectien deals with Integral
placements, the siltuatlon conglderad In Theorem
2,3.2,

Theorem 4,2.4, Let ¢,

u, kelN, kS].ogzn—l.

Then
minexpcostk(u) = exp.‘E.l.owk(u) + m‘.Ln{1nzinexpcostk+1(ul)

+ minexpcoatkﬂl(uz)]ul,u2 €N, uy +u, Su,

and |u2-—ul| s 1

Proof,
minexpcos tk 41

Again, we show &, Write £ for
By Theorem 4,2.1, there 1s a value

u'e{0,1,.,., I:z—uJ . 32’1} guch that minexpcustk(u) =
expflowk(u) +2fCu'), Ifu'e{0,..., l:%J }, then we sim-

ply take =u', If u' m—% ¢ N, then we

Y17
take u, = l_%-J and uy = qu H

plecewise linearity of £
properties.

in this case,

guarantees the required

there exists
Moreover, S

Theorem 4,2.5. For any
s: V+N which d1s optimal for
has the additional properties:

teN,
t.

(a) 1if e and e, are two edges with high(el)
=high(e2), then Itotal(el,s) - total(ez,5)|51,
(b) if e is any edge with high(e) at level Kk

then total(e,s) < I:E:1 .
21(

Proof. Theorem 4.2,4 leads naturally to a
recursive algorithm yielding a placement in V-~N
and obviously satisfying (a). To see that (b)
is also satisfied, assume the contrary, and let
e be a highest edge in the tree with

total(e,s) > wl where high(e) is at level k.
2

Since total(e,s) e N, we have total(e,s)=2 %] +1
2

L
2k
the edge # e with high(e) = high(e'),
e" be the edge immediately above e in T.

t t
total(e";s) < l:zﬁ] <

— + 1.
Therefore,

z—-+1, e 1is not rootedge(T), so let e' be
and let

Then

zk-l

total(e's) < total(e",s) - total(e,s)

t
pk-1

t
+l)—(—2—k-

£
Sk

< (+ 1) =

But then
|total(e,s) - total(e',s) l >1,

contradicting property (a). 1
Once again, we analyze the cost of determin-

ing an optimal placement with the properties of
Theorem 4.2,5, One must calculate expflowo(t),

and also expflowl(i) for all ieN, dis rt/2-|,
is @L [e/4],...,

expflovy . ey (1) for all ieN, is [t/n]. This isa

expflowz(i) for all ieN,

total of 0(t)
are assuming that

expflow computations, (since we
n is 0(t)).

Theorem 4.2.6.

0(t2) arithmetic operations, which for any tree
T and for any teN, determines an s: V+N
which is optimal for t, and which satisfies con-
ditions (a) and (b) of Theorem 4.2.5.

There is an algorithm using

4.3. A Fast Algorithm for Determining Optimal

Placements

The results of Section 2.4 can be used to
prune the algorithm's search space still further,
leading to a much faster algorithm.

Theorem 4.3.1. Let t, u, keN,
t t |
k<log(n) ~1, |[—|<us|—|. Then
k 2k

2
minexp costk(u) = expflowk (w

+ min{minexpcost (ul) +mir1expcostH1(u2)|

ktl

t t
ups Uy, E{"FEJ ’[:2“1?1]} and ul+u25u}.

335

Proof. Again, we show 2. Write f for
minexpcostk+l. By Theorem 4.2.4, there is a pair
vy, u2eN such that u1+u25u, "-‘2"‘-‘1|51

and minexpcostk(u) = expflowk(u) + f(ul)+f(u2).

O0f all such pairs, choose one minimizing
u- (u1+u2) and assume ul fu,, We must check

t t
that ul, u2 E{'Fl,'ﬁ]}.

-

t t
>—k-_i_—ljl, then uZEL—k_-i-le-l-l’ s0

2
t t
u2ul+u2 22’-—~—k+1}+1> l-—-——zl:l,

If t,

.
u, 2 [——|. Then
1 {;l&l 2

a contradiction,

< L_“E“‘T
If ul<'ﬁ’, then u1£|.kf-:+l‘| -

uzslﬁ. Then u—(ul+u2)2'}—ti;‘

t | £
([2k+ﬂ -1+ [2k+lJ) 1. Define a new decomposi-

Thus, u (and therefore ul)

2

tion Vs W by wl=u,l+l, Wy = Uy, Then

wl+w23u and |w2—wllsl. Now, expflowk_l_l(wl)

t
< expflowk+l(u1) because uy < Lk—":—{' -1, by
Theorems 2,2,3, 2.4.1 and 2.4.2, Thus, f(wl)
< f(ul), by Theorem 2.2.4, Hence, Wis o Wy also
satisfies the conditions used in choosing U, Uy,

but u- (ul + uz) >u- (wl +w2) , contradicting the
minimality condition, O
Theorem 4.3.2. For the special case of this

section, there exists a fair whole placement s
which is optimal for t.

Proof., Theorem 4,3.1 yields a recursive
algorithm, ad

Note that a result similar to Theorem 4.3.2
does not hold in the general case -~ recall
Example 2.4.1.

The algorithm resulting from Theorem 4.3.2 is
extremely fast., Namely, one must calculate

expflowk(i) for i=|:2~—i", 'ﬂ’ for each k,

1<k<log(n), for a total of only O0O(log n)
expflow computations.

Theorem 4.3.3. There is an algorithm using
0(t log n) arithmetic operations which for any
tree T and for any teN, determines a fair
whole placement s which is optimal for t.

4.4, Example

Some of the optimal placements discovered by
our algorithms are rather unexpected. For axample,
the following represents an optimal placement of
11 resources in a balanced binary tree with
uniform probability distribution:

Acknowledgements

The authors thank Carl Spruill, Charles Blair
and Mike Paterson for contributing their ideas and
suggestions for some of the results in this paper.

References

1. K. Jogdeo and 5.M. Samuels, "Monotone Conver-
gence of Binomial Probabilities and a
Generalization of Ramanujan's Equation,” The
Annals of Mathematical Statistics 39, 4 (1968),
1191-1195.

2. W. Uhlmann, "Ranggréssen als Schitzfunktionen,"
Metrika 7, (1963), 23-40.

3. W. Uhlmann, '"Vergleich der hypergeometrischen
mit der Binomial-Verteilung,'" Metrika 10,
(1966), 145-158. -

336

