INFORMATION AND COMPUTATION 110, 183-232 (1994)

Time Bounds for Real-Time Process Control
in the Presence of Timing Uncertainty*

HaGIT ATTiYA'

Department of Computer Science, The Technion,
Haifa 32000, Israel

AND

NaNcY A. LYNCH

Laboratory for Computer Science, Massachusetts Institute of Technology,
Cambridge, Massachusetts 02139

A timing-based variant of the mutual exclusion problem is considered. In this
variant, only an upper bound, m, on the time it takes to release the resource is
known, and no explicit signal is sent when the resource is released; furthermore, the
only mechanism to measure real time is an inaccurate clock, whose tick intervals
take time between two constants, ¢, <c¢,. When control is centralized it is proved
that

alex(L{m+1)e, J+ 1)1 +1

is an exact bound on the worst case response time for any such algorithm,
where n is the number of contenders for the resource and / is an upper bound on
process step time. On the other hand, when control is distributed among processes
connected via communication lines with an upper bound, d, for message delivery
time, it is proved that

nfes({L(m+1Ye, |+ 1) +d+c,+ 2]

is an upper bound. A new technique involving shifting and shrinking executions is
combined with a careful analysis of the best allocation policy to prove a corre-
sponding lower bound of

neoc{mie))+(n—1)d

These combinatorial results shed some light on modeling and verification issues
related to real-time systems. C 1994 Academic Press. Inc.

* A preliminary version of this paper appeared in “Proceedings of the 10th IEEE Real-Time
Systems Symposium, Santa Monica, December 1989,” pp. 268-284. This work was supported
by ONR Contract N00014-85-K-0168, by NSF Contract CCR-8611442, and by DARPA
Contracts N00014-83-K-0125 and N00014-89-J-1988.

" Most of this work was performed while this author was visiting the Laboratory for
Computer Science, MIT.

183
0890-5401/94 $6.00

Copyright @ 1994 by Academic Press, Inc.
All rights of reproduction in any form reserved.

184 ATTIYA AND LYNCH
1. INTRODUCTION

An important area of computer applications is real-time process control,
in which a computer system interacts with a real-world system in order to
guarantee certain desirable real-world behavior. In most interesting cases,
the real-world requirements involve timing properties, and so the behavior
of the computer system is required to satisfy certain timing constraints. In
order to be able to guarantee timing constraints, the computer system must
satisfy some assumptions about time—for example, its various components
should operate at known speeds.

It is clear that good theoretical work in the area of real-time systems is
necessary. In the past few years, several researchers have proposed new
frameworks for specifying requirements of such systems, describing
implementations, and proving that the implementation satisfy the
requirements. These frameworks are based on, among others, state
machines [7,29], weakest precondition methods [127], first-order logic
[14, 15], temporal logic [5], Petri nets [6, 18, 30], and process algebra
[4, 10, 13, 16, 28, 33]. Work is still needed in evaluating and comparing
the various models for their usefulness in reasoning about important
problems in this area and perhaps in developing new models if these prove
to be inadequate.

Work is also needed in developing the complexity theory of such
systems; very little work has so far been done in this area. An example of
the kind of work needed is provided by the theory of asynchronous
concurrent systems. That theory contains many combinatorial results that
show what can an cannot be accomplished by asynchronous systems; for
tasks that can be accomplished, other combinatorial results determine the
inherent costs. In addition to their individual importance, these results also
provide a testbed for evaluating modeling decisions and a stimulus for
the development of algorithm verification techniques. Similar results should
be possible for real-time systems. Some examples of complexity results
that have already been obtained for real-time systems are the many results
on clock synchronization, including [8, 11, 17, 20, 327 (see [31] for a
survey).

In this paper, we embark on a study of complexity results for real-time
systems. We begin this study by considering timing-based variations of
certain problems that have previously been studied in asynchronous
concurrent systems. In particular, we study a variant of the mutual
exclusion problem. This problem is one of the fundamental problems in
distributed computing; it serves as an abstraction of a large class of hazard
avoidance problems. We note that this particular problem appears in the
real-time computing literature (cf. [15]) as the “nuclear reactor problem.”
There, operators push different buttons to request the motion of different

TIME BOUNDS FOR PROCESS CONTROL 185

control rods in the same nuclear reactor. It is undesirable to have more
than one control rod moving at the same time, presumably since in that
case the nuclear reaction might be slowed down too much.

More specifically, we consider a system consisting of some number, n, of
identical moving parts (e.g., control rods), no two of which are supposed
to move at the same time. An operator associated with each moving part
can request permission for the associated part to move by pushing a button
that sends a REQUEST signal to the computer system. The system
responds with GRANT signals; each GRANT signal gives permission to the
designated moving part to move, but such motion is expected to be
finished no more than a fixed time, m, later. The system is only supposed
to issue a GRANT signal when it knows that it is safe to move the corre-
sponding moving part, ie., at least real time m has elapsed since the last
GRANT signal. We assume, for simplicity, that a REQUEST signal is only
issued by a particular operator if any preceding REQUEST by that
operator has already been satisfied (by a corresponding GRANT signal).
Our goal is to minimize the worst-case time between a REQUEST signal
and the corresponding GRANT signal, ie., the worst-case response time.

The computer system might consist of a single process running on a
dedicated processor or might be a distributed system running on separate
processors communicating over a message system. Solving the problem
efficiently requires the computer system to make accurate estimates of the
elapsed time since the las GRANT signal; the difficulty, however, is that the
computer system only has inaccurate information about time, as given by
inaccurate clock components within the system and by estimates of the
time required for certain events. Specifically, the only information about
time that the computer system has is the following:

1. the knowledge that a moving part will stop moving within time m
after a GRANT signal,

2. the knowledge that the time between successive ticks of any clock
is always in the interval [c¢, ¢,], for known constants ¢, and c,, where
O<c¢,<e,,

3. the knowledge that the time between successive steps of any
process within the computer system is always in the interval [0, /], for a
known constant /, 0 </, and

4. (if the system is distributed) the knowledge that the time to deliver
the oldest message in each channel is no greater than a known constant d,
0<d

In the cases we have in mind, we suppose that / < ¢, <c¢, <d <m, but we
state explicitly any assumptions that we require about relative sizes of the
various constants.

186 ATTIYA AND LYNCH

One way in which our problem differs from the mutual exclusion
problem usually studied in asynchronous systems is that we do not assume
that an explicit signal is conveyed to the computer system when a moving
part stops moving; the only information the system has about the comple-
tion of the critical activity is based on its estimates of the elapsed time. It
is fairly typical for real-time systems to use time estimates in order to make
deductions about real-world behavior. The results of this paper indicate
some of the costs that result from using such estimates.

We obtain the following results. First, we consider a centralized
computer system, consisting of just a single process with a local clock. For
that case, we show that

nle,(L(m+ e,]+ 1)]+1

is an exact bound on the worst-case response time for the timing-based
mutual exclusion problem. The upper bound result arises from a careful
analysis of a simple FIFO queue algorithm, while the matching lower
bound result arises from explicitly constructing and “retiming” executions
to obtain a contradiction.

We then consider the distributed case, which is substantially more
complicated. For that case, we obtain very close (but not exact) bounds:
an upper bound of

nles(L(m+ e, |+ D) +d+ e+ 2]
and a lower bound of
n-cy(mfc))+(n—1)d

Assuming that the parameters have the relative sizes described earlier, e.g.,
that 4 is much larger then /, ¢,, and c,, the gap between these two bounds
is just slightly more than a single message delay time. The upper bound
arises from a simple token-passing algorithm, while the lower bound proof
employs a new technique of shifting some of the events happening at a
process while carefully retiming other events.

The model that we use for proving our results is the I/O automaton
model [23], which has been extended recently to include timing [25]. As
noted earlier, many people are working on the development of other
models and frameworks for reasoning about real-time systems. The most
popular way of evaluating such frameworks involves their application to
the specification and verification of substantial examples of practical utility.
This paper, however, suggests a complemetary approach. Since a
framework for real-time processing should allow proof of combinatorial
upper and lower bounds and impossibility results, in addition to allowing
specification and verification of systems, careful proofs of combinatorial

TIME BOUNDS FOR PROCESS CONTROL 187

results such as those in this paper should teach us a good deal about the
appropriateness of a model for real-time processing.

The rest of this paper is organized as follows. Section 2 presents the
timed I/O automaton model. Section 3 contains the general statement of
the problem to be solved. Section 4 contains our results for the centralized
case, Section 5 contains our results for the distributed case, and Section 6
contains some discussion and open problems.

2. MODEL AND DEFINITIONS

2.1. I/O Automata

An I/O automaton consists of the following components: a set of actions,
classified as output, input, and internal, a set of states, including a dis-
tinguished subset called the start states, a set of (state, action, state) triples
called steps, and a partition of the locally controllel (output and internal)
actions into equivalence classes. An action 7 is said to be enabled in a state
s" provided that there is a step of the form (s', #, s). An automaton is
required to be input enabled, which means that every input action must be
enabled in every state. The partition groups actions together that are to be
thought of as under the control of the same underlying process.

Concurrent systems are modeled by compositions of I/O automata, as
defined in [23]. In order to be composed, automata must be strongly
compatible; this means that no action can be an output of more than one
component, that internal actions of one component are not shared by
any other component, and that no action is shared by infinitely many
components. The result of such a composition is another I/O automaton.
The hiding operator can be applied to reclassify output actions as internal
actions.

We refer the reader to [23, 24] for a complete presentation of the model
and its properties.

2.2. Timed Automata

We augment the I/O automaton model as in [25] to allow discussion of
timing properties. Namely, a timed I/O automaton is an I/O automaton
with an additional component called a boundmap. The boundmap
associates a closed subinterval of [0, «w] with each class in the
automaton’s partition; to avoid certain boundary cases we assume that the
lower bound of each interval is not cc and the upper bound is nonzero.
This interval represents the range of possible differences between successive
times at which the given clas gets a chance to perform an action. We

643/110/1-13

188 ATTIYA AND LYNCH

sometimes use the notation »{C) to denote the lower bound assigned by
boundmap 4 to class C, and 4,(C) for the corresponding upper bound.

A timed sequence is a sequence of alternating states and (action, time)
pairs:

So» (7'[1, [l)r S, (7'52, tz),

Define 7, =0. The times are required to be nondecreasing; i.e., for any i > 1
for which ¢, is defined, r,>¢,_,, and if the sequence is infinite then the
times are also required to be unbounded. For any finite timed sequence «
define 1,,4() to be the time of the last event in 2, if & is nonempty, or 0,
if & 1s empty; for an infinite timed sequence «, t.,4(2) = co.

If i is a nonnegative integer and C € part(A), we say that i is an initial
index for C in a if 5, € enabled(A, C) and either i =0 or s, , € disabled(A, C)
or ;e C. Thus, an initial index for class C is the index of a step at which
C becomes enabled; it indicates a point in x from which we will begin
measuring upper and lower time bounds.

A timed sequence is said to be a timed execution of a timed automaton
A with boundmap b provided that when the time components are removed,
the resulting sequence is an execution of the I/O automaton underlying A4,
and it satisfies the following conditions, for each class C of the partition of
A and every initial index i for C:

1. If b,(C)< oo, then there exists j>i with ¢;<t,+5,(C) such that
either 7, is in C or no action of C is enabled in s,.

2. There does not exist j>i with ¢;<t,+5,(C) and 7, in C.

The first condition says that, starting from when an action in C occurs
or first becomes enabled, within time b (C) either some action in C occurs
or there is a point at which no such action is enabled. The second
condition says that, again starting from when an action in C occurs or
first becomes enabled, no action in C can occur before time 4,(C) has
elapsed.

Note that the definition of a timed execution includes a liveness
condition (in 1) in addition to safety conditions (in both 1 and 2). For
finite timed sequences, it is sometimes interesting to consider only the
safety properties. Thus, we define a weaker notion, as follows. A finite
timed sequence is said to be a timed semi-execution provided that when the
time components are removed, the resulting sequence is an execution of the
I/O automaton underlying 4, and it satisfies the following conditions, for
every class C and every initial index ¢ for C.

1. If ,(C)< o0, then either f.4(x)<t,+ b, (C) or there exists j>i
with 1, <1, + b,(C) such that either x; is in C or no action of C is enabled
ins;.

TIME BOUNDS FOR PROCESS CONTROL 189

2. There does not exist j>i with t;<t;,4+ 5(C) and n; in C.

Intuitively, timed semi-executions represent sequences in which the safety
conditions described by the boundmap are not violated. The following
lemmas say that such a sequence can be extended to a timed execution in
which the liveness conditions described by the boundmap are also satisfied.

LEMMa 2.1, If o is a timed semi-execution of a timed automaton A and
no locally controlled action of A is enabled in the final state of o, then o is
a timed execution of A.

Proof. Straightforward. |

LEmMMA 2.2, Ler {a;}7 | be a sequence of timed semi-executions of a

i=1

timed automaton A such that
1. forany i21, a, is a prefix of o;, ,, and

2. limi—» P Iend(ai) = oC.

Then there exists an infinite timed execution o of A such that for any i 21,
a; is a prefix of a.

Proof. Straighforward. |

LEMMA 2.3. Let A be a timed automaton having finitely many classes in
its partition, and let o be a timed semi-execution of A. Then there is a timed
execution o' of A that extends a, such that only events from classes with
[inite upper bound occur in o' after .

Proof. First, for each class C and each finite timed semi-execution f3,
we define a time deadline(f, C) to represent the latest time by which an
action of C must occur in order to satisfy the liveness requirements. The
definition is by inductin on the number of events in §. In the base case f
consists of a single start state, s,, and we define, for any class C such that
some action in C is enabled ins,, deadline(f, C)=5b,C). Otherwise, let
deadline(§, C) = . Let

ﬁ =505 (TC,, tl)s S eens (n/'s tj)s S,'

and assume we have defined deadline for all finite timed semi-executions
with j— 1 events. Denote

ﬂ’=S03 (nla [1),51,..., (nj.>]’ t/'——l)’sj—l-

Let ;e C; then deadline(f, C)=1,+ b,(C) if some action in C is enabled
in s;, and deadline(f, C) = oc, otherwise. For any class D # C,
deadline(f, D)= 1,4+ b,(D) if some action in D is enabled in s, and no

190 ATTIYA AND LYNCH

action in D is enabled in s, ,; if some action in D is enabled in s; and also
some action in D is enabled in s, ,, then deadline(f, D)= deadline(p', D);
if no action in D is enabled in s;, then deadline(f, D)= o0.'

We construct o' as the limit of a sequence {a,};7, of timed semi-
executions, where o, = a. Starting from «,, we define «,, , as follows. Let C
be a class that has an action enabled in the final state of «,, for which the
value of deadline(a;, C) is minimum among all such classes. Then «,,, is
obtained from «; by appending a single enabled action from C, occurring
at time deadline(x,;, C). If there is no such class, then we define «,, , = «,.
Clearly, «, is a timed semi-execution.

It remains to verify that o, the limit of the «;, is a timed execution. There
are three cases.

1. o' is a finite sequence. Then o' = «; for some 7 such that no action
in any class is enabled in the final state of «;. Then Lemma 2.1 implies that
o' is a timed execution.

2. 2’ is an infinite execution in which the time component is
unbounded. Then Lemma 2.2 implies that o’ is a timed execution.

3. «'is an infinite execution in which the time component is bounded.
Let k be the number of classes in A’s partition. Since the values of 4 ,(C)
are nonzero, there is some bound & > 0 such that 7z, (2;, x) = t.q(2;) + ¢ for
all i. This implies that this case cannot occur. |

For any timed execution or semi-execution a we define sched(a) to be the
sequence of (action, time) pairs occurring in «, i.e, o with the states
removed. We say that a sequence of (action, time) pairs is a timed schedule
of A if it is sched(«), where « is a timed execution of 4. We also define
beh(x) to be subsequence of sched(a) consisting of external (input and out-
put) actions and associated times, and say that a sequence of (action, time)
pairs is a timed behavior of A if it is beh(a), where « is a timed execution
of A.

Definitions for composing timed automata to yield another timed
automaton, analogous to those for I/O automata, are developed in [25].
We model real-time systems as compositions of timed automata. (Real-time
systems were also modeled in this way in [21].)

2.3. Adding Time Information to the States

We would like to use standard proof techniques such as invariant
assertions to reason about timed automata. In order to do this, we find it
convenient to define an ordinary I/O automaton time(A) corresponding

! These rules are similar to the rules given for maintaining the variable /ast(C) in the
time(A) definition in the following subsection.

TIME BOUNDS FOR PROCESS CONTROL 191

to a given timed automaton A. This new automaton has the timing
restrictions of A built into its state, in the form of predictions about
when the next event in each class will occur. Thus, given any timed I/O
automaton A having boundmap b, the ordinary 1/O automaton time(4) is
defined as follows.

The automaton time(A) has actions of the form (=, ¢), where = is an
action of 4 and ¢ i1s a nonnegative real number. Each of its states consists
of a state of 4, augmented with a time called current and, for each class C
of the partition, two times, first(C) and last{C). current (the “current time”)
represents the time of the last preceding event, initially 0. The first(C) and
last(C) components represent, respectively, the first and last times at which
an action in class C is scheduled to be performed (assuming some action in
C stays enabled). (We use record notation to denote the various com-
ponents of the state of time(A4); for instance, s.basic denotes the state of A4
included in state s of time(A).) More precisely, each initial state of time(A4)
consists of an initial state s of A, plus current =0, plus values of first(C)
and last(C) with the following properties. If there is an action in C enabled
in s, then first(C)=b(C) and last(C)=b,(C). Otherwise, first(C)=0 and
last(C)=oc.

If (m, ¢) is action of time(A), then (s', (=, 1), s) is a step of time(A) exactly
if the following conditions hold.

1. (s'.basic, n, s.basic) is a step of 4.
2. s'.current <t=s.current.
3. If = is locally controlled action of A in class C, then

(a) s first(C)<t <5 . last(C),

(b) if some action in C is enabled in s.basic, then s. first(C) =
t+ b,(C) and s.last(C)=t+ b,(C), and

(c¢) If no action in C is enabled in s.hasic, then s. first(C)=0 and
s.last(C)= .

4. For all classes D such that = is not in class D,

(a) 1<s' last(D),

(b) if some action in D is enabled in s.basic and some action
in D is enabled in s'.basic then s. first(D)=ys". first(D) and s.last(D)=
s" last(D),

(c) if some action in D is enabled in s.basic and no action in D is
enabled in s'.basic then s.first(D)=1t+b(D) and s.last(D)=1t+ b, (D),
and

(d) if no action in D is enabled in s.basic, then s. first(D)=0 and
s last(D)= oc.

192 ATTIYA AND LYNCH

Note that property 4(a) ensures that an action does occur if any other class
has an action that must be scheduled first. The partition classes of zime(A4)
are derived one-for-one from the classes of 4 (although we will not need
them in this paper).

The finite executions of time(A), when the states are projected onto their
basic components, are exactly the same as the finite prefixes of the timed
executions of 4. This implies that safety properties of a timed automaton A
can be proved by proving them for time(A), e.g., using invariant assertions.

3. PROBLEM STATEMENT

For either the centralized or distributed case, we assume that there are
n modules called moving parts, n modules called operators, and some
modules composing the computer system. The actions of the complete
system, exclusive of any internal actions of the computer system, are
REQUEST(i), GRANT(i) and FINISH(i), for 0<i<n—1. Each
operator{i) has input action GRANT(i) and output action REQUEST(i).
Each movingpart(i) has input action GRANT(i) and output action
FINISH(i). The computer system has input action REQUEST(i) for all i
and output actions GRANT(/) for all i. See Fig. 1.

Let movingpart(i) be a particular timed automaton with the given
signature, having a state consisting of one component, GRANTED, a
Boolean variable, initially false. The state transitions of movingpart(i) are
as follows:

GRANT(I)
Effect:
GRANTED := rrue

FINISH(i)
Precondition:
GRANTED = true
Effect:
GRANTED :=false

There is only one class in the partition for movingpart(i), a singleton
containing the one action FINISH(i). The boundmap associates the
interval [0, m] with this class. As desribed in the Introduction, the timed
executions of this timed automaton, have the property that, within time m
after a GRANT(i) occurs, a FINISH(i}) must also occur—that is,
movingpart(i) “stops moving.”

Now consider operator(i). It is described as an automaton with the maxi-
mum amount of freedom we want to allow to the operator. Let operator(i)
be the timed automaton with the appropriate signature, having a state

TIME BOUNDS FOR PROCESS CONTROL 193

' ™\
: REQUEST() -
operator(i) > computer
v GRANT(@) system
FINSH@. /7 i\
part(i)

L J

F1G. 1. The system architecture.

consisting of one component, PUSHED, a Boolean variable, initially false.
The state transitions of operator(i) are as follows:

GRANT(i)
Effect:

PUSHED := false
REQUEST(i)
Precondition:

PUSHED = false
Effect:

PUSHED := true

Again, there is only one (singleton) class in the partition for operator(i).
We define the boundmap to assign the interval [0, o] to this class. The
upper bound is o because we do not want to insist that the operator push
the button within a particular amount of time after a GRANT. (It may
never do so, in fact.) The lower bound is 0 because we do no want to
assume any a priori lower bound on how quickly operator(i) might request
after a previous grant.

A computer system solves the timed mutual exclusion problem if when it
is composed with the given operators and moving parts, all the behaviors
of the resulting system satisfy the following conditions:

1. Request well-formedness: For any 0<i<n—1, REQUEST(i) and
GRANT(i) actions alternate, starting with a REQUEST(i).

2. Moving part well-formedness: For any 0<i<n—1, GRANT(i) and
FINISH(i) actions alternate, starting with GRANT(i).

3. Mutual exclusion: There are never two consecutive GRANT events
without an intervening FINISH event.

4. Eventual granting: Any REQUEST(i) event has a following
GRANT(i) event.

194 ATTIYA AND LYNCH

We measure the performance of the system by the worst case response time,
ie., the longest time between REQUEST(i) and the next subsequent
GRANT(i}) in any timed behavior.

4. A CENTRALIZED SYSTEM

We first consider the case of a “centralized” computer system to solve
this exclusion problem. In this case, the architecture is as follows. There are
two modules (timed 1/O automata), the manager and the clock. The clock
has only one action, the output 7/CK, which is always enabled, and has no
effect on the clock’s state. It can be described as the particular one-state
automaton with the following steps.

TICK
Precondition:
true

Effect:
none

The boundmap associates the interval [c,, c,] with the single class of
the partition. This means that successive TICK events will occur with
intervening times in the given interval.

The manager has input action TICK and REQUEST(i) for alli, and
output actions GRANT(i). It is an arbitrary automaton, subject to the
restriction that it has only a single class in its partition. (This says that is
is really a sequential process—it cannot be running several processes in
parallel.) We associate the boundmap [0, /] with the single class of locally
controlled actions. This means that successive locally controlled steps of
the manager are done within the given intervals (if there are any enabled).

The computer system is the composition of the manager and the clock,
(with the I/O automaton hiding operating applied to hide the T/CK
actions). See Fig. 2.

Note that the timed automaton model forces us to model the step time
of the manager process explicitly. Other models (e.g., the one used for clock
sychronization in [32]) might avoid this level of detail by hypothesizing
that the manager’s steps are triggered only by input events such as clock
ticks or requests. We regard such a model (informally) as a limiting case
of our model, as the upper bound on manager step time approaches zero.

REQUEST@®, |
£GRANT(|!

FiG. 2. The architecture of the centralized computer system.

manager

TIME BOUNDS FOR PROCESS CONTROL 195

4.1. Upper Bound

4.1.1. The Algorithm

The following simple algorithm for the manager for the manager process
solves the problem. The manager simply puts requests on a FIFO queue.
If there is a pending request, the manager issues a GRANT signal to the
node whose request is first on the queue, and sets a timer to measure
the time until the moving part stops moving. When the timer goes off, the
manager repeats.

There is some subtlety in determining the minimum number of clock
ticks that guarantee that time m has elapsed since the GRANT. At first
glance, one might be tempted to count [m/c, |+ 1 ticks, but a careful
examination shows that this might cause a violation of the exclusion
property, if a TICK happens immediately after the GRANT, and the next
GRANT happens immdiately after the last TICK. Waiting for | m/c, | +2
suffices to overcome this difficulty, but the lower bound presented in Sub-
section 4.2 suggests that this might not be optimal. In order to achieve the
best possible timing performance, the algorithm only grants immediately
after a clock tick, and the timer is set to | (m+/)/c, |+ 1 clock ticks. The
reason for only granting immediately after a tick is that this allows more
precise knowledge of the time at which the grant occurs, which can some-
times permit fewer ticks to be counted. To implement this, the manager
maintains a flag (TICKED) whose value is true if and only if no locally
controlled operation has been performed since the last TICK.

In addition to the REQUEST and TICK inputs and GRANT outputs
already specified, the manager has an internal action ELSE. This action is
enabled exactly when no output action is enabled; this has the effect of ensur-
ing that locally controlled steps of the manager occur at (approximately)
regular intervals, as determined by the manager’s boundmap.

The manager’s state is divided into components:

TICKED holding a boolean value, initially true;
QUEUE holding a queue of indices i € [0...n — 1], initially empty;
TIMER holding an integer , initially O;

The manager’s algorithm is as follows:

REQUEST(i), 0<i<n—1
Effect:
add i to QUEUE

TICK

Effect:
TIMER :=TIMER — |
TICKED := true

196 ATTIYA AND LYNCH

GRANT(i), 0<ig<n—1
Precondition:
i is first on QUEUE
TIMER €0
TICKED = true
Effect:
remove i from fron of QUEUE
TIMER :={ (m+!)/c, |+ 1
TICKED :=false
ELSE
Precondition:
QUEUE is empty or TIMER >0 or TICKED = false
Effect:
TICKED := false

4.1.2. Correctness Proof

Let A4 be the composition of the four given kinds of timed
automata—operators, moving parts, manager, and clock. This subsection is
devoted to provind the {ollowing theorem.

THEOREM 4.1, Algorithm A solves the timed mutual exclusion problem.

We prove this theorem using automaton time(A), as defined above. In
this case, the system state is augmented with the variable current, plus the
variables first and last, for the following partition classes:
REQUEST(i)for each i, which contains the single action REQUEST(i),
FINISH(i) for each i, which contains the single action FINISH(i),
TICK, which contains the single action T/CK, and

4. LOCAL, the locally controlled actions, which contains all the
actions GRANT(i), 0<i<n—1 and the ELSE action.
Initially, we have first(REQUEST(i}) = 0, last(tREQUEST(i)) = 0,
Sirst(FINISH(i}) = 0, and last(FINISH(i)) = o, [first(TICK) = ¢,
last(TICK) = ¢5, first(LOCAL)=0, and last(LOCAL)=1.

The proof of mutual exclusion rests on the following invariant for time(A4).

W=

LEMMA 4.2, Let s be a reachable state of time(A). Then the following all hold:

1. If FINISH(i) is enabled in s.basic, then
(a) s.TIMER>QO,
(b) s.first{ TICK)+ (s. TIMER — 1)¢, > s.last(FINISH(i}), and
(c) FINISH(j) is not enabled in s.basic, for any j+#1i.

2. If s.TICKED = true then s. first(TICK) = 5. last(LOCAL) + ¢, — I

TIME BOUNDS FOR PROCESS CONTROL 197

Thus, if a part is moving, the manager’s TIMER is positive. Moreover,
the TIMER is large enough so that waiting that number of ticks would
cause enough time to elapse so that the part would be guaranteed to have
stopped moving. Property 1(c) implies mutual exclusion, while property 2
guarantees a lower bound on the time till the next TICK, if no LOCAL
step has occurred since the previous T/CK.

The proof of correctness is done in careful detail; since it is quite
straightforward, we relegate it to Appendix A.1.

Proof (of Theorem 4.1). Lemma 4.2 implies mutual exclusion. Moving
part well-formedness follows easily from the same lemma and the definition
of the moving part. Request well-formedness follows from the definitions of
the operators and the manager. The remaining condition, eventual
granting, can be argued from the queue-like behavior of the manager and
the fact that the clock keeps ticking. (This latter property also follows from
the formal proof of the upper bound on response time in the following
subsection.) |

4.1.3. Response Time

Now we prove our upper bound on response time for the given
algorithm 4.

THEOREM 4.3. Assume that I<c,. The worst case response time for
algorithm A is at most

nlce(Lm+1)c, |+)T+

The proof of this theorem requires several lemmas.

LeEMMA 4.4. In any reachable state there are at most n entries in
QUEUE.

Proof. We have already argued that all timed executions of the system
are request well-formed; ie, REQUEST(i) and GRANT(i) alternate
for any 0<i<<n-—1, starting with REQUEST(i). The preconditions for
REQUEST(i) and the operation of the manager imply that when
REQUEST(i) happens, i is not in the queue. A simple induction implies
that in any reachable state of the system, i/ appears only once in
QUEUE. |}

LemMma 4.5, In any reachable state s, s. TIMER< | (m+{)/c, |+ 1.

Proof. By an easy induction. [

198 ATTIYA AND LYNCH

LeMMA 4.6. Let s be any state occurring in a timed execution, in which
s. TIMER < k, for k = 1. Then (at least) one of the following two conditions
holds:

1. s.TIMER<O0 and s. TICKED = true, or

2. the time from the given occurrence of s until a later TICK event
resulting in TIMER <0 is bounded above by ¢, -k.

Proof. Suppose that it is not the case that sTIMER<O and
5. TICKED = true. Then a GRANT cannot occur until a state is reached in
which TIMER <0 and TICKED = true, and this condition requires at least
one TICK to occur after the given occurrence of s. The bound follows from
the upper bound on clock time, the way the T/CK actions manipulate the
TIMER, and the way the variable TICKED gets set. |

Proof (of Theorem 4.3). When a request arrives, it is at worst in
position # on the QUEUE, by Lemma 4.4. By Lemmas 4.5 and 4.6, either
TIMER <0 and TICKED = true at the time when the request arrives, or
else within time ¢,{/{m +1)/c,]+ 1) a TICK event (call it n,) occurs which
sets TIMER to 0. In the former case, there must be a T/CK event that sets
TIMER <0, occurring prior to the request with no intervening local
events; let 7, denote this T/CK event. In either case, within time / after «,
(but after the request) the first entry gets its request granted, it is removed
from the QUEUE, and TIMER is set to

Lim+1)/e,)+ 1.

Since / < ¢,, within time ¢, after n,, another TICK evert ¢, occurs, this one
decreasing TIMER to (| (m+{)/¢,).

Immediately after ¢,, either TIMER =0, or | (m+/)/c, {=1; in this
latter case, by Lemma 4.6, within at most time ¢, (| (m+/)/c,]) after ¢,
a TICK event occurs that sets TIMER < 0. Thus, in either case, from event
n, until another TICK event m, that sets TIMER <0, at most

oL(m+1)e, J+1)

time elapses. The next entry in the queue is enabled immediately after 7,.
In this manner, we can construct a sequence of T/CK events, 7, .., 7,
such that the time between =n; and n, ., for each i, | <i<n, is at most

eL(m+Dje, J+1),

and for any 1 <i<n, the ith entry on the original queue (if there is any)
is enabled after n,. Hence, within time

nLeflL{m+ /e, 1+ 1],

TIME BOUNDS FOR PROCESS CONTROL 199

the enabling condition is satisfied for the given request. Then within time
at most / afterwards, the request is granted. This completes the proof of the
upper bound on response time. ||

Note that this proof requires the assumption that /<¢,; in case this
assumption is not made, an analysis similar to the one in the proof above
yields a slightly higher upper bound of

nleyL{m+ e, J+1)+1]

Also, note that the limit of the given upper bound, as / approaches0, is
n-cy(mic, J+ 1). We think of this as an upper bound for this algorithm
when it is run on an interrupt-driven model. It follows from the lower
bound in Section 4.2 that algorithm A has optimal response time.

Although this proof is currently written in terms of executions, it could
also be done in an assertional style similar to that used to prove
Lemma 4.2. The invariant assertion techniques used in this paper are
extended to handle response time analysis in [22]. One of the examples
presented in that paper is a simplified version of the centralized algorithm
above.

4.2. Lower Bound

Now we turn to proving lower bounds. We begin with a fairly simple
lower bound result that is quite close to the upper bound proved in the
preceding subsection, but does not match exactly. The gap between this
lower bound and the upper bounds depends on the manager’s step time
and the roundoffs. This lower bound proof is presented here, although we
later prove a better (higher) lower bound, because we believe it gives
insight into a basic lower bound technique, called shrinking, which is used
later.

THEOREM 4.7. The worst case response time of any centralized computer
system that solves the timed mutual exclusion problem is strictly greater than

n-mcy/c))

In order to see why this is so, define a timed executin or timed semi-
execution to be slow if the times between successive TICK events (and the
time of the first TICK event) are exactly ¢,. We have:

LEMMA 4.8. Let o be a slow timed execution of a centralized computer
system that solves the timed mutual exclusion problem. Then the time
between any two consecutive GRANT events in u is strictly greater than

m(cy/cy).

200 ATTIYA AND LYNCH

Proof. 1f this were not so, then we could “retime” the whole timed
execution by multiplying the time at which each event occurs by ¢,/c,
(without changing the ordering of events), resulting in a new timed execu-
tion in which the time between the two GRANT events is at most m. The
time between clock ticks is now ¢;, so the resulting sequence is a timed
execution. Then moving the FINISH event corresponding to the first
GRANT event to the point just after the second GRANT event (to occur
at the same time) yields another timed execution, this one violating mutual
exclusion. |

Intuitively, we have used clock uncertainty to take a slow execution and
“schrink” it (by retiming) to force the manager to use pessimistic estimates.

Note that the contradiction in the proof of Lemma 4.8 involves a
FINISH and GRANT event occurring at the same time. Although this
violates our formulation of the mutual exclusion property, one might argue
that the instantaneous overlap of two intervals during which rods move is
not a real problem. We could modify the proof to obtain a contradiction
involving a positive (but arbitrarily small) amount of overlap, but then the
bound in Lemma 4.8 would be slightly smaller.

Proof (of Theorem 4.7). We create a slow timd semi-execution in which
a REQUEST(0) event occurs, and immediately after the corresponding
GRANT(0) event (and at the same time) a sequence of

REQUEST(0), .., REQUEST(n~ 1)

events occur. Now extend this timed semi-execution (keeping it slow) until
all these requests are fulfilled. By Lemma 4.8 the time between any two of
these GRANT events is strictly greater than

m(cy/ey).

Let GRANT(j) be the last GRANT. The time from REQUEST(/) until the
corresponding GRANT(j) is strictly greater than

n-micy/cy). |

Now we present the more delicate arguments needed to prove a lower
bound that matches the upper bound given in Section 4.1. Note that the
only differences between the lower bound to be proved and the one already
proved in Theorem 4.7 are the presence of the / terms describing bounds on
the manager’s step time and the careful treatment of roundoff. Since we
consider these to be very small, for practical purposes one might be
satisfied with the simpler lower bound. However, it is interesting theoreti-
cally to note that in this case, we can obtain a tight bound by a related but
somewhat more difficult argument.

TIME BOUNDS FOR PROCESS CONTROL 201

THEOREM 4.9. Assume that | <c,.> Then the worst case response time of
any centralized computer system that solves the timed mutual exclusion
problem is at least

nle{L(m+ /e, J+ 1)1+ 1

An [/O automaton is called active if in every state there is a locally
controlled action enabled. (Recall, for example, that the manager in the
algorithm of the preceding subsection was made active by the inclusion of
the FLSFE action.) Before proceeding with the proof of the theorem, it is
useful to prove the following lemma, which claims that there is no loss of
generality in assuming that the manager is active. As in the previous
subsection, denote by LOCAL the class of all the actions that are locally
controlled by the manager (including GRANT(i), for all i).

LEMMA 4.10. Suppose thar A is a centralized computer system that solves
the timed mutual exclusion problem with response time <b, for a real
number b. Then there is another such algorithm A’, with response time <b,
in which the manager is active,

Proof. Given A, we produce 4" by adding a new internal action NULL
to the manager. The steps associated with this action are exactly those
triples of the form (s', NULL,s), where s'=5s and no other locally
controlled action of the manager is enabled in s’. Clearly, the manager is
active in 4'. We claim that A4’ solves the problem and has response time
<b. In order to see this, it suffices to show that every timed behavior of
A’ is also a timed behavior of A. This is done by showing that for every
timed execution of A4’ there is a timed execution of 4 with the same
behavior.

Let

o =50, (MY, 17, 815 s S1_ 1 (RS), STy ey
be any timed execution of 4". Constructa, a new timed sequence, by
removing all NULL steps from «'. Assume that

=S80, {1y £1)y S1ses S 1y (Tss £)y 81y vy

let 77 be the mapping from the indices of events in « to the indices of the
corresponding events in o', and set /7(0) = 0. Note that, for i = 1, if j = [1(i),
then s;=s,, £ =1, and n; = n,. We claim that « is a timed execution of 4.
Then it follows that every timed behavior of A" is a timed behavior of A.

?Note that a nonstrict inequality is used in this assumption, whereas a corresponding
assumption for Theorem 4.3 uses a strict inequality. This reflects the difference in the kinds of
reasoning needed for lower and upper bound results.

202 ATTIYA AND LYNCH

All we have to show is that « satisfies the boundmap of 4. The only
interesting case is the class LOCAL, and since the lower bound for this
class is 0, we have to check only the upper bound, /.

Fix some / such that in s; some locally controlled action of the manager
is enabled, and either /=0 or no locally controlled action of the manager
is enabled in s, _,, or 7, is a locally controlled action of the manager. We
must show that within time / after ¢, either a locally controlled action of the
manager occurs, or there is a state in which no such action is enabled. Let
Jj=11(i). It must be that some locally controlled action of the manager is
enabled in s;, since some such action is enabled in all states of the manager
in A’. We first show that a locally controlled event n of the manager must
occur in a' within at most / time after ;. There are two cases:

Case 1:i=0 or n, is a locally controlled action of the manager in 4. If
i=0, then it must be that j=0. If =, is a locally controlled action of the
manager in A, then it must be that n; =n,. In either case, as the manager
in A’ is active, a locally controlled event n of the manager must occur in
%" within time at most / after ¢/, by the fact that o’ is a timed execution of
A’ and satisfies the boundmap.

Case 2: i=1 and no locally controlled action of the manager is enabled
ins;, (. Then n,¢ LOCAL, and hence n;¢ LOCAL. Let k be the largest
index of a locally controlled event in « that has an index </ (0 if there
is no such event). The fact that the class LOCAL is always enabled in o'
implies that within time / from ¢; a locally controlled event of the manager
must occur in 2’. By the way k was selected this event must happen after
s;, so the fact that ¢/ >, implies that a locally controlled event m of the
manager must occur in o’ within time at most / after 7.

In both cases, if n# NULL, then n, with the same time, appears in «,
which suffices. If = NULL, then the definition of 4’ implies that in the
state just prior to 7w ina’, no non-null locally controlled action of the
manager A is enabled. Then no locally controlled action of the manager is
enabled in the corresponding state n a, which suffices. ||

Now we return to the task of proving Theorem 4.9. As in the proof of
Theorem 4.7, the proof proceeds by iterative construction of a particular
slow timed execution, in segments corresponding to the intervals between
two successive GRANT events. One again, a lower bound is provided for
the time taken by each segment. This time, however, the lower bound for
each segment is c,(L(m+/!)/c,]+ 1), which is slightly larger than the
bound of m(c,/c,) shown previously; the difference involves an additive
term of / and a roundoff. This time bound in turn rests on a lower bound
of [(m+1)/c,]+1 on the number of TICK events occurring in each
segment.

TIME BOUNDS FOR PROCESS CONTROL 203

The lower bound on the number of TICK events in each segment is
achieved by forcing the GRANT event at the beginning of the segment to
occur after LOCAL and TICK events occurring at the same time. The
segment is then retimed as before to yield a violation of the mutual
exclusion propertu; now, however, retiming involves not only shrinking, as
it did before, but also moving the GRANT event at the beginning of the
segment to a time point / later. The fact that the GRANT follows LOCAL
and TICK events occurring at the same time implies that this can be done
without violating the time constraints.

The following technical lemma gives the inductive step for the construc-
tion of the slow timed execution. The proof of this lemma uses the fact that
the manager is active.

If i is an index with 0<i<<n—1, we say that i is unfulfilled in a timed
semi-execution « if the number of REQUEST, events in « is strictly greater
than the number of GRANT, events in . We say that a timed execution or
timed semi-execution a is heavily loaded starting from time 1 if for all
times ', 1<t <teq(a), all indices in {0,..,n—1} are unfulfilled in the
prefix of « consisting of all the events occurring up to and including time ¢’
We say that an action is an ELSE action if it is a locally controlled action
of the manager other than a GRANT; ELSE events and steps are defined
similarly.

LEMMA 4.11. Let A be a centralized computer system with an active
manager, that solves the timed mutual exclusion problem, and let o be a slow
timed semi-execution of A. Assume that there exists an unfulfilled index in o,
any GRANT event in a is followed by a corresponding FINISH event, and
LOCAL and TICK events occur in a at time t..q(). Then there exists a slow
timed semi-execution f§ extending a, such that for some i, 0 <i<n—1,

shed(B) = sched(aa)(GRANT(i), 1)(REQUEST(i), t\(FINISH(i), 1),

where t=t.4(a0), o consists entirely of TICK and ELSE events, and
LOCAL and TICK events occur in og at time 1.

Note that if « is heavily loaded starting from an arbitrary time ¢’ then f§
1s also heavily loaded starting from time ¢'.

Proof. Assume by way of contradiction that there does not exist a
timed semi-execution with the desired properties. We extend « to an infinite
timed execution in which no GRANT events occur. As there exists an
unfulfilled index in « this contradicts the eventual granting property.

This is done by constructing, inductively starting from j =0, successive
slow timed semi-executions, ag,, each extending the previous one, such that
for every ;.

643/110/1-14

204 ATTIYA AND LYNCH

1. o, consists entirely of T7/ICK and ELSE events.
2. LOCAL and TICK events occur in ag, at time f.,4(a0;).
3. Ifj>0 then t.4(a6,) = 1, 4(00;) +C,.

We start with ¢, being the empty sequence. Clearly, 1 and 3 hold, and
the assumptions of the lemma imply that 2 holds. Now, assume we have
constructed o;, and let 5; be the system state resulting after ag,. There are
two cases:

Case 1: There is an execution fragment of the manager along, o',
starting from state s;, which consists of a sequence of zero or more ELSE
events followed by some GRANT(i) event. (Note that this is an execution
fragment of the underlying [/O automaton, without any timing
constraints.) Then let be any timed semi-execution that extends ao; such
that

sched() = sched(a 6, 6’ W\REQUEST(i), tonq(aa)WFINISH(i), 1 .4(20;)),

where the events of ¢’ are all timed to occur exactly at time f,,4(xg;). Then
f has the properties required by the lemma: it ends with GRANT(i),
REQUEST(i), and FINISH(i) events, there are only 7/CK and ELSE
events in the prefix of o,6' preceding the final GRANT(i) event, and
LOCAL and TICK events occur in ff at time 1 4(x0;) = t.,4(f). This is a
contradiction to the assumed nonexistence of such a timed semi-execution.

Case 2. There is no such execution fragment. In this case, we can
extend ao; by allowing ELSE events to occur, at arbitrary allowable times,
ending with an ELSE event and a TICK event, (occurring in that order)
at time 7 ,4(x0;) + ¢,. This is possible since the manager is active. Let a0, , |
be an execution extending ag; such that

sched(ao; , |)= sched(oo; §)(n, tepg(20,) + W TICK, 1., 4(20,) + ¢5),

where all events (if any) or 6 are ELSE events, and 7 i1s an ELSE event.
From the way o;,, was constructed, it follows that «g,,, is slow, and
that it has the following properties:

I. o;,, consists entirely of T/CK and ELSE events.

2. LOCAL and TICK events occur in o, at time t4(a0;,).

30 tepalao,,) = tenglao;) + ;.
This completes the construction of the timed semi-executions a0,
0<j<oo.

Now Lemma 2.2 implies that there exists an infinite timed execution ag
extending all the «o,. Since there are no GRANT events in ¢ and there

TIME BOUNDS FOR PROCESS CONTROL 205

exists an unfulfilled index inw, this contradicts the eventual granting
property. |
Now we are ready to present the main proof This proof uses the

inductive step described in Lemma 4.11 to construct the needed slow timed
execution.

Proof (of Theorem 4.9). Assume that we have a particular centralized
computer system that solves the timed mutual exclusion problem. By
Lemma 4.10, we may assume without loss of generality that the manager is
active. We explicitly construct a (slow) timed execution in which the
response time for a particular grant is at least

nle(Lm+1)fe, [+ D]+ 1

We first construct an initial section, f,. We begin by allowing some
LOCAL events to occur (at arbitrary allowable times), ending with both a
LOCAL event and a TICK event occurring at exactly time c,, in that
order. Note that by the request well-formedness property these LOCAL
events must be ELSE events. We let

REQUEST(0), REQUEST(1), ..., REQUEST(n—1)

events happen immediately after these FLSE and TICK events, also at
time c,. Formally, let §, be a timed semi-execution that extends another
timed semi-execution § containing only ELSE events, such that

sched(By) = sched(8)(n, ¢;)(TICK, ¢;)(REQUEST(0),)
-+ (REQUEST(n—1), c,),

where 7 is an ELSE event. Note that 0, ..., n — 1 are unfulfilled indices in
B, that there are no GRANT events in ff,, and LOCAL and TICK events
occur in f, at time ¢, = t.,4(f¢); furthermore, note that f, is heavily loaded
starting from time ty = t.,4(Bo) = ¢,.

Starting from f,, we construct successive proper extensions f, ..., f;, ..,
such that for each k=1, f, is a slow timed semi-execution of the form
B« 17, that ends at time ¢, = t.,4(f8,), that is heavily loaded starting from
time ¢y, and that has the following properties:

1. B, ends with GRANT(j.), REQUEST(j.), and FINISH(j.)
events, occurring in that order at time 7,.

2. Except for these last three events, y, consists entirely of 7/CK and
ELSE events.

3. Every GRANT event in B, is followed by a corresponding
FINISH event.

206 ATTIYA AND LYNCH

4. A LOCAL event (other than the GRANT(j,)) and a T/CK event
occur in f, at time ¢,.

The construction is done inductively; the base case is the construction
of #,. Since there are unfulfilled indices in 8y, there are no GRANT events
in By, and LOCAL and TICK events occur in f, at time 7.,4(f,), we can
apply Lemma 4.11 to get a timed semi-execution f, with the properties
above.

For the inductive step, assume we have constructed a slow timed semi-
execution fi,_, for k> 1, with the above properties; we show how to
construct §,. Since f,_, is heavily loaded starting at time¢,, every
GRANT event in §,_, is followed by a corresponding FINISH event, and
LOCAL and TICK events occur in f,_, at time f,_,, we can apply
Lemma 4.11 to i, ,, and get a slow timed semi-execution £, that extends
By _ | such that

sched(B,)=sched(B, 0 (GRANT(j,), t;)
X (REQUEST(j,), u \FINISH(j), t,),

where t, =t..4(B._,0), o, consists entirely of TICK and ELSE events,
and LOCAL and TICK events occur in 8, _,0, at time t,. Let 7, be such
that

Bi=Brc 17k

Clearly, B, has the required properties.
The timed execution §, is depicted in Fig. 3.

CLaM 4.12. For any k> 1, there are at least | (m+1)/c, |+ 1 ticks in
segment v, of Bi.
Proof. Suppose this is not the case, for some fixed k. Then we modify

B, to get a new timed semi-execution f), in which the mutual exclusion
property is violated.

By
' N
- B -
BO T Yk
r Y \t
— P Mmoo e
GRANT(,) GRANT(y 1) GRANT(,)

FiG. 3. The timed execution §,.

TIME BOUNDS FOR PROCESS CONTROL 207

First, we do some retiming without changing the order of any of the
events. Segment y, of f, is “shrunk™ in §; so that all ticks contained within
segment vy, take time exactly ¢, (rather than ¢, as in f§,). Moreover, the
GRANT(j._,), REQUEST(j,_,) and the FINISH(j,_,) events occurring
at time f,_, are timed to occur at time ¢, _, +/; some ELSE steps after
FINISH(j, _,) and before the next 7/CK may need also to have their times
increased slightly to maintain monotonicity. By the fact that /< ¢, and the
fact that there is a LOCAL event preceding GRANT(j, _,), with the same
time assignment, it follows that the resulting sequence is a timed execution.

We now obtain f; by moving FINISH(j._,) from time ¢,_,+/ to
time 7., after GRANT(j,). We show that f§} is a timed semi-execution, by
showing that moving the FINISH event to a later time does not violate the
m upper bound on the time between GRANT(j,_,) and the corresponding
FINISH(j,_,). By the assumption, there are at most | (m +/)/c,] ticks in
section y,. As GRANT(j, _) occurs at time ¢, _, + {, while FINISH(j, _,)
occurs at time t,, the total time between these two events is at most

(e; =D +cllim+De, |=1)sm.

So we have obtained a timed semi-execution in which the mutual exclusion
properly is violated. By Lemma 2.3, fB; can be extended to a timed
execution; this contradicts the correctness of the algorithm, thus proving
the claim. []

The claim implies that
Levr— ez coLm+1)/e, J+1),

for any k =1, because f, ., is slow.

We continue the proof of Theorem 4.9. Since for every k20, 8, is
heavily loaded starting from time f,, and the algorithm satisfies the eventual
granting property, there exists &' such that for everyi, 0<ig<n—1, at
least one GRANT(i) event appears in 8, at or after time ¢,. By the same
reasoning, there exists k” > k’ such that for every /, 0 <i<n— 1 at least one
GRANT(i) event appears in f8,. after time 7,.. It follows that there is some i,
0<i<n—1 for which there are two consecutive GRANT(i) events in .
having at least n— | intervening GRANTY() events for j i. Suppose that
the first of these GRANT(/) events occurs at time t,,, and the second at
time f,,; it must be that k,—k >n Note that the REQUEST(i) event
corresponding to the second of these GRANT(i) events occurs at time 7,,.
By the remark after Claim 4.12 the total amount of time from time ¢,
in f,,, when REQUEST(i) occurs, until the corresponding GRANT(i)
occurs at time ¢,,, is at least

nle(L(m+1)/e, J+1)].

208 ATTIYA AND LYNCH

We now construct from f,, a timed semi-execution & in which the
GRANT(j,,) event occurs at time 1, + /, retiming later events as necessary
to maintain monotonicity. The timed sequence ¢ is a timed semi-execution
since /< c,, and since there is a LOCAL event preceding GRANT(j,,) at
time #,, in f,,. It follows that the total amount of time from time ¢, in J,
when REQUEST(i) occurs, until the corresponding GRANT(i) occurs at
time ¢,, +/, is at least

nle(L(m+Dje, J+1)]+1

Since é can be extended to a timed execution (by Lemma 2.3) the theorem
follows. |}

We note that Theorem 4.7 seems quite robust in that it can be extended
to any reasonable model, including those in which the manager takes
steps only in response to inputs. However, the better lower bound in
Theorem 4.9 depends more heavily on the features of the timed automaton
model. Note that the limiting case of the lower bound in Theorem 4.9 is

n[Lmjc, J+1] ¢,

which is slightly better than the lower bound given by Theorem 4.7.

5. A DISTRIBUTED SYSTEM

Now we consider the case where the computer system is distributed. We
assume that the events concerning the different moving parts occur at
separate manager processes p,, 0<i<n—1, which communicate over
unidirectional channels. More precisely, for each ordered pair (i, j), i #/,
we assume that there is a channel automaton channel(i, j) representing a
channel from p; to p,, having SEND events as inputs and RECEIVE events
as outputs. The channel operates as a FIFO queue; when the queue is
nonempty, the channel is always enabled to deliver the first item. All
RECEIVE actions are in the same partition class, with associated bounds
[0, d7; this means that the channel will deliver the first item on the queue
within time d. Also, we assume that there is a separate clock, clock(i), for
each process p,. It is similar to the centralized clock described earlier, with
output action T/CK(i) that is an input to p;, and with associated bounds
[¢, ;). See Fig. 4.

If the clocks are perfectly accurate, ie., ¢, =c¢,, then since all processes
start at the same time, there is a very simple algorithm that assigns to each
process a periodic predetermined “time slice” and whose worst case

TIME BOUNDS FOR PROCESS CONTROL 209

clock(i) clock(j)

F1G. 4. The architecture of the distributed computer system.

response time is #-m (plus some terms involving and ¢, and /). This is
optimal.* So, for our lower bound, we assume that ¢, <c,.

5.1. The Upper Bound

5.1.1. The Algorithm

The following algorithm implements a round-robin granting policy: the
processes issue grants when they are in possession of a token that circulates
on a ring.

Assume processes are numbered 0, ..., n — 1 in clockwise order, and inter-
pret i+ 1 to be i + 1 mod »n. Each process p, has input action REQUEST(i),
TICK(i), and RECEIVE-TOKEN(i), output actions GRANT(i) and
SEND-TOKEN(i), and internal action ELSE(i). The state of process i is
divided into components:

REQUESTED holding a Boolean value, initially false;

TIMER holding an integer, initially 0;
TICKED holding a Boolean value, initially true;
TOKEN holding a value in {not_here, available, used},

initially used for p,, not_here for the other processes.
Process p; executes the following algorithm:

YIn fact, even if we deviate from the model by allowing accurate clocks with non-
synchronized starts, there is an algorithm which selects synchronization points so that its
worst case response time is at most n-(m+(d/2)) (plus some terms involving ¢, and /). A
corresponding lower bound can also be proved. A formal treatment of these results requires
several changes to our model, and we prefer not to present it here. The clock synchronization
algorithm of [20] yields synchronization points that can be used by a distributed allocation
algorithm whose response time is at most n-m+ (n—1)d. Since the lower bound of [20]
implies that this clock synchronization algorithm is optimal, it does not appear that a naive
use of clock synchronization produces optimal mutual exclusion algorithms.

210 ATTIYA AND LYNCH

REQUEST(i)
Effect:
REQUESTED :=true

TICK(i)

Effect:
TIMER :=TIMER — 1
TICKED :=true

GRANT(i)

Precondition:
REQUESTED = true
TOKEN = available
TICKED = rrue

Effect:
REQUESTED := false
TOKEN := used

TIMER ;= (m+1)/c,]+ 1
TICKED :=false

SEND-TOKEN(i)/* to process p,, */
Precondition:

TOKEN = used

TIMER <0
Effect:

TOKEN := not_here

TICKED := false

ELSE(i)
Precondition:

neither GRANT(i) nor SEND-TOKEN(i) is enabled
Effect:

TICKED := false

RECEIVE-TOKEN(i)
Effect:
if REQUESTED then TOKEN := available elsec TOKEN := used

5.1.2. Correctness Proof

Now let B be the composition of all the given timed automata:
operators, moving parts, processes, channels, and clocks. This subsection is
devoted to proving the following theorem.

THEOREM 5.1. Algorithm B is a distributed computer system that solves
the timed mutual exclusion problem.

TIME BOUNDS FOR PROCESS CONTROL 211

As in the proof of the centralized algorithm, we construct the I/O
automaton time(B). This time, the new state components are current, plus,
for each i, first, and last for the following partition classes:

1. REQUEST(i), which contains the single action REQUESTIi),

2. FINISH(i), which contains the single action FINISH(i),

3. TICK(i), which contains the single action TICK(i), and

4. LOCAL(i), the class of locally controlled actions of process /
which contains all the actions GRANT(i), SEND-TOKEN(i), and ELSE(i).
Initially, we have first(REQUEST(i)) =0, last(REQUEST(i)) = =c,
Sirst(FINISH(i)) =0, last(FINISH(i)) = oo, first(TICK(i)) = ¢, last{ TICK(i})
=c,, first{ LOCAL(i))=0, and last(LOCAL(i)) =1

Let # tokens(i) be the length of the queue in channel(i, i+ 1). We first
prove a lemma giving an invariant for time(B); this invariant happens not
to involve any of the state components that encode time information. The
proof appears in Appendix A.2.

LEMMA 5.2. Let s be a reachable state of time(B). Then |{i|s. TOKEN(i) #
not_here}| + Y7 s.# tokens(i)= 1.

We now prove another invariant, this one involving the timing
information. The result is similar to Lemma 4.2. The proof appears in
Appendix A.3.

LEMMA 5.3. Let s be a reachable state of time(B), and let 0 <i<n— 1.
Then the following all hold:
1. If FINISH(i) is enabled in s.basic, then
(a) s.TIMER(i)>0,
(b) s firs TICK(i))+ (s. TIMER(i)— 1) ¢, >s.last(FINISH(i)), and
(c) s.TOKEN(i)= used.
2. Ifs.TICKED{(i)=true then s. first(TICK(i}} = s last(LOCAL(i)) +
¢ -1

The following corollary implies that mutual exclusion is maintained by
the algorithm.

COROLLARY 5.4. [In any reachable state s of B, if FINISH(i) is enabled,
for some i, then FINISH(j) is not enabled for all j+#i.

Proof. Assume to the contrary that FINISH() is enabled in s, for j # 1,
Since FINISH(i) and FINISH(j) are both enabled in s, invariant 1(c)
(proved in Lemma 5.3) implies that

s TOKEN(i) = 5. TOKEN(/) = used.

212 ATTIYA AND LYNCH

But this implies that the number of processes for which TOKEN # not_here
is at least 2, contradicting Lemma 5.2. Therefore, this case cannot occur. |}

Proof (of Theorem 5.1). Corollary 5.4 implies mutual exclusion. Moving
part well-formedness follows from the same corollary and the definition of
the moving part. Request well-formedness follows from the definitions of the
operators and the processes. Eventual granting can be argued from the
round-robin behavior of the processes; it also follows from the upper bound
on response time proved formally in the following subsection. |}

5.2. Response Time
Now we prove the upper bound on response time for the given
distributed algorithm B.

THEOREM 5.5. The worst case response time for algorithm B is at most
nle{Lm+Dje, J+ 1) +d+cy+ 20].

We use the following lemmas.

LEMMA 5.6. In any reachable state s, and for any i,
s. TIMER(()) K| (m+ D)/, |+ 1.

Proof. By an easy induction. ||

LEMMA 5.7. Let s be any state occurring in a timed execution, in which
S.TIMER(iY<k, for k=1. Then (at least) one of the following two
conditions holds:

1. s.TIMER(i)<0 and s. TICKED(i) = true, or

2. the time from the given occurrence of s until a later TICK(i) event
resulting in TIMER(i) <0 is bounded above by ¢, - k.

Proof. As for Lemma 4.6. |
Say that process p, is operative in state 5 if sTOKEN({)=used. By

Lemma 5.2 at any time there is at most one operative process.

Lemma 5.8. If process p; is operative, then the time until process p,,
becomes operative is at most

(Lm+Dje, J+ 1) +d+c,+ 2L

Proof. By Lemmas 5.6 and 5.7, either TIMER(/) <0 and TICKED(i) =
true, or else within time

eLim+ e, J+1),

TIME BOUNDS FOR PROCESS CONTROL 213

a TICK(i) event occurs setting TIMER(i/)<0; in either case, SEND-
TOKEN(i) is enabled within time

ex(Lim+1D)je J+1).

Within time [/ after that, SEND-TOKEN(i) occurs and RECEIVE-
TOKEN(i+ 1) is enabled (since it is the only message in the channel),
and within an additional time d, it is executed. If there is a pending
request at process p,., when this RECEIVE-TOKEN(i+ 1) occurs,
1e., REQUESTED(i+ 1)=true at this point, then this RECEIVE-
TOKEN(i+1) sets TOKEN(i+ 1)=available. Then within time c,,
GRANT(i+1) is enabled and within time / is is executed, causing
process p,,, to become operative. On the other hand, if there is no
pending request, i.e., REQUESTED(i+ 1)=false, then the RECEIVE-
TOKEN(i + 1) sets TOKEN(i + 1) =used and thereby causes process p,, ,
to become operative. ||

Define the distance from process p, to process p, to be the distance
between them along the ring (in the clockwise direction); if i = we define
the distance to be ».

Proof (of Theorem 5.5). Consider the point in the timed execution at
which a request arrives, say at process p;. We consider cases (one of which
must hold, by Lemma 5.2).

1. There is some operative process, p,, when the request arrives
(where it is possible that i =). Then the distance from p; to p, is at most n.
Applying Lemma 5.8 repeatedly (at most » times) yields the claimed
bound.

2. The value of TOKEN(/) = available for some i. If i=j, then the
request will be granted within time ¢, + /. If i#j, then within time ¢, +/,
process p, becomes operative. Applying Lemma 5.8 repeatedly (at most
n—1 times) yields the claimed bound.

3. There is a message in one of the channels, say chanrnel(i — 1, i). If
i=j, then te request will be granted within time d+ ¢, + /L If i#}, then
within time d + ¢, + I, process p, becomes operative. Applying Lemma 5.8
repeatedly (at most #n— 1 times) yields the claimed bound. |

Again, we note the limiting case of the upper bound as / approaches
01is

nle(mic, |+ 1)+d+c,].

214 ATTIYA AND LYNCH

5.3. Lower Bound

Now we prove our lower bound on worst case response time for an
arbitrary distributed solution to the timed mutual exclusion problem.
This proof is similar to that of the simple lower bound for centralized
algorithms (Theorem 4.7) rather than the more complicated tight bound
{(Theorem 4.9) in that we do not concern ourselves with process step time
or with roundoffs. As a result, this proof is sufficiently robust to extend to
other reasonable models for timing-based computation.

Note that the gap between our upper and lower bounds for the
distributed case involves not only process step times and roundoffs, but
also involves additive terms of d and of n-¢,.

In order to prove this lower bound we must make the assumption that
the moving time is much larger than the message delivary time, more
precisely, that (n—1)-d<ml(c,/c,).

THEOREM 5.9. Assume that ¢, <c¢, and that (n—1)-d<m-(c,/c,). Then
the worst cuase response time of any distributed computer system that solves
the timed mutual exclusion problem is strictly greater than

n-c(mic)+(n—1)-d

The lower bound is proved under the assumption that every message is
delivered within time 4. This is a stronger assumption than the one used for
the upper bound; there, we only insist that this upper bound hold for the
first message on any link. Since the present assumption is stronger, it only
serves to strengthen the lower bound.

We start with an informal overview of the proof.

The basic technique used in the proof is called shifting and works as
follows. Assume that process p, grants right after p,; furthermore, assume
messages from p, to p; are delayed d time, while the messages from p; to p;
are delayed O time. Assume, by way of contradiction, that the difference
between the time p, grants and the time p, grants is less than or equal to
¢y{mfc;)+d Then we can “shift” events at p, back in time, by retiming
them to occur d time earlier, and then “shrink” them (as in Lemma 4.8} to
obtain a violation of mutual exclusion.

If it were possible to apply this argument » times, we could have
obtained a lower bound of n-c,(m/c,)+ n -d. Unfortunately, there are two
major dificulties with applying this technique. Handling these difficulties
requires some assumptions and significantly complicates the proof.

First, applying this technique requires knowing the granting order in
advance, so we can fix an appropriate message delay policy. However, it is
possible that the algorithm changes the granting order depending on the
message delays that occur in the execution. To address this difficulty,

TIME BOUNDS FOR PROCESS CONTROL 215

we show that the round-robin granting policy used by the algorithm of
Section 5.1 is optimal in the following sense: for any “efficient” algorithm,
in any heavily loaded execution, the order in which requests are first
granted must be repeated in a round-robin fashion. This is done in
Lemma 5.11, and requires the assumption that (n—1)-d<m-(c,/c,). Once
such an order has been established, we extend the execution while fixing a
particular pattern of message delays (according to the fixed granting
order).

Second, since all processes start operating simultaneously at time 0, we
cannot simply shift events at p; to occur d time earlier. (For example, this
might force some events at p; to occur in the interval [—d, 0].) Indeed, as
mentioned earlier, if the clocks are perfectly accurate then the lower bound
does not hold. However, if ¢, <c¢, then clocks drift apart after a sufficiently
long time. We exploit this fact in a technique which we call shifting while
shrinking: we retime parts of the execution by carefully “shifting” certain
events earlier, while appropriately retiming certain preceding events so the
events all occur at times >0. (This is done in Lemma 5.12.)

We now present the details of the proof.

Recall the definition of a heavily loaded timed execution or timed semi-
execution from Section 4.2. In a manner similar to the centralized case, we
define a timed execution or timed semi-execution to be slow if, for each i,
the times between successive TICK(i) events (and the time of the first
TICK(i) event) are exactly ¢,. The following lemma is the distributed
version of Lemma 4.8.

LemMa 5.10. Let a be a slow timed execution of a distributed computer
system that solves the timed mutual exclusion problem. Then the time
between any two consecutive GRANT events in o is strictly greater then

cs(mfcy).

The next lemma shows that if an execution is heavily loaded, the best
policy (for an “efficient” algorithm) is to grant the resource in a round
robin manner, because changing the granting order will cause the response
time to exceed a bound higher than the one we are attempting to prove as
a lower bound.

LemMa 5.11. Let B be a distributed computer system that solves the
timed mutual exclusion problem with response time at most (n+ 1) -c,(m/c,).
Let a be a slow timed execution of B that is heavily loaded starting from
time t. Then there exists some permutation, p, of {0, .., n— 1} such that the
subsequence of all GRANT events that occur in o after time t is of the form

GRANT(p), ... GRANT(p, _,), GRANT(p,), ... GRANT(p,,),

216 ATTIYA AND LYNCH

Proof. Suppose by way of contradiction that there is no such permuta-
tion p. Then there is some index, for which two GRANT(i) events =, and
7, occur (at times 7, and ¢, respectively) after time ¢, where there are at
least n GRANT() events, j# i, intervening between 7, and =,.

By Lemma 5.10, the time between any two consecutive GRANT events
from among this set of n+1 GRANT events is strictly greater than
¢,(m/c,). Therefore, the time between 7, and =, is strictly greater than

(n+1)-cy{mjcy).

Since « is heavily loaded, a REQUEST(i) event must follow n, and occur
at time ¢,. Since that REQUEST(i) is fulfilled by =, at time ¢,, the response
time for that REQUEST(i) is strictly greater than (n+ 1) - ¢,(m/c,), which
contradicts the assumed bound on the response time of the algorithm. |

Proof (of Theorem 5.9). Assume by way of contradiction that there is
some algorithm that always responds within time

n-c(mic)+(n—1)d
By assumption
(n=1)yd<m(cy/c,),
which implies that
n-co(mfc)+(n—1)d<(n+1)-c,(mfcy).
Thus, the response time for the algorithm is at most
(n+1)-cy{mfcy).

We construct a slow timed execution of the algorithm that either exceeds
the claimed bound on response time or violates the mutual exclusion
property. We begin by considering a slow timed execution «' that is heavily
loaded starting from some time 7, and letting o be the shortest prefix of this
timed execution that ends just after exactly n GRANT events have occurred
after time . Lemma 5.11 implies that there is some permutation p, such
that all GRANT events that appear in «' after time ¢ occur in the order
P05 s P15 Po» - In fact, Lemma 5.11 implies that GRANT events that
occur after time ¢ in any timed semi-execution that extends « and is heavily
loaded starting from time ¢, appear in the order pg, ..., p,,_ . We sometimes
abuse notation and write p, <p, when i< j; that is, p, precedes p, in the
order established by p.

We now consider the “ring” of processes formed by the round-robin
order defined above. We extend the execution in such a way that messages
are delivered with maximum delay when sent from lower numbered

TIME BOUNDS FOR PROCESS CONTROL 217

processes to higher numbered processes (in the order established by p),
while messages going the other way are delivered immediately. Intuitively,
this “postpones” notification of granting as long as possible and will enable
us later to “shift” back in time events that occur at processes that grant
later in the granting order.

More formally, we extend x to slow timed execution «f” which is heavily
loaded starting from time ¢ and such that the message delivery times for
messages sent in 8’ are as follows:

» If i<}, then a message from p, to p, takes exactly time d.
o If i>, then a message from p, to p, takes exactly time 0.

Let «ff be a “sufficiently long” prefix of «f’; specifically, one for which

ﬁ_ < Iend(aﬂ) — tend(a) —d
(&) = tend(aﬁ) - lend(a)

This can be done since, by assumption, ¢,/c,<1. Let r,=t.4(«) and
r,= tend(“ﬂ)'

Let be such that affy = aff’. We know that y contains a subsequence of
n+ 1 consecutive GRANT events, in the order

GRANT(p,), GRANT(p,), .., GRANT(p,), GRANT(p,).

Now divide y into n+ 2 segments, 7, ... Y. 1, Where

1. v, ends with the first of these GRANT(p,) events,

2. foreach i | <i<n—1,7y,starts just after GRANT(p;_,) and ends
with GRANT(p,),

3.y, starts just after GRANT(p, ,) and ends with the second
GRANT(p,), and

4. 7y,,, includes the rest of y.

Foreach,0<i<n+ 1, let t;=t.,q(2fyo---7,). For any 1 <i<n, define the
length of any segment, y,, to be /;,=1¢,— .. Intuitively, /; is the amount of
time that passes during y,.

Figure 5 depicts the timed execution «ffy. Each horizontal line represents
events happening at one process, the arrows show delay times between
pairs of processes (after time r,), while dashed vertical lines mark time
point that are used in the proof.

We now prove a key lemma that provides a lower bound for the length
of each segment y,, .., y,_ ;.

LEmMma 5.12. Forany i, 1 <i<n—1,

li>cy(mjey)+d

218 ATTIYA AND LYNCH

|
lr T to t1 tal t
P | 1! 21 ! R D
Po I A Aj GRANT(y) I [GRANT(n,)
d\ o
| | | | | |
By, % l L1 | | Lo _ _
N A | [GRANT(p,) | |
Id\ of &\ o}l | | | |
| | | | | |
| | | | I |
P, IF] L1 !] Lo —
0-2 N A Lot | l l
RN Lo | I I
l] L1) 1 Lo — —
Ppn-l I Gm(pn-l)

FiG. 5. The timed execution xf3;.

Proof. Asssume by way of contradiction that
li<ey(mje,)+d

for some particular i, 1 <ig<n—1.

From afly we construct a new timed execution, a8, in which the mutual
exclusion property is violated. We first construct an intermediate timed
execution «é’ in which we “shift” back in time the events occurring at
processes p,., .., P,, ,, in the following way:

1. Each event occurring at any of the processes p,, ... p, , that
occurs in By at time w also occurs in 6" at time w.

2. Each event occurring at any of the processes p,, ...p,, , that
occurs in Sy at time u occurs in &' at time ', where:

(a) Hfu>r,then ' =u—d
(b) Ifr,<u<r, then

le.,

w—ry r,—r,—d

u_rl rz—rl

TIME BOUNDS FOR PROCESS CONTROL 219

That is, the events occuring at processes >p, at times >r, are moved d
earlier; note that events occurring in « (at times <r,) are not moved. All
the intermediate events are shifted back in proportion.

The resulting sequences of timed events must be merged into a single
sequence consistenly with the order of the times; events occurring at
different processes at the time can be merged in arbitrary order, except that
a SEND event that corresponds to a RECEIVE event in «ffy must precede
it in ad’.

Cramm 5.13. ad' is a timed execution of the system.

Proof. The key things that need to be shown are that

» No message is received before it is sent.

« No message takes more than time d to be delivered.

+ No clock tick takes time less than c,.
For the first two conditions, note that in fiy we have that messages take
time

» d from all processes <p,,_, to all processes =p,, and

+ 0 in the reverse direction.
We are only shifting events of processes >p, ecarlier by at mostd, so
message delivery time is kept <d, and no message is received before it is
sent.

For the third condition, note that all clock tick intervals are of length

¢, in affy, and no portion of this timed execution is shrunk by more than
the ratio

rz—rl_d
r,—r;

As the original length of the tick interval was c¢,, the new length of a clock
tick interval is at least

r2—r,—d>
=

Cy- Cy,

r,—r,
by the way f was selected. This completes the proof of Claim 5.13. |

Now we resume the proof of Lemma 5.12. Note the following additional
properties of 24’

» Any clock tick interval at a process <p, , takes time exactly c,.

» Any clock tick interval at a process >p, that begins at a time
=r,—d takes time exactly ¢, .

643/110/1-15

220 ATTIYA AND LYNCH

» Any clock tick interval at a process =p, that begins at a time
<r,—d and ends at a time wu>r, takes time at least u—r,+
(c;—(u—r))e /ey)

» The length of the new segment corresponding to y; is at most
cy(mjey).

Now to get ad from ad’, we “shrink™ the portion of ad’ after time r, by
the ratio (¢,/c,) and move the FINISH(p,_,) event (of segment y,} after
the GRANT(p;) event (at the end of segment y,), thus creating a violation
of the mutual exclusion property. More precisely, if an event happens at
time #' in ad’, then the corresponding event happens at time u in «d, where:

1. fu<r,, then v’ =u

2. Huzr,y, then u' =r,+ (¢, /c:)(u—r,).

CLAIM 5.14. «d is a timed execution of the system.
Proof. The key things that need to be shown are that

« No clock tick interval is smaller than ¢,.

e« The FINISH(p,_,) event occurs within time m after the corre-
sponding GRANT(p,) event.

For the first condition, if a tick interval happens at process p;<p, , or
a tick interval starts no sooner than time r,—d in «d’, then this clearly
holds, since the properties of 2’ stated above implies that those intervals
are of length c¢,.

The only case left is that of a tick interval that occurs at a process 2p,,
and starts before r, —d in 2d’. Let u be the time at which the interval ends
inwd’. If u<r,, then the interval is not shrunk at all, so we can assume
that u>r,. Then by the properties of ad’ stated above, the length of
this interval in ad’ is at least u—r,+ (¢, — (u—r;))(c,/c,). But in going
from «d’ to ad, only the portion of the interval after time r, gets shrunk;
therefore, the length of the new interval is at least

(w—ry)c;/er) + (e — (u—r))c /ey)=cy,

as needed for the first condition.

For the second condition, the time between the GRANT(p;_,) and the
GRANT(p,) in ad, ie., the length of the segment corresponding to y; in ad,
is at most m; hence moving FINISH(p, ,) after GRANT(p;) does not
violate the m upper bound.

This completes the proof of Ciaim 5.14. }

TIME BOUNDS FOR PROCESS CONTROL 221

To complete the proof of Lemma 5.12, wse need only observe that ad is
a timed execution of the system in which the mutual exclusion property is
violated, a contradiction. |

Finally, to complete the proof of Theorem 5.9, consider the execution
afy and consider the REQUEST(p,) that occurs just after the first of the
designated GRANT(p,) events iny. From Lemma 5.10 it follows that

1,>cy(mfcy).

Together with Lemma 5.12 this implies that the total time from that
REQUEST(p,) event until the corresponding GRANT{p,) event is strictly
greater than

(n—1)(cy(mjc)+d)+ cy(mfe))=n-cy(m/c;)+(n—1)d,

as claimed. J

6. DiscussioN AND OPEN PROBLEMS

In this paper, we have defined a timing-based variant of the mutual
exclusion problem, and have considered both centralized and distributed
solutions to this problem. We have proved upper bounds for both cases,
based on simple algorithms; these bounds are fairly complicated functions
of clock time, manager or process step time, moving time for the moving
parts, and (in the distributed case) message delivery time.

We have proved corresponding lower bounds for both cases. In the
centralized case, the lower bound exactly matches the upper bound, even
when the manager step time and the roundoffs are considered. In the more
complicated distributed setting, the lower bound is very close to the upper
bound, but does not match it exactly.

The bounds are all proved using the timed automaton model for timing-
based concurrent systems. It is interesting to ask how dependent the results
are on this choice of model. The timed automaton model differs from some
others in modeling process steps explicitly (rather than assuming that the
algorithms are interrupt-driven); thus, our results involving this process
step time would not be expected to extend immediately to such interrupt-
driven models (except possibly in the limit, as this step time approaches 0).
However, some of our results—most notably, the lower bound for the
distributed case—do not involve process step times and thus appear to be
quite model-independent. An alternative approach would be to use a
general model that describes interrupt-driven computation, but we do not
yet know (in general) how to define such a model.

222 ATTIYA AND LYNCH

There are several open questions directly related to the work presented
in this paper. First, there is a gap remaining between the upper and lower
bound results for the distributed timed mutual exclusion problem. Even
neglecting process step time, there is a difference of an additive term of d,
the upper bound on message delivery time, plus a term of n-¢,, the num-
ber of processes times the upper bound on the clock tick time. Preliminary
results suggest that under certain assumptions about the relative sizes of
the parameters, the upper bound can be reduced by approximately d.
However, we do not yet have a general result about this.

Our lower bound for the distributed timed mutual exclusion problem
assumes that (n—1)-d<m-(c,/c;). It would be interesting to see if this
assumption can be removed.

It would also be interesting to consider the same problem in a model in
whick there are nontrivial lower bounds on the time for message delivery
{(and perhaps for process steps). While our upper bound proofs still work
in this situation, the same is not true for our lower bound proofs. The
strategy of shrinking and shifting timed executions to produce other timed
executions becomes much more delicate when lower bounds on these
various kinds of events must also be respected.

Our results imply that the ratio ¢,/c, has a significant impact on the
response time of the system. It would also be interesting to consider the
case where a process has more than one clock, say an additional clock with
bounds [c¢}, ¢5]. We would like to understand how the results depend on
the four parameters ¢, ¢,, ¢}, and c5.

A variant of the problem studied in this paper includes explicit notifica-
tion from the control rods to the computer system when the rods have
finished moving. For this variant, it is possible to obtain upper bounds that
are smaller than ours; in particular, the timing uncertainty c,/c, does
not appear in the bounds. It appears that for many problems, explicit
notifications will permit similar improvements in time complexity. On the
other hand, such notifications may not always be available, or may incur
significant costs in hardware or communication, or may themselves
introduce overhead in time complexity. Liskov [19] discusses several
practical situations in which it seems better to use time estimates than to
rely on explicit notifications.

Other related problems can also be studied using the models and
techniques of this paper. One could define timing-based analogs of other
problems besides mutual exclusion that have been studied in the
asynchronous setting (for example, other exclusion problems such as the
dining philosophers problem, distributed consensus problem, or syn-
chronization problems such as the session problem of [17); some results in
this direction appear in [2, 3, 26,27]. In addition to defining variants
of asynchronous problems, one can also extract prototypical problems

TIME BOUNDS FOR PROCESS CONTROL 223

from practical real-time systems research and use them as a basis for
combinatorial work.

In another direction, the algorithm proofs presented here suggests
general approaches to verification of real-time systems. As mentioned
in Section 4.1.3, we believe that there is a unified method for treating
correctness and performance analysis of timing-based algorithms; this is
explored in [22].

Work of the sort presented here (and the extensions proposed above)
should provide an excellent basis for evaluating the timed automaton
model as a general model for reasoning about timing-based systems {(and
comparing it with alternative models for timing-based computation).

A. PROOFS OF LEMMAS

A.l. Proof of Lemma 4.2

The proof is by induction on the length of a finite execution, «, that ends
in state s. The base, length 0, is trivial since FINISH(i) is not enabled in
any initial state. So suppose that a =a'(s’, (x, t), s) and the result holds for
a’ and s'. We show that it holds for « and s. We consider cases.

Case 1: n=REQUEST(j), for some j, 0<j<n—1, or n=ELSFE. First
suppose that FINISH(i) is enabled in s.basic, for somei, 0<i<n—1
(where / might or might not be equal to j). Then it is also enabled in
§'.basic. The inductive hypothesis implies that

1. (a) s"TIMER >0,
(b) s first(TICK) + (s" TIMER — 1) ¢, > 5".last(FINISH(i)), and
(¢) FINISH(k) is not enabled in s'.basic, for any k #1.

Since s. TIMER =s".TIMER, we have s. TIMER > 0. Since
s. first(TICK)=5s'. first(TICK),
and
s last(FINISH(i)) = s'. last(FINISH(i)),
we have that
s. first(TICK) + (s. TIMER — 1) ¢, > s. last{ FINISH(i}).

Also, FINISH(k) is not enabled in s.basic, for any k #1i.

224 ATTIYA AND LYNCH

Now suppose that s. TICKED =true. Then it must be that =z is
REQUEST(j) and s". TICKED = true. Then

5" first{ TICK) 2 s". last(LOCAL) + ¢, — I.
Since
s. first(TICK) = s'. first(TICK),
and
s last(LOCAL) = s".last(LOCAL),
we have that
s. first(TICK) = s last{ LOCAL) + ¢, — L

Case 2: n=FINISH(j), for some j, 0<j<n—1. First, suppose that
FINISH(i) is enabled in s.basic, for some i, 0 <i<n— 1. It cannot be that
i=j, so j#i But then both FINISH(i) and FINISH(j) are enabled in
s'.basic, which contradicts the inductive hypothesis. Therefore, this case
cannot occur.

Second, suppose that s. TICKED = true. Then the same argument as in
Case 1 shows that

s. first{ TICK) 2z s . last(LOCAL) + ¢, — L

Case 3: n=TICK. First suppose that FINISH(i) is enabled in s.basic
for some i, 0 <i<n—1. Then it is also enabled in s'. basic, so the inductive
hypothesis implies that

1. (a) s"TIMER >0,
(b) & first(TICK) + (s". TIMER — 1)} ¢, > s".last(FINISH(i)), and
(c) FINISH(k) is not enabled in s".basic, for any k # 1.

We first prove that s. TIMER>0. If not, then it must be that
5" TIMER = 1. Then the inductive hypothesis implies that

s’ first TICK) > s'.last(FINISH(i)).

But then the definition of time(A4) implies that (TICK, t) is not enabled
in s, since a FINISH(i) must happen first. This is a contradiction.

TIME BOUNDS FOR PROCESS CONTROL 225

For invariant 1(b), we see that
s. first(TICK) + {s. TIMER — 1) ¢,
=t+c,+(s"TIMER—1—-1)¢,
=t+(s"TIMER—-1)¢,,
>t + 5" last(FINISH(i)) — s'. first(TICK)

(by the inductive hypothesis)
= 8" last(FINISH(i)) (by the definition of time(A))
=s.last(FINISH(i)).

Thus,
s first(TICK) + (s. TIMER — 1) ¢, > s.last(FINISH(i}).

The third clause carries over easily.
Now suppose (actually, it must happen) that s. TICKED = true. By the
definition of time(A), s. first(TICK)=1t+ ¢, and s.last(LOCAL)<t+1, so

8. firs(TICK) 2 s . last(LOCAL) + ¢, — L.

Case 4. n1=GRANT(j), for some j, 0<j<n—1. First suppose that
FINISH(i) is enabled in s.basic, for somei, 0<i<n—1. If i#j, then
FINISH(i) is also enabled in s".basic, so by the inductive hypothesis,
s TIMER >0. But this contradicts the preconditions of GRANTY(j).
Therefore, it must be that i=j.

The effects of GRANT(i) imply that s. TIMER > 0. Note that

s last(LOCAL) >t
(since GRANT is a locally controlled action) and that
s’ first(TICK) = s. first(TICK).
Then
s. first(TICK) + (s. TIMER — 1) ¢,
=s. first{TICK) + (s. TIMER — 1) ¢,
=s"last(LOCAL)+ ¢, — 1+ (s. TIMER — 1) ¢,

(by the inductive hypothesis, since s". TICKED = true)
2t+cy—I1+(s. TIMER — 1) ¢, (by the inequality above)
=t+c,— I+ (L(m+D/c;]) ¢,
>t+m=s. first FINISH(i)).

226 ATTIYA AND LYNCH

Thus,
s. first(TICK) + (s. TIMER — 1) ¢, > s. last(FINISH(i))

as needed.
The mutual exclusion condition has already been shown.
It is not possible that TICKED = true in s, by the effects of the GRANT.

A.2. Proof of Lemma 5.2

The proof is by induction on the length of a finite execution, #, that ends
in state s. The base, length 0, is trivial. So suppose that a=a'(s', (7, 1), 5)
and the result holds for o’ and s’. We show that it holds for « and s, by con-
sidering cases.

Case 1: n is a REQUEST, ELSE, FINISH, TICK, or GRANT action.
These steps do not change the contents of any channel or the number of
processes for which s. TOKEN({) # not_here.

Case 2: n=RECEIVE-TOKEN(j), for some j, 0<j<n—1. Since
RECEIVE-TOKEN(j) is enabled in s'.basic we have that # tokens(j—1)
> 1. By the induction hypothesis, this implies that for all processes i,
5. TOKEN(i) = not_here. The length of one channel queue is decreased by
one, while one token state (of j) is changed from not_here to available;
thus, the total number of tokens on channels plus the number of processes
holding the token (i.e., having TOKEN # not_here) is preserved.

Case 3: n=SEND-TOKEN(j), for some j, 0<j<n—1. The number
of processes for which s. TOKEN(j) = not_here is decreased by one relative
to s’, while the number of messages on the channels is increased by one.
This implies that the sum we are interested in remains the same.

A.3. Proof of Lemwma 5.3

The proof is by induction on the length of a finite execution, «, that ends
in state s. The base, length O, is trivial. So suppose that a=a'(s’, (7, 1), 5)
and the result holds for «' and s'. We show that it holds for « and s, by
considering cases.

Case 1: n=REQUEST(j) or mn=FELSE(j), for some j 0<; <
n—1. First suppose that FINISH(i) is enabled in s.basic, for some
0<i<n—1 (where i might or might not be equal to j). Then it is also
enabled in s".basic. The inductive hypothesis implies that:

TIME BOUNDS FOR PROCESS CONTROL 227

1. (a) s .TIMER(@i)>0,

(b) s first(TICK(i))+ (s TIMER(i)— 1) ¢, > s'. last(FINISH(i)),
and

(c) s TOKEN() = used.

Since 5. TIMER(/) =s". TIMER(i) we have s. TIMER(/) >0, showing 1(a).
Since

s. first{ TICK(i))y =5’ first(TICK(i}),
and
s last(FINISH(i)) = s". last(FINISH(i)),
we have that
s. first{ TICK(i)) + (s TIMER(i) — 1) ¢, > s.last(FINISH(i)).

So we have invariant 1(b). Invariant 1(c) carries over as this step does not
change token states.

Now suppose that s TICKED(7) = true.

Then 5. TICKED(i) = true, and

s first(TICK(i)) = s’ last(LOCAL(i)) + ¢, — 1.
Since
s. first(TICK(i)) = 5'. first(TICK(i))
and
s.last(LOCAL(i))=s'.last(LOCALC(i))
we have that
s. first(TICK(i)) 2 5. last{LOCAL(i)) + ¢, — 1.

So we have invariant 2.

Case 2: m=FINISH(j), for some j, 0<j<n—1. First suppose that
FINISH(i) is enabled in s.basic, for some i, 0 <i<n— 1. It cannot be that
i=j so j#i. Then FINISH(i) is also enabled ins’. As FINISH(j) is
also enabled ins’, we have, by invariant 1(c), that s TOKEN() = used.
Similarly, as FINISH(i) is enabled ins’, we have, by invariant I(c), that
s" TOKEN(i) = used. But this implies that the number of processes
for which TOKEN # not_here is at least 2, contradicting Lemma 5.2.
Therefore, this case cannot occur, and we have invariant 1.

228 ATTIYA AND LYNCH

For invaniant 2, suppose that s TICKED(i)=true. Then the same
argument as in Case 1 shows that, for all i,

s. first(TICK(i)) 2 5. last(LOCAL(i)) + ¢, — L.

Case 3: n=TICK(j), for some j, 0<j<n—1. First suppose that
FINISH(i) is enabled in s.basic. Then it is also enabled in s".basic, so the
inductive hypothesis implies that

1. (a) s.TIMER()>0,
(b) s first(TICK(i))+ (s TIMER{i)—1) ¢, > s". last(FINISH(i)),
and
(c) s"TOKEN(/)=used.

We first prove that s. TIMER({) > 0. If not, then since only TICK(i} can
decrease TIMER(:), it must be that j=/ and s TIMER({)= 1. Then the
inductive hypothesis implies that

s" first(TICK(i)) > s’ last(FINISH({)).

But then the definition of rime(B) implies that TICK(i) is not enabled in s’
(since FINISH(i{) must happen first). This is a contradiction, so we have
invariant 1(a).

For invariant 1(b), if i =, then

5. TIMER(i/) =5 TIMER(/) - |
and we see that
s. first(TICK(i)) + (s. TIMER(i)— 1) ¢,
=t+c¢ + (s TIMER(i)—1—1)¢,
=1+ (s TIMER(i)— 1) ¢,
>t + 5" Jast(FINISH(i)) — s'. first(TICK(i))
(by the inductive hypothesis)
25" last(FINISH(i))
=s.last(FINISH(i)).
Therefore,
s. first(TICK(i)) + (s. TIMER(i) — 1) ¢, > s.last(FINISH(i)),

and we have invariant 1(b). If i #; then invariant 1(b) follows as in Case 1.
Invariant 1(c) carries over as this step does not change token states.

TIME BOUNDS FOR PROCESS CONTROL 229

Now suppose that s. TICKED(i) = true. If i =, then s. first(TICK(i)) =
t+c¢, and s.last(LOCAL(i))<t+1, so

s. firs(TICK(i)) = 5. last(LOCAL(i)) + ¢, — |,

as needed for invariant 2. On the other hand, if i #J, then s'. TICKED(/) =
true and the induction hypothesis on invariant 2 implies that

s first(TICK(i)) = 5. last(LOCAL(i))+ ¢, — L.
Then invariant 2 for s follows as in Case 1.

Case 4. n=GRANT(j), for some j, 0<j<n—1. Then s"TOKEN=
available. First suppose that FINISH(i) is enabled in s.basic, for some i,
O0<ign—1. If i#j then FINISH(i) is also enabled in s'.basic, so by
inductive hypothesis (invariant 1(c})), s TOKEN(i)=used But this
contradicts Lemma 5.2, so /=

Then the effects of GRANT(j} imply that s. TIMER(/)> 0, so we have
invariant 1(a). Note that

s last(LOCAL(j)) = t

and that
s’ first(TICK(J)) = s. first(TICK(})).
Then
s. first(TICK(j)) + (s. TIMER(j) — 1} ¢,
=g first(TICK(j)) + (s. TIMER(j)— 1) ¢,
25" last(LOCAL(j)) + ¢, — I+ (s. TIMER(j)— 1) ¢,
(by the inductive hypothesis)
=t+c¢,— I+ (s. TIMER(j)—- 1) ¢,
=t+c, =1+ (m+1)c,]) e,
>t +m=s.last(FINISH(j)).
Thus,

5. first(TICK(j)) + (s. TIMER(j) — 1) ¢, > 5. last(FINISH(j))

and we have invariant 1(b).

Invariant 1(c) follows from the effects of the GRANT.

Now suppose that s. TICKED(i) = true. Then the effects of GRANT())
imply that j# i Then invariant 2 follows as in Case 3.

230 ATTIYA AND LYNCH

Case 5: n=RECEIVE-TOKEN()), for some j, 0<j<n—1. From the
inductive hypothesis on invariant 1(c) and Lemma 5.2 it follows that
FINISH(i) is not enabled in s’, hence it is not enabled ins. So we have
invariant 1.

Invariant 2 follows as in Case 1.

Case 6: m=SEND-TOKEN()), for some j, 0<j<n—1. If FINISH(i)
is enabled ins, then it is also enabled ins’. Then from the induction
hypothesis on invariant 1(a) it follows that ¢ TIMER({)>0, and
s TOKEN(i) =used. This implies that SEND-TOKEN(i) is not enabled
in s'. Hence, j #i. However, by Lemma 5.2, s" TOKEN(/) = not_here, hence
SEND-TOKEN(j) is not enabled in s. This is a contradiction, so
invariant 1 holds.

Invariant 2 follows as in Case 1.

ACKNOWLEDGMENTS

We thank Nancy Leveson for providing us with background information on real time
systems, and for suggestions and encouragement in the early stages of this work. Thanks are
also due to Jennifer Welch for discussions about clock synchronization and for reading the
paper and providing us with valuable comments. We also thank Michael Merrit and Mark
Tuttle for discussions about modeling time and John Keen, Marios Mavronicolas, and Steve
Ponzio for comments on earlier versions of this paper.

RECEIVED July 17, 1989; FINAL MANUSCRIPT RECEIVED December 10, 1991

REFERENCES

1. ArjoManDi, E., FISCHER, M. J.,; AND LYNCH, N. (1983), Efficiency of synchronous versus
asynchronous distributed systems, J. 4ssoc. Comput. Mach. 30, 449—456.

2. ATTiYa, H., DwoORK, C., LYNCH, N. A., AND STOCKMEYER, L. J. (1991), Bounds on the
time to reach agreement in the presence of timing uncertainty, in “Proceedings, 23rd ACM
Symposium on Theory of Computing,” pp. 359-369; also (1990), Technical Memo
MIT/LCS/TM-435, Laboratory for Computer Science, MIT.

3. ATTiya, H., AND MavronicoLas, M. (1990), Efficiency of semi-synchronous vs.
asynchronous networks, in “Proceedings, 28th annual Allerton Conference on
Communication, Control and Computing,” pp. 578-587; Also (1990), Technical Report
21-90, Department of Computer Science, Harvard University.

4. BAETEN, J. C. M., AND BERGSTRA, J. A. (1990), “Real Time Process Algebra,” Technical
Report P8916b, University of Amsterdam.

5. BERNSTEIN, A., AND HARTER, P. Jr. (1981), Proving real-time properties of programs with
temporal logic, in “Proceedings, 8th Symposium on Operating System Principles,”
Operating Systems Rev. 15, 1-11.

6. CooLaHaN, J. E., anp RoussorouLus, N. (1983), Timing requirements for time-driven
systems using augmented Petri nets, JEEE Trans. Software Engrg. SE-9, 603-616.

7. DASARATHY, B. (1983), Timing constraints of real-time systems: Constructs for expressing
them, methods for validating them, /EEE Trans. Software Engrg. SE-11, 80-86.

10.

20.

21

22.

23.

24,

25.

26.

27.

TIME BOUNDS FOR PROCESS CONTROL 231

. DoLEv, D., HALPERN, J., AND STRONG, H.R. (1986), On the possibility and impossibility

of achieving clock synchronization, J. Comput. System Sci. 32, 230-250.

. DWORK, C., AND STOCKMEYER, L. (1991), “Bounds on the Time to Reach Agreement as

a Function of Message Delay,” IBM Research Report RJ8181, Almaden Research Center,
San Jose, CA.

GERBER, R., aAND LEE, 1. (1989), The formal treatment of priorities in real-time com-
putation, in “Proceedings, 6th IEEE Workshop on Real-Time Software and Operating
Systems.”

. HALPERN, J., MEGIDDO, N., AND MuNsHI, A. A. (1985), Optimal precision in the presence

of uncertainty, J. Complexity 1, 170-196.

. Hasse, V. H. (1981), Real-time behavior of programs, IEEE Trans. Software Engrg. SE-7,

494-501.

. Huizing, C., GerTH, R., AND DEROEVER, W. P. (1987), Full abstraction of a real-time

denotational semantics for an OCCAM-like language, in “Proceedings, 14th ACM
Symposium on Principles of Programming Languages,” pp. 223-237.

. JaHaNiaN, F., AND MoK, A. (1986), Safety analysis of timing properties in real-time

systems, IEEE Trans. Software Engrg SE-12, 890-904.

. Jananian, F., aAND Mok, A. (1987), A graph-theoretic approach for timing analysis and

its emplementation, /EEE Trans. Comput. C-36, 961-975.

. Koymans, R., SHYaMasUNDAR, R. K., DEROEVER, W. P., GERTH, R., AND ARUN-KUMAR, S.

(1988), Compositional semantics for real-time distributed computing, Inform. and Comput.
79, 210-256.

. LamporT, L. (1978), Time, clocks and the ordering of events in distributed systems,

Comm. ACM 21, 558-565.

. LEveson, N., aND StoLzy, J. (1989), Safety analysis using Petri Nets, JEEE Trans.

Software Engrg. SE-13, 386-397.

. Liskov, B. (1990), Practical uses of synchronized clocks, invited talk at the 9th Annual

ACM Symposium on Principles of Distributed Computing.

LunDELIUS, J., AND LYNCH, N. (1988), A new fault-tolerant algorithm for clock
synchronization, Inform. and Comput. 77, 1-36.

LyNCH, N. (1988), Modelling real-time systems, in “Foundations of Real-Time
Computing Research Initiative,” ONR Kickoff Workshop, 1-16.

LyYNCH, N. A., AND ATTiYA, H. (1990), Using mappings to prove timing properties,
in “Proceedings of the 9th Annual ACM Symposium on Principles of Distributed
Computing (PODC),” pp. 265-280; Also (1991}, Technical Memo MIT/LCS/ TM-412.c,
Laboratory for Computer Science, MIT.

Ly~NcH, N., aND TurTLE, M. (1987), Hierarchical correctness proofs for distributed algo-
rithms, in “Proceedings, 7th ACM Symposium on Principles of Distributed Computing,”
pp. 137-151; Also (1987), Technical Report MIT/LCS/TR-387, Laboratory for Computer
Science, MIT.

Ly~cH, N., aND TuTTLE, M. (1989), An introduction to input/output automata, CW1/-
Quarterly 2; also (1988), Technical Memo, MIT/LCS/TM-373, Laboratory for Computer
Science, Massachusetts Institute of Technology.

MERRIT, M., Mobucgno, F., anp Turrie, M. (1991), Time constrained automata,
CONCUR, to appear.

Ponzio, S. (1991), Consensus in the presence of timing uncertainty: Omission and
byzantine failures, in “Proceedings, 10th Annual ACM Symposium on Principles of
Distributed Computing (PODC),” to appear.

Ponzio, S. (1991), “The Real-Time Cost of Timing Uncertainty: Consensus and Failure
Detection,” S. M. Thesis, Laboratory for Computer Science, MIT.

232 ATTIYA AND LYNCH

28.

29.

30.

31

32.

33.

ReeD, G. M., AND ROSCOE, A. W. (1986), A timed model for communicating sequential
processes, in “ICALP "86”.

SHANKAR, A. U., anp Lam, S. (1989), Time-dependent distributed systems: Proving
safety, liveness and timing properties, Distrib. Comput. 2 61-79.

SiFAKIS, J. (1975), Petri nets for performance evaluation, in Measuring, Modeling and
Evaluating Computer Systems, in “Proceedings 3rd Symposium IFIP Working Group
7.3,” H. Beilner and E. Gelenbe, (Eds.) Amsterdam, North-Holland.

Sivons, B., WELCH, J. L., aND LyNcH, N. (1988), “An Overview of Clock Synchroniza-
tion,” IBM Technical Report RJ 6505.

WELCH, J. L., AND LyNcH, N. (1984), An upper and lower bound for clock synchroniza-
tion, Inform. and Control 62, Nos. 2/3 (August/September 1984), pp. 190-204.

Zwarico, A., Leg, 1., AND GERBER, R. A complete axiomatization of real-time processes,
submitted for publication.

